PHYSICAL REVIEW D 90, 024069 (2014)

Weighting bubbles in group field theory
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Group field theories (GFT) are higher dimensional generalizations of matrix models whose Feynman
diagrams are dual to triangulations. Here we propose a modification of GFT models that includes extra field
indices keeping track of the bubbles of the graphs in the Feynman evaluations. In dimension three, our
model exhibits new symmetries, interpreted as the action of the vertex translations of the triangulation. The
extra field indices have an elegant algebraic interpretation: they encode the structure of a semisimple
algebra. Remarkably, when the algebra is chosen to be associative, the new structure contributes a
topological invariant from each bubble of the graph to the Feynman amplitudes.
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I. INTRODUCTION

Group field theories [1] (GFT) generalize matrix models
[2] to higher dimensions and provide an elegant field
theoretic formulation of spin foam models [1,3] of quantum
gravity. Their Feynman expansion generates fat graphs,
hence having not only vertices, edges, and faces but also
higher dimensional cells coined “bubbles.” Just as each
graph in matrix models represents by duality a triangulated
Riemann surface, each graph in a D-dimensional group field
theory can be thought of as representing a D-dimensional
triangulated (pseudo)manifold. Since the introduction of the
colored [4] models and their 1/N expansion [5], progress
has been made in the analytical study of GFTs. Their leading
order behavior has been studied [6] and some renormaliz-
able GFT models [7] have been introduced.

Bubbles play a key role in the structure of the Feynman
amplitudes. In fact, due to the gauge invariance and the
specific ultralocal nature of the couplings in GFT models,
the amplitudes contain bubble divergences, analogous to the
loop divergences in ordinary quantum field theory. In the
context of spin foam models, it has been argued—and
illustrated explicitly in dimension three—that such diver-
gences result from a discrete residual action of the diffeo-
morphism group, acting as translations on the vertices of the
triangulation [8]. The first motivation of the present paper,
following the line of thoughts developed in [9], is to
investigate ways to encode the action of vertex translations
as asymmetry of the group field theory. In fact, as recognized
in [9], GFT already possesses such a symmetry in the case of
an Abelian gauge group. Building upon a dual formulation
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of GFT as a noncommutative field theory of Moyal type
[10,11], the proposal of [9] in the non-Abelian case is to
implement this symmetry as a deformed symmetry, by
promoting the fields into braided fields—obeying a braided
statistics [12]. The difficulty with such a proposal' is that it
immediately brings us outside the realm of standard field
theory, where fields are real or complex valued. In particular,
we lose control on the measure used to define the functional
integral; this measure can be defined formally [12,15-17]
but not explicitly. Last but not least, no analogue of Noether
charges or Ward identities exists just yet in this context.

Interesting as it may be to try to gain a better understanding
of braided (group) field theory and to extend the notion of
what is meant by a symmetry, here we would like to take a
more standard route. Our aim is to investigate the construc-
tion of a GFT model invariant under a standard symmetry
expressing the translation of vertices for non-Abelian groups.

The idea we follow is simple: we just extend the
definition of the fields to include extra indices labeling
the vertices of the tetrahedron patterned by the interaction.
Making this explicit in dimension three leads us to a
modification of the Boulatov model [18] giving rise to an
extra contribution to the Feynman amplitudes from each
bubble of the graph. As we will show, our modified model
has an elegant algebraic formulation: the extra field labels
encode the structure of a semisimple algebra. The GFT
action takes the form of a trace invariant in this algebra,
which makes explicit the presence of new (unitary) sym-
metries expressing vertex translation invariance. Moreover,
remarkably, when the algebra is chosen to be associative, the
new bubble contribution defines a topological invariant
characterizing the topology of the bubble.

'For analogous proposals in different contexts, see for example
[13] or [14].

© 2014 American Physical Society
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We begin in Sec. II by recalling the issue of vertex
translation symmetry in the context of three-dimensional
colored GFT. In Sec. III we define our new model and give
its algebraic formulation. We compute the Feynman ampli-
tudes in Sec. IV and discuss in detail various aspects and
consequences of their structure. We conclude in Sec. V
with some directions for future work.

II. GFT AND TRANSLATIONAL SYMMETRY

The archetypal group field theory in three dimensions is
the Boulatov model, whose Feynman graph expansion
generates a topological BF evaluation of each Feynman
diagram [18]. The dynamical variable is a complex field
(91, 9>, 93) on a product of three copies of a group G.
The colored model [4,19] depends on four such fields
0i(91,92,93), i = 1,---,4; the label i is the color of the
field. The fields are assumed to satisfy the gauge symmetry:

0i(919.929.939) = 0i(91.92.93), Y g€G. (1)

The kinetic term is given by a purely ultralocal coupling

4
KEZ/dgldgdeS(pi(gl»92»93)§0i(91792793), (2)
py

where {; denotes the complex conjugate of ¢;. The
interaction is given by A(V + V) where 2 is the coupling
constant and V is the potential given by

VE/Hdgij%(gm,9137912)%(921,924,923)

i<j
X 3932+ 931 934) P4 (9a3. Gaz- 91 (3)

where we set g;; = g; in the integrand. Given (i, j, k, I) all
distinct and (j, k, [) cyclically ordered, we may view the
three arguments (g;;, gix. 9;;) of the fields ¢; as representing
the three edges (ij), (ik), (il) of a triangle:

(il)

In this simplicial picture, the identification of group
elements in the quartic interaction V follows the combi-
natorial pattern of a tetrahedron. Each triangle of the
tetrahedron is thus labeled by a color i and (ij) is the
edge common to the two triangles i and j.

A. Abelian symmetry

The tetrahedral interaction described above is special. As
first recognized in [9], it possesses extra symmetries when
G is an Abelian group, which we assume to be U(1) for
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concreteness. There are four such symmetries, each of
which is generated by a group character, i.e a complex
function y on G such that y(g)y(h) =y(gh) and
7(9) = x(g7"). They are interpreted as translational sym-
metries acting at the vertices of the tetrahedron.

In the following, we will denote the vertex opposite to
the triangle 1 (respectively, 2,3,4) by the capital letter A
(respectively, B,C,D). Thus, the vertex A, to which
corresponds a triplet of colors (234), lies at the inter-
section of the three triangles 2,3,4 and is common to
the edges (23), (34), and (42). The translation T, of the
vertex A, generated by the U(1) character y,, acts on the
fields as follows:

Ta(91)(914: 913. 912) = @1(914. 913. 912)-
Ta(02)(9215 924> 923) = Xa(954 923)92(021> G4 923).
Ta(93)(932- 931> 34) = xa(933 934)03(932 G315 G34)

T x(94)(9a3: 9a2+ Ga1) :ZA(QZ3l942)§04(943,942,941)- (4)

Thus, given a triangle i having A as one of its vertex, T4
acts on ¢; by multiplication by y(g'¢), where g, ¢ are
the two group elements associated with the two edges
of the triangle that touches A. With this understanding it
is straightforward to write the action of the translations
Ty, Tc, Tp of the three other vertices.

A key property of the transformation (4) is that it respects
the gauge symmetry (1):

Ty ((pi>(gijgv 9ik9» 9i9) = TA(%)(Q:’inbQil)- (5)

It is clear also that it is a symmetry of the kinetic and
interaction terms, thanks respectively to the conjugation
and the multiplicative property of the character. As shown
in [9], the existence of this symmetry is related to the
topological translational symmetry of the corresponding
spin foam model. It is important to note that the very
possibility to implement this symmetry as a field trans-
formation is intimately tied to the field coloring, which
allows one to distinguish between the different vertices of
the tetrahedron.

In order to generalize this symmetry to the non-Abelian
case, it will be convenient to write the same symmetry
transformation under the alternate form:

Ta(91)(914: 913: 912) = @1(914: 913, 912),

Ta(02)(921 924 923) = Xa(922)02(921 G2 923)24(923),
Ta(93)(932: 931 934) = x4 (932 )#3(932- 931> 934 )4 (G34)
T4 (04)(943+ 9azs 9a1) :)(A(QZ31)¢4(943, 942+ 941)Xa(942),

(6)

obtained from (4) by using the multiplicative property of
the character. Note also that for the transformation (6) to be
a symmetry, the character arguments do not need to be the
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arguments of the fields; we may in fact consider the more
general transformations:

13

4(01)(914: 913. 912) = @1(914. 913, 912),
~,«1<€02)(92179247923) = Ufzf902(921’9247923)U23,
Ta(03)(932: 931. 934) = U3 03(932. 9310 934) Usna
~A<§04)(g4379427941) = UZ31(P4(943’9427941)U42’ (7)
where U;; = Uj;, U;; = Uy are arbitrary U(1) elements.

This construction however, which relies on the existence
of a complex valued character, works only for the Abelian
group. This is clearly disappointing since the quantum
gravity models always rely on the use of a noncommutative
(Lorentz) group. In the work [9], it is proposed to imple-
ment this symmetry in the noncommutative case as result-
ing from the action of a (quantum) deformation” of the
translation group. However the difficulty with this proposal
is that in order for the fields ¢; to carry a representation
of the quantum group, they must be promoted to braided
fields—obeying a braided statistics. As mentioned in the
Introduction, this brings us outside the realm of standard
field theory; progress is very challenging in this context.

|
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Here we would like to take a more standard route and
remain within the usual field theory framework.

III. A MODEL WITH MORE INDICES

To be able to extend the translational symmetry to non-
Abelian groups, the idea is to modify the definition of
the colored Boulatov model by adding extra indices to
the fields labeling the vertices of the tetrahedron patterned
by the interaction. These extra indices will allow us to keep
track of the bubbles forming in the Feynman graph
expansion.

A. Action

We thus consider an extended model, described by
colored fields ¢'2€(g;, g», g3) carrying three extra indices
A, B, C running over a finite set /. The fields are still
assumed to be invariant under a global shift of their
arguments:

ABC ABC

©1°(919. 929- 939) = ¢°(91. 92. 93)- (8)

The GFT action that we propose has a kinetic term of
the form

4
K=>Y" / dg1dg,dgshiahzshecd’® (91, 92 93) 01 (91, 92, 93), )
i=1

where repeated indices A, A... are implicitly summed over. The kinetic term depends on a rank 2 tensor 4 5; we will choose
this tensor to be Hermitian s,5 = hp, and nondegenerate, so that the kinetic term is real and invertible. The interaction is

given by A(V + V), where 4 is the coupling constant and

V= / Hdgin(S(gijg;il)CA2A3A4CBIB3B4CC1C2C4CD1D2D3

i<j

AyCyD,

c
prebn (914,913’ 912)%

Py

(921, 924, 923)%

A3B3D3 A4BsCy

(932, 931> 934)4’4 (943, 942, 941)- (10)

We see that the new field indices are contracted by means of a rank 3 tensor C. In the simplicial picture where the arguments
of each field are associated to the three edges of a triangle, the additional indices are associated to the vertices:

B Ca
(14) ‘ (13) (21) ‘ (24)
C1 Dy Dy Az

(12) (23)

D3
(32) ‘ (31)
As Bs By

(34) (41)

There is one C tensor in the interaction for each of the four vertices A, B, C, D of the tetrahedron. Recall that in our
notations, the vertex A (respectively, B, C, D) is opposite to the triangle 1 (respectively, 2,3,4), so it lies at the intersection of
the three triangles 2,3,4. Each of the fields ¢;, i = 2, 3, 4 contributes to the interactions polynomial with a vertex index A;;
the resulting three indices A,, A3, A4 are then contracted via the coefficients Cy 4,4,

*When G = SU(2), the relevant quantum symmetry group is the (translational part of the) Drinfeld double DSU(2). The role of
DSU(2) in 3d quantum gravity with vanishing cosmological constant has been known for some time [20,21], so it should not be
surprising to see it naturally show up in the context of GFT (see also [22]).
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B. Algebraic formulation

Remarkably, this generalization of the GFT model has
a very natural algebraic interpretation. The structure
described above can be understood equivalently by
demanding that the extra vertex labels belong to a semi-
simple *-algebra: namely, a unital algebra (A, T, Try),
equipped with an involution { which is also an algebra
antithomomorphism, together with a nondegenerate trace
Tr 4. More details about the structure and the notations are
presented in the Appendix.

In the following we assume the algebra A to be
finite dimensional and we denote its dimension by N.
We introduce a basis {e,} labeled by A €I, where
|I| = N, and denote by 1 the unit element. We can then
define the tensors hup and Cupc as follows (see the
Appendix):

hap = TrA(e;eB)v Capc = Tra((eaeplec). (11)

Whenever the algebra is chosen to be associative,
the cyclicity of the trace makes the coefficients
Capc = Tr(eqepec) cyclically  symmetric
Cgca = Ccas-

The idea is to view the extended GFT fields as taking
value in the tensor product A®* of four copies of the
algebra, by setting

CABC =

PHYSICAL REVIEW D 90, 024069 (2014)

P(914:913.912) (1 ® e R ec @ ep),
P(921.924.923) (e, @1 ®ec ®ep).
B2 (g3, 931, 934) (ea ® e ® 1 @ ep),
BC(943.942. 911 ) (ea @ e @ ec @ 1),
(12)

where repeated indices A, ... are implicitly summed over.
We also define the Hermitian conjugated fields:

D(g14.913.90)(1 @ e, ®el.®e}).
(13)

where @; denotes the complex conjugate. The shift sym-
metry (8) simply reads

®1(914-913,912) =

2(921, 924, 923) =
®3(932:931,934) =
®4(943. 942, 941) =

¢]1L(914,913»912) @?

©:(919.929- 939) = @:(91. 92. 93)- (14)

Using this notation, the kinetic term (9) takes the form
4
=Z/dgldgzdgzlll“TrA®4{ lT(gl,92793)901'(91,92,93)]’

(15)
where the factor |I|~! = dim(.A)~! is included to compen-
sate the term Tr (1) showing up in the evaluation of the
trace on A%®*. The interaction (10) reads

/Hdg,,TrAwH[qol(gm 913 912)92(921+ 924 923)103(932- 931 934) 104 (93 92, 9ar)]- (16)

i<j

It is straightforward to check that the evaluation
of this action reproduces the previous expressions (9),
(10).

C. Symmetry

New symmetries arise from the extension of the
GFT model when the algebra A characterized by the
couplings is associative. For instance the translation
of the vertex A = (234) can be expressed in terms
of three unitary operators U,; = Us),Usy = U3,
Uy =U;} in A (unitarity means that U'=U"").

The non-Abelian translational symmetry then
reads

~A(¢1)(914,91,%912) ®1(914: 913 912)
TA(¢2)(92%924’923) Us@2(921, 924- 923)Ups
~A<¢3)(932’9317934) 32¢3(932 931, 934) Uy,
T4(94) (913 942+ 9a1) = Us@4 (943, 9a2 9a1) Ul (17)

where the superscripts indicate the tensor factor which
the unitary elements act on: U' = Ue, @ 1 @ 1 ® 1,

|

U?=U%1® ep ® 1 ® 1, and so on. It can be checked
that the action (15), (16) is invariant under this
transformation and its analogs for the three other
vertices. This is the non-Abelian generalization of
the symmetry transformation (7).

It is also interesting to try to write the non-Abelian
analog of (6). To do so, we need the involution algebra
A to carry a representation of the group G. This
requires the existence of maps D:G — A with D(g) =
D(g)"e, that are compatible with the group and unitary
structure:

D(g,)D(9>) = D(g19>), D(g)* :D(QT)' (18)

A key example of such a structure is when the
algebra A is isomorphic to the algebra End(V) of
endomorphisms of a finite dimensional unitary re-
presentation V of the group. In this case N = d?
where d is the dimension of the group representation.
We can now write an analogue of (6), in which the
maps D(g) = D*(g)e, play the role of non-Abelian
characters:
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Ta(@1)(914. 913, 912) = @1(914: 913, 912)-
Ta(92)(9215 9245 023) = D' (924 )92(921, 924> 923)D" (923)
Ta(@3)(932: 931, 934) = D1(9521)¢3(9327 931> 934)D" (g34).
Ta(94) (9435 942, 9a1) :D1(9131)¢4(94379427941)1)1(941)-
(19)

This transformation is clearly a symmetry of the
action. Note however that it does not preserve
the shift invariance (14). Instead of being invariant,
the image field is now covariant under shift:

Ta(@)(919: 929-939) = D' (g7 )Ta(@/)(91. 92. 93)D' (9).
(20)

IV. FEYNMAN AMPLITUDES

In this section we examine the Feynman expansion of
our model. As we will see, compared to the original colored
Boulatov model, the Feynman amplitudes contain an extra
contribution from each bubble of the graph. In the case
where the algebra A is associative, this contribution is a
topological invariant characterizing the topology of the
bubble.

A. Colored graphs

The graphs generated by the Feynman expansion of
colored group field theories are bipartite edge-colored
four-valent graphs [4]; see Fig. 1 for an example.

Such a graph G possesses a full three-dimensional
cellular structure, where j-dimensional cells for
j=0,---,3 are defined as the maximally connected
j-colored subgraphs. By (Poincaré) duality it also repre-
sents a three-dimensional simplicial complex Ag. Upon
this duality, the j cells of the graph correspond to
simplices of codimension j in Ag: the O cells, or vertices
of the graph, correspond to tetrahedra; the 1 cells, or
edges of the graph, correspond to triangles; the 2 cells, or
faces of the graph, correspond to edges; and the 3 cells,
or “bubbles” of the graph, correspond to the vertices
of Ag.

What is remarkable is that the simplicial complexes dual
to bipartite edge colored graphs are orientable, triangulated

FIG. 1. Example of a colored graph.
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normal simplicial pseudomanifolds [23]. “Normal” means
that the link of each simplex of codimension > 2 (each
edge and each vertex in dimension three) is itself a
pseudomanifold (hence in particular connected): for example
the pinched torus in two dimensions is not a normal
pseudomanifold, because the link of the pinching point is
made of two circles. Note that in our case, the link of a
simplex of codimension j is the pseudomanifold dual to
the corresponding j cell of the graph (which is itself a
j-colored graph).

Given a three-dimensional orientable normal pseudo-
manifold, the link of each vertex is thus a connected
surface of genus g. It is straightforward to check that
the sum of genera of the links of all the vertices in a
normal simplicial pseudomanifold equals the Euler
characteristic y = > 3_(—1)"V; (where V; is the number
of simplices of dimension i) of the pseudomanifold.
In particular a pseudomanifold is a manifold if and only
if the links of all the vertices are spheres. By duality,
this means that a colored graph G represents a three-
dimensional manifold if and only if its bubbles are all
dual to spheres.

B. Graph evaluation

The interaction vertex V (respectively, V) is represented
by a black (white) and positive clockwise turning (negative
anticlockwise turning) vertex (see Fig. 2). Each half-edge
of color i incident to a black vertex represents a field @;;
it carries three group elements g;;, g, g;; and three capital
letter indices (B;, C;, D, for i = 1; A,, Cy, D, for i = 2;
and so on). The kernel for the vertex V is

Vi Ca,a,4,C8,8:8,Cc,c,c,Cp, DD, H5(gijgﬁl ). (21)

i<j
where the interaction coefficients are defined in terms of

the trace Cupc = Try(esegec). A half-edge of color i

incident to a white vertex represents a field qolT; it carries
three group elements g;;, gix, gy and three capital letter

indices (B, Cy, D, for i = 1; A,, C,, D, for i = 2; and so
on). The kernel for the dual vertex V is

Vi Caa,4,Ca,.,Cosene, Coupon, | [0(95970). (22)

i<j

where the coefficients are defined in terms of the trace of
conjugate algebra elements Cyp- = Tr(eI‘eI;eTC). Due to

1 1
4 + 2 2 + 4
3 3
FIG. 2. Interaction vertices V (black) and V (white).
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the antihomomorphism property of the involution, the two
sets of coefficients are related by complex conjugation and
odd index permutation, i.e Cypc = Ccpa.

Taking into account the invariance of the field Eq. (8),
each colored edge of the graph (oriented from V to V)
carries the propagator

G [ s ()5 aph ) )
x5 (gsh(gh) ™), (23)

where 5% denotes a cutoff delta function® on the group and
h44 is the inverse of the Hermitian form (11),

hAAhs, = &, (24)

Given a closed connected Feynman graph G, we denote
by Vg, &g, Fg, and Bg the sets of its vertices, edges,
faces, and bubbles. Our first result is that the contribu-
tion due to the new algebraic structure we have
introduced factorizes as a product over the bubbles b €
Bg of the graph. The bubbles are defined as the maximally
connected three-colored subgraphs. Each vertex of §
belongs to exactly four bubbles of colors
A =(234),B=(134),C =(124), and D = (123) and
therefore contributes a factor:

Ca,a4, " Cp,p,py» O CA4A3A2“‘CD3D2D, (25)

for a vertex of type V or V, respectively. Each edge
of G belongs to exactly three bubbles and contributes an
independent factor for each of them: for instance an edge

of color 1 contributes #5 for the bubble B = (134), h¢C

for the bubble C = (124), and hPP for the bubble
D = (123). Therefore the edge contributes the total
factor:

hBBhCChDD (26)

to the amplitude. The evaluation of G is thus the product
of two factorized contributions:

4@.8) = 2@ [Taw)). @)

bEBg
where |Vg| counts the number of vertices of the graph

and the amplitude Ay(G, A) is the evaluation of the graph
G in the nonmodified Boulatov theory:

Ag(G: ) = / (Hdhe> 11 5A<ﬁ hz<e-f>>. (28)

e€ly f€Fg e€df

*Chosen to be a class function §*(kgk™") = 5*(g).

PHYSICAL REVIEW D 90, 024069 (2014)

To obtain this expression for A, all edges of G have been
oriented from the vertex V to the vertex V, and each face has
been assigned an arbitrary orientation. The integrals are over
all assignments of a group element 2, € G to each edge e of
the graph. The arguments of the cutoff delta functions are
ordered products of group elements along the boundary 0f
of the faces f; s(e, f) is the edge-face adjacency matrix of
the graph: s(e,f) =1 or —1 depending on whether the
orientations of e and f match or not.*

The contribution a(b) of a bubble b € Bg of colors
A = (234) is obtained by tracing out along b all the tensors
C, C, and h carrying A indices:

a(b) =" I CasawarCazaszs [[P¥%. (29

{AA} (v.D)EV, ¢,€E)

The products run over the vertices v,  and oriented edges
e; = (v, v) of the bubble b; and the sum runs over a set of
indices A?, A? labeled by a vertex of the bubble and a color
i =2,3,4. We recognize here the trace invariant® [24]
associated with the bubble b and built out of the tensor C.

C. Bubble weights and topological invariants

The goal of this section is to point out that, when the
algebra A is chosen to be associative, the weight (29)
defines a topological invariant of the surface represented
by the bubble b. In fact, as mentioned above, a bubble (or
3-cell) b of the graph is itself a three-colored graph dual to a
triangulated Riemann surface %,;,. Specifically, in terms of
the dual pseudomanifold Ag, this surface is the /ink of the
vertex v € Ag dual to b. It can be visualized as the surface
triangulated by the triangles opposite to » in all tetrahedra
Ag that have v as a vertex. By duality the vertices of a
bubble b correspond to the triangles of X, and the edges of
b correspond to the edges of X;,. Note that the triangulation
of X, inherits a bipartite set of triangles and a colored set
of edges. Moreover the surface is oriented: the colors give
a consistent ordering (ey, e,, e3) of the boundary edges of
each triangle.

Using this correspondence, our observation is that the
weight a(b) takes the form of the partition function of a
lattice model on X, with the tensors Cypc, Cj ¢ as three-
point vertices and the (inverse) Hermitian form A% as
propagator. We have in fact that a(b) = a(X,), where the
amplitude a(X) for a (bipartite, edge-colored) triangulated
surface X is given by

“If one interprets the assignment {/, € G}.g as a discrete
connection on the graph, the integrand in (28) imposes, in the
limit of large cutoff, that the holonomy along the loop bounding
each face is trivial. The Boulatov amplitude formally gives an
integral over the space Hom(z,(G), G) of flat discrete connec-
tions on G.

This is an invariant under the action of U(N)? corresponding
to independent unitary (with respect to the form /%) transforma-
tions on each index A.

024069-6



WEIGHTING BUBBLES IN GROUP FIELD THEORY

S [T

{AL} t,1: Z—triangles e: X—edges

a(X) = CA;]A’QA’ AL AL AL

(30)

The sum is over a set of indices A, labeled by a pair (¢, e),
where ¢ is a triangle of £ and e C 0 is an edge of t.

Note that for a triangulated surface X, the number of
edges |E| and the number positively (respectively, neg-
atively) oriented vertices |V|,|V| are related as 2|E| =
3|V| + 3|V|. This shows that the evaluation a(X) is
invariant under the rescaling

has— |a|2hAA-

(31)

3 N Vo T
Cuapc=> @ Cyupes Copa—= @ Cepas

This transformation can be reabsorbed in an algebra
basis redefinition e, — ae,, which corresponds to a field
rescaling.

We have written the amplitude in terms of the inverse of
the Hermitian form hj, = Tr(e ey) and the couplings
C.C. It is also convenient to write the same amplitude in
terms of the metric

9ap = Tr(eqep), (32)
and the coupling C only. Let us denote by ¢*? the inverse
metric. As recalled in the Appendix, the action of the
involution on the basis elements reads

(33)

It is straightforward to check that the first equation
expresses the associativity of .4 and the second one follows
from the relations (37).

Since any semisimple associative algebra is a direct sum
of matrix algebras, the basic example for us is the algebra
A =End (V) = Mat,, ,(C) of endomorphisms of a finite
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the following relation holds:

ABC — hAAhBBhCCQAA/gBB/gCC/CA’B’C’- (35)

By plugging this relation into the amplitude (30) and using
the inverse relation (24), we obtain

=2 I Cuun,

{AL} t: Z—triangles

I1 ghAz,

e: X—edges

(36)

where the product of C tensors runs over all oriented
triangles of Z; the ordering of indices in each Cy: AL AL is
determined by the orientation of the triangle 7.

1. Topological invariance

Written in the form (36), the tensor invariant reproduces
the Fukuma, Hosono, Kawai definition of a 2d (lattice)
topological field theory [25,26]. In fact, assuming our
semisimple algebra A is also associative, the weight (36)
defines a topological invariant of the surface X. This is
because the conditions of associativity and semisimplicity
(i.e invertibility of the metric g,3) are precisely the
conditions which guarantee that the amplitude a(X) is
independent of the triangulation of X. Indeed as recalled in
the Appendix, under such conditions the metric g4z and
coefficients C,pc can be written in terms of the algebra
structure constants e ez = Cy5Cec as

9daB = CAEFCBFE’ Capc = CABDQDC- (37)
Now, the topological invariance of a(X) amounts to its
invariance under the two local Pachner moves of the

triangulation, which translates algebraically as

CapPCpc? = Cpct Car?® | (38)

Capc = Cap®CprPCpc” (39)

dimensional vector space V. In this case, the bubble weight
a(b) is just the evaluation of the Feynman amplitude of the
graph dual to the surface X, of a cubic matrix model, and is
given by

= (%),

a(b) (40)
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where d is the dimension of V and y(X,) = 2 — 2g, is the
Euler characteristic of the surface written in terms of its
genus g,,. Plugging this value into the Feynman evaluation
(27) of the graph G gives

A(G: ) = 2Vl PBs\ Ay (G A) [T d 2. (41)
beBg

Another classical example of associative algebra is the
group algebra A = C[H] of a finite group H with cardinal
N = |H|. The set of indices is H and we choose

CasC = NS(AB.C),  gup = NS(AB,1),  (42)

where 6 is the Kronecker delta on H. In this case one can
show

a(b) = N*®)~!Hom(x, (%,). H)

, (43)

where 7,(X,) denotes the first homotopy group of the
surface X;,. Note that we can also represent the algebra
C[H] in terms of a sum over its irreducible representations:

C[H] = @ Endc(V), (44)

veH

where H, denoted the set of isomorphism classes of
irreducible representations of H. This means that we can
also evaluate the amplitude as

a(b) =Y &), (45)

vel

The equality between this evaluation and (43) is the
Mednykh’s formula [27]. In the case of the sphere, this
formula gives the dimension

N=) d. (46)

vel

2. Manifolds vs pseudomanifolds

What is remarkable with the amplitudes (41) is that the
new contribution from the bubbles allows us to control the
relative weight of manifolds versus pseudomanifolds in
the Feynman expansion (see [28] for a related study of this
problem). In fact, as we have recalled, the condition for the
pseudomanifold Ag represented by the graph G to be a
manifold is that its Euler characteristic

xg=—Vol + 1| — | Fol +1Bgl = > g (47)

bEBg

vanishes. This amounts to requiring that all bubbles have
spherical topology: g, = 0,V b € Bg. It is clear from the
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expression (41) that, at a fixed number of bubbles, the
amplitudes of pseudomanifolds are suppressed in the large
d limit.

There is another positive integer characterizing the
geometry of the dual pseudomanifold Ag, called the degree
wg [5]. This integer has a beautiful geometrical interpre-
tation first given by Ryan in [29] in the case of a manifold.
This intuitively goes as follows: as we have seen, each
vertex of Ag (dual to a bubble of G) carries a color index
A,B,C,D. The subset of all vertices of color A or B,
together with the edges of color AB, form a subgraph of the
1 skeleton of Ag. Let 2,5 be the surface defined as the
boundary of a neighborhood of this subgraph in Ag. It can
also be thought of as the surface obtained by gluing
pairwise the (holed) surfaces X, associated with all
bubbles b of color A or B, each cut along attaching disks
along which we glue cylinders corresponding to edges of
color AB. By construction the Euler characteristic of X,p is
given by

z X(Zp) = 2| F 4],

b: colorAorB

XAB = (48)

where | F 43| is the number of edges of Ag (or equivalently
faces of G) of color AB. One can also show that X, = Zp;
in fact this surface splits Ag in two connected components.
If one denotes by g4 the genus of the surface Xz, so that
Xap = 2 —2gap, we then have that g,p = gcp. In the
manifold case, .5 is a Heegard splitting surface for Ag.
The degree is defined as

1
@G = gap T gac T 9ap = 5 ZQMN’ (49)

(MN)

where the sum is over all possible pairs of colors. The
relations (48) and (47) then lead to the key formula for the
degree [5]:

Vgl = 2|Bg| + 2rg = 2(wg - 3). (50)
Thus, 2(wg —3) measures the difference between the
number of vertices and the sum of the Euler characteristics

of all bubbles. Therefore, defining a new coupling ¢> =
A2d, we can write the amplitude (41) as

AG:A) = P PB1A(GA). (1)

We recover the familiar suppression of complexes with
high degree in the limit of large d [5].

3. Dipole moves

We discussed so far the form (36) of the tensor invariant
associated with each bubble of the graph. We recognized
the partition function of a topological lattice model built
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FIG. 3.

from a semisimple algebra with structure constant C and
metric g45. Now, the same invariant can also be written in
terms of the bipartite structure as in (30). In this section, we
would like to extend the discussion of topological invari-
ance to the case of bipartite triangulations. The Pachner
moves are in fact no longer adapted to this case, since they
do not preserve the bipartite structure.

The analogue of the Pachner moves for bipartite trian-
gulations are the so-called dipole moves [30]. These give
rise to an analogue of the Pachner theorem: any two
bipartite triangulations of the same topological surface
are related by a sequence of dipole moves. Consider a graph
with edges colored ¢y, ¢, and c3. A 1 dipole of color ¢ is an
edge of color ¢ joining two vertices v and » such that v and
v belong to two different faces of colors {c, ¢y, c3}\{c}.
A 2 dipole of colors ¢, ¢’ is a pair of edges of colors ¢ and ¢’
joining two vertices v and v (such that the edges of color
{c1,¢2,¢c3}\{c, ¢’} hooked to v and 7 are different). As

|

PHYSICAL REVIEW D 90, 024069 (2014)

I
3
e
>

Dipole moves.

illustrated in Fig. 3, a dipole move consists of erasing the
edge(s) and vertices forming a dipole and reconnecting the
remaining edges according to their color.

To conveniently write down the invariance under these
moves, let us introduce the matrices C4, C; € End(A)
defined by

(CA)BC = CABChCCv

These matrices show up in the products e ez = CABCeTC

and e;eg = (C3)5ec. The invariance under 2 dipole
moves translates into the identity:

Tr(C5Ca) = his. (53)

This corresponds to the definition of the Hermitian form.
The invariance under 1 dipole moves is encoded into the
relations

Tr(Cy,[Ca,Ca, -+ Ca, Cx |Cg)hPETr(C3[Cy, | éAmH -+ Cy,Ca,]Ca,) (54)

= Tr(Cy,[Ca,Cs, -+ Ca,Ca |Ca, )- (55)

Note that the 1-dipole move is trivially satisfied when the
two faces of colors {c|, ¢,, c3} to which v and 7 belong
consist each of two edges:

high®Bhp, = hy,. (56)

Let us now look at the dipole moves of higher order. The
dipole move of length (n, m) is the one containing n C Con
the left and m CC on the right. It is easy to see that the
inverse property (24) implies all the moves (n, 1). To study
the higher moves, it is convenient to notice that the operator
Cy C‘A represents the left-right multiplication operator:

f

eAeBe>‘; = [CAéA]BB,eB” €A€}-;€-;; = [Q'\CA]BB/EB’- (57)

A

which implies that

[CAC4)[C5C5) = Cpa€Ca5C[CeCel. (58)

By using these identities repeatedly, one can see that the
dipole identity reduces to the (2,2) dipole move. Now, if the
algebra is semisimple, we have the identity

[
ﬁABTrA(MTeL)TrA(eAN) = Tr_A(MTN>7 (59)

which implies the dipole moves. The semisimplicity con-
dition is therefore a sufficient condition for implementing
the dipole moves. It is however not clear to us that it is
also a necessary condition, i-e whether the invariance
under (2,2) dipole moves requires semisimplicity. If it does
not, that would suggest the possibility of using bipartite
structures to construct new topological models not based on
semisimple algebras. We leave this interesting question for
future work.

V. OUTLOOK

We conclude with some possible avenues for future
investigation. First, it will be interesting to extend the
procedure to higher dimensions: one can assign extra
indices to the field, associated to lower dimensional
simplices (both vertices and edges in four dimensions).
We expect the structure of the translational symmetry to be
more involved in higher dimensions. In four dimensions,
for instance, we expect edge and vertex translations to be
intertwined, as the translation of two vertices joined by an
edge also translates the edge itself. Studying such higher
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dimensional generalizations of the model we presented here
is left for future work.

Several other generalizations of the construction should
be investigated. For instance models based on nonassocia-
tive algebras will be worth studying. As well, the idea of
using extra field labels to assign specific weights to class
subgraphs in the Feynman evaluations may be applied to
other subgraphs than the bubbles. Thus an important class
of subgraphs are the so-called jackets, which in the 3d case
represent (Heegaard) splitting surfaces for the dual triangu-
lation. Following a similar procedure as above, it will be
straightforward to construct a GFT assigning a topological
weight to each jacket graph in the Feynman amplitudes.
The hope is that a generalization of such constructions
can provide us with new tools for better control of the
topologies generated by the Feynman expansions of group
field theories.
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APPENDIX: GLOSSARY ON *-ALGEBRAS

We consider a finite dimensional algebra A over the
complex numbers C, equipped with an antilinear involu-
tion A — A, M+ M" acting as complex conjugation
(MN)" = N"M'. Given M € A, we denote by Tr,(M) €
C the trace of the multiplication map ad,,: A — A sending
any N to MN. This provides .A with a two bilinear forms
A ® A — C defined by

gM,M") = Try(MM'), h(M,M") = Tr(M*M").
(A1)
In a given basis {e,} of A with associated structure
constants e4ep = Cy5Cec, the forms (A1) define a sym-
metric tensor and a Hermitian tensor:

9as = glea, eg) = Try(eqep),
hap = h(es, ep) = TrA(e;eB). (A2)
Since the multiplication map ad,,;: A — Awith M = e, ep
acts on basis elements as

adEAEB ec = CABECECD6D7 (A3)

its trace, and hence g4z, can be written as a contraction of
the structure constants:
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9aB = CABECEDD~ (A4)
Note that this relation fixes the relative normalization of
the metric and structure constants. We also introduce the
conjugation isomorphism:

hyBhgC =65, (AS)

_ B _ 7 BT
= h;"ep, epn = hyey,

b NE

e

where 7,8 denotes the complex conjugate h,5. This
conjugation matrix can be written in terms of the metrics
h and g, in particular,
— A _ 5 Ap_
hag = hi” gar, 9ap = ha"hjzp. (A6)
Upon conjugation, the structure constants eZe; = C’A BCeTC
are expressed in terms of C,5¢ as

éABC = hAA/hBB/ITZCrCCA/B/C/ = CBAC. (A7)

1. Associativity

Assuming that A is associative, the associativity prop-
erty translates into the following relations for the structure
constants:

Cap"Crc® = Cpc Cpp®. (A8)
Together with (A4), associativity leads to the standard form
for the “Killing” metric of the algebra:

gap = CACDCBDC- (A9)
Associativity also says that the set of coefficients
Casc = Casgoc = Try(easepec) (A10)

are cyclically symmetric Cypc = Cpcs = Ccap- Upon
conjugation, we also get

- . c e
Capc =Cap goc = TrA(el‘egeE) = Ccpa-

(A11)
2. Semisimplicity
Assuming that A is semisimple, in the sense that the
bilinear form ¢ is nondegenerate, the forms (A1) define a
scalar product and a Hermitian product. We denote by g**
the inverse metric and by #*? the inverse Hermitian form,
that is ¢*8gpc = 64 and h*Bhye = §2. Note that for any
algebra element M = M“e,, the coordinates can be written
as: M4 = *BTr4(epM) or MA = h*ATr 4 (el M), whence
G'BTry(epM)ey = hATry(eiM)ey =M. (Al2)
Multiplying by N € A and tracing these relations give the
following “dipole” identities:
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BTt 4 (Mep)Tr 4(eoN) = Tr 4(MN) (A13)

and

HABTr (M el )Tr 4 (esN) = Tr4(M'N) (A14)

for all M,N € A.

3. Matrix algebras

Any associative semisimple algebra is a direct sum of
matrix algebras. The basic example of such an algebra
is thus the algebra A = GL(V) of endomorphisms of a
d-dimensional vector space V. In this case, the trace Tr 4 is
related to the usual trace in V as

Try(M) = dTry(M). (A15)
We have in particular that Try(l) = dim(A) =
d*> = dTry (1), where [ denotes the identity endomorphism
in GL(V). Let {e,} be a basis of A and |n) be a an
orthonormal basis in V. By applying Eq. (A12) for
M = |p){q|, we obtain

dg*®(qleg|p)es = |p)(q] =

dg"*(qles|p)(ales|b) = 84,84 (Al6)
choosing b = g and summing we obtain
dg*P(alesep|p) = do,, = g*Pesep = 1. (A17)

We obtain similarly
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hBe el = 1. (A18)

Note that for any unitary operator U = U%e, in A we have

UAh,zUB = diry(UTU) = d2, (A19)

and for any three algebra elements M ,:M?eA,i =1,2,3,
we have

dtrv(M1M2M3) = M?IMQZM?3CA1A2A3. (A20)

Given the orthonormal basis |n) of V, the standard
choice of basis {e,} of the algebra are the elements e,
labeled by a pair A = (mn) given by

[e(nm)]ab = 5na5mb- (A21)

In this basis, the tensors and structure constants read

G(nm) (k1) = dtrV(e(nm)e(kl)) = dZ[e(nm)]ba [e(kl)]ab
ab
= d5nl5mkv
h(nm)(kl) = dtrV(eErnm)e(kl)) = dZ[e(nm)]ab[e(kl)]ab
ab
= dénkémlv

Clum)(k1)(pg) = Aty (€(um)€(k1)€(pg))
= dzénaémcékcélbapbéqa = d(smkélpénq'

abc

(A22)
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