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In this work, we consider the possibility of expanding wormholes in higher dimensions, which is an
important ingredient of modern theories of fundamental physics. An important motivation is that nontrivial
topological objects such as microscopic wormholes may have been enlarged to macroscopic sizes in an
expanding inflationary cosmological background. Since the Ricci scalar is only a function of time in
standard cosmological models, we use this property as a simplifying assumption. More specifically, we
consider a particular class of wormhole solutions corresponding to the choice of a spatially homogeneous
Ricci scalar. The possibility of obtaining solutions with normal and exotic matter is explored and we find a
variety of solutions including those in four dimensions that satisfy the null energy condition in specific time
intervals. In particular, for five dimensions, we find solutions that satisfy the null energy condition
throughout the respective evolution.
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I. INTRODUCTION

Wormhole physics dates back to the formulation of
general relativity (GR). Indeed, in 1916, months after
Einstein presented his gravitational field equations, Karl
Schwarzschild found the first solution of Einstein’s equa-
tions, which described the gravitational field of a vacuum
nonrotating spherically symmetric solution. In the same
year, Ludwig Flamm published a paper in which the
geometry of the Schwarzschild solution was studied more
closely. He pointed out a “tunnel-shaped” nature of space
near the Schwarzschild radius, this being perhaps the first
move towards the modern concept of the “throat” in
wormholes [1].
Paging through the literature, one finds next that tunnel-

like solutions were considered, in 1935, by Einstein and
Rosen, where they constructed an elementary particle
model represented by a “bridge” connecting two identical
sheets [2]. They considered the possibility that fundamental
particles such as the electron could be represented as
microscopic spacetime tunnels that convey fluxes of the
electric field. These tunnels were later denoted the Einstein-
Rosen bridge. In fact, the Einstein-Rosen bridge is a
coordinate artifact arising from choosing a coordinate
patch, which is defined to double-cover the asymptotically
flat region exterior to the black hole event horizon.
The field had lain dormant for about twenty years when,

in 1955, John Wheeler, who was beginning to be interested
in topological issues in GR, explored solutions of the

coupled Einstein-Maxwell equations, which he denoted
gravitational-electromagnetic entities (geons) [3]. These
were considered to be objects of the quantum foam
connecting different regions of spacetime at the Planck
scale. However, the term wormhole was only used for the
first time in 1957 [4], when Misner and Wheeler presented
a tour de force wherein Riemannian geometry of manifolds
of nontrivial topology was investigated with an ambitious
view to explaining all of physics. The aim was to use the
source-free Maxwell equations, coupled to Einstein gravity,
with nontrivial topology, to build models for classical
electrical charges and all other particlelike entities in
classical physics.
Subsequently to the geon concept, several wormhole

solutions were obtained and discussed within different
contexts [5]. However, it was only in 1988 that the full-
fledged renaissance of wormhole physics took place
through the seminal Morris-Thorne paper [6], and the
theme is still in full flight. Morris and Thorne considered
static and spherically symmetric traversable wormholes,
and thoroughly analyzed their fundamental properties.
It was found that these traversable wormholes possess a
stress-energy tensor that violates the null energy condition
(NEC), a property that was denoted exotic matter. Besides
being hypothetical shortcuts in spacetime and consequently
useful for inter- and intrauniverse travel, they were found to
possess other intriguing applications, such as the usage for
time travel [7] and investigating the interior of a black hole
[8], amongst others.
Thus, a fundamental ingredient for the Morris-Thorne

wormhole, i.e., for static and spherically symmetric worm-
hole solutions, is the violation of the NEC [6,9]. Exotic
matter is particularly troublesome for measurements made
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by observers traversing through the throat with a radial
velocity close to the speed of light, as for sufficiently high
velocities, v → c, the observer will measure a negative
energy density [6]. Although classical forms of matter are
believed to obey these energy conditions, it is a well-known
fact that they are violated by certain quantum fields, such as
the Casimir effect. In fact, the recent discovery that the
Universe is undergoing an accelerated expansion [10] may
be due to an exotic cosmic fluid that lies in the phantom
regime. The realization of this fact has led to the study of
wormhole solutions supported by different kinds of phan-
tom fluids (see, for instance, [11]). Indeed, the violation of
the energy conditions is a subtle issue, as almost all known
and physically possible forms of matter satisfy these energy
conditions, and we recall that their imposition is one of the
necessary assumptions for proving the Hawking-Penrose
singularity theorems [12,13].
Thus, one may adopt the approach of minimizing the

usage of exotic matter [14,15]. In this context, a plethora of
solutions have been investigated, using a wide variety of
approaches [16–20]. More specifically, in rotating solutions
it was found that the exotic matter lies in specific regions
around the throat, so that it is possible for a certain class of
infalling observers to move around the throat as to avoid the
exotic matter supporting the wormhole [21]. Using the thin
shell formalism, solutions where the exotic matter is
concentrated at the throat have also been extensively
investigated [22]. In the context of modified gravity it
was shown that one may impose that the matter threading
the wormhole satisfies the energy conditions, so that it is
the higher order curvature terms that sustain these exotic
geometries [23]. Astrophysical signatures have also been
explored in the literature [24].
For dynamic wormholes, the NEC, or more precisely the

averaged null energy condition, can be avoided in certain
regions [25–30]. A particularly interesting case is that of a
wormhole in a time-dependent inflationary background
[31], in which the primary goal was to use inflation to
enlarge an initially small and possibly submicroscopic
wormhole. It is also possible that the wormhole will
continue to be enlarged by the subsequent Friedmann-
Robertson-Walker (FRW) phase of expansion. One could
perform a similar analysis to [31] by replacing the de Sitter
scale factor by a FRW scale factor [27–29]. In particular, in
[27,28] specific examples for evolving wormholes that
exist only for a finite time were considered, and a special
class of scale factors that exhibit “flashes” of the weak
energy condition (WEC) violation was also analyzed.
The present paper investigates the possibility and natu-

ralness of expanding wormholes in higher dimensions,
which is an important ingredient of the modern theories of
fundamental physics, such as string theory, supergravity,
Kaluza-Klein, and others. One of our motivations for
considering wormhole solutions in an expanding cosmo-
logical background refers to the inflation theory [32] where

the quantum fluctuations in the inflaton field are considered
as the seed of large scale structures in the Universe.
As mentioned above, the nontrivial topological objects
such as microscopic wormholes may have been formed
during inflation and enlarged to macroscopic ones as the
Universe expanded [31]. We also explore the possibility
that these higher-dimensional wormholes satisfy the NEC,
and we explicitly show that this is indeed the case.
This paper is organized in the following way: in Sec. II,

we present the (nþ 1)-dimensional field equations for the
specific case of a spatially independent curvature scalar. In
Sec. III, we analyze the two-way traversability conditions
of the wormhole structure. In Sec. IV, we explore wormhole
solutions in different expansionary regimes, and finally in
Sec. V we conclude.

II. ACTION, FIELD EQUATIONS, AND
(nþ 1)-DIMENSIONAL SOLUTIONS

The action of GR in (nþ 1) dimensions is written as

S ¼
Z

dnþ1x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ Lm

�
; ð1Þ

where R is the scalar curvature and Lm is the matter
Lagrangian density; we have considered c ¼ 8πG ¼ 1.
Varying this action with respect to the metric, we obtain
the (nþ 1)-dimensional Einstein equations GAB ¼ TAB,
where (A;B ¼ 0…n), and TAB is the matter stress-energy
tensor.
Since we are looking for expanding wormhole solutions

in a cosmological background, we use the metric

ds2 ¼ −dt2 þ RðtÞ2
�

dr2

1 − aðrÞ þ r2dΩ2
n−1

�
; ð2Þ

in which RðtÞ is the scale factor and aðrÞ is an unknown
dimensionless function, defined as aðrÞ ¼ bðrÞ=r, where
bðrÞ denotes the shape function [6]. Note that this metric is
a generalization of the FRW metric, although being less
symmetric than the latter. With this generalization,
metric (2) is still isotropic about the center of the symmetry,
though not necessarily homogeneous. When the dimen-
sionless shape function vanishes, aðrÞ → 0, the metric (2)
reduces to the flat FRW metric; and as RðtÞ → const it
approaches the static wormhole metric.
To see that the wormhole form of the metric is preserved

with time, consider an embedding of t ¼ const and
θðn−2Þ ¼ π=2 slices of the spacetime given by Eq. (2), in
a flat three-dimensional Euclidean space with metric

ds2 ¼ dz̄2 þ dr̄2 þ r̄2dϕ2: ð3Þ

In this context, the metric of the wormhole slice is

ZANGENEH, LOBO, AND RIAZI PHYSICAL REVIEW D 90, 024072 (2014)

024072-2



ds2 ¼ R2ðtÞdr2
1 − aðrÞ þ R2ðtÞr2dϕ2: ð4Þ

Now, comparing the coefficients of dϕ2, one has

r̄ ¼ RðtÞrjt¼const; ð5Þ

dr̄2 ¼ R2ðtÞdr2jt¼const: ð6Þ

It is important to keep in mind, in particular when
considering derivatives, that Eqs. (5)–(6) do not represent
a “coordinate transformation,” but rather a “rescaling” of
the r coordinate on each t ¼ constant slice [31].
With respect to the z̄; r̄;ϕ coordinates, the wormhole

form of the metric will be preserved if the metric on the
embedded slice has the form

ds2 ¼ dr̄2

1 − āðr̄Þ þ r̄2dϕ2; ð7Þ

where āðr̄0Þ ¼ 1, i.e., b̄ðr̄Þ has a minimum at some
b̄ðr̄0Þ ¼ r̄0. Equation (4) can be rewritten in the form of
Eq. (7) by using Eqs. (5)–(6) and

āðr̄Þ ¼ RðtÞaðrÞ: ð8Þ

The evolving wormhole will have the same overall size and
shape relative to the z̄; r̄;ϕ coordinate system, as the initial
wormhole had relative to the initial z; r;ϕ embedding space
coordinate system. This is due to the fact that the embed-
ding space corresponds to z; r coordinates that scale with
time (each embedding space corresponds to a particular
value of t ¼ constant). Following the embedding procedure
[6], using Eqs. (3) and (7), one deduces that

dz̄
dr̄

¼ �
�

1

āðr̄Þ − 1

�
−1=2

¼ dz
dr

; ð9Þ

which implies

z̄ðr̄Þ ¼ �RðtÞzðrÞ: ð10Þ

Therefore, we see that the relation between the embed-
ding space at any time t and the initial embedding space at
t ¼ 0, from Eqs. (6) and (10), is given by the following:

ds2¼dz̄2þdr̄2þ r̄2dϕ2¼R2ðtÞ½dz2þdr2þr2dϕ2�: ð11Þ

Relative to the z̄; r̄;ϕ coordinate system the wormhole will
always remain the same size, as the scaling of the
embedding space compensates for the evolution of the
wormhole. However, the wormhole will change size
relative to the initial t ¼ 0 embedding space.
Writing the analog of the “flaring out condition” [6]

for the evolving wormhole, we have d2r̄ðz̄Þ=dz̄2 > 0, at or

near the throat. From Eqs. (5), (6), (8), and (9) it follows
that

d2r̄ðz̄Þ
dz̄2

¼ 1

RðtÞ
�
−

a0

2a2

�
¼ 1

RðtÞ
d2rðzÞ
dz2

> 0; ð12Þ

at or near the throat, where the prime denotes the derivative
with respect to r. Note that this also implies a0 < 0, at or
near the throat. Taking into account Eqs. (5), (8), and
b̄0ðr̄Þ¼ db̄=dr̄¼ b0ðrÞ¼ db=dr, one may rewrite the right-
hand side of Eq. (12) relative to the barred coordinates as

d2r̄ðz̄Þ
dz̄2

¼ −
ā0

2ā2
> 0; ð13Þ

or ā < 0 at or near the throat. One verifies that, using the
barred coordinates, the flaring out condition, Eq. (13), has
the same form as for the static wormhole.
Thus, it can be shown that metric (2) represents a

traversable wormhole provided

aðr0Þ ¼ 1; aðrÞ < 1; a0ðrÞ < 0; ð14Þ

where r0 is the wormhole throat, which represents a
minimum radius in the wormhole spacetime [6]. The
second condition is imposed in order to avoid a change
in the metric signature. The third condition is the flaring out
condition and plays a fundamental role in the analysis of
the violation of the energy conditions.
Note that the comoving radial distance defined by

lðrÞ ¼ �
Zr

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aðrÞp ð15Þ

should be real and finite everywhere in spite of the fact that
the rr-component of the covariant metric diverges at the
throat; the � signs denote the upper and lower parts of the
wormhole.
The energy-momentum tensor is TA

B ¼ diagð−ρ; Pr;
Pt; Pt;…Þ, so that using the Einstein field equations and
Eq. (2), the (nþ 1)-dimensional field equations are sat-
isfied by the following stress-energy profile:

ρðr; tÞ ¼ ðn − 1Þðn − 2ÞaðrÞ
2RðtÞ2r2 þ ðn − 1Þa0ðrÞ

2RðtÞ2r

þ nðn − 1Þ _RðtÞ2
2RðtÞ2 ; ð16Þ

Prðr; tÞ ¼ −
ðn − 1ÞR̈ðtÞ

RðtÞ −
ðn − 1Þðn − 2Þ _RðtÞ2

2RðtÞ2

−
ðn − 1Þðn − 2ÞaðrÞ

2RðtÞ2r2 ; ð17Þ
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Ptðr; tÞ ¼ −
ðn − 2Þa0ðrÞ
2RðtÞ2r −

ðn − 1Þðn − 2Þ _RðtÞ2
2RðtÞ2

−
ðn − 1ÞR̈ðtÞ

RðtÞ −
ðn − 2Þðn − 3ÞaðrÞ

2RðtÞ2r2 ; ð18Þ

where the overdot denotes a derivative with respect to time.
The Ricci scalar will play a fundamental role in our

analysis, so we write it down explicitly as

R ¼ 2nR̈ðtÞ
RðtÞ þ ðn − 1Þa0ðrÞ

RðtÞ2r þ nðn − 1Þ _RðtÞ2
RðtÞ2

þ ðn − 1Þðn − 2ÞaðrÞ
RðtÞ2r2 : ð19Þ

Since the Ricci scalar is only a function of time in standard
cosmological models, it provides a motivation to use this
property as a simplifying assumption in our calculations, in
the presence of a wormhole. In other words, we are looking
for classes of solutions corresponding to the choice of a
homogeneous Ricci scalar, i.e., ∂R=∂r ¼ 0, which implies

r2a00ðrÞ þ ðn − 3Þra0ðrÞ − 2ðn − 2ÞaðrÞ ¼ 0: ð20Þ
The above differential equation yields the following

solution:

aðrÞ ¼ rn−20 − krn0
rn−2

þ kr2; ð21Þ

where the condition aðr0Þ ¼ 1 was used to eliminate the
integration constant. We point out that although k can, in
principle, be a continuous variable, we have used the fact
that the spacetime is asymptotically FRW and applied the
normalization k ¼ 0;�1 for the curvature constant. It is
worthwhile to mention that it is common to consider static
wormholes supported by radiation that have a traceless
stress-energy tensor [33]. In such a case, the Ricci scalar
vanishes if there is no cosmological constant within the
framework of GR. Our assumption leads to the same
situation if the scale factor is assumed to be independent
of time, i.e., for a static case.
As mentioned before, the dimensionless shape function

aðrÞ should satisfy the conditions (14). It is easy to show
that for k ¼ 0 and −1 these conditions are satisfied,
whereas for k ¼ þ1 they are not. Therefore, we continue
our discussions using k ¼ 0 and −1, which present flat and
open universes, respectively.
With aðrÞ in hand, given by Eq. (21), one can rewrite the

field equations for the spatially flat background (k ¼ 0) as

ρ ¼ ρðfbÞ; ð22Þ

Pr ¼ −
ðn − 1Þðn − 2Þrn−20

2rnR2
þ PðfbÞ; ð23Þ

Pt ¼
ðn − 2Þrn−20

2rnR2
þ PðfbÞ; ð24Þ

where ρðfbÞ and PðfbÞ are the respective flat background
components given by

ρðfbÞ ¼
nðn − 1Þ _R2

2R2
; ð25Þ

PrðfbÞ ¼ PtðfbÞ ¼ PðfbÞ ð26Þ

¼ −
ðn − 1ÞR̈

R
−
ðn − 1Þðn − 2Þ _R2

2R2
; ð27Þ

respectively.
For the specific case of the open background (k ¼ −1),

we have

ρ ¼ ρðobÞ; ð28Þ

Pr ¼ −
ðn − 1Þðn − 2Þðrn0 þ rn−20 Þ

2rnR2
þ PðobÞ; ð29Þ

Pt ¼
ðn − 2Þðrn0 þ rn−20 Þ

2rnR2
þ PðobÞ; ð30Þ

where the ρðobÞ and PðobÞ components correspond to the
open background, and are given by

ρðobÞ ¼ ρðfbÞ −
nðn − 1Þ
2R2

; ð31Þ

PðobÞ ¼ PrðobÞ ¼ PtðobÞ

¼ PðfbÞ þ
ðn − 1Þðn − 2Þ

2R2
: ð32Þ

Since our solutions are in a spherically symmetric cosmo-
logical background, the components of the stress-energy
tensor should be asymptotically independent of r. It is easy
to see this expected behavior is obeyed by them.

III. TWO-WAY TRAVERSABILITY OF
WORMHOLE STRUCTURE

One of the most interesting properties of a wormhole as
pointed out by Morris and Thorne [8] is its two-way
traversability. In this section, some proofs will be presented
to show that the wormholes discussed in this paper are
indeed two-way traversable.

A. Redshift of a comoving source

Consider a radially moving light signal emitted from a
comoving source. We assume that the signal is emitted at
ðt1; l1Þ (l1 is a comoving coordinate) and received by a
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distant comoving observer at ðt0; l0Þ. Using the metric (2)
and Eq. (15) for a radial beam, we have

Z
t0

t1

dt
RðtÞ ¼

Z
l0

l1

dl; ð33Þ

where lðrÞ is the comoving radial distance defined in
Eq. (15). Note that l0 and l1 can belong to either side of the
throat. It is obvious that the rhs of Eq. (33) is independent
of time. Therefore, the lhs should also be so and a signal
that is emitted in an interval τ1 should be received in an
interval τ0 such that (τ1; τ0 ≪ t1; t0)

Z
t0

t1

dt
RðtÞ ¼

Z
t0þτ0

t1þτ1

dt
RðtÞ : ð34Þ

Since τ0 and τ1 are very short time intervals, one deduces
that

τ0
τ1

¼ Rðt0Þ
Rðt1Þ

¼ 1þ z; ð35Þ

where Rðt0Þ is the scale factor at the time of observation,
Rðt1Þ is the scale factor at the time of emission, and z is the
cosmological redshift. This shows that the redshift is the
same as the cosmological redshift and no extra redshift is
caused by the wormhole. It remains to examine whether the
signal ever reaches the throat in a finite time or not. This
will be addressed below.

B. The behavior of radial geodesics

Since r is greater than r0 on both sides of the throat, one
cannot trivially deduce whether the light signal passes
through the throat or not using the r coordinate. Therefore,
we need to transform from the radial coordinate r to the
comoving radial coordinate l in order to analyze this
behavior. Using Eq. (15), the analysis is more transparent.
Consider radial motion so that the geodesic equation reads

d2l
dλ2

þ 2

R
dR
dt

dt
dλ

dl
dλ

¼ 0; ð36Þ

and

d2t
dλ2

þ R
dR
dt

�
dl
dλ

�
2

¼ 0: ð37Þ

Equation (36) yields the first integral

dl
dλ

¼ C
R2

: ð38Þ

Equation (38) shows that dl=dλ does not undergo a sign
change along the path and neither does it vanish. This
shows that the particle or signal continues its path, passes

the throat, and goes to the other side of the wormhole, and
therefore the wormhole is two-way traversable.

C. Reachability of the wormhole throat

In order to prove that there is a finite proper distance
between a specific point and the throat, Eq. (15) should be
solved explicitly. For arbitrary n, there is no analytical
solution for the integral (15). Therefore, one could
obtain lðrÞ in the vicinity of the throat, which is sufficient
for our purpose. Using the approximate relation
1 − ðr0=rÞn−2 ≈ ðn − 2Þðr=r0 − 1Þ, one obtains

lðrÞ ≈

8><
>:

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr−r0Þ
n−2

q
for k ¼ 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr−r0Þ

ðn−2þnr2
0
Þ

q
for k ¼ −1

; ð39Þ

which are clearly finite distances. Therefore, the throat is
not located at spatial infinity and a finite time is required to
reach it.
We should mention that horizons are theoretical con-

structs that qualitatively have two main specific properties:
first, they are one-way membranes, and, second, the
corresponding redshift (as observed by a distant observer)
is infinite. More precise mathematical details can be found
in [13,34]. Since it is common to consider the singularities
of the metric as candidates of being horizons, one might ask
whether the coordinate singularity at the throat forms a
horizon. Based on the above-mentioned general qualitative
features of horizons and according to the results obtained in
Secs. (III A) and (III B), it is justified that there is no
horizon at or around the throat. The possibility of the
existence of a cosmological horizon, however, depends on
the behavior of the scale factor aðtÞ and is not essentially
affected by the presence or absence of the wormhole.

IV. WORMHOLE SOLUTIONS IN DIFFERENT
EXPANSION REGIMES

One of the properties of normal matter is that it satisfies
the energy conditions, in particular, the NEC and the WEC.
It was mentioned in the introduction that the matter that
supports the static wormhole geometry violates the NEC
and is therefore denoted exotic matter. The NEC requires
that Tμνkμkν ≥ 0, where kμ is any null vector. In terms of
the energy density, radial pressure, and tangential pressure
the NEC becomes [35]

ρþ Pr ≥ 0; ρþ Pt ≥ 0: ð40Þ

Note that the WEC, in addition to the conditions considered
above, also imposes a positive energy density, ρ ≥ 0. In
what follows, we investigate the NEC for the wormhole
solutions in different expansion regimes.
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A. Flat background

In the case of a flat background, one can obtain two
different solutions for the scale factor RðtÞ by applying the
equation of state PðfbÞ ¼ ωρðfbÞ, given by

RðtÞ ¼
�
A1eαt; α > 0 for ω ¼ −1
A2t

2
nð1þωÞ; for ω ≠ −1

: ð41Þ

The specific case of ω ¼ −1 represents the inflationary
regime. The case of ω ≠ −1 represents the radiation
dominated and matter dominated expansion regimes by
considering ω ¼ 1=3 and ω ¼ 0, respectively.
Consider first the inflationary expansion regime, where,

by using Eqs. (22)–(27), one obtains

ρ ¼ nðn − 1Þα2
2

; ð42Þ

ρþ Pr ¼ −
ðn − 1Þðn − 2Þrn−20

2rnA2
1

e−2αt; ð43Þ

ρþ Pt ¼
ðn − 2Þrn−20

2rnA2
1

e−2αt: ð44Þ

It is clear that ρþ Pr is always negative while ρ and ρþ Pt
are always positive. Therefore, the NEC is always violated.
But ρþ Pr tends to zero as t increases and therefore the
wormhole matter ranges from an exotic matter regime to
normal matter over time.
We continue our discussions with the second solution for

the scale factor, for ω ≠ −1. In this case, we have

ρ ¼ 2ðn − 1Þ
nð1þ ωÞ2t2 ; ð45Þ

ρþ Pr ¼ −
ðn − 1Þðn − 2Þrn−20

2A2
2r

n

1

t
4

nð1þωÞ
þ 2ðn − 1Þ
ð1þ ωÞn

1

t2
; ð46Þ

ρþ Pt ¼
ðn − 2Þrn−20

2A2
2r

n

1

t
4

nð1þωÞ
þ 2ðn − 1Þ
ð1þ ωÞn

1

t2
: ð47Þ

For ω < −1, it is clear that the NEC is violated due to
ρþ Pr < 0. For ω > −1, we have that ρ and ρþ Pt are
always positive, while the quantity ρþ Pr should be
analyzed in more detail. Figure 1 shows the behavior of
ρþ Pr with respect to time at the throat r0 ¼ 1 for A2 ¼ 1,
n ¼ 3, and ω ¼ 0 and 1=3. It can be seen that, although the
wormhole matter at the throat initially satisfies the NEC,
the latter is violated as time passes. In Fig. 2, the quantity
ρþ Pr is plotted against r and twith r0 ¼ 1, A2 ¼ 1, n ¼ 3
for ω ¼ 0 and 1=3. The figure shows that the region of
exotic matter in the vicinity of the wormhole throat
increases as time increases.

As we are considering higher-dimensional wormholes in
an expanding spacetime, an interesting scenario to examine
is whether these dynamic wormholes could be constructed
from normal matter for n > 3. This is indeed the case for
the solutions discussed here, by choosing suitable values
for the constants. Figure 3 plots ρþ Pr against r and t for
r0 ¼ 1, A2 ¼ 2, n ¼ 4, and ω ¼ −1=2. As depicted in the
figure, ρþ Pr is always positive for this choice of constants
and therefore the NEC (and also WEC) is satisfied for the
whole wormhole structure.

B. Open background

In the case of the open background, by applying
PðobÞ ¼ ωρðobÞ, we consider the following analytical
solutions:

RðtÞ ¼
� A3 sinhð t

A3
Þ; for ω ¼ −1

A4t; for ω ¼ 2−n
n

; ð48Þ

where the case ω ¼ −1 corresponds to the inflationary
regime.
Let us first investigate the solution corresponding to the

inflationary expansion regime, RðtÞ ¼ A3 sinhðt=A3Þ.
Using Eqs. (28)–(32), we have

ρ ¼ nðn − 1Þ
2A2

3

; ð49Þ

ρþ Pr ¼ −
ðn − 1Þðn − 2Þðrn0 þ rn−20 Þ

2A2
3r

n sinh ð t
A3
Þ2 ; ð50Þ

FIG. 1. For the flat background solution, the plot depicts the
behavior of ρþ Pr at the throat, assuming r0 ¼ 1, with respect to
time, with n ¼ 3 and A2 ¼ 1 for ω ¼ 0 (solid curve) and
ω ¼ 1=3 (dashed curve). The plot shows that, although initially
there is normal matter at the throat, the throat matter tends to an
exotic matter regime over time.
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ρþ Pt ¼
ðn − 2Þðrn0 þ rn−20 Þ
2A2

3r
n sinh ð t

A3
Þ2 : ð51Þ

As in the case of the flat background, ρþ Pr is always
negative, implying the violation of the NEC throughout the
spacetime, while ρ and ρþ Pt are always positive.
However, ρþ Pr tends to zero as t increases and therefore
during the inflationary era the wormhole matter tends from
an exotic matter regime to a normal matter one, at temporal
infinity.
Consider now the second case where ω ¼ ð2 − nÞ=n

and RðtÞ ¼ A4t. In this case, one obtains the following
relationships:

ρ ¼ nðn − 1ÞðA2
4 − 1Þ

2A2
4

1

t2
; ð52Þ

ρþPr¼
�
−
ðn−1Þðn−2Þðrn0þrn−20 Þ

2A2
4r

n þðn−1ÞðA2
4−1Þ

A2
4

�
1

t2
;

ð53Þ

ρþPt ¼
�ðn− 2Þðrn0 þ rn−20 Þ

2A2
4r

n þðn− 1ÞðA2
4− 1Þ

A2
4

�
1

t2
: ð54Þ

For A4 < 1, it is clear that the NEC is violated due to
ρþ Pr < 0; note also that ρ < 0. However, this case A4< 1
should be excluded, as ρ coincides with the background
energy density. This would imply that the energy density of
the Universe is negative, so it is not physically acceptable.
For A4 > 1, it is obvious that ρ and ρþ Pt are always
positive while ρþ Pr should be investigated. Figure 4
depicts ρþ Pr in terms of r and t for r0 ¼ 0.5, A4 ¼ 3, and
n ¼ 4. This figure shows that by choosing suitable

FIG. 2 (color online). For the flat background solution, the plots depict the behavior of 103ðρþ PrÞ with respect to r and t, with n ¼ 3
and A2 ¼ 1, for ω ¼ 0 (left plot) and ω ¼ 1=3 (right plot), respectively. As it is clear from the plots, the region of the exotic matter in the
vicinity of the throat increases as time passes.

FIG. 3 (color online). For the flat background solution, the plot
depicts the behavior of 102ðρþ PrÞ with respect to r and t for
n ¼ 4, r0 ¼ 1, A2 ¼ 2, and ω ¼ −1=2. This plot shows that, for
suitable choices of constants, there are wormhole structures
constructed from matter that satisfy the null energy condition.

FIG. 4 (color online). For the open background, the plot depicts
the behavior of 103ðρþ PrÞ with respect to r and t for n ¼ 4,
r0 ¼ 0.5, and A4 ¼ 3. It shows that in the case of an open
universe, it is possible to have wormholes constructed from
normal matter.
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constants, there is a wormhole structure constructed from
normal matter.

V. SUMMARY AND CONCLUSION

The present paper investigates the possibility and natu-
ralness of expanding wormholes in higher dimensions,
which is an important ingredient of modern theories of
fundamental physics, for instance, string theory, super-
gravity, and Kaluza-Klein, amongst others. One of our
motivations for considering wormhole solutions in an
expanding cosmological background refers to the infla-
tionary theory where the quantum fluctuations in the
inflaton field may have served as the seed for the large
scale structures in the Universe. Nontrivial topological
objects such as microscopic wormholes may have been
formed through the quantum foam and enlarged to macro-
scopic size during inflation and in the subsequent expan-
sion of the Universe. Indeed, if most of the wormholes in
the quantum foam survived enlargement through inflation,
then the Universe might be far more inhomogeneous and
topologically complicated than we observe.
Indeed, postulating higher-dimensional spacetimes is an

important ingredient of modern theories of fundamental
physics. In this context, the existence of higher dimensions

may help construct wormhole solutions that respect energy
conditions. In particular, in a cosmological setup, micro-
scopic, dynamical wormholes produced in the early
Universe may be inflated to macroscopic scales and thus
be—at least in principle—astrophysically observable. In
this work, by assuming a homogeneous matter field (i.e.,
energy density depending only on the time coordinate),
which holds in the standard cosmology, we arrived at
interestingly simple and exact solutions. More specifically,
we considered a particular class of wormhole solutions
corresponding to a spatially homogeneous Ricci scalar. The
possibility of obtaining solutions with normal and exotic
matter was explored and we found new solutions including
those that satisfy the NEC in specific time intervals. In
particular, in five dimensions, we found solutions that
satisfy the NEC everywhere.
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