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Given that the scale of quantum gravity is not experimentally accessible, one naturally resorts to
mathematical consistency as a measure for a good candidate theory to replace general relativity at high
energies. Reproducing the semiclassical results of black hole entropy has become a standard test for any
prospective theory of quantum gravity. It is often argued that another such commonality, albeit less known,
is the similar fractal behavior. It is shown that many, if not all, approaches to quantum gravity predict a
spectral dimension of 2 in ultraviolet regime. In this paper, by computing the heat kernel, we show that the
spectral dimension of closed bosonic string theory is 26. We discuss the implications of this disparity.
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I. INTRODUCTION

This year marks the thirtieth anniversary of the Green-
Schwarz paper [1] on anomaly cancellation which con-
vinced many theoretical physicists that string theory was a
very promising candidate for unifying all the fundamental
interactions in nature and prompted an era of intense
research in the field. This is often called the “First
Superstring Revolution.” String theory provides an ultra-
violet finite and order-by-order perturbative renormalizable
theory of gravity. The problem of nonrenormalizability
resulting from the direct quantization of general relativity
is well known. Circumventing this disastrous difficulty
without losing mathematical consistency is what makes
string theory arguably the most interesting candidate for
quantum gravity.
The dynamics of the string is described by a two-

dimensional world sheet in the D-dimensional spacetime.
The world sheet is central to all the physics of the string.
When a closed string moves in a curved spacetime its
coordinates feel the curvature. In order for there to be a
consistent quantum theory, the target spacetime must be a
solution to the Einstein field equations. Besides requiring
general relativity to be a part of the theory, it adds
corrections to it. General covariance of spacetime becomes
an emergent concept in string theory.
The seemingly different approaches to quantum gravity

have a few things in common, including the defining spin-2
graviton and Hawking-Bekenstein entropy of black holes.
In addition, it has recently been found that causal dynamical
triangulations [2], asymptotic safety [3], loop quantum
gravity [4], Hořava-Lifshitz theory [5] and also Liouville
quantum gravity [6] predict the same spectral dimension
of 2 [7]. It has been suggested that such an agreement must
contain some hints of a full theory of quantum gravity [8].
One exceptional theory is noncommutative geometry [9]

which predicts spectral dimension of 3 in the ultraviolet
regime.
In this context, the often-quoted result from string theory

is that of Atick and Witten [10]. They studied the statistical
mechanics of string theory: bosonic, type II and heterotic.
Such results in the bosonic case were first obtained by
Sathiapalan [11] and Kogan [12]. Here we only concentrate
on the bosonic case. Their motivation for studying the
thermal ensemble is to understand the underlying degrees
of freedom in string theory. To this end, they compute the
free energy F ¼ −T lnZ, where T is the temperature in
natural units and Z is the partition function. In a free field
theory in D-dimensions, for large T, the free energy per unit
volume has the form,

FT
V

∼ TD−1: ð1:1Þ

The interactions will not make this any significantly lesser.
In fact, below Hagaedorn temperature, the free energy
grows much faster with temperature because of prolifer-
ation of string modes. However, above Hagaedorn temper-
ature, the free energy grows linearly with temperature, i.e.,

FT
V

∼ T: ð1:2Þ

This implies that the theory undergoes a phase transition
only to act like a (1þ 1)-dimensional quantum field theory
at each point of a lattice. That is to say, the high-temper-
ature limit of the free energy in string theory is much less
than in any known relativistic quantum field theory. But
the effective string theory governing the high-temperature
behavior is still 26 dimensional. This last point is what is
not mentioned whenever this result is quoted in the context
of spectral dimension.
In order to reconcile with other approaches, we compute

the spectral dimension in the similar way as other appro-
aches to quantum gravity. Besides throwing light on the
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spectral behavior of string theory, our calculations done
using heat kernels precisely emphasize the last point of
Atick and Witten.

II. HEAT KERNEL AND SPECTRAL DIMENSION

Besides the obvious applications in many branches of
engineering, the study of heat kernel is of importance for
algebraic topologists and differential geometers on the side
of mathematics, and for quantum field theorists and general
relativists on the side of physics. The study of the spectral
theory of the Laplacian through the heat equation was, for
many, popularized by Marc Kac [13].
A diffusion process on a D-dimensional smooth mani-

foldM with boundary ∂M and metric gμν is described by a
heat equation� ∂
∂s − Δ

�
Kðx; x0; sÞ ¼ 0 with Kðx; x0; 0Þ ¼ δðx − x0Þ;

ð2:1Þ
where the Laplace-Beltrami operator is given as,

Δ ¼ 1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νÞ: ð2:2Þ

The function Kðx; x0; sÞ is called the heat kernel, which
satisfies certain boundary conditions and describes the
probability for a random walker to go from point x to x0
on the manifold in time s.
One of the basic defining properties of a manifold is its

Hausdorff dimension, sometimes simply called the dimen-
sion. The spectral dimension is defined as the effective
dimension of a diffusion process. In other words, it is the
dimensions perceived by a random walker, a randomly
moving particle. Mathematically it is defined as

ds ¼ −2lim
s→0

d lnKðx; x0; sÞ
d ln s

: ð2:3Þ

On a smooth manifold the spectral dimension is the same
as Hausdorff dimension, but they are generally different
on a fractal [14]. There are many ways of computing a heat
kernel [15] and one of themost popular methods in quantum
field theory is using the Feynman path integral [16].
As an example, we derive the spectral dimension of a

D-dimensional Euclidean space. On a flat manifold
M ¼ RD, the heat kernel for a scalar field of mass m
[17] is given by,

Kðx; x0; sÞ ¼ ð4πsÞ−D=2 exp

�
−
ðx − x0Þ2

4s
−m2s

�
ð2:4Þ

where ðx − x0Þ2 is essentially the square of the geodesic
distance, and the associated Laplacian is

Δ ¼ −gμν∇μ∇ν þm2: ð2:5Þ

In order to calculate ds, we first take the logarithm of the
kernel Eq. (2.4), i.e.,

ds ¼ −2lim
s→0

d
d ln s

�
−
D
2
ln 4π −

D
2
ln s −

ðx − x0Þ2
4s

−m2s

�
:

Now differentiating with respect to ln s and taking the
limit as s → 0 and also requiring the geodesic distance
ðx − x0Þ → 0, we get

ds ¼ D

which is same as its Hausdorff dimension as expected.

III. SPECTRAL DIMENSION OF CLOSED
BOSONIC STRING THEORY

We consider the simplest and most basic class of string
theories: closed bosonic string theory in Minkowski back-
ground. The graviton appears as a particular state of the
closed string. It is described by the Polyakov action

S½g; X� ¼ 1

2

Z
d2σ

ffiffiffi
g

p
gαβ∂αXμðσÞ∂βXνðσÞημνðXÞ; ð3:1Þ

where gαβ is the world sheet metric with determinate g, Xμ

are local coordinates on target spacetime, σα are the world
sheet coordinates, and ημν is the D-dimensional Minkowski
metric. It is invariant under world sheet diffeomorphism,
Weyl rescalings of the metric and Poincaré transformations
of the target space.
Invariance under Weyl transformations implies that the

two-dimensional classical field theory described by the
action in Eq. (3.1) is a conformal field theory. However,
demanding conformal invariance after quantization leads to
severe constraints on the theory and makes the theory only
consistent in D ¼ 26 dimensions. The world sheet action
can be thought of as a field theory in two dimensions with
26 scalar fields, while the target spacetime metric behaves
like “coupling constants” [18].

A. Heat equation method

In order to find the spectral dimension, we need the heat
kernel. One can follow the usual method and obtain the
kernel by solving the heat equation constructed with a
suitable Laplace-Beltrami operator. Following this method,
we derive a heat equation given by,

∂
∂λK½X;λ� ¼ 1

2

�
ημν

δ2

δXμδXν−ημν
∂Xμ

∂σ
∂Xν

∂σ
�
K½X;λ�: ð3:2Þ

This agrees for the ghost-free case with the results, obtained
in two different ways, in Refs. [19] and [20]. The solution
of this obtained using Fourier transforms is given by,
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KðX;X0; λÞ ¼ ð4πλÞ−13 exp
�
−
ðX − X0Þ2

2λ
−
m2λ

2

�
ð3:3Þ

with m2 ≡ ημν
∂Xμ

∂σ
∂Xν

∂σ . Substituting this kernel into
Eq. (2.3), we get

ds ¼ 26: ð3:4Þ

B. Path integral method

One can employ the method developed by Feynman [16]
to compute the kernel which satisfies the “imaginary-time”
Schördinger equation. It is straightforward, although it
involves tedious book keeping. This way, one generally
computes the heat kernel and from which the propagator or
amplitude is obtained. We do the reverse here. The ghost-
free amplitude for closed bosonic string was first computed
by Cohen et al. [21]. See [22] for closed-string propagator
with ghosts. The heat kernel extracted from such an
amplitude [23] is given by,

K½Xi; Xf; λ� ¼
e4πλ

λ13
Y∞
n¼1

½1 − e−4πnλ�−24

× exp

�
−1
4πα0

X∞
m¼−∞

2πm
sinhð2πmλÞ

× ½ðjXi
mj2 þ jXf

mj2Þ coshð2πmλÞ

− 2ℜðXi
m · X�f

m Þ�
�

ð3:5Þ

where λ is the moduli parameter which plays the role of
imaginary time.
We introduce the well-known Dedekind η-function

defined in the upper half complex plane H. For s ∈ H it
is given by

ηðsÞ ¼ eπis=12
Y∞
n¼1

½1 − e2πins� ð3:6Þ

Its twenty-fourth power is a modular form of weight 12
which is invariant under the action of group SLð2;ZÞ and
lies at the heart of reasoning that lead to critical dimension
of 26 in bosonic string theory. We refer the interested reader
to the article by Atiyah [24] for its many interesting
properties. Now making a change of variable s → 2iλ
and raising it to power −24, we get

ηð2iλÞ−24 ¼ e4πλ
Y∞
n¼1

½1 − e−4πnλ�−24: ð3:7Þ

In the path integral notation, we identify the argument of
the last exponential in Eq. (3.5) as,

SP½X;λ� ¼
−1
4πα0

X∞
m¼−∞

2πm
sinhð2πmλÞ

× ½ðjXi
mj2 þ jXf

mj2Þcoshð2πmλÞ− 2ℜðXi
m ·X�f

m Þ�:
ð3:8Þ

Putting together these pieces, the heat kernel Eq. (3.5)
takes a simple form

K½Xi; Xf; λ� ¼ λ−13 · ηð2iλÞ−24 · expSP½X; λ�: ð3:9Þ

The only term that contributes to the spectral dimension in
this expression is λ−13 in the prefactor. Upon taking the
logarithm and differentiating with respect to ln λ, all but
one term vanish, giving the same answer of ds ¼ 26. See
the Appendix for the mathematical details. It is somewhat
reassuring that Atick and Witten argue that the effective
string theory governing the high-temperature behavior is
indeed 26 dimensional. See [25], for a different point of view.
Since string theory involves smooth manifolds, it is

expected to have the same number of spectral as well as
Hausdorff dimensions. However, in the case of superstring
theories, it is interesting to investigate if supersymmetry
alters this smoothness of the manifold. This study will be
presented elsewhere.

IV. CONCLUSIONS

Within classical physics, the role of spacetimehas changed
radically over time. In nonrelativistic classical physics, space
is an inert background and time is amonotonically increasing
variable unaffected by anything and everything. In special
relativity, the distinction between space and time disappears.
Whereas in general relativity, spacetime is dynamical and
plays an utmost central role. Even in quantum physics, the
role of spacetime varies from nonrelativistic quantummech-
anics to relativistic quantum mechanics to quantum field
theory. The role of spacetime in string theory is totally differ-
ent from that of any other theory. String theory has sym-
metries which equate spacetimes of different dimensions,
geometry and topology. The number of dimensions is fixed
bymathematical consistency and there is a provision for red-
ucing the number of dimensions too. Bosonic and fermionic
modes “see” different number of spacetime dimensions.
Why do some quantum gravity theories behave like two-

dimensional theories at very high energies? Is it a strange
coincidence? Or is there some common symmetry among
them that is responsible for such a result? Why is it that
some other theories of quantum gravity differ from that?
Or, could this approach imply the sigma model is inad-
equate to reveal something novel about the microstructure
of spacetime in string theory? Trying to make sense of these
differences is worth studying and inquiries in this direction
may help us to understand the nature of quantum gravity at
a deeper level.
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APPENDIX: LIMITS

We evaluate the limits of the last two terms in the heat
kernel expression Eq. (3.9). Following [26], we expand
Eq. (3.7) as follows

ηð2iλÞ−24 ¼ e4πλ þ 24þOðe−4πλÞ: ðA1Þ

Taking the natural logarithm of this expression with respect
to ln λ, we have

d
d ln λ

ln ðηð2iλÞ−24Þ ¼ λ½4π þOð−4πÞ�: ðA2Þ

Now taking the limit of this expression, we get

lim
λ⟶0

d
d ln λ

ln ðηð2iλÞ−24Þ ¼ 0: ðA3Þ

The last term is tackled in the same way. After some
manipulations using hyperbolic identities, we can express
Eq. (3.8) as below,

SP½X; λ� ¼
−1
4πα0

X∞
m¼−∞

πm½ðjXf
mj − jXi

mjÞ2 cothðπmλÞ

þ ðjXi
mj þ jXf

mjÞ2 tanhðπmλÞ�; ðA4Þ

d ln eSP½Xi;Xf ;λ�

d ln λ
¼ λ

4πα0
X∞

m¼−∞
π2m2

�ðjXf
mj − jXi

mjÞ2
sinh2ðπmλÞ

−
ðjXf

mj þ jXi
mjÞ2

cosh2ðπmλÞ
�
: ðA5Þ

In the limit as λ⟶0 and ðjXf
mj − jXi

mjÞ⟶0, we obtain

lim
λ⟶0

dSP½X; λ�
d ln λ

����
ðjXf

mj−jXi
mjÞ⟶0

¼ 0: ðA6Þ
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