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Group field theories (GFT) are higher dimensional generalizations of matrix models whose Feynman
diagrams are dual to triangulations. Here we propose a modification of GFT models that includes extra field
indices keeping track of the bubbles of the graphs in the Feynman evaluations. In dimension three, our
model exhibits new symmetries, interpreted as the action of the vertex translations of the triangulation. The
extra field indices have an elegant algebraic interpretation: they encode the structure of a semisimple
algebra. Remarkably, when the algebra is chosen to be associative, the new structure contributes a
topological invariant from each bubble of the graph to the Feynman amplitudes.
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I. INTRODUCTION

Group field theories [1] (GFT) generalize matrix models
[2] to higher dimensions and provide an elegant field
theoretic formulation of spin foam models [1,3] of quantum
gravity. Their Feynman expansion generates fat graphs,
hence having not only vertices, edges, and faces but also
higher dimensional cells coined “bubbles.” Just as each
graph in matrix models represents by duality a triangulated
Riemann surface, each graph in aD-dimensional group field
theory can be thought of as representing a D-dimensional
triangulated (pseudo)manifold. Since the introduction of the
colored [4] models and their 1=N expansion [5], progress
has beenmade in the analytical study ofGFTs. Their leading
order behavior has been studied [6] and some renormaliz-
able GFT models [7] have been introduced.
Bubbles play a key role in the structure of the Feynman

amplitudes. In fact, due to the gauge invariance and the
specific ultralocal nature of the couplings in GFT models,
the amplitudes contain bubble divergences, analogous to the
loop divergences in ordinary quantum field theory. In the
context of spin foam models, it has been argued—and
illustrated explicitly in dimension three—that such diver-
gences result from a discrete residual action of the diffeo-
morphism group, acting as translations on the vertices of the
triangulation [8]. The first motivation of the present paper,
following the line of thoughts developed in [9], is to
investigate ways to encode the action of vertex translations
as a symmetry of the group field theory. In fact, as recognized
in [9], GFTalready possesses such a symmetry in the case of
an Abelian gauge group. Building upon a dual formulation

of GFT as a noncommutative field theory of Moyal type
[10,11], the proposal of [9] in the non-Abelian case is to
implement this symmetry as a deformed symmetry, by
promoting the fields into braided fields—obeying a braided
statistics [12]. The difficulty with such a proposal1 is that it
immediately brings us outside the realm of standard field
theory, where fields are real or complex valued. In particular,
we lose control on the measure used to define the functional
integral; this measure can be defined formally [12,15–17]
but not explicitly. Last but not least, no analogue of Noether
charges or Ward identities exists just yet in this context.
Interesting as itmaybe to try to gain a better understanding

of braided (group) field theory and to extend the notion of
what is meant by a symmetry, here we would like to take a
more standard route. Our aim is to investigate the construc-
tion of a GFT model invariant under a standard symmetry
expressing the translation of vertices for non-Abelian groups.
The idea we follow is simple: we just extend the

definition of the fields to include extra indices labeling
the vertices of the tetrahedron patterned by the interaction.
Making this explicit in dimension three leads us to a
modification of the Boulatov model [18] giving rise to an
extra contribution to the Feynman amplitudes from each
bubble of the graph. As we will show, our modified model
has an elegant algebraic formulation: the extra field labels
encode the structure of a semisimple algebra. The GFT
action takes the form of a trace invariant in this algebra,
which makes explicit the presence of new (unitary) sym-
metries expressing vertex translation invariance. Moreover,
remarkably, when the algebra is chosen to be associative, the
new bubble contribution defines a topological invariant
characterizing the topology of the bubble.
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1For analogous proposals in different contexts, see for example
[13] or [14].
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We begin in Sec. II by recalling the issue of vertex
translation symmetry in the context of three-dimensional
colored GFT. In Sec. III we define our new model and give
its algebraic formulation. We compute the Feynman ampli-
tudes in Sec. IV and discuss in detail various aspects and
consequences of their structure. We conclude in Sec. V
with some directions for future work.

II. GFT AND TRANSLATIONAL SYMMETRY

The archetypal group field theory in three dimensions is
the Boulatov model, whose Feynman graph expansion
generates a topological BF evaluation of each Feynman
diagram [18]. The dynamical variable is a complex field
φðg1; g2; g3Þ on a product of three copies of a group G.
The colored model [4,19] depends on four such fields
φiðg1; g2; g3Þ, i ¼ 1; � � � ; 4; the label i is the color of the
field. The fields are assumed to satisfy the gauge symmetry:

φiðg1g; g2g; g3gÞ ¼ φiðg1; g2; g3Þ; ∀ g ∈ G: ð1Þ
The kinetic term is given by a purely ultralocal coupling

K ≡X4
i¼1

Z
dg1dg2dg3φ̄iðg1; g2; g3Þφiðg1; g2; g3Þ; ð2Þ

where φ̄i denotes the complex conjugate of φi. The
interaction is given by λðV þ V̄Þ where λ is the coupling
constant and V is the potential given by

V ≡
Z Y

i<j

dgijφ1ðg14; g13; g12Þφ2ðg21; g24; g23Þ

× φ3ðg32; g31; g34Þφ4ðg43; g42; g41Þ; ð3Þ
where we set gji ¼ gji in the integrand. Given ði; j; k; lÞ all
distinct and ðj; k; lÞ cyclically ordered, we may view the
three arguments ðgij; gik; gilÞ of the fields φi as representing
the three edges ðijÞ; ðikÞ; ðilÞ of a triangle:

In this simplicial picture, the identification of group
elements in the quartic interaction V follows the combi-
natorial pattern of a tetrahedron. Each triangle of the
tetrahedron is thus labeled by a color i and ðijÞ is the
edge common to the two triangles i and j.

A. Abelian symmetry

The tetrahedral interaction described above is special. As
first recognized in [9], it possesses extra symmetries when
G is an Abelian group, which we assume to be U(1) for

concreteness. There are four such symmetries, each of
which is generated by a group character, i.e a complex
function χ on G such that χðgÞχðhÞ ¼ χðghÞ and
χ̄ðgÞ ¼ χðg−1Þ. They are interpreted as translational sym-
metries acting at the vertices of the tetrahedron.
In the following, we will denote the vertex opposite to

the triangle 1 (respectively, 2,3,4) by the capital letter A
(respectively, B;C;D). Thus, the vertex A, to which
corresponds a triplet of colors (234), lies at the inter-
section of the three triangles 2,3,4 and is common to
the edges (23), (34), and (42). The translation TA of the
vertex A, generated by the U(1) character χA, acts on the
fields as follows:

TAðφ1Þðg14; g13; g12Þ ¼ φ1ðg14; g13; g12Þ;
TAðφ2Þðg21; g24; g23Þ ¼ χAðg−124 g23Þφ2ðg21; g24; g23Þ;
TAðφ3Þðg32; g31; g34Þ ¼ χAðg−132 g34Þφ3ðg32; g31; g34Þ;
TAðφ4Þðg43; g42; g41Þ ¼ χAðg−143 g42Þφ4ðg43; g42; g41Þ: ð4Þ
Thus, given a triangle i having A as one of its vertex, TA

acts on φi by multiplication by χðg−1g0Þ, where g; g0 are
the two group elements associated with the two edges
of the triangle that touches A. With this understanding it
is straightforward to write the action of the translations
TB; TC; TD of the three other vertices.
A key property of the transformation (4) is that it respects

the gauge symmetry (1):

TAðφiÞðgijg; gikg; gilgÞ ¼ TAðφiÞðgij; gik; gilÞ: ð5Þ
It is clear also that it is a symmetry of the kinetic and
interaction terms, thanks respectively to the conjugation
and the multiplicative property of the character. As shown
in [9], the existence of this symmetry is related to the
topological translational symmetry of the corresponding
spin foam model. It is important to note that the very
possibility to implement this symmetry as a field trans-
formation is intimately tied to the field coloring, which
allows one to distinguish between the different vertices of
the tetrahedron.
In order to generalize this symmetry to the non-Abelian

case, it will be convenient to write the same symmetry
transformation under the alternate form:

TAðφ1Þðg14; g13; g12Þ ¼ φ1ðg14; g13; g12Þ;
TAðφ2Þðg21; g24; g23Þ ¼ χAðg−124 Þφ2ðg21; g24; g23ÞχAðg23Þ;
TAðφ3Þðg32; g31; g34Þ ¼ χAðg−132 Þφ3ðg32; g31; g34ÞχAðg34Þ;
TAðφ4Þðg43; g42; g41Þ ¼ χAðg−143 Þφ4ðg43; g42; g41ÞχAðg42Þ;

ð6Þ

obtained from (4) by using the multiplicative property of
the character. Note also that for the transformation (6) to be
a symmetry, the character arguments do not need to be the
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arguments of the fields; we may in fact consider the more
general transformations:

~TAðφ1Þðg14; g13; g12Þ ¼ φ1ðg14; g13; g12Þ;
~TAðφ2Þðg21; g24; g23Þ ¼ U−1

24φ2ðg21; g24; g23ÞU23;

~TAðφ3Þðg32; g31; g34Þ ¼ U−1
32φ3ðg32; g31; g34ÞU34;

~TAðφ4Þðg43; g42; g41Þ ¼ U−1
43φ4ðg43; g42; g41ÞU42; ð7Þ

where Uij ¼ Uji, Ūij ¼ U−1
ij are arbitrary U(1) elements.

This construction however, which relies on the existence
of a complex valued character, works only for the Abelian
group. This is clearly disappointing since the quantum
gravity models always rely on the use of a noncommutative
(Lorentz) group. In the work [9], it is proposed to imple-
ment this symmetry in the noncommutative case as result-
ing from the action of a (quantum) deformation2 of the
translation group. However the difficulty with this proposal
is that in order for the fields φi to carry a representation
of the quantum group, they must be promoted to braided
fields—obeying a braided statistics. As mentioned in the
Introduction, this brings us outside the realm of standard
field theory; progress is very challenging in this context.

Here we would like to take a more standard route and
remain within the usual field theory framework.

III. A MODEL WITH MORE INDICES

To be able to extend the translational symmetry to non-
Abelian groups, the idea is to modify the definition of
the colored Boulatov model by adding extra indices to
the fields labeling the vertices of the tetrahedron patterned
by the interaction. These extra indices will allow us to keep
track of the bubbles forming in the Feynman graph
expansion.

A. Action

We thus consider an extended model, described by
colored fields φABC

i ðg1; g2; g3Þ carrying three extra indices
A;B;C running over a finite set I. The fields are still
assumed to be invariant under a global shift of their
arguments:

φABC
i ðg1g; g2g; g3gÞ ¼ φABC

i ðg1; g2; g3Þ: ð8Þ
The GFT action that we propose has a kinetic term of
the form

K ¼
X4
i¼1

Z
dg1dg2dg3hĀAhB̄BhC̄Cφ̄

Ā B̄ C̄
i ðg1; g2; g3ÞφABC

i ðg1; g2; g3Þ; ð9Þ

where repeated indices A; Ā… are implicitly summed over. The kinetic term depends on a rank 2 tensor hAB; we will choose
this tensor to be Hermitian hAB ¼ ¯hBA and nondegenerate, so that the kinetic term is real and invertible. The interaction is
given by λðV þ V̄Þ, where λ is the coupling constant and

V ¼
Z Y

dgij
Y
i<j

δðgijg−1ji ÞCA2A3A4
CB1B3B4

CC1C2C4
CD1D2D3

φB1C1D1

1 ðg14; g13; g12ÞφA2C2D2

2 ðg21; g24; g23ÞφA3B3D3

3 ðg32; g31; g34ÞφA4B4C4

4 ðg43; g42; g41Þ: ð10Þ

We see that the new field indices are contracted by means of a rank 3 tensor C. In the simplicial picture where the arguments
of each field are associated to the three edges of a triangle, the additional indices are associated to the vertices:

There is one C tensor in the interaction for each of the four vertices A;B; C;D of the tetrahedron. Recall that in our
notations, the vertex A (respectively, B;C;D) is opposite to the triangle 1 (respectively, 2,3,4), so it lies at the intersection of
the three triangles 2,3,4. Each of the fields φi, i ¼ 2; 3; 4 contributes to the interactions polynomial with a vertex index Ai;
the resulting three indices A2; A3; A4 are then contracted via the coefficients CA2A3A4

.

2When G ¼ SUð2Þ, the relevant quantum symmetry group is the (translational part of the) Drinfeld double DSU(2). The role of
DSU(2) in 3d quantum gravity with vanishing cosmological constant has been known for some time [20,21], so it should not be
surprising to see it naturally show up in the context of GFT (see also [22]).
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B. Algebraic formulation

Remarkably, this generalization of the GFT model has
a very natural algebraic interpretation. The structure
described above can be understood equivalently by
demanding that the extra vertex labels belong to a semi-
simple *-algebra: namely, a unital algebra ðA; †;TrAÞ,
equipped with an involution † which is also an algebra
antihomomorphism, together with a nondegenerate trace
TrA. More details about the structure and the notations are
presented in the Appendix.
In the following we assume the algebra A to be

finite dimensional and we denote its dimension by N.
We introduce a basis feAg labeled by A ∈ I, where
jIj ¼ N, and denote by 1 the unit element. We can then
define the tensors hAB and CABC as follows (see the
Appendix):

hAB ¼ TrAðe†AeBÞ; CABC ¼ TrAððeAeBÞeCÞ: ð11Þ

Whenever the algebra is chosen to be associative,
the cyclicity of the trace makes the coefficients
CABC ¼ TrAðeAeBeCÞ cyclically symmetric CABC ¼
CBCA ¼ CCAB.
The idea is to view the extended GFT fields as taking

value in the tensor product A⊗4 of four copies of the
algebra, by setting

φ1ðg14;g13;g12Þ¼φBCD
1 ðg14;g13;g12Þð1⊗ eB ⊗ eC ⊗ eDÞ;

φ2ðg21;g24;g23Þ¼φACD
2 ðg21;g24;g23ÞðeA ⊗ 1⊗ eC⊗ eDÞ;

φ3ðg32;g31;g34Þ¼φABD
3 ðg32;g31;g34ÞðeA ⊗ eB ⊗ 1⊗ eDÞ;

φ4ðg43;g42;g41Þ¼φABC
4 ðg43;g42;g41ÞðeA ⊗ eB⊗ eC⊗ 1Þ;

ð12Þ

where repeated indices A;… are implicitly summed over.
We also define the Hermitian conjugated fields:

φ†
1ðg14;g13;g12Þ¼ φ̄B̄C̄D̄

1 ðg14;g13;g12Þð1⊗ e†B̄ ⊗ e†C̄⊗ e†D̄Þ;
ð13Þ

where φ̄i denotes the complex conjugate. The shift sym-
metry (8) simply reads

φiðg1g; g2g; g3gÞ ¼ φiðg1; g2; g3Þ: ð14Þ
Using this notation, the kinetic term (9) takes the form

K¼
X4
i¼1

Z
dg1dg2dg3jIj−1TrA⊗4 ½φ†

i ðg1;g2;g3Þφiðg1;g2;g3Þ�;

ð15Þ
where the factor jIj−1 ¼ dimðAÞ−1 is included to compen-
sate the term TrAð1Þ showing up in the evaluation of the
trace on A⊗4. The interaction (10) reads

V ¼
Z Y

i<j

dgijTrA⊗4 ½½½φ1ðg14; g13; g12Þφ2ðg21; g24; g23Þ�φ3ðg32; g31; g34Þ�φ4ðg43; g42; g41Þ�: ð16Þ

It is straightforward to check that the evaluation
of this action reproduces the previous expressions (9),
(10).

C. Symmetry

New symmetries arise from the extension of the
GFT model when the algebra A characterized by the
couplings is associative. For instance the translation
of the vertex A ¼ ð234Þ can be expressed in terms
of three unitary operators U23 ¼ U−1

32 ;U34 ¼ U−1
43 ;

U41 ¼ U−1
14 in A (unitarity means that U† ¼ U−1).

The non-Abelian translational symmetry then
reads

~TAðφ1Þðg14; g13; g12Þ ¼ φ1ðg14; g13; g12Þ;
~TAðφ2Þðg21; g24; g23Þ ¼ U1

24φ2ðg21; g24; g23ÞU1
23;

~TAðφ3Þðg32; g31; g34Þ ¼ U1
32φ3ðg32; g31; g34ÞU1

34;

~TAðφ4Þðg43; g42; g41Þ ¼ U1
43φ4ðg43; g42; g41ÞU1

42; ð17Þ

where the superscripts indicate the tensor factor which
the unitary elements act on: U1 ¼ UAeA ⊗ 1 ⊗ 1 ⊗ 1,

U2 ¼ UB1 ⊗ eB ⊗ 1 ⊗ 1, and so on. It can be checked
that the action (15), (16) is invariant under this
transformation and its analogs for the three other
vertices. This is the non-Abelian generalization of
the symmetry transformation (7).
It is also interesting to try to write the non-Abelian

analog of (6). To do so, we need the involution algebra
A to carry a representation of the group G. This
requires the existence of maps D∶G → A with DðgÞ ¼
DðgÞAeA that are compatible with the group and unitary
structure:

Dðg1ÞDðg2Þ ¼ Dðg1g2Þ; DðgÞ† ¼ Dðg†Þ: ð18Þ

A key example of such a structure is when the
algebra A is isomorphic to the algebra EndðVÞ of
endomorphisms of a finite dimensional unitary re-
presentation V of the group. In this case N ¼ d2

where d is the dimension of the group representation.
We can now write an analogue of (6), in which the
maps DðgÞ ¼ DAðgÞeA play the role of non-Abelian
characters:
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TAðφ1Þðg14; g13; g12Þ ¼ φ1ðg14; g13; g12Þ;
TAðφ2Þðg21; g24; g23Þ ¼ D1ðg−124 Þφ2ðg21; g24; g23ÞD1ðg23Þ;
TAðφ3Þðg32; g31; g34Þ ¼ D1ðg−132 Þφ3ðg32; g31; g34ÞD1ðg34Þ;
TAðφ4Þðg43; g42; g41Þ ¼ D1ðg−143 Þφ4ðg43; g42; g41ÞD1ðg41Þ:

ð19Þ
This transformation is clearly a symmetry of the
action. Note however that it does not preserve
the shift invariance (14). Instead of being invariant,
the image field is now covariant under shift:

TAðφlÞðg1g; g2g; g3gÞ ¼ D1ðg−1ÞTAðφlÞðg1; g2; g3ÞD1ðgÞ:
ð20Þ

IV. FEYNMAN AMPLITUDES

In this section we examine the Feynman expansion of
our model. As we will see, compared to the original colored
Boulatov model, the Feynman amplitudes contain an extra
contribution from each bubble of the graph. In the case
where the algebra A is associative, this contribution is a
topological invariant characterizing the topology of the
bubble.

A. Colored graphs

The graphs generated by the Feynman expansion of
colored group field theories are bipartite edge-colored
four-valent graphs [4]; see Fig. 1 for an example.
Such a graph G possesses a full three-dimensional

cellular structure, where j-dimensional cells for
j ¼ 0; � � � ; 3 are defined as the maximally connected
j-colored subgraphs. By (Poincaré) duality it also repre-
sents a three-dimensional simplicial complex ΔG. Upon
this duality, the j cells of the graph correspond to
simplices of codimension j in ΔG: the 0 cells, or vertices
of the graph, correspond to tetrahedra; the 1 cells, or
edges of the graph, correspond to triangles; the 2 cells, or
faces of the graph, correspond to edges; and the 3 cells,
or “bubbles” of the graph, correspond to the vertices
of ΔG.
What is remarkable is that the simplicial complexes dual

to bipartite edge colored graphs are orientable, triangulated

normal simplicial pseudomanifolds [23]. “Normal” means
that the link of each simplex of codimension ≥ 2 (each
edge and each vertex in dimension three) is itself a
pseudomanifold (hence in particular connected): for example
the pinched torus in two dimensions is not a normal
pseudomanifold, because the link of the pinching point is
made of two circles. Note that in our case, the link of a
simplex of codimension j is the pseudomanifold dual to
the corresponding j cell of the graph (which is itself a
j-colored graph).
Given a three-dimensional orientable normal pseudo-

manifold, the link of each vertex is thus a connected
surface of genus g. It is straightforward to check that
the sum of genera of the links of all the vertices in a
normal simplicial pseudomanifold equals the Euler
characteristic χ ¼ P

3
i¼0ð−1ÞiVi (where Vi is the number

of simplices of dimension i) of the pseudomanifold.
In particular a pseudomanifold is a manifold if and only
if the links of all the vertices are spheres. By duality,
this means that a colored graph G represents a three-
dimensional manifold if and only if its bubbles are all
dual to spheres.

B. Graph evaluation

The interaction vertex V (respectively, V̄) is represented
by a black (white) and positive clockwise turning (negative
anticlockwise turning) vertex (see Fig. 2). Each half-edge
of color i incident to a black vertex represents a field φi;
it carries three group elements gij; gik; gil and three capital
letter indices (B1; C1; D1 for i ¼ 1; A2, C2, D2 for i ¼ 2;
and so on). The kernel for the vertex V is

V∶ CA2A3A4
CB1B3B4

CC1C2C4
CD1D2D3

Y
i<j

δðgijg−1ji Þ; ð21Þ

where the interaction coefficients are defined in terms of
the trace CABC ≔ TrAðeAeBeCÞ. A half-edge of color i
incident to a white vertex represents a field φ†

i ; it carries
three group elements gij; gik; gil and three capital letter
indices (B̄1; C̄1; D̄1 for i ¼ 1; Ā2, C̄2, D̄2 for i ¼ 2; and so
on). The kernel for the dual vertex V̄ is

V̄∶ ~CĀ4Ā3Ā2

~CB̄4B̄3B̄1
~CC̄4C̄2C̄1

~CD̄3D̄2D̄1

Y
i<j

δðgijg−1ji Þ; ð22Þ

where the coefficients are defined in terms of the trace of
conjugate algebra elements ~CABC ≡ Trðe†Ae†Be†CÞ. Due to

FIG. 1. Example of a colored graph. FIG. 2. Interaction vertices V (black) and V̄ (white).
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the antihomomorphism property of the involution, the two
sets of coefficients are related by complex conjugation and
odd index permutation, i.e ~CABC ¼ ¯CCBA.
Taking into account the invariance of the field Eq. (8),

each colored edge of the graph (oriented from V̄ to V)
carries the propagator

G∶hAĀhBB̄hCC̄
Z

dhδΛðg1hðg01Þ−1ÞδΛðg2hðg02Þ−1Þ

×δΛðg3hðg03Þ−1Þ; ð23Þ

where δΛ denotes a cutoff delta function3 on the group and
hAĀ is the inverse of the Hermitian form (11),

hAĀhĀA0 ¼ δAA0 : ð24Þ

Given a closed connected Feynman graph G, we denote
by VG, EG, FG, and BG the sets of its vertices, edges,
faces, and bubbles. Our first result is that the contribu-
tion due to the new algebraic structure we have
introduced factorizes as a product over the bubbles b ∈
BG of the graph. The bubbles are defined as the maximally
connected three-colored subgraphs. Each vertex of G
belongs to exactly four bubbles of colors
A ¼ ð234Þ; B ¼ ð134Þ; C ¼ ð124Þ, and D ¼ ð123Þ and
therefore contributes a factor:

CA2A3A4
� � �CD1D2D3

; or ~CĀ4Ā3Ā2
� � � ~CD̄3D̄2D̄1

ð25Þ

for a vertex of type V or V̄, respectively. Each edge
of G belongs to exactly three bubbles and contributes an
independent factor for each of them: for instance an edge
of color 1 contributes hBB̄ for the bubble B ¼ ð134Þ, hCC̄
for the bubble C ¼ ð124Þ, and hDD̄ for the bubble
D ¼ ð123Þ. Therefore the edge contributes the total
factor:

hBB̄hCC̄hDD̄ ð26Þ
to the amplitude. The evaluation of G is thus the product
of two factorized contributions:

AðG;ΛÞ ¼ λ2jVGjA0ðG;ΛÞ
�Y

b∈BG

aðbÞ
�
; ð27Þ

where jVGj counts the number of vertices of the graph
and the amplitude A0ðG;ΛÞ is the evaluation of the graph
G in the nonmodified Boulatov theory:

A0ðG;ΛÞ ¼
Z �Y

e∈EG

dhe

� Y
f∈FG

δΛ
�Y→

e∈∂f
hsðe;fÞe

�
: ð28Þ

To obtain this expression for A0, all edges of G have been
oriented from the vertex V̄ to the vertex V, and each face has
been assigned an arbitrary orientation. The integrals are over
all assignments of a group element he ∈ G to each edge e of
the graph. The arguments of the cutoff delta functions are
ordered products of group elements along the boundary ∂f
of the faces f; sðe; fÞ is the edge-face adjacency matrix of
the graph: sðe; fÞ ¼ 1 or −1 depending on whether the
orientations of e and f match or not.4

The contribution aðbÞ of a bubble b ∈ BG of colors
A ¼ ð234Þ is obtained by tracing out along b all the tensors
C, C̄, and h carrying A indices:

aðbÞ ¼
X
fA;Āg

Y
ðv;v̄Þ∈Vb

CAv
2
Av
3
Av
4

~CĀv̄
4
Āv̄
3
Āv̄
2

Y
ei∈Eb

hA
v
i Ā

v̄
i : ð29Þ

The products run over the vertices v, v̄ and oriented edges
ei ¼ ðv̄; vÞ of the bubble b; and the sum runs over a set of
indices Av

i , Ā
v̄
i labeled by a vertex of the bubble and a color

i ¼ 2; 3; 4. We recognize here the trace invariant5 [24]
associated with the bubble b and built out of the tensor C.

C. Bubble weights and topological invariants

The goal of this section is to point out that, when the
algebra A is chosen to be associative, the weight (29)
defines a topological invariant of the surface represented
by the bubble b. In fact, as mentioned above, a bubble (or
3-cell) b of the graph is itself a three-colored graph dual to a
triangulated Riemann surface Σb. Specifically, in terms of
the dual pseudomanifold ΔG, this surface is the link of the
vertex v ∈ ΔG dual to b. It can be visualized as the surface
triangulated by the triangles opposite to v in all tetrahedra
ΔG that have v as a vertex. By duality the vertices of a
bubble b correspond to the triangles of Σb, and the edges of
b correspond to the edges of Σb. Note that the triangulation
of Σb inherits a bipartite set of triangles and a colored set
of edges. Moreover the surface is oriented: the colors give
a consistent ordering ðe1; e2; e3Þ of the boundary edges of
each triangle.
Using this correspondence, our observation is that the

weight aðbÞ takes the form of the partition function of a
lattice model on Σb, with the tensors CABC, ~CĀ B̄ C̄ as three-
point vertices and the (inverse) Hermitian form hAB̄ as
propagator. We have in fact that aðbÞ ¼ aðΣbÞ, where the
amplitude aðΣÞ for a (bipartite, edge-colored) triangulated
surface Σ is given by

3Chosen to be a class function δΛðkgk−1Þ ¼ δΛðgÞ.

4If one interprets the assignment fhe ∈ Ggϵ∈G as a discrete
connection on the graph, the integrand in (28) imposes, in the
limit of large cutoff, that the holonomy along the loop bounding
each face is trivial. The Boulatov amplitude formally gives an
integral over the space Homðπ1ðGÞ; GÞ of flat discrete connec-
tions on G.

5This is an invariant under the action of UðNÞ3 corresponding
to independent unitary (with respect to the form h) transforma-
tions on each index A.
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aðΣÞ ¼
X
fAt

eg

Y
t;t̄∶Σ−triangles

CAt
e1
At
e2
At
e3

~CĀt̄
e3
Āt̄
e2
Āt̄
e1

Y
e∶Σ−edges

hA
t1
e Ā

t̄2
e :

ð30Þ

The sum is over a set of indices At
e labeled by a pair ðt; eÞ,

where t is a triangle of Σ and e ⊂ ∂t is an edge of t.
Note that for a triangulated surface Σ, the number of

edges jEj and the number positively (respectively, neg-
atively) oriented vertices jVj; jV̄j are related as 2jEj ¼
3jVj þ 3jV̄j. This shows that the evaluation aðΣÞ is
invariant under the rescaling

CABC→α3CABC; ~CC̄B̄Ā→ ᾱ3 ~CC̄B̄Ā; hĀA→ jαj2hĀA:
ð31Þ

This transformation can be reabsorbed in an algebra
basis redefinition eA → αeA, which corresponds to a field
rescaling.
We have written the amplitude in terms of the inverse of

the Hermitian form hĀA ¼ Trðe†
Ā
eAÞ and the couplings

C; ~C. It is also convenient to write the same amplitude in
terms of the metric

gAB ≡ TrðeAeBÞ; ð32Þ

and the coupling C only. Let us denote by gAB the inverse
metric. As recalled in the Appendix, the action of the
involution on the basis elements reads

e†
Ā
¼ hĀAg

AA0
eA0 : ð33Þ

Now since the interaction coefficients are given by

CABC ¼ TrAðeAeBeCÞ; ~CĀ B̄ C̄ ¼ TrAðe†Āe†B̄e†C̄Þ; ð34Þ

the following relation holds:

~CĀ B̄ C̄ ¼ hĀAhB̄BhC̄Cg
AA0

gBB
0
gCC

0
CA0B0C0 : ð35Þ

By plugging this relation into the amplitude (30) and using
the inverse relation (24), we obtain

aðΣÞ ¼
X
fAt

eg

Y
t∶Σ−triangles

CAt
e1
At
e2
At
e3

Y
e∶Σ−edges

gA
t1
e A

t2
e ; ð36Þ

where the product of C tensors runs over all oriented
triangles of Σ; the ordering of indices in each CAt

e1
At
e2
At
e3
is

determined by the orientation of the triangle t.

1. Topological invariance

Written in the form (36), the tensor invariant reproduces
the Fukuma, Hosono, Kawai definition of a 2d (lattice)
topological field theory [25,26]. In fact, assuming our
semisimple algebra A is also associative, the weight (36)
defines a topological invariant of the surface Σ. This is
because the conditions of associativity and semisimplicity
(i.e invertibility of the metric gAB) are precisely the
conditions which guarantee that the amplitude aðΣÞ is
independent of the triangulation of Σ. Indeed as recalled in
the Appendix, under such conditions the metric gAB and
coefficients CABC can be written in terms of the algebra
structure constants eAeB ¼ CAB

CeC as

gAB ≡ CAE
FCBF

E; CABC ¼ CAB
DgDC: ð37Þ

Now, the topological invariance of aðΣÞ amounts to its
invariance under the two local Pachner moves of the
triangulation, which translates algebraically as

(38)

(39)

It is straightforward to check that the first equation
expresses the associativity ofA and the second one follows
from the relations (37).
Since any semisimple associative algebra is a direct sum

of matrix algebras, the basic example for us is the algebra
A ¼ End ðVÞ ¼ Matd×dðCÞ of endomorphisms of a finite

dimensional vector space V. In this case, the bubble weight
aðbÞ is just the evaluation of the Feynman amplitude of the
graph dual to the surface Σb of a cubic matrix model, and is
given by

aðbÞ ¼ dχðΣbÞ; ð40Þ
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where d is the dimension of V and χðΣbÞ ¼ 2 − 2gb is the
Euler characteristic of the surface written in terms of its
genus gb. Plugging this value into the Feynman evaluation
(27) of the graph G gives

AðG;ΛÞ ¼ λ2jVGjd2jBGjA0ðG;ΛÞ
Y
b∈BG

d−2gb : ð41Þ

Another classical example of associative algebra is the
group algebra A ¼ C½H� of a finite group H with cardinal
N ¼ jHj. The set of indices is H and we choose

CAB
C ¼ NδðAB;CÞ; gAB ¼ NδðAB; 1Þ; ð42Þ

where δ is the Krönecker delta on H. In this case one can
show

aðbÞ ¼ NχðΣbÞ−1jHomðπ1ðΣbÞ; HÞj; ð43Þ

where π1ðΣbÞ denotes the first homotopy group of the
surface Σb. Note that we can also represent the algebra
C½H� in terms of a sum over its irreducible representations:

C½H�≃ ⨁
V∈Ĥ

EndCðVÞ; ð44Þ

where Ĥ, denoted the set of isomorphism classes of
irreducible representations of H. This means that we can
also evaluate the amplitude as

aðbÞ ¼
X
V∈Ĥ

dχðΣbÞ
V : ð45Þ

The equality between this evaluation and (43) is the
Mednykh’s formula [27]. In the case of the sphere, this
formula gives the dimension

N ¼
X
V∈Ĥ

d2V: ð46Þ

2. Manifolds vs pseudomanifolds

What is remarkable with the amplitudes (41) is that the
new contribution from the bubbles allows us to control the
relative weight of manifolds versus pseudomanifolds in
the Feynman expansion (see [28] for a related study of this
problem). In fact, as we have recalled, the condition for the
pseudomanifold ΔG represented by the graph G to be a
manifold is that its Euler characteristic

χG ≡ −jVGj þ jEGj − jFGj þ jBGj ¼
X
b∈BG

gb ð47Þ

vanishes. This amounts to requiring that all bubbles have
spherical topology: gb ¼ 0;∀ b ∈ BG. It is clear from the

expression (41) that, at a fixed number of bubbles, the
amplitudes of pseudomanifolds are suppressed in the large
d limit.
There is another positive integer characterizing the

geometry of the dual pseudomanifold ΔG, called the degree
ωG [5]. This integer has a beautiful geometrical interpre-
tation first given by Ryan in [29] in the case of a manifold.
This intuitively goes as follows: as we have seen, each
vertex of ΔG (dual to a bubble of G) carries a color index
A;B;C;D. The subset of all vertices of color A or B,
together with the edges of color AB, form a subgraph of the
1 skeleton of ΔG. Let ΣAB be the surface defined as the
boundary of a neighborhood of this subgraph in ΔG. It can
also be thought of as the surface obtained by gluing
pairwise the (holed) surfaces Σb associated with all
bubbles b of color A or B, each cut along attaching disks
along which we glue cylinders corresponding to edges of
color AB. By construction the Euler characteristic of ΣAB is
given by

χAB ¼
X

b∶ colorA orB

χðΣbÞ − 2jFABj; ð48Þ

where jFABj is the number of edges of ΔG (or equivalently
faces of G) of color AB. One can also show that ΣAB ¼ ΣCD;
in fact this surface splits ΔG in two connected components.
If one denotes by gAB the genus of the surface ΣAB, so that
χAB ¼ 2 − 2gAB, we then have that gAB ¼ gCD. In the
manifold case, ΣAB is a Heegard splitting surface for ΔG.
The degree is defined as

ωG ≡ gAB þ gAC þ gAD ¼ 1

2

X
ðMNÞ

gMN; ð49Þ

where the sum is over all possible pairs of colors. The
relations (48) and (47) then lead to the key formula for the
degree [5]:

jVGj − 2jBGj þ 2χG ¼ 2ðωG − 3Þ: ð50Þ

Thus, 2ðωG − 3Þ measures the difference between the
number of vertices and the sum of the Euler characteristics
of all bubbles. Therefore, defining a new coupling g2 ≡
λ2d, we can write the amplitude (41) as

AðG;ΛÞ ¼ g2jVGjd2ð3−ωGÞA0ðG;ΛÞ: ð51Þ

We recover the familiar suppression of complexes with
high degree in the limit of large d [5].

3. Dipole moves

We discussed so far the form (36) of the tensor invariant
associated with each bubble of the graph. We recognized
the partition function of a topological lattice model built

ARISTIDE BARATIN, LAURENT FREIDEL, AND RAZVAN GURAU PHYSICAL REVIEW D 90, 024069 (2014)

024069-8



from a semisimple algebra with structure constant C and
metric gAB. Now, the same invariant can also be written in
terms of the bipartite structure as in (30). In this section, we
would like to extend the discussion of topological invari-
ance to the case of bipartite triangulations. The Pachner
moves are in fact no longer adapted to this case, since they
do not preserve the bipartite structure.
The analogue of the Pachner moves for bipartite trian-

gulations are the so-called dipole moves [30]. These give
rise to an analogue of the Pachner theorem: any two
bipartite triangulations of the same topological surface
are related by a sequence of dipole moves. Consider a graph
with edges colored c1, c2, and c3. A 1 dipole of color c is an
edge of color c joining two vertices v and v̄ such that v and
v̄ belong to two different faces of colors fc1; c2; c3g∖fcg.
A 2 dipole of colors c, c0 is a pair of edges of colors c and c0
joining two vertices v and v̄ (such that the edges of color
fc1; c2; c3g∖fc; c0g hooked to v and v̄ are different). As

illustrated in Fig. 3, a dipole move consists of erasing the
edge(s) and vertices forming a dipole and reconnecting the
remaining edges according to their color.
To conveniently write down the invariance under these

moves, let us introduce the matrices CA, ~CĀ ∈ EndðAÞ
defined by

ðCAÞBC̄ ≡ CABChCC̄; ð ~CĀÞB̄C ≡ ~CĀ C̄ B̄h
CC̄: ð52Þ

These matrices show up in the products eAeB ¼ CAB
C̄e†C̄

and e†
Ā
e†B̄ ¼ ð ~CĀÞB̄CeC. The invariance under 2 dipole

moves translates into the identity:

Trð ~CĀCAÞ ¼ hĀA: ð53Þ
This corresponds to the definition of the Hermitian form.
The invariance under 1 dipole moves is encoded into the
relations

Trð ~CĀ0
½CA1

~CĀ1
� � �CAm

~CĀm
�CBÞhBB̄Trð ~CB̄½CAmþ1

~CĀmþ1
� � �CAn

~CAn
�CA0

Þ ð54Þ

¼ Trð ~CĀ0
½CA1

~CĀ1
� � �CAn

~CAn
�CA0

Þ: ð55Þ

Note that the 1-dipole move is trivially satisfied when the
two faces of colors fc1; c2; c3g to which v and v̄ belong
consist each of two edges:

hĀBh
BB̄hB̄A ¼ hĀA: ð56Þ

Let us now look at the dipole moves of higher order. The
dipole move of length ðn;mÞ is the one containing n C ~C on
the left and m ~CC on the right. It is easy to see that the
inverse property (24) implies all the moves ðn; 1Þ. To study
the higher moves, it is convenient to notice that the operator
CA

~CĀ represents the left-right multiplication operator:

eAeBe
†
Ā
¼ ½CA

~CĀ�BB0
eB0 ; eAe

†
B̄e

†
Ā
¼ ½ ~CĀCA�B̄B̄0

eB̄0 : ð57Þ
which implies that

½CA
~CĀ�½CB

~CB̄� ¼ CBA
C̄ ~CĀ B̄

C½ ~CC̄
~CC�;

½ ~CĀCA�½ ~CB̄CB� ¼ CBA
C̄ ~CĀ B̄

C½ ~CC̄CC�: ð58Þ

By using these identities repeatedly, one can see that the
dipole identity reduces to the (2,2) dipole move. Now, if the
algebra is semisimple, we have the identity

h̄ABTrAðM†e†BÞTrAðeANÞ ¼ TrAðM†NÞ; ð59Þ

which implies the dipole moves. The semisimplicity con-
dition is therefore a sufficient condition for implementing
the dipole moves. It is however not clear to us that it is
also a necessary condition, i-e whether the invariance
under (2,2) dipole moves requires semisimplicity. If it does
not, that would suggest the possibility of using bipartite
structures to construct new topological models not based on
semisimple algebras. We leave this interesting question for
future work.

V. OUTLOOK

We conclude with some possible avenues for future
investigation. First, it will be interesting to extend the
procedure to higher dimensions: one can assign extra
indices to the field, associated to lower dimensional
simplices (both vertices and edges in four dimensions).
We expect the structure of the translational symmetry to be
more involved in higher dimensions. In four dimensions,
for instance, we expect edge and vertex translations to be
intertwined, as the translation of two vertices joined by an
edge also translates the edge itself. Studying such higher

3

1

2

3
3

2 2

1
3 3

2

3

FIG. 3. Dipole moves.
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dimensional generalizations of the model we presented here
is left for future work.
Several other generalizations of the construction should

be investigated. For instance models based on nonassocia-
tive algebras will be worth studying. As well, the idea of
using extra field labels to assign specific weights to class
subgraphs in the Feynman evaluations may be applied to
other subgraphs than the bubbles. Thus an important class
of subgraphs are the so-called jackets, which in the 3d case
represent (Heegaard) splitting surfaces for the dual triangu-
lation. Following a similar procedure as above, it will be
straightforward to construct a GFT assigning a topological
weight to each jacket graph in the Feynman amplitudes.
The hope is that a generalization of such constructions
can provide us with new tools for better control of the
topologies generated by the Feynman expansions of group
field theories.
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APPENDIX: GLOSSARY ON *-ALGEBRAS

We consider a finite dimensional algebra A over the
complex numbers C, equipped with an antilinear involu-
tion A → A, M ↦ M† acting as complex conjugation
ðMNÞ† ¼ N†M†. Given M ∈ A, we denote by TrAðMÞ ∈
C the trace of the multiplication map adM∶A → A sending
any N to MN. This provides A with a two bilinear forms
A ⊗ A → C defined by

gðM;M0Þ ¼ TrAðMM0Þ; hðM;M0Þ ¼ TrAðM†M0Þ:
ðA1Þ

In a given basis feAg of A with associated structure
constants eAeB ¼ CAB

CeC, the forms (A1) define a sym-
metric tensor and a Hermitian tensor:

gAB ≔ gðeA; eBÞ ¼ TrAðeAeBÞ;
hAB ≔ hðeA; eBÞ ¼ TrAðe†AeBÞ: ðA2Þ

Since the multiplication map adM∶ A → AwithM ¼ eAeB
acts on basis elements as

adeAeBeC ¼ CAB
ECEC

DeD; ðA3Þ

its trace, and hence gAB, can be written as a contraction of
the structure constants:

gAB ¼ CAB
ECED

D: ðA4Þ
Note that this relation fixes the relative normalization of
the metric and structure constants. We also introduce the
conjugation isomorphism:

e†
Ā
¼ hĀ

BeB; eA ¼ h̄AB̄e
†
B̄; h̄AB̄hB̄

C ¼ δCA; ðA5Þ

where h̄AB̄ denotes the complex conjugate hAB̄. This
conjugation matrix can be written in terms of the metrics
h and g, in particular,

hĀB ¼ hĀ
A0
gA0B; gAB ¼ h̄AĀhĀB: ðA6Þ

Upon conjugation, the structure constants e†Ae
†
B ¼ ~CAB

Ce†C
are expressed in terms of CAB

C as

~CAB
C ≡ hAA

0
hBB

0
h̄C0CCA0B0C

0 ¼ CBA
C: ðA7Þ

1. Associativity

Assuming that A is associative, the associativity prop-
erty translates into the following relations for the structure
constants:

CAB
ECEC

D ¼ CBC
E0
CAE0D: ðA8Þ

Together with (A4), associativity leads to the standard form
for the “Killing” metric of the algebra:

gAB ¼ CAC
DCBD

C: ðA9Þ
Associativity also says that the set of coefficients

CABC ≡ CAB
C0
gC0C ¼ TrAðeAeBeCÞ ðA10Þ

are cyclically symmetric CABC ¼ CBCA ¼ CCAB. Upon
conjugation, we also get

~CABC ≡ ~CAB
CgC0C ¼ TrAðe†Ae†Be†CÞ ¼ CCBA: ðA11Þ

2. Semisimplicity

Assuming that A is semisimple, in the sense that the
bilinear form g is nondegenerate, the forms (A1) define a
scalar product and a Hermitian product. We denote by gAB

the inverse metric and by hAB̄ the inverse Hermitian form,
that is gABgBC ¼ δAC and hAB̄hB̄C ¼ δAC. Note that for any
algebra elementM ¼ MAeA, the coordinates can be written
as: MA ¼ gABTrAðeBMÞ or MA ¼ hAĀTrAðe†ĀMÞ, whence

gABTrAðeBMÞeA ¼ hAĀTrAðe†ĀMÞeA ¼ M: ðA12Þ

Multiplying by N ∈ A and tracing these relations give the
following “dipole” identities:
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gABTrAðMeBÞTrAðeANÞ ¼ TrAðMNÞ ðA13Þ
and

hAB̄TrAðM†e†B̄ÞTrAðeANÞ ¼ TrAðM†NÞ ðA14Þ

for all M;N ∈ A.

3. Matrix algebras

Any associative semisimple algebra is a direct sum of
matrix algebras. The basic example of such an algebra
is thus the algebra A ¼ GLðVÞ of endomorphisms of a
d-dimensional vector space V. In this case, the trace TrA is
related to the usual trace in V as

TrAðMÞ ¼ dTrVðMÞ: ðA15Þ
We have in particular that TrAðIÞ ¼ dimðAÞ ¼
d2 ¼ dTrVðIÞ, where I denotes the identity endomorphism
in GLðVÞ. Let feAg be a basis of A and jni be a an
orthonormal basis in V. By applying Eq. (A12) for
M ¼ jpihqj, we obtain

dgABhqjeBjpieA ¼ jpihqj ⇒
dgABhqjeBjpihajeAjbi ¼ δapδqb ðA16Þ

choosing b ¼ q and summing we obtain

dgABhajeAeBjpi ¼ dδap ⇒ gABeAeB ¼ I: ðA17Þ

We obtain similarly

h̄ABeAe
†
B ¼ I: ðA18Þ

Note that for any unitary operator U ¼ UAeA in A we have

UAhABUB ¼ dtrVðU†UÞ ¼ d2; ðA19Þ
and for any three algebra elements Mi¼MA

i eA;i¼1;2;3,
we have

dtrVðM1M2M3Þ ¼ MA1

1 MA2

2 MA3

3 CA1A2A3
: ðA20Þ

Given the orthonormal basis jni of V, the standard
choice of basis feAg of the algebra are the elements eðmnÞ
labeled by a pair A ¼ ðmnÞ given by

½eðnmÞ�ab ¼ δnaδmb: ðA21Þ

In this basis, the tensors and structure constants read

gðnmÞðklÞ ¼ dtrVðeðnmÞeðklÞÞ ¼ d
X
ab

½eðnmÞ�ba½eðklÞ�ab

¼ dδnlδmk;

hðnmÞðklÞ ¼ dtrVðe†ðnmÞeðklÞÞ ¼ d
X
ab

½eðnmÞ�ab½eðklÞ�ab

¼ dδnkδml;

CðnmÞðklÞðpqÞ ¼ dtrVðeðnmÞeðklÞeðpqÞÞ
¼ d

X
abc

δnaδmcδkcδlbδpbδqa ¼ dδmkδlpδnq:

ðA22Þ
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