PHYSICAL REVIEW D 90, 024059 (2014)

Lessons from f(R.R? R?,.L,,) gravity: Smooth Gauss-Bonnet limit,
energy-momentum conservation, and nonminimal coupling

David W. Tian" and Ivan Booth'

Department of Mathematics and Statistics, Memorial University, St. John’s, Newfoundland, Canada A1C 557
(Received 15 May 2014; published 22 July 2014)

This paper studies a generic fourth-order theory of gravity with Lagrangian density f(R, R2, R, L,,),
where R2 and R2, respectively denote the square of the Ricci and Riemann tensors. By considering explicit
R? dependence and imposing the “coherence condition” fr. = f g, = —fg2/4. the field equations of
f(R,R*, R2,R2,, L,) gravity can be smoothly reduced to that of f(R,G, L,,) generalized Gauss-Bonnet
gravity with G denoting the Gauss-Bonnet invariant. We use Noether’s conservation law to study the
f(R{,R,...,R,, L,,) model with nonminimal coupling between £,, and Riemannian invariants R;, and
conjecture that the gradient of nonminimal gravitational coupling strength V¥ £ is the only source for
energy-momentum nonconservation. This conjecture is applied to the f(R, R2, R, L,,) model, and the
equations of continuity and nongeodesic motion of different matter contents are investigated. Finally, the
field equation for Lagrangians including the traceless-Ricci square and traceless-Riemann (Weyl) square
invariants is derived, the f(R, R%, R%,, £,,) model is compared with the f (R, R, R2,, T) + 2« L,, model, and

consequences of nonminimal coupling for black hole and wormhole physics are considered.
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I. INTRODUCTION

There are two main proposals to explain the accelerated
expansion of the Universe [1]. The first assumes the
existence of negative-pressure dark energy as a dominant
component of the cosmos [2,3]. The second approach seeks
viable modifications of both general relativity (GR) and its
alternatives [4,5].

Focusing on modifications of GR, the original Lagrangian
density can be modified in two ways: (1) extending its
dependence on the curvature invariants, and (2) considering
nonminimal curvature-matter coupling. The simplest
curvature-invariant modification is f(R) + 2xL,, gravity
[5,6] (k =87G/c* =8nG and ¢ =1 hereafter), where
the isolated Ricci scalar R in the Hilbert-Einstein action is
replaced by the generic function of R. In this case standard
energy-momentum conservation VT, =0 continues to
hold. Further extensions have introduced dependence on
such things as the Gauss-Bonnet invariant G [4,7] and
squares of Ricci and Riemann tensors {R?, R2 } [8], leading
to models with Lagrangian densities like R + f(G) + 2«xL,,,
f(R,G) +2kL,, and R + f(R, R%, R%) + 2xL,,. In all these
models, the spacetime geometry remains minimally coupled
to the matter Lagrangian density L,,.

On the other hand, following the spirit of nonminimal
f(R)L, coupling in scalar-field dark-energy models [9], for
modified theories of gravity an extra term Af(R)L,,
was respectively added to the standard actions of GR and
f(R) +2«L,, gravity in [10] and [11], which represents
nonminimal curvature-matter coupling between R and L,,.
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These ideas soon attracted a lot of attention in other
modifications of GR after the work in [11], and nonminimal
coupling was introduced to other gravity models such as
generalized Gauss-Bonnet gravity [6,12] with terms like
Af(G)L,,. From these initial models, some general conse-
quences of nonminimal coupling were revealed. Most
significantly, £,, enters the gravitational field equation
directly, nonminimal coupling violates the equivalence
principle, and in general, energy-momentum conservation
is violated with nontrivial energy-momentum-curvature
transformation. In [13], (R, £,,) theory as the most generic
extension of GR within the dependence of {R, L, } was
developed, while another type of nonminimal coupling, the
f(R,T) 4+ 2xL,, model, was considered in [14].

In this paper, we consider modifications to GR from both
invariant-dependence and nonminimal-coupling aspects,
and introduce a new model of generic fourth-order gravity
with Lagrangian density f(R,R2,R2,L,,). This can be
regarded as a generalization of the f(R, £,,) model [13] by
adding R? and R2, dependence, and an extension of the
f(R,R%, R%) + 2xL,, model [8] by allowing nonminimal
curvature-matter coupling. Among the fourteen independent
algebraic invariants which can be constructed from the
Riemann tensor and metric tensor [15,16], besides R we
focus on Ricci square R? and Riemann square (Kretschmann
scalar) R2,, not only because they are the two simplest square
invariants (as opposed to cubic and quartic invariants [16]),
but also because they provide a bridge to generalized Gauss-
Bonnet theories of gravity [6] and quadratic gravity [17,18].
By studying this model, we hope to get further insights into
the effects of nonminimal coupling and dependence on extra
curvature invariants.
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This paper is organized as follows. First of all, the field
equations for £ = f(R,R% R%,L,,) gravity are derived
and nonminimal couplings with £,, and T are compared in
Sec. II. In Sec. III, we consider an explicit dependence on
R?, and introduce the condition fz = f r = —fr2/4 t0
smoothly transform f(R,R?, R%, R2,, L,,) gravity to the
generalized Gauss-Bonnet gravity L= f(R,G, L,,); employ-
ing G, quadratic gravity is revisited and traceless models like
L = f(R,R%,C* L,,) are discussed. In Sec. IV, we commit
ourselves to understanding the energy-momentum diver-
gence problem associated with (R, R, R2,, L,,) gravity and
most generic £ = f(R, R, ..., R,, L,,) gravity with non-
minimal coupling, as an application of which, the equations
of continuity and nongeodesic motion are derived in
Sec. V. Finally, in Sec. VI, two implications of non-
minimal coupling for black hole physics and wormholes
are discussed. In the Appendix generalized energy con-
ditions of f(R, R\, Ras...., R, L,,) and f(R,R%, R2,, L,,)
gravity are considered. Throughout this paper, we adopt
the sign convention Rj ;= 0,175, — 057, with the
metric signature (—,+ + +), and follow the straightfor-
ward metric approach rather than first-order Einstein-
Palatini.

I1. FIELD EQUATION AND ITS PROPERTIES

A. Action and field equations

The action we propose for a generic fourth-order theory
of gravity with possibly nonminimal curvature-matter
coupling' is

S— / dx\/=gf (R R, B2y, L), (1)

where R? and R2, denote the square of Ricci and Riemann
curvature tensor, respectively,

R% = Ra/}Raﬂ’ R%n = Ray/ﬁ’uRaﬂﬂy' (2)
Varying the action [Eq. (1)] with respect to the inverse
metric ¢*¥, we get

682/d4x —ga{—éfgﬂ,,-ég””—l—fR-éR—l—ng-5R%

+ fr2 - ORN + [, -5£m}, (3)

'"The terms geometry-matter coupling and curvature-matter
coupling are both used in this paper. They are not identical: the
former can be either nonminimal or minimal, while the latter by
its name is always nonminimal since a curvature invariant
contains at least second-order derivative of the metric tensor.
Here nonminimal coupling happens between algebraic or differ-
ential Riemannian scalar invariants and £,,, so we will mainly use
curvature-matter coupling.
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where fr = Of /OR, fr2 := Of /ORZ, fro = Of /OR;,, and
fr, =0f/OL,,. 5RZ and SR, can be reduced into varia-
tions of Riemann tensor,

OR? = 6[Ryp - ("R )] = 2R, "R, 8¢ + 2R*ER" .,
(4)

OR3 = S[Rapye - (997G 4 Ry
= 4R, R,%P1 . 5g + 2R%Pre.
X (Rpﬁyeagap + gapaRp/Jye)’ (5)

while 8R4, traces back to 6I"%; through the Palatini
identity

SR

apy — vﬂ(ér‘}%a) - vy(ér‘ga) (6)

Also, as is well known, 815 = 59" (V480ap + V65a —
V,8445) [19,20], and we keep in mind that when raising the
indices on 8¢, a minus sign appears: 69qs = —YJuuJp 09" -
Then, Egs. (4)-(6) yield

fr-OR 2 (xR + (90— V,V,) fx] - 69 = HL® . 59,
(7)

fR% 5R% = [szgR;laRav - vavu(RﬂafRZi)
- vav;t (RlzafR§> + D<Ruvaf)
+ 9uVay (R [12)]- 69 = HiL™) -5, (8)

and

fre OR;, = 2fr - R R, + 4Vﬁva(Raﬂ/}ufR5,)] o9

napy
HUR s 9)

Here, 1 = V*V, represents the covariant d’ Alembertian,
and the symbol = denotes an effective equivalence by
neglecting a surface integral after integration by parts
twice to extract {H,(,{,R>,H,(;£R%),H,%R’z”>}. Especially,
Eq. (9) has utilized the combination 2V V(R f z2 )+
VIV (Rypufr2) = 4VPV*(Rypf g2 ), Where the sym-
metry of VAVY(R,z,f 2,) under the index switch p<>v
is guaranteed by V/VR,; = VI/VR,5, VOV fr =
Vv f g2 as well as the p<>v symmetry of its remaining
expanded terms. Note that in these equations, total deriv-
atives in individual variations {6R,SR2,6R2} are not
necessarily pure divergences anymore, because the non-
trivial coefficients {fg, fz2, fz2 } Will be absorbed by the
variations into the nonlinear and higher-order-derivative

s in (HLS, H), HL),
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In the f, -oL,, term in Eq. (3), we make use of the
standard definition of stress-energy-momentum (SEM)
density tensor in GR (e.g. [10-14]), which is introduced
in accordance with minimal geometry-matter coupling and
automatic energy-momentum conservation (for further
discussion see Sec. I[VA),

- -2 5(\/ _g’cm)
T/w = /—_g 59;,,, (10)
oL
= L:mgpw —2579”’2 (11)

The equivalence from Eq. (10) to Eq. (11) is built
upon the common assumption that £,, does not explicitly
depend on derivatives of the metric, £,, = L, (G- W) #
L (Gus OaGus W) With y,  collectively denoting all
relevant matter fields.

After some work, Egs. (3), (7), (8), (9), and (11) eventually
give rise to the field equation for f(R, R2, R%,, L,,) gravity:

1
- Efg/w + fRR;w + (g/wD - vﬂvu)fR

2 2 1
R: SRn
+H/(4]; ) +H;(u)i ) :Efﬂ,,,(T/w _'Cmg/u/)’ (12)
where HL{,Rg) and Hff,jR%’) were introduced in Egs. (8) and (9)
to collect all terms arising from R? and R2, dependence in f,

HY + HIS = 2f o - R Roy +2f 13 - Ruagy R
=V V(R fr) = VaVu(Rf2)
+O(R,fr2) + gﬂuvavﬂ(R"ﬂfRz)
AV Ry f ) (13)

Note that {f,fg,fr,fr2} herein are all functions of
(R.R2.R%,. L), and HL" = frR,, + (9,0 -V, V,)fr
has been written down directly to facilitate comparison with
GR and f(R) + 2xL,, or f(R, L,,) gravity. Taking the trace
of Eq. (12), the simple algebraic equality R = —T (where
T =g¢"T,) in GR is now generalized to the following
differential relation:

—2f+ frR+2fr2-RZ+2f g - Ry, +0(3f g+ f2R)

1
+2V V(R fro + 2RV fro ) = f o, <§T—2£m>. (14)

Compared with Einstein’s equation R,, — Rg,,/2 =
kT,, in GR, nonlinear terms and derivatives of the metric
up to fourth order have come forth and been encoded into
{H IR gyr gl R%’)} on the left-hand side of E

w s tpyy o yy qg. (12)
On the right-hand side, the matter Lagrangian density
L,, explicitly participates in the field equation as a
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consequence of the confrontation between nonminimal
curvature-matter coupling in f(R,R2, R%.L,,) and the
minimal-coupling definition of 7, in Eq. (10). Note that
not all matter terms have been moved to the right-hand side,
because —% fgu is still £, dependent before a concrete
f(R,R%,R%, L,,) model gets specified and rearranged.

Also, fr = fr (R.R2, R3,.L,) represents the gravita-
tional coupling strength and never vanishes, so in vacuum
one has £,, =0and T, = 0, yet f # 0. Such a generic
coupling strength f, ~will unavoidably violate Einstein’s
equivalence principle and the strong equivalence principle
unless it reduces to a constant.

B. Field equation under minimal coupling

When the matter content is minimally coupled to the
spacetime metric, the coupling coefficient f, reduces to
become a constant. In accordance with the gravitational
coupling strength in GR, this constant is necessarily equal
to Einstein’s constant x (and doubled just for scaling
tradition). That is,

fr, = constant = 2k, and

f(R.R2,R%,L,) = f(R.R2,R%) + 2kL,,.  (15)

We have neglected the situation when f, is a pointwise
scalar field ¢ = ¢(x), which should be treated as a scalar-
tensor theory mixed with metric gravity: in fact, ¢(x*)L,, is
also a type of nonminimal coupling, but it goes beyond the
scope of this paper and will not be discussed here. Under
minimal coupling as in Eq. (15), the field equation (12)
becomes (with tildes on f omitted)

1 2
- Efg,uu + fRR/w + (g,uuD - vﬂvu)fR + Hi(lzliR‘)

+ H®) —

Hw

(16)

which coincides with the result in [8]. The weak field limit
of this minimally coupled model has been systematically
studied in [21].

C. Two types of nonminimal curvature-matter coupling

Apart from the £ = f(R,R2,R%,L,) model under
discussion, another type of curvature-matter coupling
was introduced in [14] by the £ = f(R, T) + 2«xL,, model,
where a curvature invariant was nonminimally coupled to
the trace of the SEM tensor T = ¢**T,, rather than the
matter Lagrangian density £,,. In this spirit, we consider
the following nonminimally coupled action:

S:/d4x\/—_g{f(R,R§,R%1,T)+2K[,m}. (17)

By the standard methods we find that its field equation is
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1
- Efgpw + fR : R,uu + (g;wD - vyvv)fR
2 2
+ H + B = —fr (T, +©,,) +&T,,. (18)

where {f. fr. fx2. fr} are all functions of (R, R%, R;,.T),

2 2
HY®) + HI is given by Eq. (13), —f7(T,, +©,,)
comes from the T dependence in f(R, R?, R2,, T), and

o gaﬁ(sTa/}
7200 5g;w .

(19)

As will be extensively discussed in Sec. V, for some matter
sources L,, cannot be uniquely specified, and therefore the
equations of continuity and motion based on Eq. (12) have
to rely on the choice of £,,. In such situations T, is easier
to set up than L, so at first glance, it seems as if the new
field equation (18) could avoid the flaws from nonminimal
L,, coupling, at the cost of employing a supplementary
matter tensor ®W. However, the definition of G),w is
still based on the relation T,, = L,,g,, —26L,,/6¢" in
Eq. (11), and explicit calculations have revealed that [14]

L,

®MV = _ZT/w + gﬂyﬁm - 2g"‘ﬂW .

(20)

Thus, both £,, and its second-order derivative with respect
to the metric are hidden in ©,,, and consequently, both
f(R,R%,R2,,T) + 2«L,, and f(R,R%, R2,, L,,) theories are
sensitive to the £,, in use. The equations of continuity and
nongeodesic motion will differ for different choices of L,
for the same matter sources.

The L= f(R,R?,R2,L,) model and the L=
f(R,R%,R%, T) + 2xL,, model are both reasonable real-
izations of nonminimal curvature-matter coupling, and in
this paper we have adopted the former case as a generali-
zation of the existing £ = f(R,L,) [13] and L=
f(R,R%, R%) + 2xL,, [8] theories. Also, it looks redundant
and unnecessary to further consider the superposition of
nonminimal £,, and T couplings, which can be depicted by
the action

S= /d“x,/—gf(R,R%,R%n,ﬁm, T), (21)
whose field equation is

1 . .
_Efg;w +fR : R/u/ + (g/wD - vyvu>fR + HA%RI) + H/({;Rm)

1
= Efﬁm : (T;w - Emg/w) _fT : (T/w + G);u/)' (22)
Practically it is implicitly assumed in Eq. (21) that non-

minimal couplings happen between (R, R2,R2,L,,) and
(R,R2,R2,T) respectively, and there is no matter-matter

PHYSICAL REVIEW D 90, 024059 (2014)

L,,-T coupling which would cause severe theoretical
complexity and physical ambiguity. In fact, £,, and T
are not independent, as Eq. (11) implies that

5L,
S ga/J :

T = g% Ty =4L,, — 29 (23)

III. R DEPENDENCE, SMOOTH TRANSITION
TO GENERALIZED GAUSS-BONNET GRAVITY,
AND QUADRATIC GRAVITY

Generalized (Einstein-)Gauss-Bonnet gravity is perhaps
the most popular and typical situation in which there is
dependence on R and the quadratic invariants {R?, R%}
[7,22]. However, to the best of our knowledge, there is
no demonstration of how generic fourth-order model
f(R,R%,R%,L,) [or f(R,R%R%)+2kL, model if
minimally coupled [8]] may be smoothly reduced into
generalized Gauss-Bonnet theories. We tackle this pro-
blem by considering an explicit dependence on R? in
f(R,R%,R%, L,,) gravity.

A. Two generic R?-dependent models

Based on the f(R, R2, R, L,,) gravity, we consider the
following situation with an explicit dependence on R?:

£:f<R’R2’R%7R%n7['m)' (24)

Here we have formally split the generic R dependence
of f(R,R2,R2.L,) into an R and R> dependence,
frOR = frOR + frS6R?, to lay the foundation for sub-
sequent discussion. However, this f(R,R? R2,R2%,L,,)
Lagrangian density is not more generic than
f(R,R%,R%,L,) by one more variable R>. Absorbing
fg> into SR?> = 2RSR by the replacement fg > 2Rf g
in Eq. (7), we learn that R? dependence would contribute to
the field equation by

fR2 -6R* = [2RfR2 'R;w +2(g;u/D - v;tvz/)(R 'fRz)} 69"
= Hy[) - 5g, (25)

and a resubstitution of fr = fr +2Rfr into Eq. (12)
directly yields the field equation for f(R,R?,R%,R2,L,,)
gravity,

! R 0-v,V HYF)
_Efgﬂu"i_fR /w+(g,uu —Vu u)fR+ 2%

i o
yR") + H;%Rm) = e, (T = Lngu) (26)

+ Hy 5

where {f,fp.fr} and the {fep.fr} in {HL™ +

H,%RE')} are all functions of (R, R?>,R%,R%,L,,).
Here we have assumed no ambiguity between the
R dependence and the R’ dependence in Eq. (24). To
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explicitly avoid this problem, one could consider a
Lagrangian density of the form

L= f(R)+ f(R*.R:R%.L,,). (27)

However, potential coupling between R? and £, can still
be turned around and retreated as R — £, coupling, so this
f(R) + f(R*, R%, R%, L,,) model is still equally generic
with f(R,R2, R2,, L,,) as well as the f(R, R*>, R, R2,, L,,)
just above. Setting f +— } + f and fj — j‘R + 2Rf 2 in
Eq. (12), we get the field equation for Eq. (27),

1 ~ ~ ~ 2
- 5 (f +f)g/w + fRRm/ + (g/wD - vﬂvu)fR + HL{JR )
2 2y 1
+ HL{/R() + H,%RM) = Efl:m (T;w - ‘Cmg;w)’ (28)

where  fr = fr(R), fr = fr(R% R, R%.L,), and
{fre.fr2} remain dependent on (R,R*,RZ.R;.L,).
Moreover, Eq. (28) can instead be obtained from Eq. (26)
by the replacement fr j‘R.

For subsequent investigations, it will be sufficient to just
employ the former model £ = f(R, R?>, RZ, R2,, L,,) and its
field equation (26).

B. Reduced field equation with fz: = fg: = —f¢:/4

Now recall that the second Bianchi identity V, R,z +
VR s + VpRe, = 0 implies the following simplifica-
tions, which rewrite the derivative of a high-rank curvature
tensor into that of lower-rank curvature tensors plus non-
linear algebraic terms:

v(lRaﬂ/)’v = v/}R;w - vayﬂ’ (29)
» 1
V Raﬂ - EVﬂR, (30)
VAVR,; = ! OR 31
aff — E ’ ( )
a 1 aff a
\YAY, R(wﬁb:DRW,—EV”V,,R—I-R(W,UR #—R, Ry, (32)
V*V,Ry + V°V,R,, = V,V,R —2R,,5, R” + 2R,R,,,
(33)
along with the symmetry V/V*R,,;, = V/V°R,; and

V*V,Ry, + V°V,R,, = 2(0R,, — VIVR,,;,). Applying
these relations to expand all the second-order covariant
derivatives in Eq. (26), it turns out that we have the
following theorem

Theorem.—When the coefficients {f >, g2, f 2 } satisfy
the following proportionality conditions,
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1
fRZIng,:_ZfRz =F, (34)

where F = F(R,R*>,R2,R2,,L,,), then the field equa-
tion (26) reduces to

1
- zfg/w +fRR/u/ + (g/wD - vﬂvl/)fR

FHE = 2 (T~ Lot (35)
where
Hiu) =2Rf 1 Ry =4f g2 -R,“Roy + (2f i +4f g2 ) Reyyp R
+2f g3, Ruapy R +2R (9, 0=V, V, ) f 2
_Ryavavung _szavavﬂfR§ +R;waR§
"'gﬂy‘Raﬁ VoV fr +4Raﬂﬂl/vﬁ Vifre
x(with fre=fp ==fr2/4)
=2RF-R,,—4F R,“R,,—4F R,z R?
+2F-R,05,R,*" +2R(g,,0-V,V,)F
+4R,“V,V,F+4R,*V,V ,F—4R,, OF

—49,,- RPNV VsF+4R,,5,VPVF. (36)
H,S?(Sg/‘” = froF and second-order-derivative operators
{O0,V,V,etc} only act on the scalar functions
{fRz,fR%,lezn} in contrast to H;([QRZ) + H,(,{,R%) + H,%R%’) in
Eq. (24).

Note that similar techniques have been employed in [23]
to finalize the field equation of the dilaton-Gauss-Bonnet
model. The simplified field equation (35) after imposing
the proportionality condition Eq. (34) to Eq. (26) will serve
as a bridge connecting f(R,R? R2,R2,L,) gravity to
generalized Gauss-Bonnet gravity. We refer to the propor-
tionality condition Eq. (34) as the coherence condition to
highlight the fact that it aligns the behaviors of
{fr[resfre }> and call F therein the coherence function.

C. Generalized Gauss-Bonnet gravity with
nonminimal coupling

1. Generic L =f(R,G,L,,) model

A nice way to realize the coherence condition Eq. (34) is
to let {R* R2, R2} participate in the action through the
well-known Gauss-Bonnet invariant G,

G:=R?>—4R2 + R, (37)

In this case, Eq. (24) reduces to become the Lagrangian
density of a generalized Gauss-Bonnet gravity model
allowing nonminimal curvature-matter coupling,

This is also why we use the denotation pr rather than H ,(5)
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L=f(R,GL,). (38)
Then the proportionality in Eq. (34) is naturally satisfied
with the coherence function F recognized as fg := 0f/0G.

Given F + fg, Eqgs. (36) and (35) give rise to the field
equation for f(R, G, L,,) gravity right away,

1
- zfg;w + fRR;w + (g;wD - vuvv)fR
1
+ H/(A(D]B) = Efﬁm (T;w - Emg/w)’ (39)
where

HIgSB> i=2fg- RR/“/ —4fg- R”{IR(H, —dfg- R(lﬂ/}yR(l[))
+2f5* Ruap, R, + 2R (9,0 -V, V) fg
+4R,*V,V, fg +4R,*V,V, f;— 4R, Of g
— 4gm, . R“ﬁvavﬂfg + 4R VﬂV“fg, (40)

aufv

and {f.fr.fg} are all functions of (R,G,L,), and
HisV6q = £466.

2. No contributions from pure Gauss-Bonnet term

As for the G dependence, Egs. (39) and (40) are best
simplified when f; = A = constant; that is to say, G joins £
straightforwardly as a pure Gauss-Bonnet term, with
Lagrangian density £ = f(R,L,,)+ 4G, for which
Eq. (39) gives rise to the field equation [with f =
F(R.Lp), fr=fr(R, L)l

1
A- <— 5 GYu + 2RR,, — 4R, "Ry, — 4R 15, R
1
+ 2R/m/3;/Ryaﬂy) - Efg/w + fRR/,w

1
+ (g/wD - vﬂvv)fR = Ef,Cm(T/w - Emg;w)' (41)

At first glance, it may seem that, after G decouples from
f(R,G, L,,) to form a pure term AG, the isolated covariant
density 4,/=gG would still make a difference to the field
equation by the A-(---) term in Eq. (41). This result
conflicts our a priori anticipation that, since G is a
topological invariant, variation of the Euler-Poincaré topo-
logical density \/=gG should not change the gravitational
field equation. In fact, by setting fg2 = fgz = fgz = 1 iIn
Egs. (8), (9), and (25), one has

OR?/8g" = 2RR,, +2(g9,80-V,V,)R, (42)

SR%/8g" = 2R,*R,, =V, V,R,* =V, V,R,*

+0OR,, + g - Vo VR, (43)
and
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OR2, /50" = 2R 05, R, %" + 4VPVR (44)

uapy appu>

which together with the Bianchi implications Eqs. (29)-
(33) exactly lead to

1
6(1/=99)/8¢" = =3 Ggu + 2RR,, — 4R, "R

— 4R 5, R 4+ 2R 5 R, . (45)

app napy

Thus one can recover the term A-(---) in Eq. (41) by
directly varying the quadratic invariants comprising G.

However, in four dimensions G is a most special invariant
among all algebraic and differential Riemannian invariants
R = R(gaﬂ’ Raﬂﬁw V},Raﬂﬂy, ey Vyl Vyz, ey V}’,,Ra/lﬂl/) in
the sense that it respects the Bach-Lanczos identity

5 / dx*\/=gG = 0, (46)

which prevents the Gauss-Bonnet covariant density
A\/=9G from contributing to the field equation. This
identity can be verified by carrying out the variational
derivative [19,24]

o(y=99) _9y=99) _, (y=99)  , , I/=99)
5g dg" C0(0,9™) TP 0(0,059")
=0. (47)

On the other hand, algebraic identities satisfied by the
Riemann tensor also guarantee that —%Qgﬂ,, +2RR,, -
4R, "Ry — 4Ryupy R + 2R 05, R, = 0 [19].

Hence, the A-(---) term in Eq. (41), as a remnant
of degrading the generic f(R,G,L,) gravity and all
existing generalized Gauss-Bonnet theories, is removable,
and Eq. (41) for L= f(R,L,)+AG gravity finally
becomes

1
- zfg/w + fRR/w + (g/wD - vyvv>fR

1
= Efﬁm (Tﬂl/ - Emgyv)’ (48)

which coincides with the field equation of £ = f(R, L,,)
gravity [13]. Although a pure Gauss-Bonnet term in the
Lagrangian density cannot change the gravitational field
equation §(,/=gL)/8¢g" = 0, it does join the dynamical
equation §(,/=gL)/6¢ = 0 when G is coupled to a scalar
field ¢p(x*) (e.g. [23]), and can still cause nontrivial effects
in other aspects (e.g. [17]).

3. Recovery of some typical models

f(R,G, L,,) is the maximally generalized Gauss-Bonnet
gravity when {R,G, L, } are the only scalar invariants
taken into account, and all existing (R, G, £,,)-dependent
models can be recovered as a specialized f(R,G,L,,)
gravity. For example, For a detailed review of generalized
Gauss-Bonnet gravity, see [6] in which various types of
nonminimal coupling are also extensively discussed.
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Reference Lagrangian density Specialization

7] s+ F(G) + Ly, fr>1/(26%)
fo=fg

fﬁm — 1
fr>1/2
fg'—”wmfg

fr, = 1+Af(9)
fr>1/2
for>fg+AL,Fg
SR> fr
fofg

Sfe, 2

[12] By L, + (9L,
[12] B+ f(O)+ L, +AF(G)L,,

[22] f(R,G) + 2L,

D. Quadratic gravity

Following the discussion of (generalized) Gauss-Bonnet
gravity, we would like to revisit the simplest case with R2
dependence (and R2, dependence), the so-called quadratic

gravity (eg. [17]):
L=R+a R*+b-R24¢-Ry+d-Ry+&-C*+2kL,,
=R+ (a—-¢—d/4-2¢/3)-R?
+(b+4¢+d+28)-R2 4 (¢+2)-G+2kL,, (49)

“R+a-R*+b-R:+2kL,,. (50)

The first row is a general linear superposition of some
popular quadratic invariants {R? R2, R:, R}.C*} with
constant coefficients {a,b,...}, where {R%=R2—
R?/4,C* = R2, —2R% + R?/3} respectively denote the
square of traceless Ricci tensor and Weyl tensor (see the
next subsection). In Eq. (50) the pure Gauss-Bonnet term
(¢ + d) - G has been neglected for reasons indicated above.
Substitution of

fr 1, fre — a, fre b,

fr, =0 and f, 2« (51)

into Eq. (26) and Eq. (13) yields the field equation for the
quadratic Lagrangian density Eq. (50),

1
—§(R+a-R2 +b-R%)g, + (1+2aR)R,,

+2a(gu 0=V, )R+ HZ =«T,,,  (52)
where
H* = b (2R,"R,, - V,V,R,* — V,V,R,“
+0OR,, + 9, Vo VsR?). (53)

Moreover, via the Bianchi implications Eq. (31) and

Eq. (33), H L9R°> can be rewritten as

PHYSICAL REVIEW D 90, 024059 (2014)
. 1
HE) —p. <2RWDR“ﬁ + <§ 90— v,,vu> R+ DRM) :
(54)

Using this to rewrite Eq. (52), we obtain the commonly
used form of the field equation [17,18].

On the other hand, one can instead drop the Ricci square
in favor of the Kretschmann scalar, and accordingly
manipulate Eq. (49) via

L=R+(a+b/4—2/6)-R2+(b/4+C+d/4+2¢)/2-R,
—(b/A+d/4—2/2)-G+2KL,,
~R+a-R>+b-R%+2kL,,. (55)

Now, substitute fz > 1, fg2 > a, fge > 0, fg2 > b and
Sz, — 2k into Egs. (26) and (13) to obtain

1
—§(R+a-R2+b-R31)gW+ (1+2aR)R,,

+ 2b(gyuD - vyvy)R + H;(SRm) = K‘TMD,

where

HZ®™ = b - (2R, R, + 4VPVR,,),  (57)

Hapy
and H ,(SRm) can be recast by the Bianchi property Eq. (33)
into

HZ®™ = b - (2R,4p,R, ™" + 4Ry, 5, R
—4R,"R,, +40R,, —2V,V,R). (58)

E. Field equations with traceless Ricci
and Riemann squares

It is worthwhile to mention that, as is well known
in Riemann geometry, many other tensors can be built
algebraically out of {R? R, R,z } Wwith their squares
recast into {R, R, R2,}, such as the traceless Ricci tensor,
traceless Riemann tensor (Weyl tensor), Schouten tensor,
Plebanski tensor, Bel-Robinson tensor, etc. It can be
convenient or sometimes preferable for specific purposes
to employ these tensors in the field equation, so in this
subsection we will take a quick look at how the squares of
these tensors in the Lagrangian density contribute to the
gravitational field equation. It is unnecessary to exhaust all
these tensors here and we will just consider the squares of
traceless Ricci tensor and Weyl tensor as an example.

1. Traceless Ricci square

The traceless counterpart of Ricci tensor S,z
( ga/”Sa[, = 0) and its square (denoted as R%) is
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1 1
Sa/)’ = R(l[)’ - ZRga/)’ = R% = Sa/}Saﬁ = R% - ZRZ (59)
Consider f(..., R}) as a generic function of R%, where ...
collects the dependence on all other possible scalar invar-
iants, and the variation &f(...,R%) = 6f(...,R2 — R*/4)
yields

OR% OR%
fr2 ORS = fre - ( oR2 SR? Ty 5R>
1
=fre- <5R3 —ERéR). (60)

Absorbing fg: into SR? by replacing fr with fg
in Eq. (8), merging Rf R into 6R by replacing fr wit

Rf R in Eq. (7), and finally replacing all Ricci tensors in
f RgéR% and Rf R§5R by their traceless counterparts
Rup = Sap + Rgop/4, then fr2 - (5RZ — TRSR) = fre - ORS
becomes

1
fR§ : 5R§ = 2fR§S;4aSm/ - ERfR§S;w - vavu(spafRé)
- vav;t(Suang,) + D(Sm/ng)
V.V aff . 7 H<fR§) . v
+ GuwVa ﬂ(S fR%) og = v 69",
(61)
which is consistent with the field equation in [25]. Thus, for

a Lagrangian density dependent on the traceless Ricci
square £ = f(..., R5), the contributions of f: - R to the

2
field equation is just H%RS) as in Eq. (61).

2. Weyl square

Being the totally traceless part of the Riemann tensor in
the Ricci decomposition, the Weyl conformal tensor C,s5
(g ¢"°Cpp,5 = 0) and its square (denoted as C?) are

1
Ca/iyﬁ = R(l/}y5 +5 (gaﬁR/)'y - gayRﬁﬁ + g/iyRaﬁ - g/)’(sR(l]/)

2
1
+ g (g(lyg/}5 - g{lﬁgf)’y)R (62)
and
2 apufv 2 2 1 2
C = Ca/tﬁbc H == Rm - 2RC + §R

1 2
= R% — 2R} —6R2 =G+ 2R? —§R2. (63)

Given a function f(...,C*) = f(...,R% —2R? + R*/3) =
f(....,R:, —=2R:—R?/6) = f(...,G+2R2 —2R*/3), the
variation 5f(...,C?) yields

PHYSICAL REVIEW D 90, 024059 (2014)

2
for 0C? = fe - <5R%1 —26R? + gR5R>
1
= fe - <5R3,, — 25R% — §R5R>
4
= feo- (5g + 26R? — §R5R> ) (64)

Which of these expressions is most convenient to use will

depend on which other Riemann invariants are involved in

the Lagrangian density. As such we stop at this stage: the
2

exact expression of H ,%C )5g”’“ = fo - 6C* depends on

which expansion we choose for C2.

IV. NONMINIMAL COUPLING AND
ENERGY-MOMENTUM DIVERGENCE

From this section on, we switch our attention to another
important aspect of £ = f(R,R2, R2,L,) gravity: the
stress-energy-momentum-conservation problem. Taking
the contravariant derivative of the field equation (12), we
find

fﬁm VHT/UI = (‘Cmg/u/
— fr2 VR 4+ 2V H LD 4 ownE )

- Tﬂu)vﬂfﬂm - vauR - fR%vuR%

+ 2w HL (65)

where {f, fg, fr2, frz } remain as functions of the invar-
iants (R,R2,R2,L,), and {H,%R), H,%R%), H,(Z;R%")} have
already been concretized in Eqgs. (7)—(9). However, despite

the extended variable dependence in fx(R,R2, R2,, L,,) as
opposed to f(R) + 2kL,, gravity, we still have’

1 1
5 (FrV.R + 29 HF) = = fr 9" <‘ Rgﬂy)

2
+VA(fr - Ryw) + (V,0-0V,) fr = 0. (66)
It vanishes as a consequence of the contracted Bianchi
identity V#(R,, —Rg,,/2)=0 and the third-order-derivative
commutation relation ((0V, -V, [)fr =R, V*fg. Thus,
Eq. (65) further reduces to

fL',,, vﬂTﬂy = (ﬁmgm/
+2VRHYRD o R (67)

- Tﬂv)vﬂfﬁm - fRfvvR% - fanvyR%l

which constitutes the equation of energy-momentum diver-
gence in f(R,R%, R%, L,,) gravity. It can be regarded as a

This is actually the stress-energy-momentum conservation
condition of f(R) gravity with Lagrangian density £ = f(R) +
2cL,, and field equation —f(R)g,,/2+ frR,, + (g,0-
V., V,)fr = kT, except that fr = fr(R).
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generalization of the following divergence equation in
f(R, L,,) gravity [13],

V”T;w = (ﬁmg;w - Tﬂl/>vﬂ In fﬁm? (68)

with V¥Inf, = fz'V¥f, . which in turn can be recov-
ered from Eq. (67) by setting fz: =0 = fp2.
In standard GR, V¥T,, = O is the mathematical expression
of conservation of stress-energy momentum. However, for
our models it is clear that this does not vanish and so this
fundamental conservation law does not hold in the standard
form. Then, how do we understand the energy-momentum
nonconservation/divergence equation (67)? Is it further
reducible and how does it influence the equations of con-
tinuity and motion given concrete matter sources? We will
investigate these questions in a more generic framework.

A. Automatic energy-momentum conservation
under minimal coupling

Consider a generic gravitational Lagrangian L; =
f(R), where f(R) is an arbitrary function of an
(n + 2)-order algebraic (n =0) or differential (n > 1)
Riemannian invariant R:

R= R(gaﬂ’ Raﬂﬁw VyRa”ﬁy, ceey v},l Vh .. 'VynRa/Aﬁv)’ (69)

so that variational derivative of the covariant density
v—9L¢ will lead to a (2n + 4)-order model of gravity.
Such an L5 = f(R) is still a covariant invariant for which
Noether’s conservation law would yield [26]

(1 8(/HR)
(S

which can be expanded into

fR(R)-V,R=2V*HL® with HY® .sgw = fr - R,

(71)
where H/(,{R) is defined the same way as {H,(,‘,CR),
H,(,'URE),H%R'Z")} in Egs. (7)—=(9). It absorbs fz into R

and collects all nonlinear and higher-order terms generated
by fr - OR.

These results can be directly generalized to the situation
where L; relies on multiple Riemannian invariants,
‘CG = f(Rl s RZ’ s Rp) = ’CG(gaﬂ’ Ra,uﬂw v}’R(Xﬂﬁl/’ LR
Vylvn...quRaﬂﬂb), and we have

> e VR =2 Ve
with HL . 5g% = fr - SR, (72)

where fz = fr.(Ri.Rs.....R,), with each R; given
by Eq. (69) to certain order derivatives of Riemann

PHYSICAL REVIEW D 90, 024059 (2014)

tensor, and H%Ri) = H,%R')(RI,RZ,
into OR;.

Since f(Ri.R,.....R,) is a purely geometric entity
solely dependent on the metric and derivatives of Riemann
tensor, Egs. (71) and (72) arising from Noether’s theorem
are also called the “generalized (contracted) Bianchi
identities” [26,27]. As the simplest example, when
f(Ri1.Rs.....R,) = R, Eq. (71) or Eq. (72) immediately
reproduces the standard contracted Bianchi identity
V¥(R,, — Rg,,/2) = 0 which is often used in GR.

On the other hand, for the matter Lagrangian density £,,,
Noether’s conservation law yields

v <L@) _o— -ty
N R 2

with T, =

.R,) absorbs fr.

=2 5(/=L)
\/_—g 59;41/ ’ (73)

where T, is the standard stress-energy-momentum
(SEM) tensor as in Eq. (10). This way of defining 7,
from Noether’s law therefore naturally guarantees energy-
momentum conservation V¥T,, = 0. Moreover, in the case
of minimal coupling, it is unnecessary to consider a
covariant matter density of the form ,/=gh(L,,), since
h(L,,) can always be treated as a whole, h(L,,) — L,,,.

Hence, for a generic Lagrangian density where £, is
minimally coupled to the spacetime geometry,

L=L+2%L0 = f(R1.Rar .. s Ry) +2kL,, (74)

and whose field equation arises from extremizing the action

or equivalently \/;__qﬁ(\g;?z:) =0
1 R,
~5F 9+ Y H =T, (75)

the generalized contracted Bianchi identities Eq. (72) for
pure geometric L; together with the Noether-type defi-
nition of 7, in Eq. (73) yield that contravariant derivatives
of the left(geometry)- and right(matter)-hand side of the
field equation (75) vanish independently.4 This ensures

“Instead of directly starting from Eq. (10), one can consider
T, from the perspective of diffeomorphism (or gauge) invariance
by requiring that the total action S; + S, be invariant under
an arbitrary and infinitesimal active transformation g, + g,,+
8¢9 = G + V& + V0, where (¥ vanishes at the boundary,

[ s e,
(76)

Now the automatic conservation V#7T,, =0 would become a
consequence of the (generalized) Bianchi identities which arise
from the diffeomorphism invariance of S;. Both ways trace back
to Noether’s law.

1
oS, = —56/ d4x,/—gTW69*’” =
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automatic fulfillment of energy-momentum conservation in
any minimally coupled gravity theories of the form
Egs. (74) and (75), such as £ = f(R,R2,R2) + 2«L,,
gravity and £ = f(R,G) + 2«xL,, gravity.

B. Divergence of SEM tensor under
nonminimal coupling

Now consider a generic Lagrangian density £ =
f(Ry.....R,.L,,) which allows nonminimal coupling
between £,, and Riemannian invariants R;. Noether’s
law yields the following equation for the divergence of
the energy-momentum tensor:

0 senes Rps
w( L (=0 (Ra: Ry L >>> o o)
V=9 59"
with expansion
fﬁ,,, VMT (ﬁmg/w - Tﬂv>vﬂfﬁm

S R VR +2Y VEEE (78)

where {fL .fr,} are all dependent on (R;....,R,.L,,),

and H 59’“’ = fr,6R; as usual. Note that “conserva-
tion” of \/=gf(,.... R,. L,,) yields an unavoidable “diver-
gence” term (L,,g,, —T,,)V¥f ., essentially because of
how T, was defined; that is to say, for the nonminimally
coupled £ = f(R;,...,R,. L,,) under discussion, we have
continued to use the definition of 7', from Eq. (73) which
was adapted to minimal coupling. Also, for L =
f(R.Ry,....R,.L,,) gravity where the first invariant is
identified as the Ricci scalar, the same argument as
Eq. (66) yields that —fgV,R+HUX =0 for fg=
fRR.Ry. ... R, Lyy).

For the moment, we cannot directly use Eq. (72) to
eliminate —),f» V,R; by ZZI-V”H,%R") in Eq. (78) as
they are no longer purely geometric entities. In principle,
the coefficient fz = fr,(Ry.....R,.L,,) allows for arbi-
trary dependence on L,,, and this complexity gets even
further promoted after taking the contravariant derivative
of the effective tensor H,,,, ( fr,)- Also, note that, for
the Lagrangian density £ = f(R,R2,R2,.L,) and L =
f(R,L,), the generic result Eq. (78) soon recovers
Egs. (65) and (68), which were obtained in an alternative
way from directly taking contravariant derivatives of their
field equation.

As we have already learned, in Eq. (78) the term
(LnGu = Ty)V¥f ~originates from the contradiction
between the nonminimal R; — L, coupling and the
minimal definition of 7,,. However, how can we under-
stand the other divergence terms —) ;fz V,R; and
257, VEHR)9 Fortunately, investigations of £ = F(R) +
2kL,, + f(R)L,, gravity shed some light on this question.

PHYSICAL REVIEW D 90, 024059 (2014)
Ri) +2«L,, +f(R;)L,, model

Now, consider a further specialized model with
Lagrangian density

C. Lessons from f

L=F(Ri s Ry) +2kLy + f(Rys s Ry) - Ly (79)

Section IVA has shown us that energy-momentum con-
servation (divergence freeness) is automatically satisfied
for the minimally coupled component f(R;,....R,)+
2xL,,, so we just need to concentrate on the nonminimally
coupled term (R, ..., R,) - L,,. Following the discussion
in Sec. IVB just above, treat f(R;,....R,) L, as an
invariant, so that Noether conservation of the covariant
Lagrangian density \/=gf(Ry.....R,) - L,, yields

] S(V=af(Ri, ... Ry) - L)\
Y <¢——g 59" >_0’ o

which in turn implies that

fvﬂT;w = (‘Cmg/w - Tﬂv)vﬂf - Zle (Rlv ceey Rq)

S

Note that in the last term, £, fz (R4, .... R,) - 6R; acts as
a unity rather than a triple multiplication and cannot be
expanded via the product rule when acted upon by V#: In
fact, £,,fr (Ri, ..., Ry) - 6R; = Hu"'™) . 5% and thus
L, fr, is merged into 6R;.

Now recall that, based on the Petrov and Serge classi-
fications, there are 14 independent algebraic Riemannian
invariants 7 = Z(g,p, Royp,) characterizing a four-
dimensional spacetime [15,16], among which nine are
of even parity and five are of odd parity, though this
minimum set can be slightly expanded after considering the
matter content. As a special example of Eq. (81), energy-
momentum divergence of the nonminimally coupled
Lagrangian f(Z,,...,Z9) - L,, was studied in [28], where
{Z,,...,Zy} refer to the nine parity-even algebraic

Riemannian invariants. Explicit calculations of H (f”f %)

L -OR;
x V,R;+2) V¥ <"’fR—) (81)

and VXH L 1) show that [28], for each individual Z; in
L= f(Iqu),
m . Ii : 51'1
-f1.(Z;) -V, +2Vﬂ(flég;w)) =0, (82)

and most generally for f(Z, ..., Zy) - L,, with an arbitrary
multiple dependence of these nine invariants,

—Zfz (Zy,.... Ty

L.f1(Z..... 7o) 6L,

-V,Z,;
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Hence, the equation of energy-momentum divergence
for L= f(Zy,....,Z9) +2kL,, + f(Z,,....Z
ity finally becomes

)+ L, grav-

f(T, ... Ty) - VT, T.) - VEf(Ty, ..., To).

(84)

= (’Cmg;w -

D. Conjecture for energy-momentum divergence

Now, let us summarize the facts we have confirmed

so far:

(1) In the simplest £ = f(R,L,,) gravity [13], one
has —fxV,R +2V”H,<£R) =0, so R dependence
in £=f makes no contribution and (L,g,, —
T,,)V¥f, is the only energy-momentum diver-

gence term.
(2) In L=fRR.Ry ... Rp. L) gravity,
—frV,R +2VFHI® =0 for fr = fr(R.R1. Ra,
W Ry Lyy).
@) n L= F(Tys oo To) + 2Ly + F(T11 o To) - Ly
gravity [28], one has individually —f; (Z;) - V,Z; +

2V”H (LnfT) — 0 and collectively > f1(Z)-
V,Z; 42> ,V*H,, (LnfT — 0, s0 (Lo — To)
V#f, is the only nonconservation term, while Z;
dependence in f - £,, makes no contribution.

(4) In the case of minimal coupling, all algebraic and
differential Riemannian invariants R; act equally
and indiscriminately in front of Noether’s conserva-
tion law and generalized Bianchi identities.

Starting with these results, the belief that for the situation

of generic nonminimal curvature-matter coupling all
Riemannian invariants continue to play equal roles in
energy-momentum conservation/divergence leads us to
propose the following.

1. Weak conjecture

Consider a Lagrangian density allowing generic non-
minimal coupling between the matter density L£,, and
Riemannian invariants R,

ﬁzf(Rl,Rz...,Rn,Em), (85)
where

Ri = Ri(ga/ﬁ Raﬂﬂw v},Raﬂﬁy, ey V},l Vyz .. .VJ,WRW/;D).
Then contributions from the R; dependence of L = f

in the Noether-induced divergence equation cancel out
collectively,

= fr VR +2Y VEEIR =0, (86)

PHYSICAL REVIEW D 90, 024059 (2014)

and the equation of energy-momentum conservation/diver-
gence takes the form’

fﬁm : vﬂT/,w = (‘Cmg/,w - T/w) : vﬂfﬁm, (87)
; fri(Ris...Lyy)0R,; o
where HLJ:R) = %, IR, =fr,(Ri..co. L),
and fﬁ,,, = fﬁn,(Rlv seey an ‘Cnl)'

Moreover, inspired by the behavior of R in Eq. (66)
that —fxV,R+2V*HY® =0 in spite of fg=
fr(R,R%, R, L,,), we further promote the weak conjecture
to the following.

2. Strong conjecture

For every Riemannian invariant R; in L=
f(R{,Ry....,R,, L,), the divergence terms arising from
each R; dependence in £ = f cancel out individually,

—fr, - VR, +2VrHIR) — 0, (88)

and the equation of energy-momentum conservation/diver-
gence remains the same as in Eq. (87),

fE,,, : V”T;w = (ﬁmg;w - T;w) : vﬂfﬁm'

Specifically, when the possible nonminimal coupling
reduces to ordinary minimal coupling, Eq. (85) will be
specialized into £ = f(R,, ..., R,) + 2«xL,, as in Eq. (74),
so Egs. (86) and (88) in the weak conjecture are naturally
satisfied because of the generalized Bianchi identities
Egs. (71) and (72). Also, if the conjecture were correct,
then the generalized Bianchi identities Eqs. (71) and (72)
could be generalized again, and they cannot serve as a
sufficient condition for judging minimal coupling.

Furthermore, reading left to right the nonconservation
equation (87) clearly shows that the energy-momentum
divergence is transformed into the gradient of nonminimal
gravitational coupling strength f, . On the other hand, if
the weak or even the strong conjecture were true, does it
mean that differences between the set of Riemannian
invariants which the Lagrangian density depends on are
trivial? The answer is of course no, because the gradient
Vif, is superposed by the gradient of £,, and the
gradients of all characteristic Riemannian invariants R;
used in £ = f:

>When talking about its norztnwal divergence, T, can be
effectively understood as the 7 which comes from the £,
under nonminimal coupling; the contribution T,,l,\,/[ to the total
SEM tensor by an isolated (i.e. minimally coupled) covariant
matter density ,/—gL,, automatically satisfies the standard
stress-energy-momentum conservation.
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fﬁm vﬂT/w = (ﬁmgm/ - T/w)'

x <f£,n£m VL, +Zf£,,,7€,~'vai>’ (89)

where fﬁmﬁm = afcm/aﬁm, f‘cmRi = 8f£m/8Ri. Note
that, if we adopt Eq. (89) rather than Eq. (87) as the
final form of nonconservation equation, the coefficient
(LG — Ty) = 26L,,/5¢" associated to the divergences
{V¥L,,, VFR,;} helps to clarify that they exclusively come
from the £,,-dependence in £ = f.

Following the weak conjecture, we now formally rewrite
the divergence equation (67) for f(R, R, R2,, L,,) gravity
into

f L, Vi T;w

= ('Cmg/w - Tﬂv)vﬂfﬁm + gw (90)

where

(1)

gv = _fR%vng - fanvyR%l + 2V”H§J£R

and &, is expected to vanish by the weak conjecture, while
&, = 0 trivially holds under minimal coupling because of
generalized Bianchi identities. Since we have not yet
proved that £, =0, we preserve &, in the divergence
equation (90) and proceed to use it to check the equations
of continuity and motion with different matter sources.

V. EQUATIONS OF CONTINUITY AND
NONGEODESIC MOTION

Once the matter content in the spacetime is known,
Eq. (90) can be concretized in accordance with the
particular forms of 7, which would imply the equations
of continuity of the energy-matter content and the equation
of (nongeodesic) motion for a test particle.6 This topic will
be studied in this section, and note that 7', and £,, will be

adapted to the (—, 4+ + +) metric signature.

A. Perfect fluid

The stress-energy-momentum (SEM) tensor of a perfect
fluid (no internal viscosity, no shear stresses, and zero
thermal-conductivity coefficients) with mass-energy den-
sity p = p(x®), isotropic pressure P = P(x*) and equation
of state P = wp, is given by [20]

The method and discussion in this section are also valid
for a generic £ = f(R,R,...,R,, L,,) gravity as in Eq. (86),
and we just need to define the effective one-form éy =
> ifr Ry L) - VR +257; V"H,,{R’> in place of the &,
for f(R, RZ, R, L,,) gravity. Specifically, &, = 0 under minimal

coupling, and furthermore £, vanishes universality if the weak
conjecture were correct.
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(PF) _

Tw' = (p+ Puu,+ Pg,

= puyit, + P(g + u,u,)
= pu,u, + Phy,, (92)

where u* is the four-velocity along the worldline, satisfying
u,u* = =1 and u,V,u" = 0; h,, is the projected spatial
3-metric, hy,, = g,, + w,u, with inverse i** = g + u*'u”,
W*u, =0, and W*h, = 3. Substituting Eq. (92) into
Eq. (90) and multiplying both sides by u*, we get

wV,p+ (p+ P)Viu, = —(L, +p)u'V,Infr

~fr €, (93)

which generalizes the original continuity equation of
perfect fluid in GR, u*V,p + (p + P)VFu, = 0.

On the other hand, after putting Eq. (92) back to Eq. (90),
use h% to project the free index v, and it follows that

(p+P) - wV,ut =—h%-V,P+h¥L, —P)V,Inf,

+f2 e, (94)

where we have employed the properties A% - u,Vtu,

G - u,V*u, = u,V*u¢. In general, p + P # 0 (in factp +
P> O by all four energy conditions in GR, and equality
happens only for matters with large negative pressure).
Thus we obtain the following absolute derivative along u¢
as the equation of motion:

Du¢  duf

- =" < p—

Dr = s + T puul = a(PF) +a(f£m) —l—a( £ (95)
where 7 is an affine parameter (e.g. proper time) for the
timelike worldline along which dx* = u*dr, and the three
proper accelerations are given by

afppy = =¥ - (p + P)7'V, P,

a(fpm) = —h"- ('0 + P)_l(P - Lm)vﬂ lnfLW

a<5) =-h"-(p+P)7'f;E,. (96)

Thus, three proper accelerations are responsible for the
nongeodesic motion. a‘:PF is the standard acceleration from
the pressure of fluid as in GR [20], a comes from the
curvature-matter coupling, while ai LIS a collaborative
effect of the {R?, R2,} dependence in the action and their
generic nonminimal coupling to £,,. This is consistent with
the result in [11] in the absence of {R% R2,}. Also, all three
accelerations are orthogonal to the worldline with tangent
us, since
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4 _ 4 _ 4 _
alppyte =0, dgy, e =0, djguz = 0. (97)
Equations (93), (95), and (96) depend on the choice of
the perfect-fluid matter Lagrangian density. If £,, = —p
[20,29], the continuity equation (93) becomes

wNyp + (p+ P)Vut = —fluE,, (98)

which is free from the gradient of the geometry-matter
coupling strength f7' u*V,f, , while affc ) reduces to

aiy, ==V, (99)
which does not rely on the equation of state P = wp.

On the other hand, for the choice £,, = P [29,30],
Egs. (93) and (96) respectively yield

wNyup+(p+ P)\VFu, = —(p+ P)u'V,Infr, —fr urs,,

(100)
and

¢ —
aj, y = 0. (101)

Although the continuity equation (100) looks pretty ordi-

nary, the proper acceleration af e

L,, = P and consequently the nongeodesic motion in the
gravitational field of the perfect fluid becomes independent
of the gradient of the nonminimal coupling strength
ut vﬂf[,m.

As shown in [31], both £,, = P and L,, = —p are correct
matter densities and both lead to the SEM tensor given in
Eq. (92). Differences of physical effects only occur in the
situation of nonminimal coupling, where L,, becomes a
direct and explicit input in the energy-momentum diver-
gence equation. In fact, as for the matter Lagrangian
density £,, for a perfect fluid, one can also adopt the
following ansatz:

) vanishes identically for

Em = (ap + bP) : gaﬁuauﬁ + (Cp + dP) : gaﬁgaﬂ

= (4c — a)p + (4d — b)P. (102)

Applying this to Eq. (11), the equality with Eq. (92) yields
a=-1/2=band ¢c = —1/4 = —d, so

1 1 1 1
'Cm = <__p__P> 'gaﬂuauﬁ+ <_ZP+ZP> 'gaﬁgaﬁ

(103)

This density makes Egs. (93), (95), and (96) act normally,
losing the aforementioned extraordinary properties asso-
ciated with £,, = —p and L,, =
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B. (Timelike) dust

The (timelike) dust source with mass-energy density p
has SEM tensor [20,30]

T,(Bust> = pu,u,,

" (104)

where u, = g,,u” with u” being the tangent vector field
along the worldline of a timelike dust particle. One can still
introduce the spatial metric &, = g,, + u,u, orthogonal to
ut, with {u,, h,,} sharing all those properties as in the case
of perfect fluid, so dust acts just like a perfect fluid with
zero pressure, P = 0. Substituting Eq. (104) back into
Eq. (90) and multiplying by #” on both sides yields

uﬂvﬂp +pV”uﬂ = _('Cm +p)”yvv lnfﬁ,,, _fZiuy5y7

(105)

which modifies the continuity equation of dust V,(pu*) =
0in GR. Meanwhile, projection of the free index v by A% in

VET'™Y gives rise to the modified equation of motion,
Du‘f du®
=T " o a /- ~E
Dr =22 + I puu (fnm) +agg, (106)
where
ag, y=h*p7' LV, Infp,,
afg) =-h¥.p7lflE, (107)

Being pressureless, the dust inherits just the two extra
Y. N
accelerations a (fe) and a )

m

, and both remain orthogonal to

the worldline with tangent u¢,

a8

_ ~& _
(f.cm)ui =0, gy = 0.

(108)

C. Null dust
The SEM tensor for null dust with energy density ¢ is
(e.g. [30])

O = ot,¢,,

(109)
where €, = g,,€* with € being the tangent vector fleld
along the worldline of a null dust particle, €,¢# = 0. TW
together with the energy-momentum dlvergence equa-
tion (90) yields

6,64V ,0+ 00"V, €, + o€,V "

= (Logw =@t t)V*Infr, +f7 €. (110)
Multiplying both sides with ¢*, ¢*¢, =0, ¢,V ,t* = 0, we

obtain the following constraint:
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e tVofs, = —t°€,. (1)

Now, introduce an auxiliary null vector field n# as null
normal to ¢# such that n*n, =0, ¢*n, =—1, which
induces the two-dimensional spatial metric g, =
—t,n, —n,t, + q,, satisfying the conditions

qut’ =0=q,n", t*V,q,, = 0.
(112)

9uwq"” =2,

Multiplying Eq. (110) by n*, and with n*V ¢, = —t*V ,n,,
we get the continuity equation

'V ,0 + oV, 0" + ot 'V n,

=—(L,n" +ot")V,Inf, —fz:xn”é’y, (113)
while projecting Eq. (110) with A% gives rise to the
equation of motion along £¢,

OtV ¢ = @t ¥ t*V n, + h¥ L,V Infr + [ hE,,
(114)

DEE det .
gL e app _ & £ &
YR + Lot 0F = diwp) +dip, )+ dig).

(115)
where 4 is an affine parameter for the null worldline along
which dx* = €*d¢, and the three proper accelerations are
respectively

£ . .
iy = €564V, m,.

¢ — _
d, y=h" @' L,V Infp,. (116)

dfg) =h o7 f7LE,.

As we can see, compared with timelike dust, one more
proper acceleration diD) shows up in the case of null dust,

and we will refer to it the affine acceleration or inaffinity
acceleration.

D. Scalar field

The matter Lagrangian density and SEM tensor of a
massive scalar field ¢(x*) with mass m in a potential V(¢)
are respectively given by

1

'Cm = _E (va¢va¢ + m2¢2) + V(¢)7
1
T/,w = vﬂ¢vl/¢ - Egyu(vaqﬁva(ﬁ + m2¢2 - 2V(¢))’
(117)
thus £,,9,, = T,, = =V, ¢V . For the v component, the

equations of continuity and motion are both given by
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(Op—m*¢p+V,)-Vyp==V,-V,pV*Inf, +f7'E,.
(118)

Specifically, by setting V(¢) =0 and under minimal
coupling (f,, = constant, £, = 0), we get
Cgp — m2p = 0, (119)

which is the standard covariant Klein-Gordon equation for
spin-zero particles in GR.

VI. FURTHER PHYSICAL IMPLICATIONS OF
NONMINIMAL COUPLING

We have seen that under nonminimal curvature-matter
coupling, the divergence of the standard SEM density
tensor is equal to the gradient of the coupling strength
VEf . which, in general, will be nonvanishing. As such,
the usual energy-momentum conservation laws for particu-
lar matter fields will be modified as compared to the
corresponding fields in general relativity. At the same time,
as discussed in the Appendix, nonminimal coupling also
affects the energy conditions. The standard energy con-
ditions of general relativity are phrased in terms of the
stress-energy tensor and require positive energies (null and
strong) and causal flows of matter (dominant). However, in
applications these conditions are generally used to con-
strain the Riemann tensor and so the allowed geometries of
spacetime and structures like singularities or horizons. For
standard general relativity the two approaches are essen-
tially equivalent but for modified gravity they are not: if the
Einstein equations are modified then the bounds on the
Ricci tensor that achieve the desired effects generally do not
translate into the usual restrictions on the stress-energy
momentum. Thus one is faced with a choice: either keep the
standard GR results and give up the usual energy conditions
or keep the usual energy conditions but lose those results.

In this section we consider some immediate physical
consequences of this choice. All of these are consequences
of the Raychaudhuri equations for null and timelike
geodesic congruences and so the difference between the
standard energy conditions and those needed to enforce the
focusing theorems is crucial to these discussions. These are
considered in some detail in the Appendix and in the
following T,(ﬁ,ff) refers to an effective stress-energy tensor
for which the standard form of the energy conditions will
leave those theorems intact.

A. Black hole physics

Many results in black hole physics follow from under-
standing a black hole horizon as a congruence of null
geodesics whose evolution is governed by the (twist-free)
Raychaudhuri equation:
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doe) 1

= k0o =50

— ool = R, er€*. (120)
where ¢# = ()* is a null tangent to the horizon, and K(e)s
¢y and o, are respectively the associated acceleration/
inaffinity, expansion and shear.

The second law of black hole mechanics follows from
this equation along with the requirement that the congru-
ence of null curves that rules the event horizon have no
future end points (see, for example, the discussion [20]).
Now choosing an affine parametrization for the congruence
K¢y = 0 it is straightforward to see that the right-hand side
of (120) is nonpositive as long as R, ¢#€* > 0. In standard
GR this follows from the null energy condition:
T, t"t">0. It then almost immediately follows that
0(¢) must be everywhere non-negative. Else 6;) — —oo
and the congruence focuses. However, for modified
gravity we will usually lose the equivalence T, ¢#€" >
0<R,,¢"t" > 0 and so we will be faced with a modified
area increase theorem if we require the standard energy
conditions.

By similar arguments, again involving the null
Raychaudhuri equation, the energy conditions play a
crucial role in the theorems that require trapped surfaces
to be contained in black holes and singularities to lie in their
causal future [20]. Thus for black hole physics, modifica-
tions of the energy conditions are a serious business which
can affect core results and intuitions.

B. Wormbholes

On the other hand, for those interested in faster-than-
light travel changing the energy conditions would be a
boon. Introducing the nonminimal gravitational coupling
strength f, brings new flexibility and the possibility of
supporting wormholes, as shown in [32] and [33] for a
AR - L, coupling term. More generally for the £ =
f(R,Ry,...,R,, L,,) gravity, based on the generalized
null and weak energy conditions developed in the
Appendix, it proves possible to defocus null and timelike
congruences and form wormholes by violating these
generalized conditions, while having the standard energy
conditions in GR [20] maintained to exclude the need for
exotic matters. It also leads to an extra constraint f /fr >
0 as in Eq. (A9).

From Eq. (A10) in the Appendix, for a null congruence
¢#, one can maintain the standard null energy condition
T, t*t" > 0 while violating T,(w Dener <0 (and so evade
the focusing theorems) if

0< T, re <2f;! (ZH,S{R")ﬁﬂfv — €44V, Y, fR>.
(121)

Similarl%/ for a timelike congruence, one has T, u*u” > 0

while T, Vuru <0, and Eq. (All) leads to
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0< T, v’ <=L, + f7! (f RfR+ZZHfR’ i

— 2(uwuV,V, + O) fR>. (122)

Specifically for £ = f(R,R2, R2,L,,) gravity, these two
conditions are concretized as

0 < T, tre” <2f7 (Hj HUR erev 4 R pugr

- €”€”V”VUfR) (123)
and
0 < Tyt < —L,, + f71(f = Rf g + 2HLF uru
= L uv = m L, R 122
+ 2H;(4£R’2n)”ﬂuy - 2<uﬂuyvyvv + D)fR)’ (124)

where {H ,%R f R } have been given in Egs. (8)
and (9).

Moreover, Eqs. (121) and (122) indicate that in the case
without dependence on Riemannian invariants beyond R,
ie. L= f(R, L,,), a wormhole can be solely supported by
the nonminimal-coupling effect if

0<T,t'e" < —2fzi€”€”V,,V,,fR and (125)
0 < Ty <L, + f7'(f = R
=2V, NV, +0)f). (126)

For example, let £ = f(R, L,,) = R+ 2«xL,, + ARL,,, and
the field equation (48) becomes

1
Ruv — ERg,w +A- ([me;w + (g/wD - v/‘v”)ﬁm)

1
= (K -+ E/IR) Tﬂ
To have a quick realization of Eq. (125), we further assume
A=1 T, = diag[-p(r), P(r), P(r), P(r)], L, = P(r)

(recall Sec. VA), and adopt the following simplest worm-
hole metric:

(127)

ds* = —dr* + dr* + (r* 4+ L?) - (d0” + sin*0d¢?),
(128)
with minimum throat scale L and outgoing radial null

vector field ¢#0, = (—1,1,0,0). Then the condition
Eq. (125) reduces to become

2
0<—p+3P< <1 +%>8,(’),P, (129)

024059-15



DAVID W. TIAN AND IVAN BOOTH

which clearly shows that the standard null energy condition
remains valid while spatial inhomogeneity of the pressure
0,0,.P supports the wormhole.

Finally, note that it remains to be carefully checked
whether solutions exist that meet these conditions.

VII. CONCLUSIONS

In this paper, we have derived the field equation for £ =
f(R,R%, R, L,,) fourth-order gravity allowing for partici-
pation of the Ricci square R? and Riemann square R2, in the
Lagrangian density and nonminimal coupling between the
curvature invariants and £,, as compared to GR. It turned
out that £,, appears explicitly in the field equation because
of confrontation between the nonminimal coupling and the
traditional minimal definition of the SEM tensor 7',,. When
fr, = constant = 2k, we recover the minimally coupled
L = f(R,R%,R%) + 2xL,, model. Also, we have shown
that both the curvature-£,, nonminimal coupling and the
curvature-7" coupling are sensitive to the concrete forms
of L,,.

Secondly, by considering an explicit R> dependence, we
have found the smooth transition from f(R,R%, R2,L,,)
gravity to the £ = f(R, G, L,,) generalized Gauss-Bonnet
gravity by imposing the coherence condition fgr =
fre = —fr/4 When f(R,G,L,) reduces to the case
f(R,L,) + AG where G appears as a pure Gauss-Bonnet
term, an extra term A(—3Gg,, + 2RR,, —4R,*R,, —
4R 45 R + 2R ,05,R, ") is left behind in the field equa-
tion representing the contribution from the covariant
density 1,/=gG. We have shown that this term actually
vanishes and thus AG makes no difference to the gravita-
tional field equation.

After studying the  Gauss-Bonnet limit  of
f(R,R?,R%,L,,) gravity, we moved on to more generic
theories focusing on how the standard stress-energy-
momentum conservation equation V#T,, =0 in GR
is violated. Under minimal coupling with L =
f(Ry.....R,) + 2«L,,, we commented that the general-
ized Bianchi identities and the Noether-induced definition
of SEM tensor lead to automatic energy-momentum
conservation. Under nonminimal coupling with £ =
f(Ry.....,R,.L,,), we have proposed a weak conjecture
and a strong one which state that the gradient of the
nonminimal gravitational coupling strength V¥ f is the
only divergence term balancing f, V*T,,, while contri-
butions from R; dependence in the divergence equation all
cancel out. Using the energy-momentum nonconservation
equation specialized for f(R, R2, R2,, L,,) gravity, we have
derived the equations of continuity and nongeodesic
motion in the matter sources for perfect fluids, (timelike)
dust, null dust, and massive scalar fields. These equations
directly generalize those in f(R,,....R,.L,,) gravity.

Also, within f(R,....R,,L,,) gravity, we have con-
sidered some implications of nonminimal coupling and R;

PHYSICAL REVIEW D 90, 024059 (2014)

dependence for black hole and wormhole physics.
Moreover, it is expected that the £ = f(R,R%, R2.L,,)
model can provide many more possibilities to realize the
late-time phase transition from cosmic deceleration to
acceleration, and the energy-momentum nonconservation
relation f, - V*T,, = (L,,9,, — T))V*f, under nonmi-
nimal coupling can cause interesting consequences in early-
era cosmic evolution and compact astrophysical objects if it
is effective as a high-energy phenomenon. These topics will
be extensively investigated in prospective studies.
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APPENDIX: GENERALIZED ENERGY
CONDITIONS FOR f(R.R;....R,,.L,,) GRAVITY

For the generic £ = f(R, R4, ..., R, L,,) gravity intro-
duced in Sec. IV, the variational principle or equivalently

1 8(/750)
N

= 0 yields the field equation,

1
- zfg/u/ + fRR/w + (gyul:] - vﬂvl/>fR

1
Ri
+ ZH/% ) = Efﬁm : (Tm/ - Emg;w)’ (Al)

where H,(,f,,R") <0g" = fg, - OR;. An immediate and very
useful implication of this field equation is a group of
generalized null, weak, strong and dominant energy con-
ditions (abbreviated into NEC, WEC, SEC and DEC
respectively), which has been employed in Sec. VIB in
studying effects of nonminimal coupling in supporting
wormbholes.

Recall that in a (region of) spacetime filled by a null or a
timelike congruence, the expansion rate along the null
tangent ¢# or the timelike tangent u* is given by the
respective Raychaudhuri equation [20]:

) 1 (€)
¢Vubie) = —2= = Ke)0e) =50 = o ()

+ wp o) — Ry, C4¢ (A2)
and

do I

_ 40w _ ()

WO = = = Kb =300 = ow ofy)

+ a)f,'f)wﬁg) - R, utu’. (A3)

Under affine parametrizations one has x¢) = 0 = «(,), for
hypersurface-orthogonal congruences the twist vanishes

w,,o" = 0, and the shear as a spatial tensor (0,(,5)6)” =0,

uv

024059-16



LESSONS FROM f(R,R%,R%.L,,) ...

a,(fﬁ)u” = 0) always satisfies o

wo” > 0. Thus, to ensure
df¢)/dA < 0 and df,)/dr < 0 under all conditions so that
“gravity always gravitates” and the congruence focuses, the

following geometric non-negativity conditions should hold:

R, 6"¢" > 0(NEC),  R,u'u’>O0(SEC). (A4)

On the other hand, the field (12) can be recast into a
compact GR form:

(eff)

1
G,=R, - ERg,w = kT

=

R = —«xTCM  and
eff) 1 -
R;w = K<Tf(ll/ ) - EgﬂuT<eﬁ)> B

where all terms beyond GR (G, = «T,) in Eq. (Al) have
(eff)

been packed into the effective SEM tensor 7, /,

(A5)

. 1
waff) = z_ffm (T mg/w) 2% J;Em ((f - RfR).g/w
+2(V,V, — g, 0)fr - 2211 (FRi) ) (A6)

The purely geometric conditions Eq. (A4) can be translated
into matter non-negativity conditions through Eq. (AS),

Tl ner > O(NEC),

e 1
T( Oty >~ 5 Ty, u* (SEC),
T > 0(WEC), (A7)
where u,u* = —1 in SEC for the signature (—,+ 4+ +)

used in this paper. Then the generalized NEC in Eq. (A7)
expands as

fe 2 < (fRi) )
w7, 000+ (€YY, — S HIF erer ) 20
f[\’ . f[\’ : K i :

(A8)

(for « > 0) which is the simplest one with £,, absent. Now,
consider a special situation where fp = constant and

H,(,’:Ri) = 0 (i.e. dropping all dependence on R; in f), so
Eq. (A8) reduces to (f. /fg)-Tut't" >0; since
Tﬂy€”€” >0 due to the standard NEC in GR, which
continues to hold here as exotic matters are unfavored,
we obtain an extra constraint,

fr

_'"ZO’

7 (A9)
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with which Eq. (A8) becomes

T, tr " +2f 7 (ﬁwvﬂvy fr— ZH,&{“WW) >0,

(A10)
and the WEC in Eq. (A7) can be expanded into
T’ + fr! <RfR - f 2wV, V, +0)fg
221{“’ ar ) + L, >0. (Al1)

In general, the pointwise nonminimal coupling strength
S, can take either positive or negative values. However,
recall that within f(R) + 2«xL,, gravity, physically viable
models specializing f(R) should satisfy fr > 0 and fp >
0 [5]; if this were still true in f(R, R4, ..., R,, L,,) gravity,
we would get f, > 0 by the extra constraint Eq. (A9),
which would be in strong agreement with the case of
minimal coupling when f, = 2x > 0.

Applying Eqs. (A6), (A10), and (A11) to the Lagrangian
density £ = f(R,R2, R2,, L,,), we immediately obtain

@) 1Sz, fﬁm
Tw' =+ T, - L9 - R v
H 2K fR ( M E gﬂ ) 2 f ((f fR)gﬂ
+2(V,9, = guO)fx = 2L 2H[).

(A12)

as the effective SEM tensor for f(R, R?, R2, L,,) gravity.
Then relative to the standard SEM tensor the generalized
null and weak energy conditions respectively become

T, 46" + 27} (6464V,V, fr — HL O erer
— HFWenery > 0 (A13)
and
T + f7 (Rfg = f + 2wV, V, + O)fy
—2H B e — 2H R ) 4 £, 2 0, (A14)
where {H,(,{R‘) H LfyRm} have been given in Egs. (8) and (9).

Also, with Eq. (A6) one can directly obtain the concrete
forms SEC and DEC for £ = f(R, Ry, ..., R,, L,,) grav-
ity, which however will not be listed here.
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