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We present stable de Sitter solutions of N ¼ 1 supergravity in a geometric type IIB duality frame with
the addition of nonperturbative contributions. Contrary to the standard approach, we retain the moduli
dependence of both the tree-level superpotential and its nonperturbative contribution. This provides the
possibility for a single-step stabilization of all moduli simultaneously in a de Sitter vacuum. Using a genetic
algorithm we find explicit solutions with different features.
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I. INTRODUCTION

The importance of accelerating space-times in cosmol-
ogy, both for inflation and dark energy, makes it critical
to understand the role of de Sitter (dS) vacua in string
theory. Many such constructions have been criticized as
being rather ad hoc. In the Kachru-Kallosh-Linde-Trivedi
(KKLT) setup [1], one adds a nonperturbative contribution
as well as explicit, supersymmetry breaking (SUSY) uplift
terms to achieve a dS vacuum. These are necessary
additions to N ¼ 1 compactifications with only IIB gauge
fluxes, which only lead to Minkowski vacua with flat
directions [2]. On the IIA side, the situation regarding
moduli stabilization is better, as the inclusion of gauge
fluxes alone leads to anti–de Sitter (AdS) vacua [3].
However, it is not possible to obtain dS solutions in this
vein [4]. Adding metric fluxes does lead to dS solutions
[5,6], but all known examples are unstable. In this paper,
we show that geometric and isotropic fluxes with non-
perturbative contributions are enough to stabilize simulta-
neously all moduli in a dS vacuum, in the simplest scenario
possible, widening the dS landscape.
We focus on a T6=ðZ2 × Z2Þ compactification with

fluxes in type IIB supergravity in ten dimensions. The
number of untwisted moduli is ðhð1;1Þ; hð2;1ÞÞ ¼ ð3; 3Þ plus
the dilaton. We concentrate on the isotropic case with a
single Kähler and complex structure moduli, that is, an
STU-type of model. The Kähler potential takes the form

K ¼ − log½−iðS − S̄Þ� − 3 log½−iðT − T̄Þ�
− 3 log½−iðU − ŪÞ�: ð1Þ

The scalar potential takes the usual form (we are setting
M−2

P ¼ 8πG ¼ 1):

V ¼ eKðKIJ̄DIWDJ̄W̄ − 3jWj2Þ; ð2Þ
DIW ¼ ∂IW þ ∂IKW with I; J labeling all moduli.

The tree-level superpotential depends on the dilaton S
and complex structure U (jointly referred to as complex
structure moduli). These are generated by the presence of
Ramond–Ramond (RR) flux F3 and Neveu-Schwarz–
Neveu-Schwarz (NSNS) flux H3 (with coefficients ai,
bi, respectively):

Wtree ¼ Pðai; UÞ − SPðbi; UÞ; ð3Þ
where Pðfi; UÞ are polynomials in U of the form

Pðfi; UÞ ¼ f0 − 3f1U þ 3f2U2 − f3U3: ð4Þ
Thus, these fluxes generate a potential for the complex
structure moduli stabilizing them [2]. However, the Kähler
modulus remains as a flat direction.
To stabilize the T-modulus, the standard approach has

been to first use the tree-level flux contributions to fix S and
U in a supersymmetry (SUSY) vacuum, and, second, to
introduce a nonperturbative term WNPðTÞ for the Kähler
modulus, allowing its stabilization. It is assumed that the
first step results in a constant contribution to the super-
potential, W0 ¼ const, and a constant coefficient for the
nonperturbative term, A0 ¼ const:

W ¼ W0 þ A0eixT; ð5Þ
where x ¼ 2π=K for gaugino condensation with gauge
group rank K. Using this superpotential, only AdS minima
can be obtained. Therefore, a final third step has been taken
by adding a suitable uplifting term [1], lifting the AdS
minimum to a dS.
This three-step process has been criticized in the literature

since, in general, not only W0 but also the coefficient A0

depends on the complex structure moduli [7]. Therefore, the
second step can lead to complications since heavy modes
couldmixwith light modes [8,9] and create instabilities [10]
(see however [11] for a discussion on the consistency
conditions for this step). Moreover, adding an uplifting term
by hand is under limited theoretical control (e.g., adding an
antibrane is an explicit heavy breaking of supersymmetry
and it is not clear that one can still use a supergravity
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description). An alternative was proposed to uplift using
D-terms in [12,13]. Finally, the third step has been relaxed in
[14], where it was shown how to obtain dS minima without
the need of an artificial uplifting term.1 However, the second
stephasbeen so far assumed inorder toobtain stabilizationof
all moduli.2 This paper addresses the natural question of
whether a single-step process can give rise to (meta)stable dS
vacua, stabilizing all moduli simultaneously, even in simple
models.3

II. A NOVEL MECHANISM OF MODULI
STABILIZATION

To study this possibility, we consider the usual tree-level
superpotential augmented with a nonperturbative term. The
coefficient of the latter will generically depend on the
complex structure moduli S and U in a nontrivial but
unknown way. Following the reasoning for nongeometric
fluxes of [23], it seems natural to model this dependence in
a way that respects the S and U duality covariance.4 This
leads to the following ansatz:

W ¼ Wtree þ ½Pð ~ai; UÞ − Pð ~bi; UÞS�eixT; ð6Þ
where all four polynomials have the structure (4). Although
we do not provide a rigorous derivation of this moduli
dependence in the nonperturbative term, it is constrained to
be such a polynomial in S;U by duality arguments; indeed,
a similar form has been studied in an explicit string theory
setting [25]. An alternative interpretation of this ansatz is
that the polynomials represent a Taylor expansion in terms
of small S;U, as we will justify below.
The coefficients of the nonperturbative term appear in

complete analogy with the gauge fluxes in the super-
potential. Thus we refer to ~ai and ~bi as nonperturbative
fluxes. This leads to a total set of 16 fluxes. However, as
we explain later, it will be sufficient to have 12 fluxes. We
therefore set the fourth polynomial equal to zero.
To find solutions, we use the property that any solution

to the equations of motion can be represented by a
solution in the origin of moduli space (in our conventions
located at S ¼ T ¼ U ¼ i with x ¼ 1). This technique was

first proposed in the context of half-maximal supergravity
[26] and subsequently used to explore the vacuum
structure of maximal supergravity [27,28], but can be
applied to any theory with a homogeneous scalar mani-
fold. This avoids an overcounting of solutions and reduces
dramatically the complexity of the equations of motion.
While these in general can be high-degree polynomials for
the fields, in the origin these reduce to quadratic equations
in terms of fluxes. Solutions correspond to flux configu-
rations for which these quadratic combinations vanish.
The origin is however not a configuration that should be
considered a valid supergravity limit, since the volume of
the internal space and the string coupling are both equal to
one. Below we explain how to deal with this issue.
To solve the resulting quadratic equations in the fluxes

fai; bi; ~aig, we use the fact that when supersymmetry is
preserved, the equations of motion are implied [29]:

DIW ≡ AI þ iBI ¼ 0 ⇒ ∂IV ¼ 0; ð7Þ

where the six SUSY parameters AI and BI are linear
combinations of the superpotential couplings fai; bi; ~aig.
It will be advantageous to split up the latter in (linear
combinations of) two sets: there are six SUSY parameters
while the orthogonal combinations preserve SUSY. Via this
approach, in general all moduli take part in SUSY and
contribute to the uplifting of the potential. This is to be
contrasted to for example [1], where uplifting is only
considered in the direction of Im(T) while S and U are in
SUSY minima.
Next, one exploits the fact that the equations of motion

are implied by SUSY. Therefore, the equations of motion
become quadratic in the SUSY parameters or bilinear in the
SUSY and SUSY parameters. For this to work, the total set
of parameters must be at least equal to twice the number of
(real) fields, in our case 6þ 6 ¼ 12. Type IIB tree-level
flux contributions to the superpotential consist of eight
parameters ai; bi (3), (4). In [29] the extra couplings were
taken to be so-called nongeometric fluxes. Here, we add the
nonperturbative fluxes ~ai (6).
Given these sets of solutions parametrized by the six

SUSY parameters, we follow [30] in using a genetic
algorithm to scan this parameter space to look for stable
dS solutions (for similar applications of genetic algorithms,
see [31–33]). We thus require both the cosmological
constant as well as all the scalar masses, obtained by
diagonalizing the mass matrix

ðm2ÞIJ ¼
KIK∂K∂JV

V
; ð8Þ

to be positive.

III. PERTURBATIVE RELIABILITY

In order to get to a regime for the values of the moduli
that is a reliable supergravity approximation of string
theory, we need to ensure that we work at large volume

1Further uplifting alternatives using perturbative corrections
have been discussed in [15,16].

2A one-step stabilization in heterotic orbifold compactifica-
tions using the explicit modular covariance of the superpotential
has been discussed in [17]. In the large volume scenario [18], an
alternative single-step stabilization giving rise to dS vacua has
been achieved term by term in an expansion in inverse powers of
the volume [19–21]. These solutions include perturbative cor-
rections to the Kähler potential, D-terms, and chiral matter, and
thus go beyond our present discussion.

3A similar approach in the IIA duality frame is discussed in
[22].

4Indeed, in a duality covariant formulation of N ¼ 1 super-
gravity with nongeometric fluxes, it is possible to find stable dS
solutions [24].
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and small string coupling, such that higher string mode
contributions and loop corrections are suppressed:
(a) Large volume: V ∼ r6 ≫ 1. (b) Small string coupling:
g−1s ≫ 1, where V ¼ Vol:=ls, with ls being the string
scale, and we have introduced a characteristic (dimension-
less) radius of the internal space, r. The volume is further
given in terms of the overall Kähler modulus as ImT ¼
V2=3 and the string coupling in terms of the dilation
as gs ¼ ðImSÞ−1.
Consider the following rescaling of the volume and

the string coupling r → Nαr; gs → N−βgs, for α and β some
positive numbers with N ≫ 1. From the expression for the
scalar potential, the fluxes and x have to be rescaled as

ai; ~ai → N6αþβ=2þγai; ~ai; x → N−4αx;

bi → N6α−β=2þγbi ð9Þ

for the solution to be preserved. We have also introduced a
parameter γ that represents an overall scaling of the fluxes
that is always possible to perform. The potential scales as
V → N2γV, and the normalized masses remain invariant.
For the special case of gaugino condensation, where x ¼ 2π

K ,
the scaling (9) implies that we need to scale K
as K → N4αK.
Given a solution, we can achieve a large volume and small

string coupling regime, via a suitable rescaling of the
parameters. A drawback may be that this rescaling requires
a small valueof theparameterx,which, in the caseofgaugino
condensation, translates into a large rank of the gauge group
K. In the context of noncompact Calabi-Yaus, it has been
discussed that arbitrarily highgaugegroup ranks are possible
[34]. In the compact case the situation turns out to be more
restrictive, but relatively large values are possible [16].
Finally, we should also consider the tadpole cancellation

condition, which is a quadratic combination of flux
parameters, H3∧F3:

ND3 ¼ a3b0 − 3a2b1 þ 3a1b2 − a0b3; ð10Þ

scaling according to ND3 → N12αþ2γND3. As the tadpole is
bounded from below by the orientifold contribution, one
should worry about this rescaling in the case of negative
ND3. Indeed, in all our examples below, the tadpole will be
negative. In order to avoid that the large volume limit
pushes the tadpole below its lower limit, one can choose the
γ parameter suitably.
Notice that there is no particular requirement of the value

for the complex structure modulus U at the minimum.
Therefore, we keep this field to the origin. However, we
could rescale it as well to small values in such a way that
the power expansion in the nonperturbative function P3 can
be truncated at the third power consistently.
We next consider the relevance of possible perturbative

corrections to the Kähler potential since these could
dominate over the nonperturbative contributions to the

superpotential, rendering the present setup inconsistent.
Perturbative contributions scale with KP ∼ 1=ðVg3=2s Þ.
Since our method to find solutions starts with all fields
at the origin and fluxes of the same order, all contributions
in the superpotential are of the same order. After making
the above described rescalings, all terms in the potential
scale in the same way and, once perturbative Kähler
contributions are added, we can write

Vfull → N2γðV þ KPVÞ ∼ N2γ

�
V þ N−6αþ3β

2V

�
; ð11Þ

hence, KP contributions will be suppressed with a factor
N−6αþ3β

2 compared to the potential calculated here. We can
therefore safely neglect these by a suitable choice of α; β.

IV. EXPLICIT DE SITTER SOLUTIONS

We performed five individual searches where additional
criteria were required. These additional criteria were chosen
to be
1, 2: maximize and minimize ~γ ¼ jDWj2=ð3jWj2Þ (while

keeping ~γ > 1),
3, 4: maximize and minimize the scale between the

fluxes jbij=jaij,
5: minimize the scale between the fluxes j ~aij=jaij.
The main properties of our solutions are presented in

Table I, while the SUSY parameters for these solutions can
be found in Table II. A number of general features can be
extracted from these examples. First, it follows that the
SUSY and AdS scales are always of the same order and
cannot be separated. The maximum ratio between the
scales is ≈1.0256, as follows from solution 1. Similarly,
one can approach a ratio equal to one with very good
accuracy, as illustrated by solution 2. Another observation
from this solution is that the lowest mass can be made very
large compared to the potential energy V0. Finally, as the
flux parameters are of decreasing order,

f ~a0; ~a1; ~a2; ~a3g ≈ f0.0835; 0.0702; 0.0372; 0.00921g;
ð12Þ

the small-U expansion of (6) is justified in this case.
A second point is that we tried to achieve a hierarchy

between the RR and NSNS fluxes. The reason for doing so
is the small coupling limit; as the rescaling (9) acts
differently on these two set of fluxes, we would like to
start off with a hierarchy of values for these. After the
rescaling, we end up at small coupling with fluxes of the
same order. As can be seen from solutions 3 and 4, it is
possible to achieve a small degree of separation between
the two sets of fluxes. However, this separation is only due
to large contributions from the nonperturbative fluxes.
Finally, in solution 5 we were able to create a hierarchy

between the perturbative and nonperturbative fluxes. This
hierarchy is only possible to achieve with the loss of a
hierarchy of the NSNS and RR sector. The reason for this
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lies in the structure of the equation of motion for S. On the
level of the perturbative superpotential, this equation forces
the so-called imaginary self-dual (ISD) condition for the
flux G3 ¼ F3 þ SH3 [2]. Via the addition of small non-
perturbative contributions, it is only possible to perturb this
condition. This is why we see in solutions 3 and 4 that the
nonperturbative terms contribute much more than in
solution 5. For the same reason, i.e., small nonperturbative
contributions cannot significantly change the ISD condi-
tion, we are not able to find solutions without net O-planes,
as is argued to be possible in type IIA [22].
For the most interesting solution, 5, we observe also that

because the nonperturbative contributions are suppressed,
one may expect a separation of masses among S;U and T.
Indeed, the last two smallest masses in Table I correspond
to the eigenvectors that are dominated by the real and
imaginary parts of T. The other small mass corresponds
mostly to a combination of the S; U axions. Moreover, the
lowest mass is still significantly larger than the potential.
Finally, it is interesting to consider the interplay between

stability and dS solutions. For nongeometric stable dS
solutions, the intersection regions of stability and dS are
thin sheets because of small differences in the shape of
these landscapes [29], thus requiring fine-tuning. This is
not the case for the present nonperturbative solutions. The
stability and potential landscapes, plotted in Fig. 1, have

noticeably different shapes. This implies that there are
sizeable intersection regions.5

This nontrivial overlap will be important when taking
flux quantization into account. By scaling N large, the
parameters AI and BI become approximately integers. One
can then make ai; bi integers by an appropriate truncation.
This will slightly modify the solution, (inversely) related to
the order to which we rescale N. However, because of the
large intersection areas of stability and dS, only a very
coarse truncation would significantly modify the solution
and possibly spoil stability and/or dS. In our case, where
the orientifold tadpole gives a bound on how much
rescaling can take place, the truncation would have to
indeed be quite coarse. On account of the large stable dS
regions, one can achieve quantization without losing
stability or positive potential energy. We have explicitly
checked this for solution 5, which can be rescaled and
truncated to the flux parameters

fa0;a1;a2;a3;b0;b1;b2;b3g¼f−1;4;1;−12;4;0;−1;0g;
ð13Þ

TABLE II. The values of the SUSY parameters defined by (7) that give the solutions displayed in Table I (rounded
to six digits).

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

A1 −0.147286 −0.0859982 0.0590861 −0.0115235 0.000516097
A2 0.449418 −1.58993 −0.483429 0.165447 1.15243
A3 −0.907814 0.4631 −0.131249 −0.144582 −0.000587804
B1 0.377918 −0.236806 0.0870739 0.0793589 0.00319387
B2 1.6678 −1.12127 0.826607 0.259372 −0.196848
B3 0.173821 −0.047207 −0.0614712 0.0902761 −0.00969035

TABLE I. Properties of the solutions (Sol.). The masses are normalized with the potential and all scales are given
in Planck units.

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

V0 0.00113 2.23 × 10−12 0.0000251 0.0000234 8.61 × 10−12

~γ − 1 0.0256 5.11 × 10−11 0.00248 0.0160 6.05 × 10−10

jbij
jaij 0.298 0.599 1.32 0.208 0.997
j ~aij
jaij 0.611 0.274 0.528 0.621 0.000227

Masses

39.0 2.11 × 1010 1140. 76.2 2.20 × 109

19.7 8.71 × 109 387. 36.0 9.80 × 108

12.4 7.00 × 109 106. 19.6 2.45 × 108

9.74 3.41 × 109 18.4 11.4 490000.
0.00236 1.26 × 109 6.16 0.774 101000.
0.0000747 6.01 × 108 0.0000612 0.000252 100000.

5This fact does not seem to hinge on the duality invariant
ansatz (6); we expect it to hold for more general moduli
dependence.
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which gives a tadpoleNO3 ¼ 60 and rankK ¼ 67. This has
a stable dS solution at

fS; T;Ug
≈ f:00616þ ie1.32;−:000456þ ie2.63;−:117

þ ie:0728g; ð14Þ

which is a perturbation of solution 5.

V. DISCUSSION

In summary, we considered a novel one-step mechanism
to stabilize all geometric moduli of type IIB toroidal
compactifications in a dS vacuum, using the nontrivial
moduli dependence of the tree-level superpotential and the
nonperturbative contributions. The latter is motivated by
duality invariance of string theory, and can also be seen as a
small-field expansion. Our approach improves the three-
step KKLT mechanism by including the complex structure
in the nonperturbative piece allowing us to stabilize all
moduli at once in a dS vacua, avoiding also the introduction
of explicitly SUSY terms, such as anti–D-branes. We have
presented a number of explicit stable dS solutions, amongst
one with quantized fluxes.
We view our results as very compelling arguments to

extend the dS landscape in type IIB flux compactifications.
They represent a first step towards a new direction allowing
for a more complete landscape of stable dS vacua.
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