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Motivated by the properties of matter quantum fields in curved space-times, we work out a gravity theory
that combines the Born-Infeld gravity Lagrangian with an fðRÞ piece. To avoid ghostlike instabilities, the
theory is formulated within the Palatini approach. This construction provides more freedom to address a
number of important questions, such as the dynamics of the early Universe and the cosmic accelerated
expansion, among others. In particular, we consider the effect that adding an fðRÞ ¼ aR2 term has on the
early-time cosmology. We find that bouncing solutions are robust against these modifications of the
Lagrangian whereas the solutions with loitering behavior of the original Born-Infeld theory are very
sensitive to the R2 term. In fact, these solutions are modified in such a way that a plateau in theH2 function
may arise, yielding a period of (approximately) de Sitter inflationary expansion. This inflationary behavior
may be found even in a radiation-dominated universe.

DOI: 10.1103/PhysRevD.90.024066 PACS numbers: 04.50.Kd, 04.50.-h, 98.80.Cq

I. INTRODUCTION

Extensions of General Relativity (GR) have been con-
sidered in the literature following different approaches and
motivated by a variety of reasons. Theoretical arguments
support that GR is just an effective theory that fits well the
behavior of gravitational systems at relatively low energies.
At ultrahigh and at very low energies or, equivalently, at
ultrashort and very large length scales, corrections to the
GR Lagrangian are expected. The form of these corrections
is difficult to guess from first principles and probably
results from complicated processes related to the funda-
mental constituents and/or structure of space-time and how
their symmetries are broken. Moreover, there is no exper-
imental evidence whatsoever about what is the most
reasonable or favorable formulation of classical GR that
should be used to consider its high-energy and low-energy
extensions. What should be the classical starting point?
Should we stick to the traditional metric (or Riemannian)
approach or should we consider a Palatini (or metric-affine)
formulation? Whatever the choice, the potential extensions
offered by each starting point can lead to significantly
different gravitational physics.
In this sense, it is well known that high-curvature

extensions of GR in the usual metric formalism generically
lead to higher-order derivative equations and/or to the
emergence of new dynamical degrees of freedom. This is
the case, for instance, of fðRÞ theories [1–6], quadratic
gravity, and the Born-Infeld (BI)–type gravity action
considered by Deser and Gibbons [7], to name just a

few. If a Palatini formulation of those theories is chosen,
however, one finds completely different physics [8]. In fact,
it is well established that in the Palatini approach those
theories lead to second-order metric field equations which
in vacuum exactly recover the dynamics of GR [9].
It turns out that, in the above-mentioned Palatini theo-

ries, despite the fact of allowing the connection to vary
independently of the metric, the number of dynamical
fields ends up being the same as in standard GR. One finds
that the connection can be solved in terms of the metric and
the matter sources via a set of algebraic (not differential)
equations. Leaving aside the dependence on the matter,
this is exactly what happens in the Palatini formulation of
GR, where the connection becomes a constrained object
algebraically related with the first derivatives of the metric,
thus defining the Levi-Civita connection. Therefore, even
though one might a priori expect many new additional
degrees of freedom in the metric-affine formulation due to
the independence of the connection, the resulting equations
yield a different answer, namely, that the connection is not a
dynamical object and that the metric satisfies second-order
equations. Moreover, in general, one finds that in the
absence of matter fields the metric field equations exactly
boil down to those of GR with an effective cosmological
constant (see [9] for further details and discussions). The
modified dynamics of these theories, therefore, is not
generated by new dynamical degrees of freedom, which
has motivated recent related research on theories with
nondynamical fields [10,11]. A closer inspection of the
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Palatini models puts forward that the modified dynamics is
due to nonlinearities induced by the matter sources and by
higher-order spatial derivatives of the fields [12,13].
The fact of having second-order equations so closely

related to GR is of great importance [14] because it
minimizes the number of extra inputs necessary to char-
acterize a given solution, simply because higher-order
equations require more boundary/initial conditions. In
the Palatini version of the Born-Infeld gravity model, for
instance, there is no more freedom than in GR to get rid of
cosmic singularities starting from a solution which asymp-
totes to our current accelerated expansion phase. If the big
bang singularity is avoided in this model, it is because the
theory is doing something robust and relevant on the
dynamics, not because we have extra freedom to select a
subset of solutions in an ad hoc manner, as it happens in
theories with higher-order derivatives. This type of theory,
therefore, must be explored in more detail, as the modified
dynamics they generate is enough to successfully avoid
important problems without any further external or ad hoc
input. Quadratic gravity is also able to avoid the big bang
singularity [15,16]. When the Palatini version is consid-
ered, this occurs in a purely dynamical way with exactly
the same number of initial conditions (at late times) as in
GR. In the metric version of the theory [17,18], however,
additional restrictions on the parameters that characterize
the asymptotically Friedmann-Robertson-Walker (FRW)
solutions are necessary.
The Born-Infeld gravity model is a very interesting

starting point to consider high-energy extensions of GR
because BI-like Lagrangians naturally arise in different
scenarios in a very fundamental way. For instance, the
original Born-Infeld theory replaced the classical Maxwell
Lagrangian LM ¼ − 1

16πFμνFμν with a new version,

LBI ¼
β2

8π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jημν þ β−1Fμνj

q
− 1
�
; ð1Þ

which for a pure electric field can also be written as

LBI ¼
β2

8π

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

β2

s
− 1

!
: ð2Þ

This new theory sets an upper bound for the electric field
strength and regularizes the energy of a point particle,
which is divergent in the standard Maxwell theory. On the
other hand, the modification needed in the Lagrangian of a
free point particle to go from a nonrelativistic, Lnr ¼ 1

2
mv2,

to a relativistic description is also of the BI type [19]:

Lrel ¼ mc2ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − mv2

mc2

q
Þ. In analogy with (1), Deser and

Gibbons [7] proposed a Born-Infeld-like theory of gravity
which has been recently reconsidered by Bañados and
Ferreira [8] in the Palatini formulation,

SBI ¼
1

κ2ϵ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ ϵRμνðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q �
þ Sm;

ð3Þ

as it yields second-order equations and avoids ghostlike
instabilities. Here gμν represents the (nonflat) space-time
metric and RμνðΓÞ the Ricci tensor of the independent
connection (further notational details later).
It is worth noting that the Born-Infeld electromagnetic

Lagrangian is consistent with the one-loop version of
supersymmetric QED [20]. Additionally, the Lagrangians
describing the electromagnetic field of certain D-branes
are also of the Born-Infeld determinantal type [21].
Therefore, this type of Lagrangian appears in a very
fundamental way in different scenarios of interest. The
possibility of regularizing curvature scalars in gravity
via this type of Lagrangian has motivated a burst of
activity in the context of Born-Infeld gravity in cosmo-
logical scenarios, where the growth of perturbations, the
effects on the angular power spectrum of the cosmic
microwave background, and other aspects of scalar and
tensorial linear perturbations and inflation have been
investigated [22–31]. Other relevant questions dealing
with astrophysics [32,33], stellar structure [34–41], the
problem of cosmic singularities [42,43], black holes [44],
and wormhole physics [45,62] have also been considered
in the literature.
From an observational perspective, we note that BI

theory recovers GR with an effective cosmological constant
at the zeroth order in a series expansion in the parameter ϵ.
For this reason the theory can be made to agree with all
current observations by just suitably tuning this parameter.
Since we are mainly interested in theoretical aspects
concerning the avoidance of singularities and alternative
mechanisms for inflation, we will always assume that ϵ
is sufficiently small so as not to enter in conflict with
observations.
Despite the appealing properties of the BI gravity

Lagrangian, our ignorance on the behavior of gravity at
the highest energies motivates the exploration of departures
from that basic structure to check the robustness of its
predictions. In fact, if quantum effects in curved space-time
are considered [46], in general one finds curvature correc-
tions that are necessary to account for the renormalizability
of matter fields in such backgrounds. These corrections are
known to be quadratic in the Ricci and Riemann tensors at
high energies, but other types of R-dependent corrections
may arise in the infrared, thus having a relevant impact on
the late-time cosmic expansion [47,48]. This fact has also
motivated recent studies of hybrid scenarios in which the
Einstein-Hilbert Lagrangian is supplemented with fðRÞ
corrections of the Palatini type [49–55].
The quantum properties of matter fields in curved space-

times, therefore, naturally justify the interest in exploring
high-energy and low-energy modifications of the classical

MAKARENKO, ODINTSOV, AND OLMO PHYSICAL REVIEW D 90, 024066 (2014)

024066-2



BI theory via fðRÞ-type terms. In this sense, as advanced
above, the BI gravity Lagrangian yields a low-energy
perturbative expansion with GR as the lowest order
followed by quadratic and higher-order curvature correc-
tions with specific coefficients, which is in consonance
with the expected quantum field theory corrections at high
energies. Theories of this type, with up to quadratic
curvature corrections, have been investigated within the
Palatini approach in the literature [56–62], and specific
methods to deal with the resulting field equations have been
developed [63]. However, higher-order curvature correc-
tions involving cubic powers or higher of the Ricci tensor
(such as RμαRβγRδνgαβgγδgμν, for instance) have not been
explored yet and are likely to require new methods. By
contrast, though the BI theory contains terms of that kind
in a perturbative expansion, in its exact determinantal form
the methods required to deal with the field equations are
much simpler even than for the quadratic theory. It is thus
far from clear how a theory with a similar perturbative
expansion as the BI theory but with different coefficients
multiplying the higher-order curvature terms or including
low-curvature corrections, like in the case of fðRÞ theories,
could be put in a form amenable to calculations. In other
words, slight modifications of the action possibly generated
by the quantum properties of the matter fields can lead to
nontrivial changes in the structure of the field equations,
which may make the analysis substantially difficult. In
particular, if an fðRÞ piece is added to the BI action (3),
one finds that the connection equation cannot be solved
by just using the tensor qμν ¼ gμν þ ϵRμν as an auxiliary
metric, and more elaborate manipulations are necessary in
general. In this work we consider this problem in detail
and extend the existing methods to deal with fðRÞ-like
modifications of the field equations. This will allow us to
explore, in particular, if the high-energy behavior of the BI
theory itself is robust against small changes in the coef-
ficients that define its perturbative series expansion. Recall,
in this sense, that in curved space-times [17,46] the
coefficients of the high-curvature corrections depend on
the number and spin of the matter fields.
Taking a cosmological scenario with perfect fluids, we

provide an algorithm that allows us to efficiently study
fðRÞ departures from the original BI gravity theory in a
fully nonperturbative way. This aspect, namely, the exact
(nonperturbative) treatment of the field equations, is very
important because the field equations of Palatini theories
usually involve algebraic relations which must be handled
with care in order not to miss important physical informa-
tion (see, for instance, the discussion in the introduction of
[64] regarding the properties of nonperturbative systems).
In fact, the replacement of the big bang singularity by a
cosmic bounce and of black hole singularities by worm-
holes [44,62] in Palatini theories are nonperturbative
properties that need not respond linearly to small mod-
ifications in the parameters of the theory.

With the technical aspects of these BI-fðRÞ theories
under control, as an illustration, we study the robustness of
the nonsingular cosmic solutions against modifications of
the quadratic curvature terms. We confirm that the bounc-
ing solutions of the original BI theory persist even for large
variations in the coefficients of the perturbative expansion
and find that the other kind of nonsingular solutions, which
represent a minimum volume in unstable equilibrium, may
develop a big bang singularity followed by a period of
approximately de Sitter expansion due to a plateau in the
Hubble function. Unstable equilibrium configurations also
arise for certain values of the equation of state.
The content is organized as follows. In Sec. II we

introduce the BI-fðRÞ theory, derive the field equations,
and put them in a form amenable to calculations. In Sec. III
we discuss the procedure to deal with perfect fluids, which
will be used in a cosmological scenario in Sec. IV, where
the main physical results are obtained. We conclude in
Sec. V with a summary of the work and a discussion of
the results.

II. BORN-INFELD f ðRÞ GRAVITY IN PALATINI
FORMALISM

Let us consider the following action made out of the
Born-Infeld theory plus an fðRÞ term:

SBI ¼
1

κ2ϵ

Z
d4x
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−jgμν þ ϵRμνðΓÞj
q

− λ
ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i

þ α

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm; ð4Þ

where gμν represents the space-time metric, RμνðΓÞ is the
Ricci tensor of the connection Γα

βγ , which is a priori
independent of the metric (Palatini formalism), λ is a
constant of order unity, fðRÞ is an unspecified function
of the Ricci scalar R ¼ gμνRνμðΓÞ, and Sm represents the
matter action, which is only coupled to the metric as
dictated by the equivalence principle.
In the limit ϵ → 0, the BI Lagrangian recovers the usual

GR term and the above action boils down to an fðRÞ theory
with Lagrangian LG ¼ R−2ΛþαfðRÞ

2κ2
, where Λ≡ ðλ − 1Þ=ϵ.

If instead we take the limit α → 0, we recover the BI theory.
When α → 0 and ϵ → 0 GR is naturally recovered. In this
action we assume vanishing torsion and a symmetric Ricci
tensor.
The field equations follow from (4) by independent

variation with respect to the metric and the connection
(Palatini formalism). The metric variation yields

ffiffiffiffiffiffi−qp
ffiffiffiffiffiffi−gp qμν −

��
λ −

αϵ

2
f

�
gμν þ αϵfRgμβgνγRβγ

�

¼ −κ2ϵTμν; ð5Þ
whereas the connection variation boils down to
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∇β½ ffiffiffiffiffiffi−q
p

qμν þ αfR
ffiffiffiffiffiffi
−g

p
gμν� ¼ 0; ð6Þ

where the covariant derivative is defined in terms of the
independent connection Γα

βγ . By solving this equation one
obtains the explicit form of Γα

βγ, which in general differs
from the usual Christoffel symbols of the metric gμν. In the
above equations, we have used the notation

qμν ¼ gμν þ ϵRμνðΓÞ: ð7Þ

The inverse of qμν has been denoted qμν, and its form will
be obtained explicitly later. The procedure to obtain qμν in a
way consistent with the field equations is complicated and
deserves a bit of previous discussion.

A. The conformal approach

It is well known in the literature of Palatini fðRÞ theories
that the independent connection of the theory can be solved
in terms of an auxiliary metric hμν which is conformal with
gμν (for details see the review [9]). One can thus be tempted
to proceed in a similar way with the BI-fðRÞ theory
presented here. We will see that such an approach is
incomplete and leads to strong limitations. This indicates
that a more general scenario must be considered, which is
worked out in detail in Sec. II B. Nonetheless, we include
here a brief discussion of this point to illustrate its
implications.
Assume for now that qμν ¼ pðRÞgμν, with pðRÞ a

function of the Ricci scalar, and insert this Ansatz into
(6), which yields

∇β½ðpðRÞ þ αfRÞ
ffiffiffiffiffiffi
−g

p
gμν� ¼ 0: ð8Þ

We can now define an auxiliary tensor uμν ¼ ðpðRÞ þ
αfRÞgμν such that the above equation boils down to
∇β½

ffiffiffiffiffiffi
−u

p
uμν� ¼ 0. In Einstein’s theory the connection

equation takes exactly this form, ∇β½ ffiffiffiffiffiffi−gp
gμν� ¼ 0, which

establishes the compatibility of the connection with the
metric, thus leading to the Levi-Civita connection as a
solution (see [65] for details) in the torsionless case.
Therefore, in our case we have

Γα
μν ¼

1

2
uαβð∂μuνβ þ ∂νuμβ − ∂βuμνÞ: ð9Þ

This provides a complete and exact solution of the con-
nection equation. There remains, however, to determine the
form of the function pðRÞ and verify if this Ansatz is valid
for arbitrary fðRÞ, which requires the use of the other field
equations. Now, confronting the conformal Ansatz with the
definition (7), it follows that we are restricting ourselves to
those cases in which RμνðΓÞ is proportional to gμν. To be
precise, one finds that ϵRμνðΓÞ ¼ ðpðRÞ − 1Þgμν. In a
cosmological scenario, with line element ds2 ¼ −dt2þ
a2ðtÞδijdxidxj, one can verify that this relation imposes

tight constraints on both functions pðRÞ and fðRÞ. To see
this, let us denote uðtÞ≡ ðpðRÞ þ αfRÞ and rðtÞ ¼
ðpðRÞ − 1Þ=ϵ. One then finds that RðuαβÞμν ¼ rðtÞgμν leads
to (overdots denote time derivative)

rðtÞ ¼ 3

2

�
2
ä
a
þ _a
a
_u
u
þ ü
u
−
�
_u
u

�
2
�

ð10Þ

rðtÞ ¼
�
ä
a
þ 5

2

_a
a
_u
u
þ ü
2u

þ 2

�
_a
a

�
2
�
; ð11Þ

which can be combined to get (H ≡ _a=a)

rðtÞ ¼ 3

�
H þ _u

2u

�
2

ð12Þ

2 _H ¼ H
_u
u
þ 3

2

�
_u
u

�
2

−
ü
u
: ð13Þ

Using these two equations, one can verify that _u
u ¼ _r

r, which
leads to

rðtÞ ¼ CuðtÞ; ð14Þ
with C a constant. Now, combining the conformal Ansatz
qμν ¼pðRÞgμν with (7), one obtains that pðRÞ ¼ 1þ ϵR=4.
Inserting this form of pðRÞ into (14), one finds that the
function fðRÞ must take the form

fðRÞ ¼ ð1 − CϵÞ
8αC

R2 −
R
α
þ Λ; ð15Þ

where Λ is an integration constant. We thus see that the
conformal Ansatz selects specific forms of the functions
pðRÞ and fðRÞ and is, therefore, of limited interest. On the
other hand, the conformal Ansatz together with (16) implies
that

pðRÞgμν −
��

λ −
αϵ

2
f

�
gμν þ αfRðpðRÞ − 1Þgμν

�

¼ −κ2ϵTμν: ð16Þ
Substituting the form of the function fðRÞ obtained in (15),
one gets an energy-momentum tensor in the form of a
perfect fluid with energy density ρ ¼ 2−2λþαϵΛ

2κ2ϵ
and pressure

P ¼ −ρ. One can verify that the vacuum case corresponds
to Λ ¼ 2ðλ−1Þ

αϵ .
On the other hand, from the above expression (12), one

obtains an equation relating H and u as

H ¼ �
ffiffiffiffiffiffi
uC
3

r
−

_u
2u

: ð17Þ

Note that the constant C could be absorbed into a
redefinition of the time coordinate. For constant H ¼ h,
one has a ¼ eht, which leads to
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u ¼ 9ð3e6hc1h2 þ ce2htþ3hc1h2 � 2
ffiffiffi
3

p
ce

1
2
ð2htþ9hc1Þh2Þ

Cðe4ht þ 9e6hc1 − 6e2htþ3hc1Þ :

ð18Þ

One would thus conclude that the metric associated with
the Christoffel symbols would be defined by the expression

uμν ¼
9ð3e6hc1h2 þ ce2htþ3hc1h2 � 2

ffiffiffi
3

p
ce

1
2
ð2htþ9hc1Þh2Þ

Cðe4ht þ 9e6hc1 − 6e2htþ3hc1Þ gμν;

ð19Þ

where gμν ¼ diagð−1; e2ht; e2ht; e2htÞ. Had one defined
instead u ¼ eht (or u ¼ u0th), then from Eq. (17) the scale

factor would be a ¼ a0e
2
ffiffi
c

p
e
ht
2ffiffi

3
p

h
−ht

2 (or a ¼ a0e
2t

ffiffiffiffiffiffi
u0t

h
c

p
ffiffi
3

p ð2þhÞ t−h=2).
Thus, by specifying one of the metrics, the other is
automatically determined without explicit knowledge of
the matter sources, which puts forward the peculiar proper-
ties of the conformal Ansatz. In Appendices A and B it is
shown that a conformal Ansatz in a different theory and a
nonconformal Ansatz for (4) can also constrain the form of
the fðRÞ function.

B. Consistent manipulation of the field equations

We have just seen that imposing a conformal Ansatz,
which is the natural procedure in the case of pure fðRÞ
theories, leads to undesired restrictions on the family of
theories one would like to consider. Now we show that the
connection equation can be solved in a way that does not
impose any constraint on the form of the function fðRÞ that
defines the gravity Lagrangian. This approach is fully
consistent with the set of metric and connection field
equations and requires going beyond the conformal relation
between metrics.
Using the notation q̂ and q̂−1 to denote qμν and qμν,

respectively, it is straightforward to see that (16) can be
written as

ffiffiffiffiffiffi−qp
ffiffiffiffiffiffi−gp ðq̂−1ĝÞ −

��
λ −

αϵ

2
f − αfR

�
Î þ αfRðĝ−1q̂Þ

�

¼ −κ2ϵT̂; ð20Þ

where Î is the identity matrix, and T̂ denotes Tμαgαν.
This equation establishes an algebraic relation between
the object Ω̂≡ ĝ−1q̂ and the matter. In fact, (20) can be
written as

jΩ̂j12Ω̂−1 −
��

λ −
αϵ

2
f − αfR

�
Î þ αfRΩ̂

�
¼ −κ2ϵT̂:

ð21Þ

Now, multiplying this equation by Ω̂−1 and defining

B̂ ¼ 1

2jΩ̂j12
��

λ −
αϵ

2
f − αfR

�
Î − κ2ϵT̂

�
; ð22Þ

we can write (21) in the more compact form

ðΩ̂−1 − B̂Þ2 ¼ αfR
jΩ̂j12 Î þ B̂2: ð23Þ

For sources with a diagonal stress-energy tensor, this
equation can be solved straightforwardly. Since we are
interested in cosmological applications with perfect fluids,
we are in one of those simple situations. In the general case,
we can formally solve (23) in the form

Ω̂−1 ¼ B̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αfR
jΩ̂j12 Î þ B̂2

s
: ð24Þ

The sign in front of the square root can be determined by
considering the limit to BI theory α → 0. In this case, we
get limα→0Ω̂−1 ¼ limα→02B̂ if the positive sign is chosen
and zero otherwise. Since limα→0 B̂ ¼ 1

2jΩ̂j12
½λÎ − κ2ϵT̂�, we

find that limα→0Ω̂−1 ¼ 1

jΩ̂j12
½λÎ − κ2ϵT̂�, which coincides

with the corresponding expression found in the literature
(see, for instance, [44]). In the BI case, this last result tells
us that jΩ̂j ¼ jλÎ − κ2ϵT̂j, i.e., jΩ̂j is a function of the matter
sources and, therefore, Ω̂−1 is also a function of T̂ and λ. In
our more general scenario, we see that jΩ̂j must depend on
T̂ but also on R through the fðRÞ and fR terms present in B̂.
In principle, for a perfect fluid of matter density ρ and
pressure P, with Tμ

ν ¼ diag½−ρ; P; P; P�, one can solve for
R as a function of the matter using the trace of Ω̂ ¼ Î þ ϵR̂,
where R̂ denotes the matrix gμαRαν, which gives
Ωμ

μðR; ρ; PÞ ¼ 4þ ϵR. This formally allows us to write
R ¼ Rðρ; PÞ. From this, one concludes that Ω̂ must just be
a function of ρ and P. In general, though, the explicit
dependence of the components of Ω̂ on ρ and P might be
complicated to obtain and/or may require the use of
numerical methods to solve the algebraic relations
involved.
Having established that R and Ω̂ can be expressed as

functions of the matter, we can now consider the con-
nection equation (6), which can also be written as

∇β½
ffiffiffiffiffiffi
−g

p
gμλΣλ

ν� ¼ 0; ð25Þ

where we have defined

Σλ
ν ≡ ðjΩ̂j12½Ω̂−1�λν þ αfRδλνÞ: ð26Þ

Given that Ω̂ is close to the identity except, perhaps, in
very extreme high-energy cases, we can assume that Σλ

ν

is invertible (at least in some low-energy domain).
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The invertibility of this object is, however, an assumption
that must be verified on a case-by-case basis. Note that, in
general, the algebraic dependence of the matrix ½Ω̂−1�λν on
the matter sources cannot be guessed a priori and depends
on the specific Tμν and fðRÞ considered. For this reason
general statements about the invertibility of Σλ

ν at arbitrary
energy scales cannot be made without a concrete model.
Assuming that Σλ

ν is invertible, as will be the case of a
perfect fluid to be considered in this work, we can write the
term within brackets in the above equation as

ffiffiffiffiffiffi−gp
ĝ−1Σ̂ and

look for an auxiliary metric ĥ such that
ffiffiffiffiffiffi−gp

ĝ−1Σ̂ ¼ffiffiffiffiffiffi
−h

p
ĥ−1. It is then straightforward to verify that

jgjjΣ̂j ¼ jhj, which implies

ĥ ¼ jΣ̂j12Σ̂−1ĝ; ĥ−1 ¼ 1

jΣ̂j12 ĝ
−1Σ̂: ð27Þ

The connection equation (25) can thus be written as
∇β½

ffiffiffiffiffiffi
−h

p
hμν� ¼ 0, which implies that Γα

μν is the Levi-
Civita connection of hμν.
With all these results, we are now ready to write the field

equations for the metric in explicit form. Starting from the
definition (7), and knowing that Γα

μν is the Levi-Civita
connection of hμν, we have that RμνðΓÞ ¼ RμνðhÞ ¼
ðqμν − gμνÞ=ϵ. Raising one index of this equation with
hνα and using the definitions of Σ̂ and Ω̂, we get

Rμ
βðhÞ ¼ Σμ

γ

ϵjΣ̂j12
½Ωγ

β − δγ
β�: ð28Þ

We remark that both Σμ
γ and Ωμ

γ are functions of the
matter. Therefore, the sources appear on the right-hand side
of this equation, whereas the left-hand side contains
derivatives of hμν up to second order. One can thus solve
the equations for hμν and then use the relations (27) to
obtain gμν.
We now discuss the field equations in vacuum. When T̂

vanishes, we find that B̂, Ω̂, and Σ̂ are proportional to the
identity. The trace of Ω̂ can be used to show that R must be
a constant, whose value depends on the particular form of
the model chosen. As a result, we find that hμν ¼ Cgμν,
where C is a constant factor, and (28) boils down to
Rμ

νðhÞ ¼ ~Cδμν, which is equivalent to the vacuum field
equations of GRþ Λ, namely, RμνðgÞ ¼ Λgμν. This result
puts forward that a very large family of gravity theories
formulated within the Palatini approach yield the same
vacuum dynamics as GR, though they differ in those
regions where the energy density is nonzero. Einstein’s
equations, therefore, appear as a very fundamental property
of metric-affine (Palatini) theories of gravity [66,67].

III. PERFECT FLUID SCENARIOS

For a perfect fluid with energy density ρ, pressure P,
and stress-energy tensor of the form Tμν ¼ ðρþ PÞuμuνþ
Pgμν, we find that

Bμ
ν ¼ 1

2jΩ̂j12
�
b1 ~0
~0 b2Î3×3

�
; ð29Þ

where

b1 ≡ ½λ − αðϵf=2þ fRÞ þ ϵκ2ρ� ð30Þ

b2 ≡ ½λ − αðϵf=2þ fRÞ − ϵκ2P�: ð31Þ

With this one immediately finds that

Ωμ
ν ¼ 2jΩ̂j12

�
w1

~0

~0 w2Î3×3

�
ð32Þ

½Ω̂−1�μν ¼
1

2jΩ̂j12
�
w−1
1

~0

~0 w−1
2 Î3×3

�
ð33Þ

wi ≡
�
bi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i þ 4αfRjΩ̂j12

q �
−1
: ð34Þ

Note that in the definition of wi there appears a square root
and, therefore, some positivity conditions must be satisfied
for the consistency of the model. In this sense, when the
fðRÞ term is negligible, or in the limit α → 0, we get
wi ¼ 2bi, which recovers the result of the BI case. If the
αfR term becomes negative, as will be our case, the square
root may become zero or even reach negative values, which
could lead to inconsistencies. As we will see in more detail
later, the dynamics prevents such pathological situations.
The determinant of Ω̂−1 leads to

16jΩ̂j ¼ 1=ðw1w3
2Þ; ð35Þ

whereas the trace of Ω̂ yields

4þ ϵR ¼ 2jΩ̂j12ðw1 þ 3w2Þ: ð36Þ

Combining (35) and (36) one should be able, in principle,
to obtain expressions for R and jΩ̂j in terms of ρ and P.

A. General expressions for ρ and P

We mentioned above that (35) and (36) establish
algebraic relations between the variables ρ, P, R, and
jΩ̂j, in such a way that only two of them are actually
independent. The most satisfactory case is that in which R
and jΩ̂j can be explicitly written in terms of ρ and P. In
general, however, the situation could be nontrivial and
numerical methods might be necessary to establish that
relation, but this is just a technical question. In this sense, it
is relatively straightforward to find an expression for ρ
and P in terms of R, and jΩ̂jwithout the need for specifying
the particular fðRÞ Lagrangian. This approach yields ρ and
P in parametric form.
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The idea is to start from (35) and write it in the form

1�
b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4αfRjΩ̂j12

q � ¼
�
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4αfRjΩ̂j12

q �
3

16jΩ̂j :

ð37Þ

This relation can be inserted in (36) to remove the
dependence on ρ or to remove the dependence on P [recall
from the definitions (30) and (31) that b1 depends on R and
ρ whereas b2 depends on R and P]. For instance, using (37)
to remove the dependence on ρ from (36) and defining

δ2 ≡ ½b2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4αfRjΩ̂j12

q
�, we get

4þ ϵR ¼ 2jΩ̂j12
�

δ32
16jΩ̂j þ

3

δ2

�
: ð38Þ

From this one can obtain an expression for δ2 in terms of R
and jΩ̂j by just finding the roots of a quartic polynomial,
which can be carried out with the use of tables or algebraic
manipulation software. The following step consists of
inverting the relation between b2 and δ2 ¼ δ2ðR; jΩ̂jÞ,
which allows us to write P as

ϵκ2P ¼ λ − αðϵf þ fRÞ −
δ22 − 4αfRjΩ̂j12

2δ2
: ð39Þ

A similar approach can be used to extract ρ from

δ1 ≡ ½b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4αfRjΩ̂j12

q
�. In this case, one gets

4þ ϵR ¼ 2jΩ̂j12
�
1

δ1
þ 3δ

1
3

1

ð4xÞ23
�
; ð40Þ

which becomes a quartic equation for the variable γ ≡ δ
−1
3

1 .
The procedure is analogous to the previous case and yields

ϵκ2ρ ¼ −½λ − αðϵf þ fRÞ� þ
δ21 − 4αfRjΩ̂j12

2δ1
: ð41Þ

IV. COSMOLOGY

In order to study the cosmology of the BI-fðRÞ family of
models introduced in the previous sections, we must find
first an expression for the Hubble function. To proceed, we
consider a homogeneous and isotropic Friedman-Lemaitre-
Robertson-Walker (FLRW) line element in the spatially flat
case,

ds2 ¼ gμνdxμdxν ¼ −dt2 þ a2ðtÞδijdxidxj; ð42Þ
and use relations (27) to find its relation with the compo-
nents of hμν necessary to use the field equations (28).

Following a notation similar to that used in [68], we can
write

Σμ
ν ¼

�
σ1 ~0
~0 σ2Î3×3

�
; σi ¼ αfR þ δi

2
; i ¼ 1; 2;

ð43Þ
which implies

htt ¼ −

ffiffiffiffiffi
σ32
σ1

s
ð44Þ

hij ¼ ffiffiffiffiffiffiffiffiffi
σ1σ2

p
a2ðtÞδij ≡ ΔðtÞa2ðtÞδij: ð45Þ

Recall that since σ1 and σ2 are functions of ρ and P, it
follows that Δ is a function of time, as we have explicitly
written above. This is the only aspect we need to know so
far to proceed with the derivation of the Hubble equation.
After a bit of algebra, one gets

Gtt ≡ 3

�
H þ

_Δ
2Δ

�2

; ð46Þ

where H ≡ _a=a. From the field equation (28), we find that

ϵGtt ¼
σ1 − 3σ2 − 2jΩ̂j12ðσ1w1 − 3σ2w2Þ

2σ1
; ð47Þ

which in combination with (46) yields

3ϵ

�
H þ

_Δ
2Δ

�2

¼ σ1 − 3σ2 − 2jΩ̂j12ðσ1w1 − 3σ2w2Þ
2σ1

:

ð48Þ
For a fluid with equation of state ω ¼ P=ρ, we have that
Δ¼Δðρ;ωÞ and, therefore, _Δ ¼ Δρ _ρ, where Δρ ≡ ∂Δ=∂ρ.
Since the conservation equation is _ρ ¼ −3Hð1þ ωÞρ,
we find that _Δ ¼ −3Hð1þ ωÞρΔρ. With this result, (48)
leads to

ϵH2 ¼ σ1 − 3σ2 − 2jΩ̂j12ðσ1w1 − 3σ2w2Þ
2σ1ð1 − 3ð1þωÞρΔρ

2Δ Þ2
; ð49Þ

Note that all the quantities appearing on the right-hand side
of this equation are functions of the matter density ρ, which
allows us to obtain a parametric representation of H2 as a
function of ρ. This can be used, in particular, to determine
if, for a given choice of fðRÞ and equation of state ω,
bouncing solutions exist.

A. A model f ðRÞ ¼ R2

To illustrate the procedure to deal with the theories
presented in this work, we consider a simple model
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characterized by a function fðRÞ ¼ R2. This model can be
treated analytically and allows us to modify the coefficient
in front of the R2 term that arises in the original Born-Infeld
gravity theory. In fact, a series expansion of the Born-Infeld
action for small values of the parameter ϵ leads to

lim
ϵ→0

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λeff þ

ϵR2

4
−
ϵ

2
RμνRμν

þ…þ αfðRÞ
�
þ Sm; ð50Þ

where Λeff ¼ λ−1
ϵ . The coefficients in front of the quadratic

(and all higher-order) curvature terms coming from the
BI action are fixed. However, by adding an fðRÞ piece to
the Lagrangian, we can vary the R-dependent terms at will.
For illustration purposes, we consider αfðRÞ ¼ −aϵR2=4,
which for a ¼ 0 recovers the original BI theory whereas for
a ¼ 1 completely cancels out the R2 contribution.
In order to determine the impact of changing the

coefficient in front of the R2 piece from the above action
on the Hubble function (49), we need to work out the
dependence of P and ρ on R and jΩ̂j using formulas (39)
and (41). The first step is to solve δ2 from (38). To do so, it
is convenient to introduce the redefinition δ2 ¼ xjΩ̂j1=4,
which turns (38) into

2z ¼ x3

16
þ 3

x
ð51Þ

z≡ 4þ ϵR

4jΩ̂j1=4 : ð52Þ

This equation, which is independent of the fðRÞ theory
considered, admits the physical solutions (see Fig. 1 for a
graphic representation of x)

x ¼
ffiffiffi
2

p �
Φ3=4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=2z − Φ3=2

p �
Φ1=4 ð53Þ

Φ ¼
�
z2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p �
1=3 þ

� ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p
þ z2

�
1=3

: ð54Þ

With this result, one finds that (39) can be written as

ϵκ2P ¼ λ − αðϵf=2þ fRÞ −
jΩ̂j14
2

ðx2 − 4αfRÞ
x

: ð55Þ

The equation for ρ can be manipulated in a very similar
way. Introducing the replacement δ1 ¼ 16jΩ̂j14=y3, (40)
becomes

2z ¼ y3

16
þ 3

y
; ð56Þ

which admits the same solution as x. As we will see later,
the existence of two possible signs in the definitions of x
and y must be taken into account for the correct identi-
fication of the physical solutions. With this result, one finds
that (41) can be written as

ϵκ2ρ ¼ −½λ − αðϵf=2þ fRÞ� þ
jΩ̂j14
8

ð64 − αfRy6Þ
y3

; ð57Þ

where

y ¼
ffiffiffi
2

p �
Φ3=4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=2z − Φ3=2

p �
Φ1=4 ð58Þ

Φ ¼
�
z2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p �
1=3 þ

� ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p
þ z2

�
1=3

: ð59Þ

One can verify that with the definitions of x and y given
here, we must have z ≥ 1. On the other hand, once a value
of z is set, the definition of z implies a relation between ϵR
and jΩ̂j14, which means that only two variables are needed to
parametrize the functions P and ρ. In the case of a perfect
fluid with equation of state ω ¼ P=ρ ¼ constant, a relation
between the two independent variables arises and only one
variable is needed. In fact, for constant ω we find

jΩ̂j14 ¼ 2ð1þ ωÞ½λ − αðϵf=2þ fRÞ�
x2 − 4αfR

x
þ ω

4

64 − αfRy6

y3

: ð60Þ

Now, since jΩ̂j14 ¼ ð4þ ϵRÞ=ð4zÞ, (60) establishes a rela-
tion between R and z, which at the same time allows us to
write jΩ̂j as a function of z.
To illustrate this point, consider the case αfðRÞ ¼

−aϵR2=4, which interpolates between the BI theory
(a ¼ 0) and the BI-fðRÞ case without the R2 term
(a ¼ 1). Though an exact expression for arbitrary ω can
be found, for ω ¼ 0 it simplifies to

Positive sign

Negative sign

2 4 6 8 10
z

1

2

3

4

5

6

x z
x x z

FIG. 1 (color online). Representation of the two branches of the
function xðzÞ defined in Eq. (53) [which is identical with yðzÞ],
depending on the sign in front of the square root.
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ϵRðzÞ ¼ x2 þ að8 − 4xzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a2ðxz − 2Þ2 þ 8axðx2z − 4xz2 − 2xþ 8zÞ þ x4

p
2aðxz − 2Þ ; ð61Þ

which is valid for any a ≠ 0. In order to have a well-defined
limit to BI theory as a → 0, one must take the minus sign in
front of the square root. In that case, the divergent term of
the above expression as a → 0 vanishes and we find that
ϵRðzÞBI is given by the zeroth-order term in a series
expansion in the parameter a (the formula given here is
also valid for arbitrary ω),

ϵRðzÞBI ¼
4y3ð2ðωþ 1Þz − xÞ − 64ω

ðxy3 þ 16ωÞ : ð62Þ

It is important to note that both x ¼ xðzÞ and y ¼ yðzÞ have
two possible signs each. The right choice must be deter-
mined on physical grounds, as we will see shortly.

1. Hubble function

With the above expressions for ϵRðzÞ (and their gener-
alization to arbitrary ω), one can completely parametrize
jΩ̂j, ϵρ, ϵP, and ϵH2 in terms of z. This allows us to obtain
graphic representations of ϵH2 as a function of ϵρ, which
can be used to study the nature and robustness of the zeros
of the Hubble function at high densities as the parameters of
the theory are modified.
Let us consider first the original BI theory. The para-

metrization in terms of the variable z given above yields
four solutions that represent the possible combinations of
signs in the functions x and y. From the plot shown in
Fig. 2, which represents the case w ¼ 1=3 (a universe filled
with radiation), it is clear that only the ðþ;þÞ and ð−;−Þ
solutions are physical, since the other two represent either a

1 1 2 3
2

1.0

0.5

0.5

1.0
H2

FIG. 2 (color online). Representation of the (dimensionless)
Hubble function ϵH2 as a function of the (dimensionless) energy
density ϵκ2ρ in the original BI theory with equation of state w ¼
1=3 for the different combinations of signs in the functions xðzÞ
and yðzÞ. The solid orange curve contained in the upper right
quadrant represents the ð−;−Þ solution. The dashed green curve
contained in the upper left quadrant represents the ð−;þÞ
solution. The solid blue curve contained in the lower left quadrant
represents the ðþ;þÞ solution. The other dashed curve is the
ðþ;−Þ case. Note that the ðþ;þÞ solution becomes physical
(ϵH2 > 0 and ϵκ2ρ > 0) if ϵ < 0.
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FIG. 3 (color online). Representation of the (dimensionless)
Hubble function ϵH2 as a function of the (dimensionless) energy
density ϵκ2ρ in the original BI theory for different equations of
state (w ¼ −1=3; 0; 1=5, and 1=3).
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FIG. 4 (color online). Representation of the (dimensionless)
Hubble function −ϵH2 as a function of the (dimensionless)
energy density −ϵκ2ρ in the original BI theory (solid blue) and in
two quadratic modifications of the form fðRÞ ¼ aR2, with a ¼
1=2 (dashed orange) and a ¼ 1 (dashed red), for different
equations of state (w ¼ −1=5; 0, and 1=3). The existence of a
bounce appears as a robust property of the ϵ < 0 branch of the
theory.
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case with positive ϵρ but negative ϵH2 or positive ϵH2 with
negative energy density ϵρ. A similar behavior is also
observed in the BI-fðRÞ case (not shown in the plot).
In Fig. 3 we see that for those solutions with ϵ < 0 t

he Hubble function vanishes at jϵκ2ρj ¼ 1 regardless of the

sign of w. These solutions represent a cosmic bounce
characterized byH2 ¼ 0 and dH2=dρ ≠ 0. The behavior of
jϵH2j for ϵ > 0 is more sensitive to the value of w, having a
divergent behavior for w ≤ 0. For ω > 0, H2 vanishes at a
finite density ϵκ2ρc ¼ 1=ω. These solutions do not re-
present a cosmic bounce, but an unstable state of minimum
volume [8] characterized by H2 ¼ 0 ¼ dH2=dρ.
When the coefficient of the R2 term is modified, the

existence of a cosmic bounce appears as a robust property
of the ϵ < 0 branch of the theory (see Fig. 4). The ϵ > 0
branch, on the contrary, exhibits a strong sensitivity to
variations in the R2 term. In fact, in the lower right plot of
Fig. 5, we see that the loitering behavior of the radiation
universe observed in the BI theory is highly unstable and
disappears as we move away from the original BI case. It
should be noted, however, that other similar stationary
points arise for equations of state ω≲ 1=10 and persist
even for negative values of ω, which contrasts with the BI
theory.
It is worth noting that, as shown in the lower left plot of

Fig. 5, after a local maximum H2 may reach a nonzero
minimum followed by a divergence at a large finite value of
the energy density. Though these solutions do not avoid the
big bang singularity, they possess another very interesting
property, namely, the existence of a long plateau comprised
between a local minimum and a local maximum that
appears at lower energies. This plateau onH2 may naturally
yield a period of approximately de Sitter cosmic inflation
shortly after the big bang. In Fig. 11 we illustrate this
property also in a radiation universe with a ¼ 1=3 (green
dashed curve).
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FIG. 5 (color online). Representation of the (dimensionless) Hubble function ϵH2 as a function of the (dimensionless) energy density
ϵκ2ρ in the original BI theory (solid blue) and in two quadratic modifications of the form fðRÞ ¼ aR2, with a ¼ 1=2 (dashed orange)
and a ¼ 1 (dotted red), for different equations of state (w ¼ −1=5; 1=20; 1=10, and 1=3). The zero of ϵH2 for the radiation universe
(ω ¼ 1=3) is unstable under changes of the parameter a (recall that BI corresponds to a ¼ 0). As the equation of state approaches
ω → 0, we find that ϵH2 may become again zero at high densities. At this point, one can verify that the function ϵ _H has a zero, thus
implying a minimum of ϵH2. This signals an instability representing a state of minimum volume that is not a bounce.
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FIG. 6 (color online). Representation of the (dimensionless)
Hubble function ϵH2 as a function of the (dimensionless) energy
density ϵκ2ρ for the BI-fðRÞ theory with αfðRÞ ¼ −aϵR2=4 and
a ¼ 1. The dashed curves represent bouncing solutions of the
branch ϵ < 0. The solid curves correspond to the branch ϵ > 0.
The equations of state represent dust (red), radiation (blue), and a
fluid with ω ¼ 1=5 (orange).
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Before concluding, let us comment on a technical aspect
related to the nature of the solutions presented here. Since
we are considering an fðRÞ model with 4αfR ¼ −2aϵR,
one might wonder what happens to the square root of

the wi terms in (34) and to jΩ̂j at high energies. To illustrate
this point, in Fig. 6 we have plotted the Hubble function
corresponding to the case a ¼ 1 for different equations of
state. We have included here both the bouncing solutions of
the ϵ < 0 branch (dashed curves) and also the solutions
of the ϵ > 0 branch which, in general, possess a big bang
singularity (continuous curves). At low energies, where the
GR regime dominates, we find jΩ̂j ∼ 1 for all equations of
state (see Fig. 7). At higher energies, the behavior for the
BI-fðRÞ theory is clearly dependent on the particular
equation of state and the sign of ϵ. For the original BI
theory, however, the behavior is quite generic and only
depends on the sign of ϵ (see the green dotted lines). The
green lines form a large finite angle when they cut the
density axis at ϵρB ¼ −1 (bouncing solutions), whereas
the angle tends to zero on the right-hand side (unstable,
finite volume solutions). In the BI-fðRÞ case, we see that

1 5

1 3

1 3

0

0

2.0 1.5 1.0 0.5 0.0 0.5 1.0
2

0.5

1.0

1.5

2.0

2.5

3.0
R1

FIG. 8 (color online). Representation of the function
R1 ¼ b21 þ 4αfRjΩ̂j1=2, which appears under the square root in
(34), as a function of the (dimensionless) energy density ϵκ2ρ for
the BI-fðRÞ theory with αfðRÞ ¼ −aϵR2=4 and a ¼ 1. The
dashed curves correspond to the bouncing solutions of the branch
ϵ < 0. The solid curves correspond to the branch ϵ > 0. The
equations of state represent dust (red), radiation (blue), and a fluid
with ω ¼ 1=5 (orange).
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FIG. 9 (color online). Representation of the function R2 ¼ b22þ
4αfRjΩ̂j1=2, which appears under the square root in (34), as a
function of the (dimensionless) energy density ϵκ2ρ for the
BI-fðRÞ theory with αfðRÞ ¼ −aϵR2=4 and a ¼ 1. The dashed
curves correspond to the bouncing solutions of the branch ϵ < 0.
The solid curves correspond to the branch ϵ > 0. The equations
of state represent dust (red), radiation (blue), and a fluid with
ω ¼ 1=5 (orange).
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FIG. 7 (color online). Representation of the determinant jΩ̂j
as a function of the (dimensionless) energy density ϵκ2ρ for the
BI-fðRÞ theory with αfðRÞ ¼ −aϵR2=4 and a ¼ 1. The dashed
curves represent bouncing solutions of the branch ϵ < 0. The
solid curves correspond to the branch ϵ > 0. The equations of
state represent dust (red), radiation (blue), and a fluid with ω ¼
1=5 (orange). The green dotted lines represent the corresponding
solutions in the original BI theory.
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FIG. 10 (color online). Representation of the (dimensionless)
Ricci scalar ϵR as a function of the (dimensionless) energy
density ϵκ2ρ for the BI-fðRÞ theory with αfðRÞ ¼ −aϵR2=4 and
a ¼ 1. The dashed curves represent the bouncing solutions of the
branch ϵ < 0. The solid curves correspond to the branch ϵ > 0.
The equations of state represent dust (red), radiation (blue), and a
fluid with ω ¼ 1=5 (orange). The green dotted lines represent the
corresponding solutions in the original BI theory.
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jΩ̂j for the bouncing solutions (dashed lines on the left
quadrant) never vanishes and, in fact, is not defined beyond
a certain point, which determines the maximum density
attained at the bounce. For the ϵ > 0 solutions, we see that
jΩ̂j can vanish at a certain, finite high-energy density,
which defines the density at which the Hubble function
diverges. Note also that for ω ¼ 0 we can have H2 → 0
with nonzero jΩ̂j, which indicates that nonsingular (pos-
sibly unstable) solutions exist for ϵ > 0. The terms within
the square root of the functions wi have been denoted as
Ri ≡ b2i þ 4αfRjΩ̂j1=2 and plotted in Figs. 8 and 9. These
functions are well behaved over all their physical domain of
definition. For completeness, the curvature R for these
cases has also been represented in Fig. 10 and compared
with the prediction from the original BI theory.

V. SUMMARY AND CONCLUSIONS

In this work we have considered a gravity theory
formulated within the Palatini formalism consisting on a
Born-Infeld-like gravitational Lagrangian plus an fðRÞ
term. This form of the gravity Lagrangian provides more
flexibility to the original Born-Infeld theory, which pos-
sesses very interesting properties in scenarios involving
cosmic as well as black hole singularities, and allows us
to explore modifications of its dynamics at high and
low energies. We have provided a formal solution for
the connection equation and a compact representation
of the metric field equations. An algorithm that facilitates
the analysis of perfect fluid cosmologies has also been
worked out in detail and has been used to study some
aspects of the high-energy dynamics of a specific model.
Our interest has focused on an fðRÞ term of the form
fðRÞ ∝ R2 which allows us to tune at will the coefficient
multiplying the R2 term that arises in the low-energy series
expansion of the Born-Infeld theory. This type of quadratic
corrections is expected to arise due to the quantum proper-
ties of the matter fields in curved backgrounds. Depending
on the number and types of matter fields [17,46], the
coefficient of the R2 term may change, which justifies
our study of this particular term. The methods developed in
this work are not restricted to the R2 term and can also be
applied to other fðRÞ Lagrangians.
We have found that the solutions with ϵ < 0, which yield

a cosmic bounce, are robust against modifications of the R2

coefficient, whereas those with ϵ > 0 undergo significant
changes as compared to the original Born-Infeld theory.
For equations of state ω > 0, the ϵ > 0 branch of Born-
Infeld theory yields cosmologies with a stationary point
characterized byH2 ¼ 0 and dH2=dρ ¼ 0. These solutions
do not represent a bounce, but a state of minimum volume
and maximum density that evolves into a standard FRW
cosmology at late times. From Fig. 11 we see that any
modification of the R2 term in a radiation universe destroys
the regularity of the original solution. However, the
modifications experienced by these solutions may lead

to a period of inflationary (de Sitter-like) expansion shortly
after the big bang singularity, as is evident from the plateau
of the curve a ¼ 1=3 in Fig. 11 and of the lower left curve
with a ¼ 1=2 in Fig. 5. These results put forward that with
slight modifications of the Born-Infeld theory one may get
the conditions for an inflationary stage without the need for
new dynamical degrees of freedom. Additional effects
could be obtained by including higher-order powers of R
with free coefficients without altering the number of
dynamical degrees of freedom of the theory.
The possibility of combining the Born-Infeld Lagrangian

with an fðRÞ term also offers new avenues to address a
number of relevant questions of the gravitational dynamics
at lower energies. In particular, one may look for fðRÞ
terms designed to modify the high-energy dynamics which,
combined with the Born-Infeld Lagrangian, could leave a
low-energy remnant in the form of an effective cosmo-
logical constant able to justify the late-time cosmic accel-
erated expansion. Another application could be the
identification of fðRÞ terms able to yield fully satisfactory
models of stellar structure without the need to reconsider
the convenient perfect fluid approximation [34,36,44], a
currently open question that has attracted much attention
from different perspectives. These and other questions will
be considered elsewhere.
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FIG. 11 (color online). Representation of the (dimensionless)
Hubble function ϵH2 as a function of the (dimensionless) energy
density ϵκ2ρ for a radiation universe (ω ¼ 1=3) in the cases a ¼ 0
(solid blue), a ¼ 1=10 (dashed brown), a ¼ 1=3 (dashed green),
a ¼ 1=2 (dashed orange), and a ¼ 1 (dashed red). Note the long
plateau following the local maximum around ϵκ2ρ ≈ 0.6 in the
case a ¼ 1=3, which could support a period of inflation generated
by the radiation fluid.
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APPENDIX A: ANOTHER EXAMPLE OF THE
CONFORMAL APPROACH

In this Appendix we illustrate the conformal approach in
a different family of theories in which the departure from
the BI theory is introduced via an FðRÞ term, but in a
way that differs from that considered in this work so far.
This new theory is defined by the following action:

SEiBI2 ¼
2

κ

Z
d4x
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j det ðgμν þ κRμνðΓÞ þ αgμνFðRÞÞj
q

− λ
ffiffiffiffiffi
jgj

p i
þ SM½g;Ψ�; ðA1Þ

where the notation is the same as in the rest of the paper.
The connection equation for the action (A1) takes the form

∇α½
ffiffiffiffi
p

p ðκðp−1Þμν þ αðp−1ÞσρgσρF0ðRÞgμνÞ� ¼ 0: ðA2Þ

Here pμν ¼ gμν þ κRμνðΓÞ þ αgμνFðgσρRσρðΓÞÞ. Variation
of the metric yields

ffiffiffiffi
p

p ðp−1Þμνð1þ αFðRÞÞ − α
ffiffiffiffi
p

p ðp−1ÞσρgσρFðRÞ0Rμν

− λ
ffiffiffi
g

p
gμν ¼ −κ

ffiffiffi
g

p
Tμν: ðA3Þ

Imposing a conformal Ansatz,

pμν ¼ fðtÞgμν; ðA4Þ

we find that the auxiliary metric uμν that defines the
connection

Γα
μν ¼

1

2
uαβð∂μuνβ þ ∂νuμβ − ∂βuμνÞ ðA5Þ

takes the form

uμν ¼ fðtÞðκ þ αnF0
RðRÞÞgμν: ðA6Þ

One can write the relationship between the scalar
curvature and metric

Rμν ¼
1

κ
½f − 1 − αFðgστRðuστÞÞ�gμν: ðA7Þ

Suppose that for the spatially flat FRW universe with
metric

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ðA8Þ
the auxiliary metrics takes the following form:

uμν ¼ uðtÞdiagð−1; aðtÞ2; aðtÞ2; aðtÞ2Þ: ðA9Þ

Here uðtÞ ¼ fðtÞðκ þ αnF0
RðRÞÞ. Suppose now that Rμν ¼

rðtÞgμν [the explicit form rðtÞ is easy to find from the
expression (A7)]. Construct for the metric (A9) the

Christoffel symbols and Ricci tensor. Performing a calcu-
lation analogous to that for the original form of the action,
we get another form of the function FðRÞ,

FðRÞ ¼ −
4þ κR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16λþ cR2

p

4
; ðA10Þ

from which we obtain

pμν ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λn2 þ cR2

p

n
gμν: ðA11Þ

The action (A1) takes then the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����gμν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λn2 þ cR2

p

n

����
s

; ðA12Þ

or, equivalently,

ffiffiffiffiffiffiffiffiffi
jgμνj

q λn2 þ cR2

n2
: ðA13Þ

We thus find that in this case, the action (A1) becomes

SEiBI2 ¼
2

κ

Z
d4x½

ffiffiffiffiffi
jgj

p
R2�: ðA14Þ

APPENDIX B: NONCONFORMAL ANSATZ
IN VACUUM

Let us assume now, in analogy with (6), that there exists
a tensor uμν such that ∇αð

ffiffiffiffiffiffijujp
uμνÞ ¼ 0. The connection

equation for this theory then becomes

ffiffiffiffiffiffi
juj

p
ðu−1Þμν ¼

ffiffiffiffiffiffi
jqj

p
ðq−1Þμν þ ffiffiffi

g
p

gμνfR ðB1Þ

(in this section we set α ¼ 1), which together with (16)
conforms the required system of equations. Assume now
nonconformal Ansätze of the form uμν ¼ diagð−u0ðtÞ2;
u1ðtÞ2; u1ðtÞ2; u1ðtÞ2Þ, qμν ¼ diagð−q0ðtÞ2; q1ðtÞ2; q1ðtÞ2;
q1ðtÞ2Þ and that gμν has a standard FLRW form. In this
case, the tensors u and q can be expressed through the
scalar curvature, and the function fðRÞ. We can get two
different types of solutions of these equations. The first
type is

q0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2λþ ϵfðRÞ þ 2fR

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2þ 2fR

p ;

q1 ¼ � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2λþ ϵfðRÞ þ 2fR

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2þ 2fR

p ðB2Þ

for which qμν ∼ gμν. This case was discussed above.
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In the second case, the tensor qμν has the form

q0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λþ 1

2
ϵfðRÞ þ fR

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fR þ fR3

p ; q1 ¼ ∓ afR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λþ 1

2
ϵfðRÞ þ fR

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fR þ fR3

p : ðB3Þ

Connectivity between tensors qμμ and gμν becomes more complex. For this case, one finds the following equation for the
function fðRÞ:

Rþ −fðRÞðϵþ 3ϵfR2Þ þ 2ðλþ 3fR þ 3λfR2 þ fR3Þ
2ϵðfR þ fR3Þ

¼ 0; ðB4Þ

which can be solved as

f1 ¼
2λ

κ
�

ffiffiffi
6

p

9κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1þ ϵðR − 2cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϵRÞ2 − 4ϵðϵR − 2Þcþ 16ϵ2c2

p
ϵc

s

×

�
2þ 2ϵR − 4ϵc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϵRÞ2 − 4ϵð−2þ ϵRÞcþ 16ϵ2c2

q �
; ðB5Þ

and

f2 ¼
2λ

ϵ
�

ffiffiffi
6

p

9ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − ϵðR − 2cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϵRÞ2 − 4ϵðϵR − 2Þcþ 16ϵ2c2

p
ϵc

s

×

�
2þ 2ϵR − 4ϵcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ϵRÞ2 − 4ϵð−2þ ϵRÞcþ 16ϵ2c2

q �
: ðB6Þ

One can consider the following limit R → 0; then we get

f1 →
2λ

ϵ
� 2

1 − 8ϵc
9ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3 −

3

cϵ

r
; ðB7Þ

f2 →
2ðλ� 1Þ

ϵ
: ðB8Þ

On the other hand, if R → ∞, then

f1 → �R3=2 2

3
ffiffiffiffiffiffiffiffiffi
−3c

p ; ðB9Þ

f2 → �2R1=2

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

ϵ

r
: ðB10Þ

[1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[2] S. ’i. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59
(2011).

[3] V. Faraoni and S. Capozziello, Fundamental Theories of
Physics, Beyond Einstein Gravity. A Survey of Gravitational

Theories for Cosmology and Astrophysics Vol. 170
(Springer, New York, 2010).

[4] S. Capozziello and M. Francaviglia, Gen. Relativ. Gravit.
40, 357 (2008).

[5] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.
Phys. 04, 115 (2007).

MAKARENKO, ODINTSOV, AND OLMO PHYSICAL REVIEW D 90, 024066 (2014)

024066-14

http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928


[6] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451
(2010).

[7] S. Deser and G.W. Gibbons, Classical Quantum Gravity 15,
L35 (1998).

[8] M. Bañados and P. G. Ferreira, Phys. Rev. Lett. 105, 011101
(2010).

[9] G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).
[10] D. Bazeia, F. A. Brito, and F. G. Costa, arXiv:1405.7952.
[11] P. Pani, T. P. Sotiriou, and D. Vernieri, Phys. Rev. D 88,

121502 (2013).
[12] T. Harko, F. S. N. Lobo, and E. N. Saridakis, arXiv:

1405.7019.
[13] G. J. Olmo and H. Sanchis-Alepuz, Phys. Rev. D 83,

104036 (2011).
[14] F. Fiorini, Phys. Rev. Lett. 111, 041104 (2013).
[15] C. Barragan and G. J. Olmo, Phys. Rev. D 82, 084015

(2010).
[16] C. Barragan, G. J. Olmo, and H. Sanchis-Alepuz, Phys. Rev.

D 80, 024016 (2009).
[17] P. Anderson, Phys. Rev. D 28, 271 (1983).
[18] M. Novello and S. E. Perez-Bergliaffa, Phys. Rep. 463, 127

(2008).
[19] R. Ferraro and F. Fiorini, Phys. Lett. B 692, 206 (2010).
[20] E. S.FradkinandA. A.Tseytlin,Phys.Lett.B163, 123 (1985).
[21] G.W. Gibbons, Rev. Mex. Fis. 49S1, 19 (2003).
[22] X.-L. Du, K. Yang, X.-H. Meng, and Y.-X. Liu, arXiv:

1403.0083.
[23] H.-C. Kim, arXiv:1312.0703.
[24] S. I. Kruglov, Phys. Rev. D 89, 064004 (2014).
[25] K. Yang, X.-L. Du, and Y.-X. Liu, Phys. Rev. D 88, 124037

(2013).
[26] P. P. Avelino and R. Z. Ferreira, Phys. Rev. D 86, 041501

(2012).
[27] A. De Felice, B. Gumjudpai, and S. Jhingan, Phys. Rev. D

86, 043525 (2012).
[28] C. Escamilla-Rivera, M. Banados, and P. G. Ferreira, Phys.

Rev. D 85, 087302 (2012).
[29] I. Cho, H.-C. Kim, and T. Moon, Phys. Rev. D 86, 084018

(2012).
[30] J. H. C. Scargill, M. Banados, and P. G. Ferreira, Phys. Rev.

D 86, 103533 (2012).
[31] C. Escamilla-Rivera, M. Banados, and P. G. Ferreira,

arXiv:1301.5264.
[32] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,

Mod. Phys. Lett. A 29, 1450049 (2014).
[33] P. P. Avelino, Phys. Rev. D 85, 104053 (2012).
[34] P. P. Avelino, J. Cosmol. Astropart. Phys. 11 (2012) 022.
[35] Y.-H. Sham, L.-M. Lin, and P. T. Leung, Astrophys. J. 781,

66 (2014).
[36] H.-C. Kim, Phys. Rev. D 89, 064001 (2014).
[37] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,

Phys. Rev. D 88, 044032 (2013).
[38] Y. H. Sham, P. T. Leung, and L. M. Lin, Phys. Rev. D 87,

061503 (2013).
[39] Y.-H. Sham, L.-M. Lin, and P. T. Leung, Phys. Rev. D 86,

064015 (2012).
[40] P. Pani and T. P. Sotiriou, Phys. Rev. Lett. 109, 251102

(2012).
[41] P. Pani, V. Cardoso, and T. Delsate, Phys. Rev. Lett. 107,

031101 (2011).

[42] M. Bouhmadi-Lopez, C.-Y. Chen, and P. Chen, Eur. Phys. J.
C 74, 2802 (2014).

[43] R. Ferraro and F. Fiorini, J. Phys. Conf. Ser. 314, 012114
(2011).

[44] G. J. Olmo, D. Rubiera-Garcia, and H. Sanchis-Alepuz, Eur.
Phys. J. C 74, 2804 (2014).

[45] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,
arXiv:1307.1883.

[46] L. Parker and D. J. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity (Cambridge
University Press, Cambridge, England, 2009); N. D. Birrel
and P. C. W. Davies, Quantum Fields in Curved Space
(Cambridge University Press, Cambridge, England, 1982).

[47] L. Parker and A. Raval, Phys. Rev. D 60, 063512 (1999);
Phys. Rev. Lett. 86, 749 (2001).

[48] L. Parker, W. Komp, and D. A. T. Vanzella, Astrophys. J.
588, 663 (2003).

[49] T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo,
Phys. Rev. D 85, 084016 (2012).

[50] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, J. Cosmol. Astropart. Phys. 04 (2013) 011.

[51] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Phys. Rev. D 86, 127504 (2012).

[52] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, J. Cosmol. Astropart. Phys. 07 (2013) 024.

[53] S. Capozziello, T. Harko, F. S. N. Lobo, and G. J. Olmo, Int.
J. Mod. Phys. D 22, 1342006 (2013).

[54] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Astropart. Phys. 50–52, 65 (2013).

[55] S. Capozziello, T. Harko, F. S. N. Lobo, G. J. Olmo, and
S. Vignolo, Int. J. Geom. Methods Mod. Phys. 11, 1450042
(2014).

[56] G. J. Olmo and D. Rubiera-Garcia, Eur. Phys. J. C 72, 2098
(2012); Int. J. Mod. Phys. D 21, 1250067 (2012); Phys. Rev.
D 86, 044014 (2012).

[57] G. J. Olmo and D. Rubiera-Garcia, Phys. Rev. D 88, 084030
(2013).

[58] E. Guendelman, G. J. Olmo, D. Rubiera-Garcia, and
M. Vasihoun, Phys. Lett. B 726, 870 (2013).

[59] F. S. N. Lobo, G. J. Olmo, and D. Rubiera-Garcia, J.
Cosmol. Astropart. Phys. 07 (2013) 011.

[60] G. J. Olmo and D. Rubiera-Garcia, J. Cosmol. Astropart.
Phys. 02 (2014) 010.

[61] F. S. N. Lobo, J. Martinez-Asencio, G. J. Olmo, and
D. Rubiera-Garcia, Phys. Rev. D 90, 024033 (2014).

[62] F. S. N. Lobo, G. J. Olmo, and D. Rubiera-Garcia, Eur.
Phys. J. C 74, 2924 (2014).

[63] G. J. Olmo, H. Sanchis-Alepuz, and S. Tripathi, Phys. Rev.
D 80, 024013 (2009).

[64] A. Ashtekar, Lectures on Nonperturbative Canonical
Gravity (World Scientific, Singapore, 1991).

[65] C. W. Misner, S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman and Co., New York, 1973).

[66] M. Ferraris, M. Francaviglia, and I. Volovich, Classical
Quantum Gravity 11, 1505 (1994).

[67] A. Borowiec, M. Ferraris, M. Francaviglia, and I. Volovich,
Classical Quantum Gravity 15, 43 (1998).

[68] G. J. Olmo, in Open Questions in Cosmology (InTech
Publishing, Rijeka, Croatia, 2012), pp. 157–184.

BORN-INFELD fðRÞ GRAVITY PHYSICAL REVIEW D 90, 024066 (2014)

024066-15

http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1088/0264-9381/15/5/001
http://dx.doi.org/10.1088/0264-9381/15/5/001
http://dx.doi.org/10.1103/PhysRevLett.105.011101
http://dx.doi.org/10.1103/PhysRevLett.105.011101
http://dx.doi.org/10.1142/S0218271811018925
http://arXiv.org/abs/1405.7952
http://dx.doi.org/10.1103/PhysRevD.88.121502
http://dx.doi.org/10.1103/PhysRevD.88.121502
http://arXiv.org/abs/1405.7019
http://arXiv.org/abs/1405.7019
http://dx.doi.org/10.1103/PhysRevD.83.104036
http://dx.doi.org/10.1103/PhysRevD.83.104036
http://dx.doi.org/10.1103/PhysRevLett.111.041104
http://dx.doi.org/10.1103/PhysRevD.82.084015
http://dx.doi.org/10.1103/PhysRevD.82.084015
http://dx.doi.org/10.1103/PhysRevD.80.024016
http://dx.doi.org/10.1103/PhysRevD.80.024016
http://dx.doi.org/10.1103/PhysRevD.28.271
http://dx.doi.org/10.1016/j.physrep.2008.04.006
http://dx.doi.org/10.1016/j.physrep.2008.04.006
http://dx.doi.org/10.1016/j.physletb.2010.07.040
http://dx.doi.org/10.1016/0370-2693(85)90205-9
http://arXiv.org/abs/1403.0083
http://arXiv.org/abs/1403.0083
http://arXiv.org/abs/1312.0703
http://dx.doi.org/10.1103/PhysRevD.89.064004
http://dx.doi.org/10.1103/PhysRevD.88.124037
http://dx.doi.org/10.1103/PhysRevD.88.124037
http://dx.doi.org/10.1103/PhysRevD.86.041501
http://dx.doi.org/10.1103/PhysRevD.86.041501
http://dx.doi.org/10.1103/PhysRevD.86.043525
http://dx.doi.org/10.1103/PhysRevD.86.043525
http://dx.doi.org/10.1103/PhysRevD.85.087302
http://dx.doi.org/10.1103/PhysRevD.85.087302
http://dx.doi.org/10.1103/PhysRevD.86.084018
http://dx.doi.org/10.1103/PhysRevD.86.084018
http://dx.doi.org/10.1103/PhysRevD.86.103533
http://dx.doi.org/10.1103/PhysRevD.86.103533
http://arXiv.org/abs/1301.5264
http://dx.doi.org/10.1142/S0217732314500497
http://dx.doi.org/10.1103/PhysRevD.85.104053
http://dx.doi.org/10.1088/1475-7516/2012/11/022
http://dx.doi.org/10.1088/0004-637X/781/2/66
http://dx.doi.org/10.1088/0004-637X/781/2/66
http://dx.doi.org/10.1103/PhysRevD.89.064001
http://dx.doi.org/10.1103/PhysRevD.88.044032
http://dx.doi.org/10.1103/PhysRevD.87.061503
http://dx.doi.org/10.1103/PhysRevD.87.061503
http://dx.doi.org/10.1103/PhysRevD.86.064015
http://dx.doi.org/10.1103/PhysRevD.86.064015
http://dx.doi.org/10.1103/PhysRevLett.109.251102
http://dx.doi.org/10.1103/PhysRevLett.109.251102
http://dx.doi.org/10.1103/PhysRevLett.107.031101
http://dx.doi.org/10.1103/PhysRevLett.107.031101
http://dx.doi.org/10.1140/epjc/s10052-014-2802-x
http://dx.doi.org/10.1140/epjc/s10052-014-2802-x
http://dx.doi.org/10.1088/1742-6596/314/1/012114
http://dx.doi.org/10.1088/1742-6596/314/1/012114
http://dx.doi.org/10.1140/epjc/s10052-014-2804-8
http://dx.doi.org/10.1140/epjc/s10052-014-2804-8
http://arXiv.org/abs/1307.1883
http://dx.doi.org/10.1103/PhysRevD.60.063512
http://dx.doi.org/10.1103/PhysRevLett.86.749
http://dx.doi.org/10.1086/374265
http://dx.doi.org/10.1086/374265
http://dx.doi.org/10.1103/PhysRevD.85.084016
http://dx.doi.org/10.1088/1475-7516/2013/04/011
http://dx.doi.org/10.1103/PhysRevD.86.127504
http://dx.doi.org/10.1088/1475-7516/2013/07/024
http://dx.doi.org/10.1142/S0218271813420066
http://dx.doi.org/10.1142/S0218271813420066
http://dx.doi.org/10.1016/j.astropartphys.2013.09.005
http://dx.doi.org/10.1142/S021988781450042X
http://dx.doi.org/10.1142/S021988781450042X
http://dx.doi.org/10.1140/epjc/s10052-012-2098-7
http://dx.doi.org/10.1140/epjc/s10052-012-2098-7
http://dx.doi.org/10.1142/S0218271812500678
http://dx.doi.org/10.1103/PhysRevD.86.044014
http://dx.doi.org/10.1103/PhysRevD.86.044014
http://dx.doi.org/10.1103/PhysRevD.88.084030
http://dx.doi.org/10.1103/PhysRevD.88.084030
http://dx.doi.org/10.1016/j.physletb.2013.09.039
http://dx.doi.org/10.1088/1475-7516/2013/07/011
http://dx.doi.org/10.1088/1475-7516/2013/07/011
http://dx.doi.org/10.1088/1475-7516/2014/02/010
http://dx.doi.org/10.1088/1475-7516/2014/02/010
http://dx.doi.org/10.1103/PhysRevD.90.024033
http://dx.doi.org/10.1140/epjc/s10052-014-2924-1
http://dx.doi.org/10.1140/epjc/s10052-014-2924-1
http://dx.doi.org/10.1103/PhysRevD.80.024013
http://dx.doi.org/10.1103/PhysRevD.80.024013
http://dx.doi.org/10.1088/0264-9381/11/6/015
http://dx.doi.org/10.1088/0264-9381/11/6/015
http://dx.doi.org/10.1088/0264-9381/15/1/005

