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This paper studies a generic fourth-order theory of gravity with Lagrangian density fðR;R2
c; R2

m;LmÞ,
where R2

c and R2
m respectively denote the square of the Ricci and Riemann tensors. By considering explicit

R2 dependence and imposing the “coherence condition” fR2 ¼ fR2
m
¼ −fR2

c
=4, the field equations of

fðR;R2; R2
c; R2

m;LmÞ gravity can be smoothly reduced to that of fðR;G;LmÞ generalized Gauss-Bonnet
gravity with G denoting the Gauss-Bonnet invariant. We use Noether’s conservation law to study the
fðR1;R2…;Rn;LmÞ model with nonminimal coupling between Lm and Riemannian invariants Ri, and
conjecture that the gradient of nonminimal gravitational coupling strength ∇μfLm

is the only source for
energy-momentum nonconservation. This conjecture is applied to the fðR;R2

c; R2
m;LmÞ model, and the

equations of continuity and nongeodesic motion of different matter contents are investigated. Finally, the
field equation for Lagrangians including the traceless-Ricci square and traceless-Riemann (Weyl) square
invariants is derived, the fðR;R2

c; R2
m;LmÞmodel is compared with the fðR;R2

c; R2
m; TÞ þ 2κLm model, and

consequences of nonminimal coupling for black hole and wormhole physics are considered.
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I. INTRODUCTION

There are two main proposals to explain the accelerated
expansion of the Universe [1]. The first assumes the
existence of negative-pressure dark energy as a dominant
component of the cosmos [2,3]. The second approach seeks
viable modifications of both general relativity (GR) and its
alternatives [4,5].
Focusing on modifications of GR, the original Lagrangian

density can be modified in two ways: (1) extending its
dependence on the curvature invariants, and (2) considering
nonminimal curvature-matter coupling. The simplest
curvature-invariant modification is fðRÞ þ 2κLm gravity
[5,6] (κ ¼ 8πG=c4 ≡ 8πG and c ¼ 1 hereafter), where
the isolated Ricci scalar R in the Hilbert-Einstein action is
replaced by the generic function of R. In this case standard
energy-momentum conservation ∇μTμν ¼ 0 continues to
hold. Further extensions have introduced dependence on
such things as the Gauss-Bonnet invariant G [4,7] and
squares of Ricci and Riemann tensors fR2

c; R2
mg [8], leading

to models with Lagrangian densities like Rþ fðGÞ þ 2κLm,
fðR;GÞ þ 2κLm andRþ fðR;R2

c; R2
mÞ þ 2κLm. In all these

models, the spacetime geometry remains minimally coupled
to the matter Lagrangian density Lm.
On the other hand, following the spirit of nonminimal

fðRÞLd coupling in scalar-field dark-energy models [9], for
modified theories of gravity an extra term λ ~fðRÞLm
was respectively added to the standard actions of GR and
fðRÞ þ 2κLm gravity in [10] and [11], which represents
nonminimal curvature-matter coupling between R and Lm.

These ideas soon attracted a lot of attention in other
modifications of GR after the work in [11], and nonminimal
coupling was introduced to other gravity models such as
generalized Gauss-Bonnet gravity [6,12] with terms like
λfðGÞLm. From these initial models, some general conse-
quences of nonminimal coupling were revealed. Most
significantly, Lm enters the gravitational field equation
directly, nonminimal coupling violates the equivalence
principle, and in general, energy-momentum conservation
is violated with nontrivial energy-momentum-curvature
transformation. In [13], fðR;LmÞ theory as the most generic
extension of GR within the dependence of fR;Lmg was
developed, while another type of nonminimal coupling, the
fðR; TÞ þ 2κLm model, was considered in [14].
In this paper, we consider modifications to GR from both

invariant-dependence and nonminimal-coupling aspects,
and introduce a new model of generic fourth-order gravity
with Lagrangian density fðR;R2

c; R2
m;LmÞ. This can be

regarded as a generalization of the fðR;LmÞ model [13] by
adding R2

c and R2
m dependence, and an extension of the

fðR;R2
c; R2

mÞ þ 2κLm model [8] by allowing nonminimal
curvature-matter coupling. Among the fourteen independent
algebraic invariants which can be constructed from the
Riemann tensor and metric tensor [15,16], besides R we
focus on Ricci square R2

c and Riemann square (Kretschmann
scalar)R2

m, not only because they are the two simplest square
invariants (as opposed to cubic and quartic invariants [16]),
but also because they provide a bridge to generalized Gauss-
Bonnet theories of gravity [6] and quadratic gravity [17,18].
By studying this model, we hope to get further insights into
the effects of nonminimal coupling and dependence on extra
curvature invariants.
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This paper is organized as follows. First of all, the field
equations for L ¼ fðR;R2

c; R2
m;LmÞ gravity are derived

and nonminimal couplings with Lm and T are compared in
Sec. II. In Sec. III, we consider an explicit dependence on
R2, and introduce the condition fR2 ¼ fR2

m
¼ −fR2

c
=4 to

smoothly transform fðR; R2; R2
c; R2

m;LmÞ gravity to the
generalized Gauss-Bonnet gravity L¼fðR;G;LmÞ; employ-
ing G, quadratic gravity is revisited and traceless models like
L ¼ fðR; R2

S; C
2;LmÞ are discussed. In Sec. IV, we commit

ourselves to understanding the energy-momentum diver-
gence problem associated with fðR;R2

c; R2
m;LmÞ gravity and

most generic L ¼ fðR1;R2;…;Rn;LmÞ gravity with non-
minimal coupling, as an application of which, the equations
of continuity and nongeodesic motion are derived in
Sec. V. Finally, in Sec. VI, two implications of non-
minimal coupling for black hole physics and wormholes
are discussed. In the Appendix generalized energy con-
ditions of fðR;R1;R2;…;Rn;LmÞ and fðR;R2

c; R2
m;LmÞ

gravity are considered. Throughout this paper, we adopt
the sign convention Rα

βγδ ¼ ∂γΓα
δβ − ∂δΓα

γβ � � � with the
metric signature ð−;þþþÞ, and follow the straightfor-
ward metric approach rather than first-order Einstein-
Palatini.

II. FIELD EQUATION AND ITS PROPERTIES

A. Action and field equations

The action we propose for a generic fourth-order theory
of gravity with possibly nonminimal curvature-matter
coupling1 is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðR; R2

c; R2
m;LmÞ; ð1Þ

where R2
c and R2

m denote the square of Ricci and Riemann
curvature tensor, respectively,

R2
c ≔ RαβRαβ; R2

m ≔ RαμβνRαμβν: ð2Þ

Varying the action [Eq. (1)] with respect to the inverse
metric gμν, we get

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
a

�
− 1

2
fgμν · δgμν þ fR · δRþ fR2

c
· δR2

c

þ fR2
m
· δR2

m þ fLm
· δLm

�
; ð3Þ

where fR ≔ ∂f=∂R, fR2
c
≔ ∂f=∂R2

c, fR2
m
≔ ∂f=∂R2

m, and
fLm

≔ ∂f=∂Lm. δR2
c and δR2

m can be reduced into varia-
tions of Riemann tensor,

δR2
c ¼ δ½Rαβ · ðgαρgβσRρσÞ� ¼ 2Rμ

αRανδgμν þ 2RμνδRα
μαν;

ð4Þ

δR2
m ¼ δ½Rαβγϵ · ðgαρgβσgγζgϵηRρσζηÞ�
¼ 4RμαβγRν

αβγ · δgμν þ 2Rαβγϵ·

× ðRρ
βγϵδgαρ þ gαρδRρ

βγϵÞ; ð5Þ

while δRλ
αβγ traces back to δΓλ

αβ through the Palatini
identity

δRλ
αβγ ¼ ∇βðδΓλ

γαÞ −∇γðδΓλ
βαÞ: ð6Þ

Also, as is well known, δΓλ
αβ ¼ 1

2
gλσð∇αδgσβ þ∇βδgσα −

∇σδgαβÞ [19,20], and we keep in mind that when raising the
indices on δgαβ a minus sign appears: δgαβ ¼ −gαμgβνδgμν.
Then, Eqs. (4)–(6) yield

fR · δR ≅ ½fRRμν þ ðgμν□−∇μ∇νÞfR� · δgμν ≕HðfRÞ
μν · δgμν;

ð7Þ

fR2
c
· δR2

c ≅ ½2fR2
c
Rμ

αRαν−∇α∇νðRμ
αfR2

c
Þ

−∇α∇μðRν
αfR2

c
Þþ□ðRμνfR2

c
Þ

þ gμν∇α∇βðRαβfR2
c
Þ� · δgμν ≕HðfR2

cÞ
μν · δgμν; ð8Þ

and

fR2
m
· δR2

m ≅ ½2fR2
m
· RμαβγRν

αβγ þ 4∇β∇αðRαμβνfR2
m
Þ� · δgμν

≕ HðfR2
mÞ

μν · δgμν: ð9Þ

Here, □≡∇α∇α represents the covariant d’Alembertian,
and the symbol ≅ denotes an effective equivalence by
neglecting a surface integral after integration by parts

twice to extract fHðfRÞ
μν ; HðfR2

cÞ
μν ; HðfR2

mÞ
μν g. Especially,

Eq. (9) has utilized the combination 2∇β∇αðRαμβνfR2
m
Þþ

2∇β∇αðRανβμfR2
m
Þ ¼ 4∇β∇αðRαμβνfR2

m
Þ, where the sym-

metry of ∇β∇αðRαμβνfR2
m
Þ under the index switch μ↔ν

is guaranteed by ∇β∇αRαμβν ¼ ∇β∇αRαμβν, ∇α∇βfR2
m
¼

∇β∇αfR2
m
as well as the μ↔ν symmetry of its remaining

expanded terms. Note that in these equations, total deriv-
atives in individual variations fδR; δR2

c; δR2
mg are not

necessarily pure divergences anymore, because the non-
trivial coefficients ffR; fR2

c
; fR2

m
g will be absorbed by the

variations into the nonlinear and higher-order-derivative

terms in fHðfRÞ
μν ; HðfR2

cÞ
μν ; HðfR2

mÞ
μν g.

1The terms geometry-matter coupling and curvature-matter
coupling are both used in this paper. They are not identical: the
former can be either nonminimal or minimal, while the latter by
its name is always nonminimal since a curvature invariant
contains at least second-order derivative of the metric tensor.
Here nonminimal coupling happens between algebraic or differ-
ential Riemannian scalar invariants and Lm, so we will mainly use
curvature-matter coupling.
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In the fLm
· δLm term in Eq. (3), we make use of the

standard definition of stress-energy-momentum (SEM)
density tensor in GR (e.g. [10–14]), which is introduced
in accordance with minimal geometry-matter coupling and
automatic energy-momentum conservation (for further
discussion see Sec. IVA),

Tμν ≔
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

ð10Þ

¼ Lmgμν − 2
δLm

δgμν
: ð11Þ

The equivalence from Eq. (10) to Eq. (11) is built
upon the common assumption that Lm does not explicitly
depend on derivatives of the metric, Lm ¼ Lmðgμν;ψmÞ ≠
Lmðgμν; ∂αgμν;ψmÞ with ψm collectively denoting all
relevant matter fields.
After somework, Eqs. (3), (7), (8), (9), and (11) eventually

give rise to the field equation for fðR; R2
c; R2

m;LmÞ gravity:

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR

þHðfR2
cÞ

μν þHðfR2
mÞ

μν ¼ 1

2
fLm

ðTμν − LmgμνÞ; ð12Þ

whereHðfR2
cÞ

μν andHðfR2
mÞ

μν were introduced in Eqs. (8) and (9)
to collect all terms arising from R2

c and R2
m dependence in f,

HðfR2
cÞ

μν þHðfR2
mÞ

μν ¼ 2fR2
c
· Rμ

αRαν þ 2fR2
m
· RμαβγRν

αβγ

−∇α∇νðRμ
αfR2

c
Þ −∇α∇μðRν

αfR2
c
Þ

þ□ðRμνfR2
c
Þ þ gμν∇α∇βðRαβfR2

c
Þ

þ 4∇β∇αðRαμβνfR2
m
Þ: ð13Þ

Note that ff; fR; fR2
c
; fR2

m
g herein are all functions of

ðR;R2
c; R2

m;LmÞ, and HðfRÞ
μν ¼ fRRμν þ ðgμν□ −∇μ∇νÞfR

has been written down directly to facilitate comparison with
GR and fðRÞ þ 2κLm or fðR;LmÞ gravity. Taking the trace
of Eq. (12), the simple algebraic equality R ¼ −T (where
T ¼ gμνTμν) in GR is now generalized to the following
differential relation:

−2fþfRRþ2fR2
c
·R2

cþ2fR2
m
·R2

mþ□ð3fRþfR2
c
RÞ

þ2∇α∇βðRαβfR2
c
þ2RαβfR2

m
Þ¼ fLm

�
1

2
T−2Lm

�
: ð14Þ

Compared with Einstein’s equation Rμν − Rgμν=2 ¼
κTμν in GR, nonlinear terms and derivatives of the metric
up to fourth order have come forth and been encoded into

fHðfRÞ
μν ; HðfR2

cÞ
μν ; HðfR2

mÞ
μν g on the left-hand side of Eq. (12).

On the right-hand side, the matter Lagrangian density
Lm explicitly participates in the field equation as a

consequence of the confrontation between nonminimal
curvature-matter coupling in fðR;R2

c; R2
m;LmÞ and the

minimal-coupling definition of Tμν in Eq. (10). Note that
not all matter terms have been moved to the right-hand side,
because − 1

2
fgμν is still Lm dependent before a concrete

fðR;R2
c; R2

m;LmÞ model gets specified and rearranged.
Also, fLm

¼ fLm
ðR;R2

c; R2
m;LmÞ represents the gravita-

tional coupling strength and never vanishes, so in vacuum
one has Lm ¼ 0 and Tμν ¼ 0, yet fLm

≠ 0. Such a generic
coupling strength fLm

will unavoidably violate Einstein’s
equivalence principle and the strong equivalence principle
unless it reduces to a constant.

B. Field equation under minimal coupling

When the matter content is minimally coupled to the
spacetime metric, the coupling coefficient fLm

reduces to
become a constant. In accordance with the gravitational
coupling strength in GR, this constant is necessarily equal
to Einstein’s constant κ (and doubled just for scaling
tradition). That is,

fLm
¼ constant ¼ 2κ; and

fðR;R2
c; R2

m;LmÞ ¼ ~fðR;R2
c; R2

mÞ þ 2κLm: ð15Þ

We have neglected the situation when fLm
is a pointwise

scalar field ϕ ¼ ϕðxαÞ, which should be treated as a scalar-
tensor theory mixed with metric gravity: in fact, ϕðxαÞLm is
also a type of nonminimal coupling, but it goes beyond the
scope of this paper and will not be discussed here. Under
minimal coupling as in Eq. (15), the field equation (12)
becomes (with tildes on ~f omitted)

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR þHðfR2

cÞ
μν

þHðfR2
mÞ

μν ¼ κTμν; ð16Þ

which coincides with the result in [8]. The weak field limit
of this minimally coupled model has been systematically
studied in [21].

C. Two types of nonminimal curvature-matter coupling

Apart from the L ¼ fðR; R2
c; R2

m;LmÞ model under
discussion, another type of curvature-matter coupling
was introduced in [14] by the L ¼ fðR; TÞ þ 2κLm model,
where a curvature invariant was nonminimally coupled to
the trace of the SEM tensor T ¼ gμνTμν rather than the
matter Lagrangian density Lm. In this spirit, we consider
the following nonminimally coupled action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ffðR;R2
c; R2

m; TÞ þ 2κLmg: ð17Þ

By the standard methods we find that its field equation is
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−
1

2
fgμν þ fR · Rμν þ ðgμν□ −∇μ∇νÞfR

þHðfR2
cÞ

μν þHðfR2
mÞ

μν ¼ −fT · ðTμν þ ΘμνÞ þ κTμν; ð18Þ

where ff; fR; fR2
c
; fTg are all functions of ðR;R2

c; R2
m; TÞ,

HðfR2
cÞ

μν þHðfR2
mÞ

μν is given by Eq. (13), −fTðTμν þ ΘμνÞ
comes from the T dependence in fðR; R2

c; R2
m; TÞ, and

Θμν ≔
gαβδTαβ

δgμν
: ð19Þ

As will be extensively discussed in Sec. V, for some matter
sources Lm cannot be uniquely specified, and therefore the
equations of continuity and motion based on Eq. (12) have
to rely on the choice of Lm. In such situations Tμν is easier
to set up than Lm, so at first glance, it seems as if the new
field equation (18) could avoid the flaws from nonminimal
Lm coupling, at the cost of employing a supplementary
matter tensor Θμν. However, the definition of Θμν is
still based on the relation Tμν ¼ Lmgμν − 2δLm=δgμν in
Eq. (11), and explicit calculations have revealed that [14]

Θμν ¼ −2Tμν þ gμνLm − 2gαβ
∂2Lm

∂gμν∂gαβ : ð20Þ

Thus, both Lm and its second-order derivative with respect
to the metric are hidden in Θμν, and consequently, both
fðR;R2

c; R2
m; TÞ þ 2κLm and fðR;R2

c; R2
m;LmÞ theories are

sensitive to the Lm in use. The equations of continuity and
nongeodesic motion will differ for different choices of Lm
for the same matter sources.
The L ¼ fðR;R2

c; R2
m;LmÞ model and the L ¼

fðR;R2
c; R2

m; TÞ þ 2κLm model are both reasonable real-
izations of nonminimal curvature-matter coupling, and in
this paper we have adopted the former case as a generali-
zation of the existing L ¼ fðR;LmÞ [13] and L ¼
fðR;R2

c; R2
mÞ þ 2κLm [8] theories. Also, it looks redundant

and unnecessary to further consider the superposition of
nonminimal Lm and T couplings, which can be depicted by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðR; R2

c; R2
m;Lm; TÞ; ð21Þ

whose field equation is

−
1

2
fgμν þ fR ·Rμν þ ðgμν□−∇μ∇νÞfR þHðfR2

cÞ
μν þHðfR2

mÞ
μν

¼ 1

2
fLm

· ðTμν −LmgμνÞ− fT · ðTμν þΘμνÞ: ð22Þ

Practically it is implicitly assumed in Eq. (21) that non-
minimal couplings happen between ðR;R2

c; R2
m;LmÞ and

ðR;R2
c; R2

m; TÞ respectively, and there is no matter-matter

Lm-T coupling which would cause severe theoretical
complexity and physical ambiguity. In fact, Lm and T
are not independent, as Eq. (11) implies that

T ¼ gαβTαβ ¼ 4Lm − 2gαβ
δLm

δgαβ
: ð23Þ

III. R2 DEPENDENCE, SMOOTH TRANSITION
TO GENERALIZED GAUSS-BONNET GRAVITY,

AND QUADRATIC GRAVITY

Generalized (Einstein-)Gauss-Bonnet gravity is perhaps
the most popular and typical situation in which there is
dependence on R and the quadratic invariants fR2

c; R2
mg

[7,22]. However, to the best of our knowledge, there is
no demonstration of how generic fourth-order model
fðR;R2

c; R2
m;LmÞ [or fðR;R2

c; R2
mÞ þ 2κLm model if

minimally coupled [8]] may be smoothly reduced into
generalized Gauss-Bonnet theories. We tackle this pro-
blem by considering an explicit dependence on R2 in
fðR;R2

c; R2
m;LmÞ gravity.

A. Two generic R2-dependent models

Based on the fðR;R2
c; R2

m;LmÞ gravity, we consider the
following situation with an explicit dependence on R2:

L ¼ fðR;R2; R2
c; R2

m;LmÞ: ð24Þ
Here we have formally split the generic R dependence
of fðR;R2

c; R2
m;LmÞ into an R and R2 dependence,

fRδR ↦ fRδRþ fR2δR2, to lay the foundation for sub-
sequent discussion. However, this fðR;R2; R2

c; R2
m;LmÞ

Lagrangian density is not more generic than
fðR;R2

c; R2
m;LmÞ by one more variable R2. Absorbing

fR2 into δR2 ¼ 2RδR by the replacement fR ↦ 2RfR2

in Eq. (7), we learn that R2 dependence would contribute to
the field equation by

fR2 ·δR2 ≅ ½2RfR2 ·Rμνþ2ðgμν□−∇μ∇νÞðR ·fR2Þ� ·δgμν

≕HðfR2Þ
μν ·δgμν; ð25Þ

and a resubstitution of fR ↦ fR þ 2RfR2 into Eq. (12)
directly yields the field equation for fðR;R2; R2

c; R2
m;LmÞ

gravity,

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR þHðfR2Þ

μν

þHðfR2
cÞ

μν þHðfR2
mÞ

μν ¼ 1

2
fLm

ðTμν − LmgμνÞ; ð26Þ

where ff; fR; fR2g and the ffR2
c
; fR2

m
g in fHðfR2

cÞ
μν þ

HðfR2
mÞ

μν g are all functions of ðR;R2; R2
c; R2

m;LmÞ.
Here we have assumed no ambiguity between the

R dependence and the R2 dependence in Eq. (24). To
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explicitly avoid this problem, one could consider a
Lagrangian density of the form

L ¼ ~fðRÞ þ fðR2; R2
c; R2

m;LmÞ: ð27Þ

However, potential coupling between R2 and Lm can still
be turned around and retreated as R − Lm coupling, so this
~fðRÞ þ fðR2; R2

c; R2
m;LmÞ model is still equally generic

with fðR; R2
c; R2

m;LmÞ as well as the fðR;R2; R2
c; R2

m;LmÞ
just above. Setting f ↦ ~f þ f and fR ↦ ~fR þ 2RfR2 in
Eq. (12), we get the field equation for Eq. (27),

−
1

2
ð ~f þfÞgμν þ ~fRRμν þ ðgμν□ −∇μ∇νÞ ~fR þHðfR2Þ

μν

þHðfR2
cÞ

μν þHðfR2
mÞ

μν ¼ 1

2
fLm

ðTμν − LmgμνÞ; ð28Þ

where ~fR ¼ ~fRðRÞ, fR2 ¼ fR2ðR2; R2
c; R2

m;LmÞ, and
ffR2

c
; fR2

m
g remain dependent on ðR;R2; R2

c; R2
m;LmÞ.

Moreover, Eq. (28) can instead be obtained from Eq. (26)
by the replacement fR ↦ ~fR.
For subsequent investigations, it will be sufficient to just

employ the former model L ¼ fðR;R2; R2
c; R2

m;LmÞ and its
field equation (26).

B. Reduced field equation with f R2 ¼ f R2
m
¼ −f R2

c
=4

Now recall that the second Bianchi identity ∇γRαμβν þ∇νRαμγβ þ∇βRαμνγ ¼ 0 implies the following simplifica-
tions, which rewrite the derivative of a high-rank curvature
tensor into that of lower-rank curvature tensors plus non-
linear algebraic terms:

∇αRαμβν ¼ ∇βRμν −∇νRμβ; ð29Þ

∇αRαβ ¼
1

2
∇βR; ð30Þ

∇β∇αRαβ ¼
1

2
□R; ð31Þ

∇β∇αRαμβν¼□Rμν−
1

2
∇μ∇νRþRαμβνRαβ−Rμ

αRαν; ð32Þ

∇α∇μRαν þ∇α∇νRαμ ¼ ∇μ∇νR − 2RαμβνRαβ þ 2Rμ
αRαν;

ð33Þ

along with the symmetry ∇β∇αRαμβν ¼ ∇β∇αRανβμ and
∇α∇μRαν þ∇α∇νRαμ ¼ 2ð□Rμν −∇β∇αRαμβνÞ. Applying
these relations to expand all the second-order covariant
derivatives in Eq. (26), it turns out that we have the
following theorem
Theorem.—When the coefficients ffR2 ; fR2

c
; fR2

m
g satisfy

the following proportionality conditions,

fR2 ¼ fR2
m
¼ −

1

4
fR2

c
≕ F; ð34Þ

where F ¼ FðR;R2; R2
c; R2

m;LmÞ, then the field equa-
tion (26) reduces to

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR

þHðFÞ
μν ¼ 1

2
fLm

ðTμν − LmgμνÞ; ð35Þ
where

HðFÞ
μν ≔2RfR2 ·Rμν−4fR2

m
·Rμ

αRανþð2fR2
c
þ4fR2

m
Þ·RαμβνRαβ

þ2fR2
m
·RμαβγR

αβγ
ν þ2Rðgμν□−∇μ∇νÞfR2

−Rμ
α∇α∇νfR2

c
−Rν

α∇α∇μfR2
c
þRμν□fR2

c

þgμν ·Rαβ∇α∇βfR2
c
þ4Rαμβν∇β∇αfR2

m

×ðwith fR2¼fR2
m
¼−fR2

c
=4Þ

≡2RF ·Rμν−4F ·Rμ
αRαν−4F ·RαμβνRαβ

þ2F ·RμαβγRν
αβγþ2Rðgμν□−∇μ∇νÞF

þ4Rμ
α∇α∇νFþ4Rν

α∇α∇μF−4Rμν□F

−4gμν ·Rαβ∇α∇βFþ4Rαμβν∇β∇αF: ð36Þ
HðFÞ

μν δgμν ¼ fFδF and second-order-derivative operators
f□;∇α∇ν; etcg only act on the scalar functions

ffR2 ; fR2
c
; fR2

m
g in contrast to HðfR2Þ

μν þHðfR2
cÞ

μν þHðfR2
mÞ

μν in
Eq. (24).2

Note that similar techniques have been employed in [23]
to finalize the field equation of the dilaton-Gauss-Bonnet
model. The simplified field equation (35) after imposing
the proportionality condition Eq. (34) to Eq. (26) will serve
as a bridge connecting fðR;R2; R2

c; R2
m;LmÞ gravity to

generalized Gauss-Bonnet gravity. We refer to the propor-
tionality condition Eq. (34) as the coherence condition to
highlight the fact that it aligns the behaviors of
ffR2 ; fR2

c
; fR2

m
g, and call F therein the coherence function.

C. Generalized Gauss-Bonnet gravity with
nonminimal coupling

1. Generic L ¼ f ðR;G;LmÞ model

A nice way to realize the coherence condition Eq. (34) is
to let fR2; R2

c; R2
mg participate in the action through the

well-known Gauss-Bonnet invariant G,

G ≔ R2 − 4R2
c þ R2

m: ð37Þ

In this case, Eq. (24) reduces to become the Lagrangian
density of a generalized Gauss-Bonnet gravity model
allowing nonminimal curvature-matter coupling,

2This is also why we use the denotationHðFÞ
μν rather than HðFÞ

μν .
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L ¼ fðR;G;LmÞ: ð38Þ
Then the proportionality in Eq. (34) is naturally satisfied
with the coherence function F recognized as fG ≔ ∂f=∂G.
Given F ↦ fG, Eqs. (36) and (35) give rise to the field
equation for fðR;G;LmÞ gravity right away,

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR

þHðGBÞ
μν ¼ 1

2
fLm

ðTμν − LmgμνÞ; ð39Þ

where

HðGBÞ
μν ≔ 2fG · RRμν − 4fG · Rμ

αRαν − 4fG · RαμβνRαβ

þ 2fG · RμαβγRν
αβγ þ 2Rðgμν□ −∇μ∇νÞfG

þ 4Rμ
α∇α∇νfG þ 4Rν

α∇α∇μfG − 4Rμν□fG

− 4gμν · Rαβ∇α∇βfG þ 4Rαμβν∇β∇αfG; ð40Þ

and ff; fR; fGg are all functions of ðR;G;LmÞ, and

HðGBÞ
μν δgμν ¼ fGδG.

2. No contributions from pure Gauss-Bonnet term

As for the G dependence, Eqs. (39) and (40) are best
simplified when fG ¼ λ ¼ constant; that is to say, G joins L
straightforwardly as a pure Gauss-Bonnet term, with
Lagrangian density L ¼ fðR;LmÞ þ λG, for which
Eq. (39) gives rise to the field equation [with f ¼
fðR;LmÞ, fR ¼ fRðR;LmÞ]:

λ ·

�
−
1

2
Ggμν þ 2RRμν − 4Rμ

αRαν − 4RαμβνRαβ

þ 2RμαβγRν
αβγ

�
−
1

2
fgμν þ fRRμν

þ ðgμν□ −∇μ∇νÞfR ¼ 1

2
fLm

ðTμν − LmgμνÞ: ð41Þ

At first glance, it may seem that, after G decouples from
fðR;G;LmÞ to form a pure term λG, the isolated covariant
density λ

ffiffiffiffiffiffi−gp
G would still make a difference to the field

equation by the λ · ð� � �Þ term in Eq. (41). This result
conflicts our a priori anticipation that, since G is a
topological invariant, variation of the Euler-Poincaré topo-
logical density

ffiffiffiffiffiffi−gp
G should not change the gravitational

field equation. In fact, by setting fR2 ¼ fR2
c
¼ fR2

m
¼ 1 in

Eqs. (8), (9), and (25), one has

δR2=δgμν ¼ 2RRμν þ 2ðgμν□ −∇μ∇νÞR; ð42Þ

δR2
c=δgμν ¼ 2Rμ

αRαν −∇α∇νRμ
α −∇α∇μRν

α

þ□Rμν þ gμν ·∇α∇βRαβ; ð43Þ
and

δR2
m=δgμν ¼ 2RμαβγRν

αβγ þ 4∇β∇αRαμβν; ð44Þ
which together with the Bianchi implications Eqs. (29)–
(33) exactly lead to

δð ffiffiffiffiffiffi
−g

p
GÞ=δgμν ¼ −

1

2
Ggμν þ 2RRμν − 4Rμ

αRαν

− 4RαμβνRαβ þ 2RμαβγRν
αβγ: ð45Þ

Thus one can recover the term λ · ð� � �Þ in Eq. (41) by
directly varying the quadratic invariants comprising G.
However, in four dimensions G is a most special invariant

among all algebraic and differential Riemannian invariants
R ¼ Rðgαβ; Rαμβν;∇γRαμβν;…;∇γ1∇γ2 ;…;∇γnRαμβνÞ in
the sense that it respects the Bach-Lanczos identity

δ

Z
dx4

ffiffiffiffiffiffi
−g

p
G≡ 0; ð46Þ

which prevents the Gauss-Bonnet covariant density
λ

ffiffiffiffiffiffi−gp
G from contributing to the field equation. This

identity can be verified by carrying out the variational
derivative [19,24]

δð ffiffiffiffiffiffi−gp
GÞ

δgμν
¼ ∂ð ffiffiffiffiffiffi−gp

GÞ
∂gμν − ∂α

∂ð ffiffiffiffiffiffi−gp
GÞ

∂ð∂αgμνÞ
þ ∂α∂β

∂ð ffiffiffiffiffiffi−gp
GÞ

∂ð∂α∂βgμνÞ
≡ 0: ð47Þ

On the other hand, algebraic identities satisfied by the
Riemann tensor also guarantee that − 1

2
Ggμν þ 2RRμν −

4Rμ
αRαν − 4RαμβνRαβ þ 2RμαβγRν

αβγ ¼ 0 [19].
Hence, the λ · ð� � �Þ term in Eq. (41), as a remnant

of degrading the generic fðR;G;LmÞ gravity and all
existing generalized Gauss-Bonnet theories, is removable,
and Eq. (41) for L ¼ fðR;LmÞ þ λG gravity finally
becomes

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR

¼ 1

2
fLm

ðTμν − LmgμνÞ; ð48Þ
which coincides with the field equation of L ¼ fðR;LmÞ
gravity [13]. Although a pure Gauss-Bonnet term in the
Lagrangian density cannot change the gravitational field
equation δð ffiffiffiffiffiffi−gp

LÞ=δgμν ¼ 0, it does join the dynamical
equation δð ffiffiffiffiffiffi−gp

LÞ=δϕ ¼ 0 when G is coupled to a scalar
field ϕðxaÞ (e.g. [23]), and can still cause nontrivial effects
in other aspects (e.g. [17]).

3. Recovery of some typical models

fðR;G;LmÞ is the maximally generalized Gauss-Bonnet
gravity when fR;G;Lmg are the only scalar invariants
taken into account, and all existing ðR;G;LmÞ-dependent
models can be recovered as a specialized fðR;G;LmÞ
gravity. For example, For a detailed review of generalized
Gauss-Bonnet gravity, see [6] in which various types of
nonminimal coupling are also extensively discussed.
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Reference Lagrangian density Specialization

[7] R
2κ2

þ fðGÞ þ Lm fR ↦ 1=ð2κ2Þ
fG ↦ fG
fLm

↦ 1
[12] R

2
þ Lm þ λfðGÞLm fR ↦ 1=2

fG ↦ λLmfG
fLm

↦ 1þ λfðGÞ
[12] R

2
þfðGÞþLmþ λFðGÞLm fR ↦ 1=2

fG ↦ fGþ λLmFG
fLm

↦ 1þ λFðGÞ
[22] fðR;GÞ þ 2κLm fR ↦ fR

fG ↦ fG
fLm

↦ 2κ

D. Quadratic gravity

Following the discussion of (generalized) Gauss-Bonnet
gravity, we would like to revisit the simplest case with R2

c
dependence (and R2

m dependence), the so-called quadratic
gravity (eg. [17]):

L¼Rþ ~a ·R2þ ~b ·R2
cþ ~c ·R2

mþ ~d ·R2
Sþ ~e ·C2þ2κLm

¼Rþð ~a− ~c− ~d=4−2~e=3Þ ·R2

þð ~bþ4~cþ ~dþ2~eÞ ·R2
cþð~cþ ~eÞ ·Gþ2κLm ð49Þ

≅ Rþ a · R2 þ b · R2
c þ 2κLm: ð50Þ

The first row is a general linear superposition of some
popular quadratic invariants fR2; R2

c; R2
m; R2

S; C
2g with

constant coefficients f ~a; ~b;…g, where fR2
S ¼ R2

c −
R2=4; C2 ¼ R2

m − 2R2
c þ R2=3g respectively denote the

square of traceless Ricci tensor and Weyl tensor (see the
next subsection). In Eq. (50) the pure Gauss-Bonnet term
ð~cþ ~dÞ · G has been neglected for reasons indicated above.
Substitution of

fR ↦ 1; fR2 ↦ a; fR2
c
↦ b;

fR2
m
↦ 0 and fLm

↦ 2κ ð51Þ
into Eq. (26) and Eq. (13) yields the field equation for the
quadratic Lagrangian density Eq. (50),

−
1

2
ðRþ a · R2 þ b · R2

cÞgμν þ ð1þ 2aRÞRμν

þ 2aðgμν□ −∇μ∇νÞRþHðQRcÞ
μν ¼ κTμν; ð52Þ

where

HðQRcÞ
μν ¼ b · ð2Rμ

αRαν −∇α∇νRμ
α −∇α∇μRν

α

þ□Rμν þ gμν∇α∇βRαβÞ: ð53Þ
Moreover, via the Bianchi implications Eq. (31) and
Eq. (33), HðQRcÞ

μν can be rewritten as

HðQRcÞ
μν ¼ b ·

�
2RαμβνRαβþ

�
1

2
gμν□−∇μ∇ν

�
Rþ□Rμν

�
:

ð54Þ

Using this to rewrite Eq. (52), we obtain the commonly
used form of the field equation [17,18].
On the other hand, one can instead drop the Ricci square

in favor of the Kretschmann scalar, and accordingly
manipulate Eq. (49) via

L¼Rþð ~aþ ~b=4− ~e=6Þ ·R2þð ~b=4þ ~cþ ~d=4þ2~eÞ=2 ·R2
m

−ð ~b=4þ ~d=4− ~e=2Þ ·Gþ2κLm

≅Rþa ·R2þb ·R2
mþ2κLm: ð55Þ

Now, substitute fR ↦ 1, fR2 ↦ a, fR2
c
↦ 0, fR2

m
↦ b and

fLm
↦ 2κ into Eqs. (26) and (13) to obtain

−
1

2
ðRþ a · R2 þ b · R2

mÞgμν þ ð1þ 2aRÞRμν

þ 2bðgμν□ −∇μ∇νÞRþHðQRmÞ
μν ¼ κTμν; ð56Þ

where

HðQRmÞ
μν ¼ b · ð2RμαβγRν

αβγ þ 4∇β∇αRαμβνÞ; ð57Þ

and HðQRmÞ
μν can be recast by the Bianchi property Eq. (33)

into

HðQRmÞ
μν ¼ b · ð2RμαβγRν

αβγ þ 4RαμβνRαβ

− 4Rμ
αRαν þ 4□Rμν − 2∇μ∇νRÞ: ð58Þ

E. Field equations with traceless Ricci
and Riemann squares

It is worthwhile to mention that, as is well known
in Riemann geometry, many other tensors can be built
algebraically out of fR2; Rαβ; Rαμβνg with their squares
recast into fR;R2

c; R2
mg, such as the traceless Ricci tensor,

traceless Riemann tensor (Weyl tensor), Schouten tensor,
Plebanski tensor, Bel-Robinson tensor, etc. It can be
convenient or sometimes preferable for specific purposes
to employ these tensors in the field equation, so in this
subsection we will take a quick look at how the squares of
these tensors in the Lagrangian density contribute to the
gravitational field equation. It is unnecessary to exhaust all
these tensors here and we will just consider the squares of
traceless Ricci tensor and Weyl tensor as an example.

1. Traceless Ricci square

The traceless counterpart of Ricci tensor Sαβ
(gαβSαβ ¼ 0) and its square (denoted as R2

S) is
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Sαβ ¼ Rαβ −
1

4
Rgαβ ⇒ R2

S ≔ SαβSαβ ¼ R2
c −

1

4
R2: ð59Þ

Consider fð…; R2
SÞ as a generic function of R2

S, where …
collects the dependence on all other possible scalar invar-
iants, and the variation δfð…; R2

SÞ ¼ δfð…; R2
c − R2=4Þ

yields

fR2
S
· δR2

S ¼ fR2
S
·

�∂R2
S

∂R2
c
δR2

c þ
∂R2

S

∂R δR

�

¼ fR2
S
·
�
δR2

c −
1

2
RδR

�
: ð60Þ

Absorbing fR2
S

into δR2
c by replacing fR2

c
with fR2

S
in Eq. (8), merging RfR2

S
into δR by replacing fR with

RfR2
S
in Eq. (7), and finally replacing all Ricci tensors in

fR2
S
δR2

c and RfR2
S
δR by their traceless counterparts

Rαβ ¼ Sαβ þ Rgαβ=4, then fR2
S
· ðδR2

c − 1
2
RδRÞ ¼ fR2

S
· δR2

S

becomes

fR2
S
· δR2

S ¼
�
2fR2

S
SμαSαν −

1

2
RfR2

S
Sμν −∇α∇νðSμαfR2

S
Þ

−∇α∇μðSναfR2
S
Þ þ□ðSμνfR2

S
Þ

þ gμν∇α∇βðSαβfR2
S
Þ
�
· δgμν ≕ H

ðfR2
SÞ

μν · δgμν;

ð61Þ

which is consistent with the field equation in [25]. Thus, for
a Lagrangian density dependent on the traceless Ricci
square L ¼ fð…; R2

SÞ, the contributions of fR2
S
· δR2

S to the

field equation is just H
ðfR2

SÞ
μν as in Eq. (61).

2. Weyl square

Being the totally traceless part of the Riemann tensor in
the Ricci decomposition, the Weyl conformal tensor Cαβγδ

(gαγgβδCαβγδ ¼ 0) and its square (denoted as C2) are

Cαβγδ ¼ Rαβγδ þ
1

2
ðgαδRβγ − gαγRβδ þ gβγRαδ − gβδRαγÞ

þ 1

6
ðgαγgβδ − gαδgβγÞR ð62Þ

and

C2 ≔ CαμβνCαμβν ¼ R2
m − 2R2

c þ
1

3
R2

¼ R2
m − 2R2

S −
1

6
R2 ¼ Gþ 2R2

c −
2

3
R2: ð63Þ

Given a function fð…; C2Þ ¼ fð…; R2
m − 2R2

c þ R2=3Þ ¼
fð…; R2

m − 2R2
S − R2=6Þ ¼ fð…;Gþ 2R2

c − 2R2=3Þ, the
variation δfð…; C2Þ yields

fC2 · δC
2 ¼ fC2 ·

�
δR2

m − 2δR2
c þ

2

3
RδR

�

¼ fC2 ·

�
δR2

m − 2δR2
S −

1

3
RδR

�

¼ fC2 ·

�
δGþ 2δR2

c −
4

3
RδR

�
: ð64Þ

Which of these expressions is most convenient to use will
depend on which other Riemann invariants are involved in
the Lagrangian density. As such we stop at this stage: the

exact expression of HðfC2Þ
μν δgμν ≔ fC2 · δC

2 depends on
which expansion we choose for C2.

IV. NONMINIMAL COUPLING AND
ENERGY-MOMENTUM DIVERGENCE

From this section on, we switch our attention to another
important aspect of L ¼ fðR;R2

c; R2
m;LmÞ gravity: the

stress-energy-momentum-conservation problem. Taking
the contravariant derivative of the field equation (12), we
find

fLm
∇μTμν ¼ ðLmgμν − TμνÞ∇μfLm

− fR∇νR − fR2
c
∇νR2

c

− fR2
m
∇νR2

m þ 2∇μHðfRÞ
μν þ 2∇μHðfR2

cÞ
μν

þ 2∇μHðfR2
mÞ

μν ; ð65Þ

where ff; fR; fR2
c
; fR2

m
g remain as functions of the invar-

iants ðR; R2
c; R2

m;LmÞ, and fHðfRÞ
μν ; HðfR2

cÞ
μν ; HðfR2

mÞ
μν g have

already been concretized in Eqs. (7)–(9). However, despite
the extended variable dependence in fRðR;R2

c; R2
m;LmÞ as

opposed to fðRÞ þ 2κLm gravity, we still have3

1

2
ð−fR∇νRþ 2∇μHðfRÞ

μν Þ ¼ − fR∇μ

�
1

2
Rgμν

�

þ∇μðfR · RμνÞ þ ð∇ν□−□∇νÞfR ¼ 0: ð66Þ

It vanishes as a consequence of the contracted Bianchi
identity∇μðRμν−Rgμν=2Þ¼0 and the third-order-derivative
commutation relation ð□∇ν−∇ν□ÞfR¼Rμν∇νfR. Thus,
Eq. (65) further reduces to

fLm
∇μTμν ¼ ðLmgμν − TμνÞ∇μfLm

− fR2
c
∇νR2

c − fR2
m
∇νR2

m

þ 2∇μHðfR2
cÞ

μν þ 2∇μHðfR2
mÞ

μν ; ð67Þ

which constitutes the equation of energy-momentum diver-
gence in fðR;R2

c; R2
m;LmÞ gravity. It can be regarded as a

3This is actually the stress-energy-momentum conservation
condition of fðRÞ gravity with Lagrangian density L ¼ fðRÞ þ
2κLm and field equation −fðRÞgμν=2þ fRRμν þ ðgμν□−
∇μ∇νÞfR ¼ κTμν, except that fR ¼ fRðRÞ.
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generalization of the following divergence equation in
fðR;LmÞ gravity [13],

∇μTμν ¼ ðLmgμν − TμνÞ∇μ ln fLm
; ð68Þ

with ∇μ ln fLm
≡ f−1Lm

∇μfLm
, which in turn can be recov-

ered from Eq. (67) by setting fR2
c
¼ 0 ¼ fR2

m
.

In standardGR,∇μTμν ¼ 0 is themathematical expression
of conservation of stress-energy momentum. However, for
our models it is clear that this does not vanish and so this
fundamental conservation law does not hold in the standard
form. Then, how do we understand the energy-momentum
nonconservation/divergence equation (67)? Is it further
reducible and how does it influence the equations of con-
tinuity and motion given concrete matter sources? We will
investigate these questions in a more generic framework.

A. Automatic energy-momentum conservation
under minimal coupling

Consider a generic gravitational Lagrangian LG ¼
fðRÞ, where fðRÞ is an arbitrary function of an
(nþ 2)-order algebraic (n ¼ 0) or differential (n ≥ 1)
Riemannian invariant R:

R¼Rðgαβ;Rαμβν;∇γRαμβν;…;∇γ1∇γ2…∇γnRαμβνÞ; ð69Þ

so that variational derivative of the covariant densityffiffiffiffiffiffi−gp
LG will lead to a ð2nþ 4Þ-order model of gravity.

Such an LG ¼ fðRÞ is still a covariant invariant for which
Noether’s conservation law would yield [26]

∇μ

�
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

fðRÞÞ
δgμν

�
¼ 0; ð70Þ

which can be expanded into

fRðRÞ ·∇νR¼ 2∇μHðfRÞ
μν with HðfRÞ

μν · δgμν ≔ fR · δR;

ð71Þ
where HðfRÞ

μν is defined the same way as fHðfRÞ
μν ;

HðfR2
cÞ

μν ; HðfR2
mÞ

μν g in Eqs. (7)–(9). It absorbs fR into δR
and collects all nonlinear and higher-order terms generated
by fR · δR.
These results can be directly generalized to the situation

where LG relies on multiple Riemannian invariants,
LG ¼ fðR1;R2;…;RpÞ≡ LGðgαβ; Rαμβν;∇γRαμβν;…;
∇γ1∇γ2…∇γqRαμβνÞ, and we have

X
i

fRi
∇νRi ¼ 2

X
i

∇μHðfRiÞ
μν

with HðfRiÞ
μν · δgμν ≔ fRi

· δRi; ð72Þ

where fRi
¼ fRi

ðR1;R2;…;RpÞ, with each Ri given
by Eq. (69) to certain order derivatives of Riemann

tensor, and HðfRiÞ
μν ¼ HðfRiÞ

μν ðR1;R2;…;RpÞ absorbs fRi

into δRi.
Since fðR1;R2;…;RpÞ is a purely geometric entity

solely dependent on the metric and derivatives of Riemann
tensor, Eqs. (71) and (72) arising from Noether’s theorem
are also called the “generalized (contracted) Bianchi
identities” [26,27]. As the simplest example, when
fðR1;R2;…;RpÞ ¼ R, Eq. (71) or Eq. (72) immediately
reproduces the standard contracted Bianchi identity
∇μðRμν − Rgμν=2Þ ¼ 0 which is often used in GR.
On the other hand, for the matter Lagrangian density Lm,

Noether’s conservation law yields

∇μ

�
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

�
¼ 0 ¼ −

1

2
∇μTμν

with Tμν ≔
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

; ð73Þ

where Tμν is the standard stress-energy-momentum
(SEM) tensor as in Eq. (10). This way of defining Tμν

from Noether’s law therefore naturally guarantees energy-
momentum conservation ∇μTμν ¼ 0. Moreover, in the case
of minimal coupling, it is unnecessary to consider a
covariant matter density of the form

ffiffiffiffiffiffi−gp
hðLmÞ, since

hðLmÞ can always be treated as a whole, hðLmÞ ↦ ~Lm.
Hence, for a generic Lagrangian density where Lm is

minimally coupled to the spacetime geometry,

L ¼ LG þ 2κLm ¼ fðR1;R2;…;RpÞ þ 2κLm; ð74Þ

and whose field equation arises from extremizing the action

or equivalently 1ffiffiffiffi−gp δð ffiffiffiffi−gp
LÞ

δgμν ¼ 0:

−
1

2
fgμν þ

X
i

HðfRiÞ
μν ¼ κTμν; ð75Þ

the generalized contracted Bianchi identities Eq. (72) for
pure geometric LG together with the Noether-type defi-
nition of Tμν in Eq. (73) yield that contravariant derivatives
of the left(geometry)- and right(matter)-hand side of the
field equation (75) vanish independently.4 This ensures

4Instead of directly starting from Eq. (10), one can consider
Tμν from the perspective of diffeomorphism (or gauge) invariance
by requiring that the total action SG þ Sm be invariant under
an arbitrary and infinitesimal active transformation gμν ↦ gμνþ
δζgμν ¼ gμν þ∇μζν þ∇νζμ, where ζμ vanishes at the boundary,

δSm ¼ −
1

2
δ

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμνδgμν ¼ δ

Z
d4x

ffiffiffiffiffiffi
−g

p ð∇μTμνÞζν:
ð76Þ

Now the automatic conservation ∇μTμν ¼ 0 would become a
consequence of the (generalized) Bianchi identities which arise
from the diffeomorphism invariance of SG. Both ways trace back
to Noether’s law.
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automatic fulfillment of energy-momentum conservation in
any minimally coupled gravity theories of the form
Eqs. (74) and (75), such as L ¼ fðR;R2

c; R2
mÞ þ 2κLm

gravity and L ¼ fðR;GÞ þ 2κLm gravity.

B. Divergence of SEM tensor under
nonminimal coupling

Now consider a generic Lagrangian density L ¼
fðR1;…;Rp;LmÞ which allows nonminimal coupling
between Lm and Riemannian invariants Ri. Noether’s
law yields the following equation for the divergence of
the energy-momentum tensor:

∇μ

�
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

fðR1;…;Rp;LmÞÞ
δgμν

�
¼ 0; ð77Þ

with expansion

fLm
∇μTμν ¼ ðLmgμν − TμνÞ∇μfLm

−
X
i

fRi
∇νRi þ 2

X
i

∇μHðfRiÞ
μν ; ð78Þ

where ffLm
; fRi

g are all dependent on ðR1…;Rp;LmÞ,
and HðfRiÞ

μν δgμν ≔ fRi
δRi as usual. Note that “conserva-

tion” of
ffiffiffiffiffiffi−gp

fð;…;Rp;LmÞ yields an unavoidable “diver-
gence” term ðLmgμν − TμνÞ∇μfLm

essentially because of
how Tμν was defined; that is to say, for the nonminimally
coupled L ¼ fðR1;…;Rp;LmÞ under discussion, we have
continued to use the definition of Tμν from Eq. (73) which
was adapted to minimal coupling. Also, for L ¼
fðR;R1;…;Rp;LmÞ gravity where the first invariant is
identified as the Ricci scalar, the same argument as

Eq. (66) yields that −fR∇νRþHðfRÞ
μν ¼ 0 for fR ¼

fRðR;R1;…;Rp;LmÞ.
For the moment, we cannot directly use Eq. (72) to

eliminate −
P

ifRi
∇νRi by 2

P
i∇μHðfRiÞ

μν in Eq. (78) as
they are no longer purely geometric entities. In principle,
the coefficient fRi

¼ fRi
ðR1;…;Rp;LmÞ allows for arbi-

trary dependence on Lm, and this complexity gets even
further promoted after taking the contravariant derivative

of the effective tensor HðfRiÞ
μν ðfRi

Þ. Also, note that, for
the Lagrangian density L ¼ fðR;R2

c; R2
m;LmÞ and L ¼

fðR;LmÞ, the generic result Eq. (78) soon recovers
Eqs. (65) and (68), which were obtained in an alternative
way from directly taking contravariant derivatives of their
field equation.
As we have already learned, in Eq. (78) the term

ðLmgμν − TμνÞ∇μfLm
originates from the contradiction

between the nonminimal Ri − Lm coupling and the
minimal definition of Tμν. However, how can we under-
stand the other divergence terms −

P
ifRi

∇νRi and

2
P

i∇μHðfRiÞ
μν ? Fortunately, investigations of L ¼ ~fðRÞ þ

2κLm þ fðRÞLm gravity shed some light on this question.

C. Lessons from ~f ðRiÞ þ 2κLm þ f ðRiÞLm model

Now, consider a further specialized model with
Lagrangian density

L ¼ ~fðR1;…;RpÞ þ 2κLm þ fðR1;…;RqÞ · Lm: ð79Þ
Section IVA has shown us that energy-momentum con-
servation (divergence freeness) is automatically satisfied
for the minimally coupled component ~fðR1;…;RpÞþ
2κLm, so we just need to concentrate on the nonminimally
coupled term fðR1;…;RqÞ · Lm. Following the discussion
in Sec. IV B just above, treat fðR1;…;RqÞ · Lm as an
invariant, so that Noether conservation of the covariant
Lagrangian density

ffiffiffiffiffiffi−gp
fðR1;…;RqÞ · Lm yields

∇μ

�
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

fðR1;…;RqÞ · LmÞ
δgμν

�
¼ 0; ð80Þ

which in turn implies that

f∇μTμν ¼ ðLmgμν − TμνÞ∇μf −
X
i

fRi
ðR1;…;RqÞ

× ·∇νRi þ 2
X
i

∇μ

�
LmfRi

· δRi

δgμν

�
: ð81Þ

Note that in the last term, LmfRi
ðR1;…;RqÞ · δRi acts as

a unity rather than a triple multiplication and cannot be
expanded via the product rule when acted upon by ∇μ: In

fact, LmfRi
ðR1;…;RqÞ · δRi ≕ HðLmfRiÞ

μν · δgμν and thus
LmfRi

is merged into δRi.
Now recall that, based on the Petrov and Serge classi-

fications, there are 14 independent algebraic Riemannian
invariants I ¼ Iðgαβ; RαμβνÞ characterizing a four-
dimensional spacetime [15,16], among which nine are
of even parity and five are of odd parity, though this
minimum set can be slightly expanded after considering the
matter content. As a special example of Eq. (81), energy-
momentum divergence of the nonminimally coupled
Lagrangian fðI1;…; I9Þ · Lm was studied in [28], where
fI1;…; I9g refer to the nine parity-even algebraic

Riemannian invariants. Explicit calculations of HðLmfI iÞ
μν

and ∇μHðLmfI iÞ
μν show that [28], for each individual I i in

L ¼ fðI i;LmÞ,

−fI i
ðI iÞ · ∇νI i þ 2∇μ

�
LmfI i

ðI iÞ · δI i

δgμν

�
¼ 0; ð82Þ

and most generally for fðI1;…; I9Þ · Lm with an arbitrary
multiple dependence of these nine invariants,

−
X
i

fI i
ðI1;…; I9Þ ·∇νI i

þ 2
X
i

∇μ

�
LmfI i

ðI1;…; I9Þ · δI i

δgμν

�
¼ 0: ð83Þ
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Hence, the equation of energy-momentum divergence
for L ¼ ~fðI1;…; I9Þ þ 2κLm þ fðI1;…; I9Þ · Lm grav-
ity finally becomes

fðI1;…; I9Þ ·∇μTμν ¼ ðLmgμν − TμνÞ ·∇μfðI1;…; I9Þ:
ð84Þ

D. Conjecture for energy-momentum divergence

Now, let us summarize the facts we have confirmed
so far:
(1) In the simplest L ¼ fðR;LmÞ gravity [13], one

has −fR∇νRþ 2∇μHðfRÞ
μν ¼ 0, so R dependence

in L ¼ f makes no contribution and ðLmgμν −
TμνÞ∇μfLm

is the only energy-momentum diver-
gence term.

(2) In L ¼ fðR;R1;R2;…;Rp;LmÞ gravity,

−fR∇νRþ 2∇μHðfRÞ
μν ¼ 0 for fR ¼ fRðR;R1;R2;

…;Rp;LmÞ.
(3) In L ¼ ~fðI1;…; I9Þ þ 2κLm þ fðI1;…; I9Þ · Lm

gravity [28], one has individually −fI i
ðI iÞ · ∇νI i þ

2∇μHðLmfIiÞ
μν ¼ 0 and collectively −

P
ifIðI iÞ·

∇νI i þ 2
P

i∇μHðLmfIiÞ
μν ¼ 0, so ðLmgμν − TμνÞ

∇μfLm
is the only nonconservation term, while I i

dependence in f · Lm makes no contribution.
(4) In the case of minimal coupling, all algebraic and

differential Riemannian invariants Ri act equally
and indiscriminately in front of Noether’s conserva-
tion law and generalized Bianchi identities.

Starting with these results, the belief that for the situation
of generic nonminimal curvature-matter coupling all
Riemannian invariants continue to play equal roles in
energy-momentum conservation/divergence leads us to
propose the following.

1. Weak conjecture

Consider a Lagrangian density allowing generic non-
minimal coupling between the matter density Lm and
Riemannian invariants R,

L ¼ fðR1;R2…;Rn;LmÞ; ð85Þ

where

Ri ¼ Riðgαβ; Rαμβν;∇γRαμβν;…;∇γ1∇γ2…∇γmRαμβνÞ:

Then contributions from the Ri dependence of L ¼ f
in the Noether-induced divergence equation cancel out
collectively,

−
X
i

fRi
· ∇νRi þ 2

X
i

∇μHðfRiÞ
μν ¼ 0; ð86Þ

and the equation of energy-momentum conservation/diver-
gence takes the form5

fLm
·∇μTμν ¼ ðLmgμν − TμνÞ ·∇μfLm

; ð87Þ

where HðfRiÞ
μν ≔ fRi

ðR1;…;LmÞ·δRi

δgμν , fRi
¼ fRi

ðR1;…;LmÞ,
and fLm

¼ fLm
ðR1;…;Rn;LmÞ.

Moreover, inspired by the behavior of R in Eq. (66)

that −fR∇νRþ 2∇μHðfRÞ
μν ¼ 0 in spite of fR ¼

fRðR;R2
c; R2

m;LmÞ, we further promote the weak conjecture
to the following.

2. Strong conjecture

For every Riemannian invariant Ri in L ¼
fðR1;R2…;Rn;LmÞ, the divergence terms arising from
each Ri dependence in L ¼ f cancel out individually,

−fRi
· ∇νRi þ 2∇μHðfRiÞ

μν ¼ 0; ð88Þ

and the equation of energy-momentum conservation/diver-
gence remains the same as in Eq. (87),

fLm
·∇μTμν ¼ ðLmgμν − TμνÞ ·∇μfLm

:

Specifically, when the possible nonminimal coupling
reduces to ordinary minimal coupling, Eq. (85) will be
specialized into L ¼ fðR1;…;RnÞ þ 2κLm as in Eq. (74),
so Eqs. (86) and (88) in the weak conjecture are naturally
satisfied because of the generalized Bianchi identities
Eqs. (71) and (72). Also, if the conjecture were correct,
then the generalized Bianchi identities Eqs. (71) and (72)
could be generalized again, and they cannot serve as a
sufficient condition for judging minimal coupling.
Furthermore, reading left to right the nonconservation

equation (87) clearly shows that the energy-momentum
divergence is transformed into the gradient of nonminimal
gravitational coupling strength fLm

. On the other hand, if
the weak or even the strong conjecture were true, does it
mean that differences between the set of Riemannian
invariants which the Lagrangian density depends on are
trivial? The answer is of course no, because the gradient
∇μfLm

is superposed by the gradient of Lm and the
gradients of all characteristic Riemannian invariants Ri
used in L ¼ f:

5When talking about its nontrivial divergence, Tμν can be
effectively understood as the TðNCÞ

μν which comes from the Lm
under nonminimal coupling; the contribution TðMCÞ

μν to the total
SEM tensor by an isolated (i.e. minimally coupled) covariant
matter density

ffiffiffiffiffiffi−gp
Lm automatically satisfies the standard

stress-energy-momentum conservation.
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fLm
∇μTμν¼ðLmgμν−TμνÞ·

×

�
fLmLm

·∇μLmþ
X
i

fLmRi
·∇μRi

�
; ð89Þ

where fLmLm
¼ ∂fLm

=∂Lm, fLmRi
¼ ∂fLm

=∂Ri. Note
that, if we adopt Eq. (89) rather than Eq. (87) as the
final form of nonconservation equation, the coefficient
ðLmgμν − TμνÞ ¼ 2δLm=δgμν associated to the divergences
f∇μLm;∇μRig helps to clarify that they exclusively come
from the Lm-dependence in L ¼ f.
Following the weak conjecture, we now formally rewrite

the divergence equation (67) for fðR;R2
c; R2

m;LmÞ gravity
into

fLm
∇μTμν ¼ ðLmgμν − TμνÞ∇μfLm

þ Eν; ð90Þ

where

Eν ≔ −fR2
c
∇νR2

c − fR2
m
∇νR2

m þ 2∇μHðfR2
cÞ

μν þ 2∇μHðfR2
mÞ

μν ;

ð91Þ

and Eν is expected to vanish by the weak conjecture, while
Eν ≡ 0 trivially holds under minimal coupling because of
generalized Bianchi identities. Since we have not yet
proved that Eν ¼ 0, we preserve Eν in the divergence
equation (90) and proceed to use it to check the equations
of continuity and motion with different matter sources.

V. EQUATIONS OF CONTINUITY AND
NONGEODESIC MOTION

Once the matter content in the spacetime is known,
Eq. (90) can be concretized in accordance with the
particular forms of Tμν, which would imply the equations
of continuity of the energy-matter content and the equation
of (nongeodesic) motion for a test particle.6 This topic will
be studied in this section, and note that Tμν and Lm will be
adapted to the ð−;þþþÞ metric signature.

A. Perfect fluid

The stress-energy-momentum (SEM) tensor of a perfect
fluid (no internal viscosity, no shear stresses, and zero
thermal-conductivity coefficients) with mass-energy den-
sity ρ ¼ ρðxαÞ, isotropic pressure P ¼ PðxαÞ and equation
of state P ¼ wρ, is given by [20]

TðPFÞ
μν ¼ ðρþ PÞuμuν þ Pgμν

¼ ρuμuν þ Pðgμν þ uμuνÞ
¼ ρuμuν þ Phμν; ð92Þ

where uμ is the four-velocity along the worldline, satisfying
uμuμ ¼ −1 and uμ∇νuμ ¼ 0; hμν is the projected spatial
3-metric, hμν ≔ gμν þ uμuν with inverse hμν ¼ gμν þ uμuν,
hμνuμ ¼ 0, and hμνhμν ¼ 3. Substituting Eq. (92) into
Eq. (90) and multiplying both sides by uν, we get

uμ∇μρþ ðρþ PÞ∇μuμ ¼ −ðLm þ ρÞuμ∇μ ln fLm

− f−1Lm
uνEν; ð93Þ

which generalizes the original continuity equation of
perfect fluid in GR, uμ∇μρþ ðρþ PÞ∇μuμ ¼ 0.
On the other hand, after putting Eq. (92) back to Eq. (90),

use hξν to project the free index ν, and it follows that

ðρþ PÞ · uμ∇μuξ ¼ −hξμ ·∇μPþ hξμ·ðLm − PÞ∇μ ln fLm

þ f−1Lm
hξνEν; ð94Þ

where we have employed the properties hξν · uμ∇μuν ¼
gξν · uμ∇μuν ¼ uμ∇μuξ. In general, ρþ P ≠ 0 (in fact ρþ
P ≥ 0 by all four energy conditions in GR, and equality
happens only for matters with large negative pressure).
Thus we obtain the following absolute derivative along uξ

as the equation of motion:

Duξ

Dτ
≡ duξ

dτ
þ Γξ

αβu
αuβ ¼ aξðPFÞ þ aξðfLm Þ þ aξðEÞ; ð95Þ

where τ is an affine parameter (e.g. proper time) for the
timelike worldline along which dxα ¼ uαdτ, and the three
proper accelerations are given by

aξðPFÞ ≡ −hξμ · ðρþ PÞ−1∇μP;

aξðfLm Þ ≡ −hξμ · ðρþ PÞ−1ðP − LmÞ∇μ ln fLm
;

aξðEÞ ≡ −hξν · ðρþ PÞ−1f−1Lm
Eν: ð96Þ

Thus, three proper accelerations are responsible for the
nongeodesic motion. aξðPFÞ is the standard acceleration from
the pressure of fluid as in GR [20], aξðfLm Þ comes from the
curvature-matter coupling, while aξðEÞ is a collaborative
effect of the fR2

c; R2
mg dependence in the action and their

generic nonminimal coupling to Lm. This is consistent with
the result in [11] in the absence of fR2

c; R2
mg. Also, all three

accelerations are orthogonal to the worldline with tangent
uξ, since

6The method and discussion in this section are also valid
for a generic L ¼ fðR1;R2…;Rn;LmÞ gravity as in Eq. (86),
and we just need to define the effective one-form ~Eν ¼
−
P

ifRi
ðR1…LmÞ ·∇νRi þ 2

P
i∇μHðfRiÞ

μν in place of the Eν

for fðR;R2
c; R2

m;LmÞ gravity. Specifically, ~Eν ≡ 0 under minimal
coupling, and furthermore ~Eν vanishes universality if the weak
conjecture were correct.
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aξðPFÞuξ ¼ 0; aξðfLm Þuξ ¼ 0; aξðEÞuξ ¼ 0: ð97Þ

Equations (93), (95), and (96) depend on the choice of
the perfect-fluid matter Lagrangian density. If Lm ¼ −ρ
[20,29], the continuity equation (93) becomes

uμ∇μρþ ðρþ PÞ∇μuμ ¼ −f−1Lm
uνEν; ð98Þ

which is free from the gradient of the geometry-matter
coupling strength f−1Lm

uμ∇μfLm
, while aξðfLm Þ reduces to

aξðfLm Þ ≡ −hξμ ·∇μ ln fLm
; ð99Þ

which does not rely on the equation of state P ¼ wρ.
On the other hand, for the choice Lm ¼ P [29,30],

Eqs. (93) and (96) respectively yield

uμ∇μρþ ðρþPÞ∇μuμ ¼ −ðρþPÞuμ∇μ lnfLm
− f−1Lm

uμEμ;

ð100Þ

and

aξðfLm Þ ≡ 0: ð101Þ

Although the continuity equation (100) looks pretty ordi-
nary, the proper acceleration aξðfLm Þ vanishes identically for

Lm ¼ P and consequently the nongeodesic motion in the
gravitational field of the perfect fluid becomes independent
of the gradient of the nonminimal coupling strength
uμ∇μfLm

.
As shown in [31], bothLm ¼ P andLm ¼ −ρ are correct

matter densities and both lead to the SEM tensor given in
Eq. (92). Differences of physical effects only occur in the
situation of nonminimal coupling, where Lm becomes a
direct and explicit input in the energy-momentum diver-
gence equation. In fact, as for the matter Lagrangian
density Lm for a perfect fluid, one can also adopt the
following ansatz:

Lm ¼ ðaρþ bPÞ · gαβuαuβ þ ðcρþ dPÞ · gαβgαβ
¼ ð4c − aÞρþ ð4d − bÞP: ð102Þ

Applying this to Eq. (11), the equality with Eq. (92) yields
a ¼ −1=2 ¼ b and c ¼ −1=4 ¼ −d, so

Lm ¼
�
−
1

2
ρ −

1

2
P

�
· gαβuαuβ þ

�
−
1

4
ρþ 1

4
P

�
· gαβgαβ

¼ −
1

2
ρþ 3

2
P: ð103Þ

This density makes Eqs. (93), (95), and (96) act normally,
losing the aforementioned extraordinary properties asso-
ciated with Lm ¼ −ρ and Lm ¼ P.

B. (Timelike) dust

The (timelike) dust source with mass-energy density ρ
has SEM tensor [20,30]

TðDustÞ
μν ¼ ρuμuν; ð104Þ

where uμ ¼ gμνuν with uν being the tangent vector field
along the worldline of a timelike dust particle. One can still
introduce the spatial metric hμν ≡ gμν þ uμuν orthogonal to
uμ, with fuμ; hμνg sharing all those properties as in the case
of perfect fluid, so dust acts just like a perfect fluid with
zero pressure, P ¼ 0. Substituting Eq. (104) back into
Eq. (90) and multiplying by uν on both sides yields

uμ∇μρþ ρ∇μuμ ¼ −ðLm þ ρÞuν∇ν ln fLm
− f−1Lm

uνEν;

ð105Þ

which modifies the continuity equation of dust ∇μðρuμÞ ¼
0 in GR. Meanwhile, projection of the free index ν by hξν in

∇μTðDustÞ
μν gives rise to the modified equation of motion,

Duξ

Dτ
≡ duξ

dτ
þ Γξ

αβu
αuβ ¼ âξðfLm Þ þ âξðEÞ; ð106Þ

where

âξðfLm Þ ≡ hξμ · ρ−1Lm∇μ ln fLm
;

âξðEÞ ≡ −hξν · ρ−1f−1Lm
Eν: ð107Þ

Being pressureless, the dust inherits just the two extra
accelerations âξðfLm Þ and â

ξ
ðEÞ, and both remain orthogonal to

the worldline with tangent uξ,

âξðfLm Þuξ ¼ 0; âξðEÞuξ ¼ 0: ð108Þ

C. Null dust

The SEM tensor for null dust with energy density ϱ is
(e.g. [30])

TðNDÞ
μν ¼ ϱlμlν; ð109Þ

where lμ ¼ gμνlν with lν being the tangent vector field
along the worldline of a null dust particle, lμlμ ¼ 0. TðNDÞ

μν

together with the energy-momentum divergence equa-
tion (90) yields

lνlμ∇μϱþ ϱlμ∇μlν þ ϱlν∇μlμ

¼ ðLmgμν − ϱlμlνÞ∇μ ln fLm
þ f−1Lm

Eν: ð110Þ

Multiplying both sides with lν, lνlν ¼ 0, lν∇μlν ¼ 0, we
obtain the following constraint:
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fLm
lν∇νfLm

¼ −lνEν: ð111Þ

Now, introduce an auxiliary null vector field nμ as null
normal to lμ such that nμnμ ¼ 0, lμnμ ¼ −1, which
induces the two-dimensional spatial metric gμν ¼
−lμnν − nμlν þ qμν, satisfying the conditions

qμνqμν ¼ 2; qμνlν ¼ 0 ¼ qμνnν; lα∇αqμν ¼ 0:

ð112Þ

Multiplying Eq. (110) by nν, and with nν∇μlν ¼ −lν∇μnν,
we get the continuity equation

lμ∇μϱþ ϱ∇μlμ þ ϱlνlμ∇μnν

¼ −ðLmnμ þ ϱlμÞ∇μ ln fLm
− f−1Lm

nνEν; ð113Þ

while projecting Eq. (110) with hξν gives rise to the
equation of motion along lξ,

ϱlμ∇μlξ ¼ ϱlξlνlμ∇μnν þ hξνLm∇ν ln fLm
þ f−1Lm

hξνEν;

ð114Þ

Dlξ

Dλ
≡ dlξ

dλ
þ Γξ

αβl
αlβ ¼ a

̬ ξ
ðNDÞ þ a

̬ ξ
ðfLm Þ þ a

̬ ξ
ðEÞ; ð115Þ

where λ is an affine parameter for the null worldline along
which dxα ¼ lαdξ, and the three proper accelerations are
respectively

8>>><
>>>:

a
̬ ξ
ðNDÞ ≡ lξlνlμ∇μnν;

a
̬ ξ
ðfLm Þ ≡ hξμ · ϱ−1Lm∇ν ln fLm

;

a
̬ ξ
ðEÞ ≡ hξν · ϱ−1f−1Lm

Eν:

ð116Þ

As we can see, compared with timelike dust, one more
proper acceleration a

̬ ξ
ðNDÞ shows up in the case of null dust,

and we will refer to it the affine acceleration or inaffinity
acceleration.

D. Scalar field

The matter Lagrangian density and SEM tensor of a
massive scalar field ϕðxαÞ with mass m in a potential VðϕÞ
are respectively given by

Lm ¼ −
1

2
ð∇αϕ∇αϕþm2ϕ2Þ þ VðϕÞ;

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμνð∇αϕ∇αϕþm2ϕ2 − 2VðϕÞÞ;

ð117Þ

thus Lmgμν − Tμν ¼ −∇μϕ∇νϕ. For the ν component, the
equations of continuity and motion are both given by

ð□ϕ−m2ϕþVϕÞ ·∇νϕ¼−∇νϕ ·∇μϕ∇μ lnfLm
þf−1Lm

Eν:

ð118Þ

Specifically, by setting VðϕÞ ¼ 0 and under minimal
coupling (fLm

¼ constant, Eν ¼ 0), we get

□ϕ −m2ϕ ¼ 0; ð119Þ

which is the standard covariant Klein-Gordon equation for
spin-zero particles in GR.

VI. FURTHER PHYSICAL IMPLICATIONS OF
NONMINIMAL COUPLING

We have seen that under nonminimal curvature-matter
coupling, the divergence of the standard SEM density
tensor is equal to the gradient of the coupling strength
∇μfLm

which, in general, will be nonvanishing. As such,
the usual energy-momentum conservation laws for particu-
lar matter fields will be modified as compared to the
corresponding fields in general relativity. At the same time,
as discussed in the Appendix, nonminimal coupling also
affects the energy conditions. The standard energy con-
ditions of general relativity are phrased in terms of the
stress-energy tensor and require positive energies (null and
strong) and causal flows of matter (dominant). However, in
applications these conditions are generally used to con-
strain the Riemann tensor and so the allowed geometries of
spacetime and structures like singularities or horizons. For
standard general relativity the two approaches are essen-
tially equivalent but for modified gravity they are not: if the
Einstein equations are modified then the bounds on the
Ricci tensor that achieve the desired effects generally do not
translate into the usual restrictions on the stress-energy
momentum. Thus one is faced with a choice: either keep the
standard GR results and give up the usual energy conditions
or keep the usual energy conditions but lose those results.
In this section we consider some immediate physical

consequences of this choice. All of these are consequences
of the Raychaudhuri equations for null and timelike
geodesic congruences and so the difference between the
standard energy conditions and those needed to enforce the
focusing theorems is crucial to these discussions. These are
considered in some detail in the Appendix and in the
following TðeffÞ

μν refers to an effective stress-energy tensor
for which the standard form of the energy conditions will
leave those theorems intact.

A. Black hole physics

Many results in black hole physics follow from under-
standing a black hole horizon as a congruence of null
geodesics whose evolution is governed by the (twist-free)
Raychaudhuri equation:
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dθðlÞ
dλ

¼ κðlÞθðlÞ −
1

2
θ2ðlÞ − σðlÞμν σ

μν
ðlÞ − Rμνlμlν; ð120Þ

where lμ ¼ ð ∂∂λÞμ is a null tangent to the horizon, and κðlÞ,
θðlÞ and σðlÞμν are respectively the associated acceleration/
inaffinity, expansion and shear.
The second law of black hole mechanics follows from

this equation along with the requirement that the congru-
ence of null curves that rules the event horizon have no
future end points (see, for example, the discussion [20]).
Now choosing an affine parametrization for the congruence
κðlÞ ¼ 0 it is straightforward to see that the right-hand side
of (120) is nonpositive as long as Rμνlμlν ≥ 0. In standard
GR this follows from the null energy condition:
Tμνlμlν ≥ 0. It then almost immediately follows that
θðlÞ must be everywhere non-negative. Else θðlÞ → −∞
and the congruence focuses. However, for modified
gravity we will usually lose the equivalence Tμνlμlν ≥
0⇔Rμνlμlν ≥ 0 and so we will be faced with a modified
area increase theorem if we require the standard energy
conditions.
By similar arguments, again involving the null

Raychaudhuri equation, the energy conditions play a
crucial role in the theorems that require trapped surfaces
to be contained in black holes and singularities to lie in their
causal future [20]. Thus for black hole physics, modifica-
tions of the energy conditions are a serious business which
can affect core results and intuitions.

B. Wormholes

On the other hand, for those interested in faster-than-
light travel changing the energy conditions would be a
boon. Introducing the nonminimal gravitational coupling
strength fLm

brings new flexibility and the possibility of
supporting wormholes, as shown in [32] and [33] for a
λR · Lm coupling term. More generally for the L ¼
fðR;R1;…;Rn;LmÞ gravity, based on the generalized
null and weak energy conditions developed in the
Appendix, it proves possible to defocus null and timelike
congruences and form wormholes by violating these
generalized conditions, while having the standard energy
conditions in GR [20] maintained to exclude the need for
exotic matters. It also leads to an extra constraint fLm

=fR ≥
0 as in Eq. (A9).
From Eq. (A10) in the Appendix, for a null congruence

lμ, one can maintain the standard null energy condition
Tμνlμlν ≥ 0 while violating TðeffÞ

μν lμlν ≤ 0 (and so evade
the focusing theorems) if

0 ≤ Tμνlμlν ≤ 2f−1Lm

�X
i

HðfRiÞ
μν lμlν − lνlμ∇μ∇νfR

�
:

ð121Þ
Similarly for a timelike congruence, one has Tμνuμuν ≥ 0
while TðeffÞ

μν uμuν ≤ 0, and Eq. (A11) leads to

0 ≤ Tμνuμuν ≤ −Lm þ f−1Lm

�
f − RfR þ 2

X
i

HðfRiÞ
μν uμuν

− 2ðuμuν∇μ∇ν þ□ÞfR
�
: ð122Þ

Specifically for L ¼ fðR;R2
c; R2

m;LmÞ gravity, these two
conditions are concretized as

0 ≤ Tμνlμlν ≤ 2f−1Lm
ðHðfR2

cÞ
μν lμlν þHðfR2

mÞ
μν lμlν

− lνlμ∇μ∇νfRÞ ð123Þ

and

0 ≤ Tμνuμuν ≤ −Lm þ f−1Lm
ðf − RfR þ 2HðfR2

cÞ
μν uμuν

þ 2HðfR2
mÞ

μν uμuν − 2ðuμuν∇μ∇ν þ□ÞfRÞ; ð124Þ

where fHðfR2
cÞ

μν ; HðfR2
mÞ

μν g have been given in Eqs. (8)
and (9).
Moreover, Eqs. (121) and (122) indicate that in the case

without dependence on Riemannian invariants beyond R,
i.e. L ¼ fðR;LmÞ, a wormhole can be solely supported by
the nonminimal-coupling effect if

0 ≤ Tμνlμlν ≤ −2f−1Lm
lνlμ∇μ∇νfR and ð125Þ

0 ≤ Tμνuμuν ≤ −Lm þ f−1Lm
ðf − RfR

− 2ðuμuν∇μ∇ν þ□ÞfRÞ: ð126Þ

For example, let L ¼ fðR;LmÞ ¼ Rþ 2κLm þ λRLm, and
the field equation (48) becomes

Rμν −
1

2
Rgμν þ λ · ðLmRμν þ ðgμν□ −∇μ∇νÞLmÞ

¼
�
κ þ 1

2
λR

�
Tμν: ð127Þ

To have a quick realization of Eq. (125), we further assume
λ ¼ 1, Tμν ¼ diag½−ρðrÞ; PðrÞ; PðrÞ; PðrÞ�, Lm ¼ PðrÞ
(recall Sec. VA), and adopt the following simplest worm-
hole metric:

ds2 ¼ −dt2 þ dr2 þ ðr2 þ L2Þ · ðdθ2 þ sin2θdϕ2Þ;
ð128Þ

with minimum throat scale L and outgoing radial null
vector field lμ∂μ ¼ ð−1; 1; 0; 0Þ. Then the condition
Eq. (125) reduces to become

0 ≤ −ρþ 3P ≤
�
1þ r2

L2

�
∂r∂rP; ð129Þ
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which clearly shows that the standard null energy condition
remains valid while spatial inhomogeneity of the pressure
∂r∂rP supports the wormhole.
Finally, note that it remains to be carefully checked

whether solutions exist that meet these conditions.

VII. CONCLUSIONS

In this paper, we have derived the field equation for L ¼
fðR;R2

c; R2
m;LmÞ fourth-order gravity allowing for partici-

pation of the Ricci square R2
c and Riemann square R2

m in the
Lagrangian density and nonminimal coupling between the
curvature invariants and Lm as compared to GR. It turned
out that Lm appears explicitly in the field equation because
of confrontation between the nonminimal coupling and the
traditional minimal definition of the SEM tensor Tμν. When
fLm

¼ constant ¼ 2κ, we recover the minimally coupled
L ¼ fðR; R2

c; R2
mÞ þ 2κLm model. Also, we have shown

that both the curvature-Lm nonminimal coupling and the
curvature-T coupling are sensitive to the concrete forms
of Lm.
Secondly, by considering an explicit R2 dependence, we

have found the smooth transition from fðR;R2
c; R2

m;LmÞ
gravity to the L ¼ fðR;G;LmÞ generalized Gauss-Bonnet
gravity by imposing the coherence condition fR2 ¼
fR2

m
¼ −fR2

c
=4. When fðR;G;LmÞ reduces to the case

fðR;LmÞ þ λG where G appears as a pure Gauss-Bonnet
term, an extra term λð− 1

2
Ggμν þ 2RRμν − 4Rμ

αRαν −
4RαμβνRαβ þ 2RμαβγRν

αβγÞ is left behind in the field equa-
tion representing the contribution from the covariant
density λ

ffiffiffiffiffiffi−gp
G. We have shown that this term actually

vanishes and thus λG makes no difference to the gravita-
tional field equation.
After studying the Gauss-Bonnet limit of

fðR;R2
c; R2

m;LmÞ gravity, we moved on to more generic
theories focusing on how the standard stress-energy-
momentum conservation equation ∇μTμν ¼ 0 in GR
is violated. Under minimal coupling with L ¼
fðR1;…;RpÞ þ 2κLm, we commented that the general-
ized Bianchi identities and the Noether-induced definition
of SEM tensor lead to automatic energy-momentum
conservation. Under nonminimal coupling with L ¼
fðR1;…;Rp;LmÞ, we have proposed a weak conjecture
and a strong one which state that the gradient of the
nonminimal gravitational coupling strength ∇μfLm

is the
only divergence term balancing fLm

∇μTμν, while contri-
butions from Ri dependence in the divergence equation all
cancel out. Using the energy-momentum nonconservation
equation specialized for fðR;R2

c; R2
m;LmÞ gravity, we have

derived the equations of continuity and nongeodesic
motion in the matter sources for perfect fluids, (timelike)
dust, null dust, and massive scalar fields. These equations
directly generalize those in fðR1;…;Rp;LmÞ gravity.
Also, within fðR1;…;Rp;LmÞ gravity, we have con-

sidered some implications of nonminimal coupling and Ri

dependence for black hole and wormhole physics.
Moreover, it is expected that the L ¼ fðR;R2

c; R2
m;LmÞ

model can provide many more possibilities to realize the
late-time phase transition from cosmic deceleration to
acceleration, and the energy-momentum nonconservation
relation fLm

· ∇μTμν ¼ ðLmgμν − TμνÞ∇μfLm
under nonmi-

nimal coupling can cause interesting consequences in early-
era cosmic evolution and compact astrophysical objects if it
is effective as a high-energy phenomenon. These topics will
be extensively investigated in prospective studies.
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APPENDIX: GENERALIZED ENERGY
CONDITIONS FOR f ðR;R1;…;Rn;LmÞ GRAVITY

For the generic L ¼ fðR;R1;…;Rn;LmÞ gravity intro-
duced in Sec. IV, the variational principle or equivalently
1ffiffiffiffi−gp δð ffiffiffiffi−gp

LÞ
δgμν ¼ 0 yields the field equation,

−
1

2
fgμν þ fRRμν þ ðgμν□ −∇μ∇νÞfR

þ
X
i

HðfRiÞ
μν ¼ 1

2
fLm

· ðTμν − LmgμνÞ; ðA1Þ

where HðfRiÞ
μν · δgμν ≔ fRi

· δRi. An immediate and very
useful implication of this field equation is a group of
generalized null, weak, strong and dominant energy con-
ditions (abbreviated into NEC, WEC, SEC and DEC
respectively), which has been employed in Sec. VI B in
studying effects of nonminimal coupling in supporting
wormholes.
Recall that in a (region of) spacetime filled by a null or a

timelike congruence, the expansion rate along the null
tangent lμ or the timelike tangent uμ is given by the
respective Raychaudhuri equation [20]:

lμ∇μθðlÞ ¼
dθðlÞ
dλ

¼ κðlÞθðlÞ −
1

2
θ2ðlÞ − σðlÞμν σ

μν
ðlÞ

þ ωðlÞ
μν ω

μν
ðlÞ − Rμνlμlν ðA2Þ

and

uμ∇μθðuÞ ¼
dθðuÞ
dτ

¼ κðuÞθðuÞ −
1

3
θ2ðuÞ − σðuÞμν σ

μν
ðuÞ

þ ωðuÞ
μν ω

μν
ðuÞ − Rμνuμuν: ðA3Þ

Under affine parametrizations one has κðlÞ ¼ 0 ¼ κðuÞ, for
hypersurface-orthogonal congruences the twist vanishes

ωμνω
μν ¼ 0, and the shear as a spatial tensor (σðlÞμν lμ ¼ 0,
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σðuÞμν uμ ¼ 0) always satisfies σμνσ
μν ≥ 0. Thus, to ensure

dθðlÞ=dλ ≤ 0 and dθðuÞ=dτ ≤ 0 under all conditions so that
“gravity always gravitates” and the congruence focuses, the
following geometric non-negativity conditions should hold:

Rμνlμlν ≥ 0ðNECÞ; Rμνuμuν ≥ 0ðSECÞ: ðA4Þ
On the other hand, the field (12) can be recast into a
compact GR form:

Gμν ≡ Rμν −
1

2
Rgμν ¼ κTðeffÞ

μν

R ¼ −κTðeffÞ and

Rμν ¼ κ

�
TðeffÞ
μν −

1

2
gμνTðeffÞ

�
; ðA5Þ

where all terms beyond GR (Gμν ¼ κTμν) in Eq. (A1) have

been packed into the effective SEM tensor TðeffÞ
μν ,

TðeffÞ
μν ¼ 1

2κ

fLm

fR
ðTμν − LmgμνÞ þ

1

2κ

fLm

fR

�
ðf − RfRÞgμν

þ 2ð∇μ∇ν − gμν□ÞfR − 2
X
i

HðfRiÞ
μν

�
: ðA6Þ

The purely geometric conditions Eq. (A4) can be translated
into matter non-negativity conditions through Eq. (A5),

TðeffÞ
μν lμlν ≥ 0ðNECÞ;

TðeffÞ
μν uμuν ≥

1

2
TðeffÞuμuμðSECÞ;

TðeffÞ
μν uμuν ≥ 0ðWECÞ; ðA7Þ

where uμuμ ¼ −1 in SEC for the signature ð−;þþþÞ
used in this paper. Then the generalized NEC in Eq. (A7)
expands as

fLm

fR
Tμνlμlν þ 2

fR

�
lνlμ∇μ∇νfR −

X
i

HðfRiÞ
μν lμlν

�
≥ 0

ðA8Þ
(for κ > 0) which is the simplest one with Lm absent. Now,
consider a special situation where fR ¼ constant and

HðfRiÞ
μν ¼ 0 (i.e. dropping all dependence on Ri in f), so

Eq. (A8) reduces to ðfLm
=fRÞ · Tμνlμlν ≥ 0; since

Tμνlμlν ≥ 0 due to the standard NEC in GR, which
continues to hold here as exotic matters are unfavored,
we obtain an extra constraint,

fLm

fR
≥ 0; ðA9Þ

with which Eq. (A8) becomes

Tμνlμlν þ 2f−1Lm

�
lνlμ∇μ∇νfR −

X
i

HðfRiÞ
μν lμlν

�
≥ 0;

ðA10Þ

and the WEC in Eq. (A7) can be expanded into

Tμνuμuν þ f−1Lm

�
RfR − f þ 2ðuμuν∇μ∇ν þ□ÞfR

− 2
X
i

HðfRiÞ
μν uμuν

�
þ Lm ≥ 0: ðA11Þ

In general, the pointwise nonminimal coupling strength
fLm

can take either positive or negative values. However,
recall that within fðRÞ þ 2κLm gravity, physically viable
models specializing fðRÞ should satisfy fR > 0 and fRR >
0 [5]; if this were still true in fðR;R1;…;Rn;LmÞ gravity,
we would get fLm

> 0 by the extra constraint Eq. (A9),
which would be in strong agreement with the case of
minimal coupling when fLm

¼ 2κ > 0.
Applying Eqs. (A6), (A10), and (A11) to the Lagrangian

density L ¼ fðR;R2
c; R2

m;LmÞ, we immediately obtain

TðeffÞ
μν ¼ 1

2κ

fLm

fR
ðTμν − LmgμνÞ þ

1

2κ

fLm

fR
× ððf − RfRÞgμν

þ 2ð∇μ∇ν − gμν□ÞfR − 2HðfR2
cÞ

μν − 2HðfR2
mÞ

μν Þ:
ðA12Þ

as the effective SEM tensor for fðR; R2
c; R2

m;LmÞ gravity.
Then relative to the standard SEM tensor the generalized
null and weak energy conditions respectively become

Tμνlμlν þ 2f−1Lm
ðlνlμ∇μ∇νfR −HðfR2

cÞ
μν lμlν

−HðfR2
mÞ

μν lμlνÞ ≥ 0 ðA13Þ

and

Tμνuμuν þ f−1Lm
ðRfR − f þ 2ðuμuν∇μ∇ν þ□ÞfR

− 2HðfR2
cÞ

μν uμuν − 2HðfR2
mÞ

μν uμuνÞ þ Lm ≥ 0; ðA14Þ

where fHðfR2
cÞ

μν ; HðfR2
mÞ

μν g have been given in Eqs. (8) and (9).
Also, with Eq. (A6) one can directly obtain the concrete

forms SEC and DEC for L ¼ fðR;R1;…;Rn;LmÞ grav-
ity, which however will not be listed here.
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