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We develop a numerical solver that extends the computational framework considered in [Phys. Rev. D
65, 084016 (2002)] to include scalar perturbations of nonrotating black holes. The nonlinear Einstein-
Klein-Gordon equations for a massless scalar field minimally coupled to gravity are solved in two spatial
dimensions. The numerical procedure is based on the ingoing light-cone formulation for an axially and
reflection-symmetric spacetime. The solver is second-order accurate and was validated in different ways.
We use for calibration an auxiliary 1D solver with the same initial and boundary conditions and the same
evolution algorithm. We reproduce the quasinormal modes for the massless scalar field harmonics l ¼ 0, 1,
and 2. For these same harmonics, in the linear approximation, we calculate the balance of energy between
the black hole and the world tube. As an example of nonlinear harmonic generation, we show the distortion
of a marginally trapped two-surface approximated as a q-boundary and based upon the harmonic l ¼ 2.
Additionally, we study the evolution of the l ¼ 8 harmonic in order to test the solver in a spacetime with a
complex angular structure. Further applications and extensions are briefly discussed.
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I. INTRODUCTION

Relevant astrophysical applications of the characteristic
formulation of numerical relativity [1] require its adapt-
ability and extension to a variety of scenarios. Although the
Cauchy approach in numerical relativity has proven rela-
tively successful in the simulation of binary black holes [2],
the accurate prediction of wave forms from black hole–
black hole, black hole–neutron star, and black hole–boson
star binaries as sources of gravitational radiation stands as a
formidable pending problem. The characteristic formu-
lation of general relativity offers an alternative for the
accurate prediction of waveforms from such astrophysical
scenarios, but further improvements are mandatory to make
it attractive and competitive.
One of the prime factors affecting the accuracy of any

characteristic code is the introduction of a smooth coor-
dinate system covering the sphere, which labels the null
directions on the outgoing (ingoing) light cones.
Interestingly, this is also an underlying problem in mete-
orology and oceanography [3]. The LEO code, a large-
scale computational framework based on the characteristic
formulation [4], was inspired by global forecasting tech-
niques [5,6] and showed great potential in handling 3D
problems. The solver was tested solving the Einstein-Klein-
Gordon (EKG) system. Despite its simplicity, analytical
studies of this toy model for a self-gravitating massless
scalar field show that it exhibits highly nonlinear physics
[7–10]. One-dimensional numerical simulations of the
EKG system led to the discovery of critical phenomena
[11] and revealed some features of the asymptotic space-
time structure. For instance, the Bondi mass and the scalar
monopole moment satisfy an asymptotic relation at high

amplitudes [12]. The Bondi mass and news function reflect
the discretely self-similar behavior [13].
Extending the work of Gómez et al. [14] and

Papadopoulos [15], here we incorporate a massless scalar
field and solve the 2D EKG system. We perform numerical
validations that include tests of convergence; the simulation
of the exponentially damped oscillation modes, called
quasinormal modes (QNM); and the energy conservation
(in the linear approximation) for the massless scalar field.
Gravitational radiation waveforms and the nonlinear regime
deserve special attention and are postponed for a future
study. However, we include a calculation of the distorted
marginally trapped two-surface. The solver developed can be
considered as an intermediate step, both in computational
cost and in dimensions. The 2D EKG is an interesting
problem in itself, well suited to explore global issues [13,16].
The paper is organized as follows: In Sec. II, we set up the

EKG system for a massless scalar field minimally coupled to
gravity. In this section we also consider issues about QNM,
energy conservation, and marginally trapped surfaces.
Section III is dedicated to details about the numerical
implementation, and to the tests of convergence to second
order of the nonlinear solver. In Sec. IV, we present our
results. Finally, we conclude in Sec. V with some remarks.

II. SETUP

A. The EKG problem

In general, the field equations for a massless scalar field
minimally coupled to gravity are

Gab ¼ −8πTab; ð1Þ
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with

Tab ¼ ∇aΦ∇bΦ −
1

2
gab∇cΦ∇cΦ ð2Þ

and can be reduced to

Rab ¼ −8π∇aΦ∇bΦ; ð3Þ

which must be considered together with the wave equation

□Φ ¼ 0 ð4Þ

in order to complete the EKG system.

B. Two-dimensional ingoing formulation

The initial-boundary value problem is formulated follow-
ing the Winicour-Tamburino framework [17,18], with
ingoing light cones emanating from a timelike world tube
W (see Fig. 1). The characteristic initial value problem of the
EKG system can be explicitly written using the ingoing line
element in the case of axial and reflection symmetry [19]:

ds2 ¼
�
V
r
e2β −U2r2e2γ

�
dv2 − 2e2βdvdr

− 2Ur2e2γdvdθ − r2ðe2γdθ2 þ e−2γsin2θdϕ2Þ; ð5Þ

where β ¼ βðv; r; θÞ, V ¼ Vðv; r; θÞ, U ¼ Uðv; r; θÞ, and
γ ¼ γðv; r; θÞ. This metric is twist-free, and therefore rota-
tion is not permitted. Thus, we get the following field
hypersurface equations:

β;r ¼
1

2
rðγ2;r þ ψ2

;rÞ; ð6Þ

ðr2QÞ;r ¼ 2r2
�
2ðγ;rγ;θ þ ψ ;rψ ;θÞ þ r2

�
β

r2

�
;rθ

−
1

sin2θ
ðsin2θγÞ;rθ

�
; ð7Þ

U;r ¼ e2ðβ−γÞ
Q
r2
; ð8Þ

V;r ¼ e2ðβ−γÞ½1þ ð3γ;θ − β;θÞ cot θ þ γ;θθ

− ψ2
;θ − β;θθ − β2;θ − 2γ;θðγ;θ − β;θÞ�

þ r
2 sin θ

½sin θðrU;r þ 4UÞ�;θ

−
1

4
e2ðγ−βÞr4U2

;r; ð9Þ

and the evolution equations

−e2β□ð2Þ
þ ðrγÞ ¼ −

�
V
r

�
;r
γ þ 1

4
r3e2ðγ−βÞU2

;r

þ 1

r
e2ðβ−γÞðψ2

;θ þ β;θθ þ β2;θ − β;θ cot θÞ

−
1

2r
½r2ð2γ;θU þ U;θ −U cot θÞ�;r

−
r

sin θ
ðγ;rU sin θÞ;θ; ð10Þ

−e2β□ð2Þ
þ ðrψÞ ¼ −

�
V
r

�
;r
ψ −

1

r
ðr2ψ ;θUÞ;r

þ 1

r sin θ
½sin θðe2ðβ−γÞψ ;θ − r2Uψ ;rÞ�;θ;

ð11Þ

where ψ ¼ 2
ffiffiffi
π

p
Φ and □

ð2Þ
þ f ¼ e−2β½2f;vr þ ðVf;r=rÞ;r�.

C. Scattering off a Schwarzschild black hole

On W we can specify the boundary conditions in many
ways. In this work, we use the following choice:

βðv; r ¼ rW ; θÞ ¼ 0; ð12aÞ

Uðv; r ¼ rW ; θÞ ¼ 0; ð12bÞ

Vðv; r ¼ rW ; θÞ ¼ r − 2M; ð12cÞ

whereM is the black hole mass. The geometry ofW is kept
fixed at all times and is given by the Schwarzschild values.
To be consistent, we set the initial conditions

γðv ¼ v0; r; θÞ ¼ 0 ð13Þ

FIG. 1 (color online). Spacetime diagram with the problem
setup. The foliation is based on advanced time v; the geometry of
the world tube (W) is kept fixed at all times and is given by the
Schwarzschild values. The ingoing light cones emanate from W.
The initial ingoing light cone N at v0 is distorted with the
specification of an arbitrary outgoing massless scalar field. In
general, the evolution generates gravitational radiation that,
together with scalar radiation, is scattered toward and away from
the distorted black hole.
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and

ψðv ¼ v0; r; θÞ ¼
λ

r
e−ðr−r0Þ2=σ2PlðθÞ; ð14Þ

where σ ¼ 0.5M, r0 ¼ 3M, and PlðθÞ are the Legendre
polynomials. In this way, the initial ingoing light coneN at
v0 is distorted with the specification of an arbitrary out-
going massless scalar field. In general, with the nonlinear
evolution, the black hole is distorted and the gravitational
radiation is generated.

D. Scalar field on a fixed background

The above system of Eqs. (6)–(11) describes a self–
gravitating scalar field. In the limit of small amplitudes,
jψ j ≪ 1, the scalar field can be treated as a perturbation
propagating on a fixed background. This considerably
simpler model is contained in the fully nonlinear case
and is implemented in our code by integrating only
Eq. (11). For a Schwarzschild background, the metric reads

ds2 ¼ ð1 − 2M=rÞdv2 − 2dvdr − r2ðdθ2 þ sin2θdϕ2Þ:
ð15Þ

On this fixed background, the linear approximation of
Eq. (11) is

2ðrψÞ;vr þ ½ð1 − 2M=rÞðrψÞ;r�;r
¼ 2Mψ

r2
−

1

r sin θ
½sin θψ ;θ�;θ: ð16Þ

For the simulations in the present work, we will be
interested in solutions of the 2D scalar field on a fixed
background, as discussed in the next subsection.

E. QNM in a Schwarzschild background

The linear equation for the scalar field on a fixed
background, Eq. (11), is separable; i.e., its solutions can
be written in the form

ψðv; r; θÞ ¼ 1

r

X∞
l¼0

χlðv; rÞPlðθÞ; ð17Þ

where each of the χl’s satisfies the one-dimensional wave
equation in the plane ðv; rÞ:

2χ;vr þ ½ð1 − 2M=rÞχ;r�;r ¼
�
2M
r3

þ lðlþ 1Þ
r2

�
χ: ð18Þ

This last equation is the usual which governs the scalar
perturbations of a Schwarzschild black hole [20], written
here in characteristic coordinates ðv; r; θÞ. Equation (18)
has been studied extensively [20–22], its most salient
feature being the existence of QNM, whose frequencies

have been tabulated; see for example Ref. [22]. In the
present work, wewill use both the QNM equation, Eq. (18),
and the linear, Eq. (16), as tests to validate our numerical
implementation. We do this in an incremental fashion,
solving Eq. (18) for fixed values of l, and comparing the
effectiveness of the numerical integration scheme and of
our boundary conditions in reproducing the QNM. To this
end, we implement a purely radial code for Eq. (18) that
employs the same numerical integration scheme that is used
in the “linear” code [which solves Eqs. (16) and (18)] and
in the full nonlinear code. In ingoing null coordinates, the
slices at v ¼ const. penetrate the event horizon at r ¼ 2M,
effectively providing for an excision scheme, where the
evolution can be stopped at a finite number of points inside
the boundary, because the behavior of the field inside the
horizon does not affect the solution outside. Evolutions in
ingoing coordinates are carried out on a radial grid, for
which boundary data are required at a fixed value of
rout > 2M. Because of the presence of this outer boundary,
simulations in ingoing coordinates can only be run for a
limited time, typically v ∼ 2rout, before outer boundary
effects influence the signal extracted.

F. Energy carried out by the scalar field

We calculate the balance of the scalar field energy
contained between the inner and the outer boundaries
[4]. The expressions we give here are valid in the linear
case, where the background metric is the Schwarzschild
metric. For a more general approach to this issue, the
linkage integrals have to be calculated; specifically, the
asymptotic Killing vector field must be parallelly propa-
gated from null infinity [17]. Restricted to the background
case, then, given a Killing vector field ξa of the metric gab,
£ξgab ¼ 0, we can define the conserved quantity

C ¼
Z

ξaTb
adΣb: ð19Þ

In particular, selecting the timelike Killing vector ξa ¼ δav,
and for a surface of constant v, C is the energy contained on
the surface:

EðvÞ ¼
Z

Tv
vdV; ð20Þ

where dV is the volume element of the surface at
constant v. For a sphere at constant r, C represents the
energy flux across the surface,

PðvÞ ¼
Z

Tr
vr2dΩ; ð21Þ

with dΩ being the solid angle element. The relevant
components of the energy-momentum tensor for a massless
scalar field are
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Tv
v ¼ e−2βψ ;r

�
V
r
ψ ;r − 2Uψ ;θ

�
þ 2

r2
ψ2
;θe

−2γ; ð22Þ

Tr
v ¼ −2e−2βψ ;v

�
V
r
ψ ;r þ ψ ;v −Uψ ;θ

�
: ð23Þ

In the case of a linear scalar perturbation on a
Schwarzschild background, the energy content of a hyper-
surface at constant v is given by

EðvÞ¼ 2π

Z ��
1−

2M
r

�
ðrψ ;rÞ2þ2ψ2

;θ

�
drsinθdθ; ð24Þ

and the power radiated at time v across a surface of constant
r is

P ¼ −4πr2
Z

ψ ;v

�
ψ ;v þ

�
1 −

2M
r

�
ψ ;r

�
sin θdθ: ð25Þ

In our simulations, we place rin close enough to the
Schwarzschild black hole, with an outer boundary such
as 2M < rout < rW . For the flux across the inner (outer)
boundary, the integral as well as the spatial and time
derivatives are to be taken as evaluated at r ¼ rinðroutÞ.
With these definitions, the following energy conservation
law holds:

ΣðvÞ ¼ EðvÞ þ
Z

v

v0

½Pinðv0Þ − Poutðv0Þ�dv0 ¼ const: ð26Þ

The expressions given above hold only in the limit in which
∂t is a Killing vector of the metric, so we use them as a
criterion for code testing.

G. Marginally trapped surfaces

In general, the constructed spacetime by the present
approach contains a distorted black hole. This is made
geometrically precise by the introduction of the concept of
a marginally trapped two-surface (MTS) on a given ingoing
light coneN . A MTS is defined, in this context, as the two-
parameter radial function Rðr; θÞ on which the expansion
Θl of an outgoing null ray pencil lα vanishes [23]. If nα is
tangent to the generators of N , we get

nα ¼ grvv;α: ð27Þ

Thus, for the diverging slices S of N , given by
R ¼ r − RðθÞ, the outgoing normal lα to S is

lα ¼ r;α − θ;αR;θ −
1

2
grv½grr þ gθθR2

;θ − 2grθR;θ�v;α: ð28Þ

For the projection tensor hαβ into the tangent space of S,

hαβ ¼ gαβ − nαlβ − lαnβ; ð29Þ

the expansion associated with the null vector lα can be
written as

Θl ¼ 2hαβ∇αlβ; ð30Þ
which explicitly is

1

2
e2γr2Θl ¼ R;θ½cot θ þ 2ðβ;θ − γ;θÞ þU;re2ðγ−βÞ�

þ R2
;θ

�
2ðβ;θ − γ;θÞ −

1

r

�
þ R;θθ

þ r2
�
U;θ þ U cot θ −

V
r2

�
e2ðγ−βÞ: ð31Þ

This is an elliptic equation and has to be solved numerically
with the system evolution. The convergence to Θl ¼ 0
leads to RðθÞ, which locates the MTS.
As an indicator of the trapped horizon location, we

can estimate the MTS using the q boundary, following
the method detailed in Ref. [23]. If R ¼ const, Eq. (31)
reduces to

q≡ 1

2
e2βr2Θl ¼ r2ðU;θ þU cot θÞ − V: ð32Þ

The q boundary is the slice with the largest r ¼ const on
which q ≤ 0. Such a slice has Θl < 0; therefore it is
trapped, and trapped surfaces are inside the MTS. In the
nonvacuum spherical symmetric case, the MTS is given by
V ¼ 0, which determines the location of the apparent
horizon at r ¼ 2M (corresponding in position with the
event horizon for the vacuum Schwarzschild metric). In the
absence of spherical symmetry, Θl vanishes at points for
which q ¼ 0. Thus, the q boundary is everywhere trapped
or marginally trapped and is a simple algebraic procedure
for locating an inner boundary inside an event horizon.

III. NUMERICAL IMPLEMENTATION

The computational algorithm is related to those devel-
oped in Refs. [14,15] and, as we shall see, was shown to
be second-order accurate in the nonlinear regime. In the
linear regime, we get the expected QNM and the energy
conservation. We briefly review some issues about the
regularization and the discretization of equations.

A. Regularization

The coordinate system consists of a radial r coordinate
and an angular y ¼ − cos θ coordinate. The numerical grid
is uniformly spaced in both coordinates. Also, we use
the regularized variables γ̂ ¼ γ= sin2 θ, Û ¼ U= sin θ,
Q̂ ¼ Q= sin θ. Thus, the hypersurface equations are
given by

β;r ¼
r
2
ðγ̂2;rð1 − y2Þ2 þ ψ2

;rÞ; ð33Þ
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ðr2Q̂Þ;r ¼ 2r2f2ð1 − y2Þγ̂;r½ð1 − y2Þγ̂;y − 2yγ̂� þ 2ψ ;rψ ;y þ r2ðβ=r2Þ;ry þ 4yγ̂;r − ð1 − y2Þγ̂;ryg; ð34Þ

Û;r ¼ e2½β−γ̂ð1−y2Þ�
Q̂
r2
; ð35Þ

V;r ¼ e2½β−γ̂ð1−y2Þ�f1þ ð1 − y2Þ2γ̂;yy − 2ð1 − 5y2Þγ̂ − 8yð1 − y2Þγ̂;y þ 2yβ;y − ð1 − y2Þðβ;yy þ β2;yÞ
− ð1 − y2Þψ2

;y − 2ð1 − y2Þ½γ̂;yð1 − y2Þ − 2yγ̂�2 þ 2ð1 − y2Þðγ̂;yð1 − y2Þ − 2yγ̂Þβ;yg

þ r
2
½ð1 − y2ÞðrÛ;ry þ 4Û;yÞ − 2yrÛ;r − 8yÛ� − 1

4
e2ðγ̂ð1−y2Þ−βÞr4Û2

;rð1 − y2Þ; ð36Þ

and the evolution equations are given by

−e2β□ð2Þ
þ ðrγ̂Þ ¼ −

�
V
r

�
;r
γ̂ þ 1

4
r3e2ðγ̂ð1−y2Þ−βÞÛ2

;r þ
1

r
e2ðβ−γ̂ð1−y2ÞÞðψ2

;y þ β;yy þ β2;yÞ − r½ðγ̂;ryÛ þ γ̂;rÛ;yÞð1 − y2Þ − 4yγ̂;rÛ�

− ðγ̂;yð1 − y2Þ − 2yγ̂Þ2Û − Û;y −
r
2
½ðγ̂;yrð1 − y2Þ − 2yγ̂;rÞ2Û þ ðγ̂;yð1 − y2Þ − 2yγ̂Þ2Û;r þ Û;yrÞ�;

ð37Þ

−e2β□ð2Þ
þ ðrψÞ ¼ −

�
V
r

�
;r
ψ − 2ð1 − y2Þψ ;yÛ − rð1 − y2Þ½ψ ;ryÛ þ ψ ;yÛ;r� þ

1

r
fð1 − y2Þf2½β;y − γ̂;yð1 − y2Þ

þ 2yγ̂�ψ ;ye2½β−γ̂ð1−y
2Þ� þ e2½β−γ̂ð1−y2Þ�ψ ;yy − r2ðÛ;yψ ;r þ Ûψ ;ryÞg − 2yðψ ;ye2½β−γ̂ð1−y

2Þ� − r2Ûψ ;rÞg: ð38Þ

We now review the essentials of the numerical integration
procedure.

B. Discretization

1. Hypersurface equations

Equation (33) is easily discretized to get at once

βnj;i ¼ βnj;i−1 − Δrβ;rjnj;i−1=2; ð39Þ

where the indexes n, j, and i indicate discretization in v, θ,
and r, respectively. In general, any first-order radial
derivative is calculated as f;rji−1=2 ¼ −ðfi − fi−1Þ=Δr,
because we proceed from rW to rB (rW > rB), where rB
is the inner boundary, Δr ¼ ðrW − rBÞ=Nr, and Nr is the
number of grid points in r. Thus, the term β;rjnj;i−1=2 is
evaluated as

β;rjnj;i−1=2 ¼
1

2
ri−1=2ðψ2

;r þ γ̂2;rÞjj;i−1=2; ð40Þ

where derivatives of the rhs are evaluated numerically, as
indicated above.
Now, combining Eqs. (34) and (35), we get

CÛ;r þ
1

2
r2Û;rr ¼ HÛe

2ðβ−γÞ; ð41Þ

where

C ¼ r2
�
2

r
þ γ̂;rð1 − y2Þ − β;r

�
;

HÛ ¼ 2ð1 − y2Þγ̂;r½ð1 − y2Þγ̂;y − 2yγ̂� þ ψ̄ ;rψ ;y þ ψ̄ ;yψ ;r

þ r2
�
β

r2

�
;ry

þ 4yγ̂;r − ð1 − y2Þγ̂;ry:

Using centered finite differences at j, i − 1 for stability
reasons previously established in Ref. [14] and dictated by
the second-order derivative in r, we discretize Eq. (41); any
other discretization in this same equation is staggered at
jþ 1=2, i − 1=2. Thus, we get

−
Cnjþ1=2;i−1=2

2Δr
ðÛn

j;i−Ûn
j;i−2Þþ

r2i−1=2
2Δr2

ðÛn
j;i−2Ûn

j;i−1þÛn
j;i−2Þ

¼½HÛe
2ðβ−γÞ�njþ1=2;i−1=2; ð42Þ

from which we obtain

Ûn
j;i ¼

1

fa
fΔr2½HÛe

2½β−γ̂ð1−y2Þ��njþ1=2;i−1=2

− ðfbÛn
j;i−1 þ fcÛ

n
j;i−2Þg; ð43Þ

where

fa ¼
1

2
ðr2i−1=2 − ΔrCnjþ1=2;i−1=2Þ;

fb ¼ −r2i−1=2;

fc ¼
1

2
ðr2i−1=2 þ ΔrCnjþ1=2;i−1=2Þ:
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Next, to discretize Eq. (36), we define the mass aspect

Mðv; r; θÞ ¼ 1

2
ðr − VÞ; ð44Þ

which leads to

M;r ¼
1

2
ð1 −HMÛ −HMβγ̂ψ Þ; ð45Þ

where

HMÛ ¼ r
2
½ð1 − y2ÞðrÛ;ry þ 4Û;yÞ − 2yrÛ;r − 8yÛ�

−
1

4
e2ðγ̂ð1−y2Þ−βÞr4Û2

;rð1 − y2Þ; ð46Þ

HMβγ̂ψ ¼ e2½β−γ̂ð1−y2Þ�f1þ ð1 − y2Þ2γ̂;yy − 2ð1 − 5y2Þγ̂
− 8yð1 − y2Þγ̂;y þ 2yβ;y − ð1 − y2Þðβ;yy þ β2;yÞ
− ð1 − y2Þψ2

;y − 2ð1 − y2Þ½γ̂;yð1 − y2Þ − 2yγ̂�2
þ 2ð1 − y2Þðγ̂;yð1 − y2Þ − 2yγ̂Þβ;yg: ð47Þ

In this way we obtain

Mn
j;i ¼ Mn

j;i−1 − Δrð1 −HMÛjnj−1=2;i−1 −HMβγ̂ψ jnj;i−1=2Þ:
ð48Þ

Observe that the discretization is staggered (backward) for
Û terms with respect to the other terms.
All the obtained formulas for the hypersurface equations

are recursive and can be applied from r ≤ rW to rB.

2. Evolution equations

The discretization of the evolution equation [Eq. (37)]
proceeds in detail as follows (see Refs. [12,14,15]). The
core of the evolution integration is the ingoing marching
algorithm from rW to rB involving the two time levels n
and nþ 1.
We integrate Eq. (37) over the null parallelogram A

formed by ingoing and outgoing radial null rays in the
ðv; rÞ plane that intersect at vertices P, Q, R, and S, as
depicted in Fig. 2. Thus, we have

Z
A
e2β□ð2Þ

þ ~γdvdr ¼
Z
A
Hdvdr; ð49Þ

where ~γ ¼ rγ̂ andH is the rhs of Eq. (37) with the changed
sign. Using the mean value theorem, we approximateZ

A
Hdvdr ¼ HC

Z
A
drdv; ð50Þ

where the subscript C indicates that the quantity is
evaluated at the center of the null parallelogram Σ. Now,
we can easily get exactly

Z
A
drdv ¼ 1

2
ΔvðrQ − rP þ rS − rRÞ: ð51Þ

On the other hand, we use the conformal invariance [12]
to getZ

A
e2β□ð2Þ

þ ~γdvdr ¼ 2ð~γQ − ~γP þ ~γR − ~γSÞ: ð52Þ

Thus, the marching algorithm reads

~γQ ¼ ~γP þ ~γS − ~γR þ 1

4
ΔvðrQ − rP þ rS − rRÞHC: ð53Þ

The numerical implementation of this formula proceeds
as follows. Referring again to Fig. 2, interpolations are
required, and can be linear to keep a globally second-order
approximation. The ingoing null geodesic equation is
given by

dr
dv

¼ 1

2

�
1 −

2M
r

�
: ð54Þ

Thus, the displacements δi and δi−1 are calculated as

δi ¼
1

2

�
1 −

�
Mn−1

j;iþ1

riþ1

þMn
j;i−1

ri−1

��
Δv ð55Þ

FIG. 2 (color online). Ingoing marching algorithm for one
particular angle. Initial data are set on the initial null cone N ;
boundary conditions are set on the world tube W. Successive
levels of the advanced time v are depicted (diagonal lines n and
nþ 1) along with the radial grid (dashed vertical lines i − 2,
i − 1, i, iþ 1). The radial grid starts at W (i ¼ 0) and terminates
inside the horizon H, at the inner boundary B (i ¼ Nr). The
evolution equation for γ̂ relates the field values γ̂R, γ̂S, γ̂P, γ̂Q to
the value of HC. The same structure of the integration procedure
applies to ψ .
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and

δi−1 ¼
1

2

�
1 −

�
Mn−1

j;i

ri
þMn

j;i−2

ri−2

��
Δv: ð56Þ

The vertices’ coordinates are positioned by

rP ¼ ri−1 þ
1

2
δi−1; ð57aÞ

rR ¼ ri−1 −
1

2
δi−1; ð57bÞ

rQ ¼ ri þ
1

2
δi; ð57cÞ

rS ¼ ri −
1

2
δi; ð57dÞ

and the center coordinate is positioned by

rC ¼ 1

2
ðrP þ rSÞ: ð58Þ

The interpolate field at each corner of the null parallelo-
gram is

~γj;P ¼ ~γnj;i−1 −
1

2

δi−1
Δr

ð~γnj;i−1 − ~γnj;i−2Þ; ð59aÞ

~γj;R ¼ ~γn−1j;i−1 þ
1

2

δi−1
Δr

ð~γn−1j;i − ~γn−1j;i−1Þ; ð59bÞ

~γj;S ¼ ~γn−1j;i þ 1

2

δi
Δr

ð~γn−1j;iþ1 − ~γn−1j;i Þ; ð59cÞ

~γj;Q ¼ ~γnj;i −
1

2

δi
Δr

ð~γnj;i − ~γnj;i−1Þ: ð59dÞ

To get these formulas we have used linear Lagrange
interpolations. Now, from Eq. (53) we obtain the following
extrapolation formula:

~γnj;i ¼
1

1 − δi=2Δr

�
~γj;P þ ~γj;S − ~γj;R þ 1

4
ΔvðrQ − rP þ rS − rRÞHC −

1

2

δi
Δr

~γnj;i−1

�
: ð60Þ

The pending issue to use this formula, that evolves γ̂ to the
most advanced point, is the evaluation of HC. We do not
show details here, but we make two comments in this
respect: (i) Û and its derivatives are calculated at n − 1=2
(that is, at the center of the null parallelogram), j − 1=2 and
i − 1. (ii) γ̂, β, M, ψ , and its derivatives are calculated at
n − 1=2, j, and i − 1=2.
The discretization of the evolution equation [Eq. (38)]

for the scalar field proceeds in the same way.

3. Treatment of the initial-boundary conditions

The boundary conditions [Eq. (12)] are given at the first
and second radial grid points to integrate the hypersurface
equations.
For these two points we implement the algorithm

depicted in Fig. 3 to integrate the evolution equations.
The first displacement is

δ0 ¼
1

2

�
1 −

2Mn−1
j;0

r0

�
Δv: ð61Þ

The only point in the world tube is S at

rS ¼ r0 − δ0: ð62Þ

Thus, the interpolation leads us to

~γj;S ¼ ~γn−1j;0 þ δ0
Δr

ð~γn−1j;1 − ~γn−1j;0 Þ: ð63Þ

Then we approximate

~γnj;0 ¼ ~γj;Q ← ~γj;S: ð64Þ

Observe that Q is placed at i ¼ 0. The second
displacement is

δ1 ¼
1

2

�
1 −

2Mn−1
j;1

r1

�
Δv; ð65Þ

to calculate the vertices placed at

rP ¼ r0; ð66aÞ

rQ ¼ r1; ð66bÞ

rR ¼ r0 − δ0; ð66cÞ

rS ¼ r1 − δ1: ð66dÞFIG. 3 (color online). Treatment of the first (left) and second
(right) points for the ingoing marching algorithm.
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It can be easily shown that

~γj;P ¼ ~γnj;0; ð67aÞ

~γj;R ¼ ~γn−1j;0 þ δ0
Δr

ð~γn−1j;1 − ~γn−1j;0 Þ; ð67bÞ

~γj;S ¼ ~γn−1j;1 þ δ1
Δr

ð~γn−1j;2 − ~γn−1j;1 Þ: ð67cÞ

Since Q is located at i ¼ 1, we get

~γnj;i ¼ ~γj;Q ¼ ~γj;P þ ~γj;S − ~γj;R

þ 1

4
ΔvðrQ − rP þ rS − rRÞHc: ð68Þ

For the first two points we approximate HC as spherical,
which is consistent with the nongravitational radiation
condition at the world tube.
For the evolution equation [Eq. (38)], we proceed with

the first two radial points in the same way, except that
instead we use for HC the linear approximation for the
massless scalar field, in the sense of Sec. II D.
The initial conditions of Eqs. (13) and (14) are specified

on the grid points.

4. Radial and angular grids

The radial domain goes from rB ¼ 1M to rW ¼ 60M.
Thus, with radial grid points of Nr ¼ 103, we have
Δr ≈ 0.06. For an angular resolution of 90 grid points,
Ny ¼ 45, we cover the angular domain y ∈ ½−1; 1� corre-
sponding toΔy ≈ 0.02. The angular grid is uniform in y but
not uniform in θ (see Fig. 4).

C. CFL condition

The stability and convergence of the algorithm depends
on the Courant-Friedrichs-Lewy (CFL) condition.
Basically, the CFL condition requires that the analytical
domain of dependence of the problem be contained in the
numerical domain of dependence. This can be satisfied if
each grid point at vn−1 in Eq. (60) lies on or outside the past
characteristic cone of the point ðvn; ri; θj;ϕkÞ to which the
fields are being involved. We can use the following CFL
condition based on a linear analysis of the evolution system
around r ¼ 0:

dv ≤ Kdrdy2; ð69Þ

with K of the order of 1 [24]. This can be an overly
restrictive condition, since the evolution domain does not
include r ¼ 0.

Another CFL condition, used in Ref. [15], is

�
1 −

2M
r

−U2r2e2ðγ−βÞ
�
dv ≤ 2dr; ð70Þ

which supposes dθ ¼ dϕ ¼ 0 in the line element.
We find the most general treatment of the CFL condition

by supposing that the points ðv − Δv; rþ Δr; θ;ϕÞ and
ðv − Δv; r − Δr; θ � Δθ;ϕÞ evolve to ðv; r; θ;ϕÞ on the
null cones open to the past. This leads us to

Δv ≤ −2Δr
gvr
gvv

ð71Þ

and

Δv ≤ g−1vv ½−ðgvrΔr� gvθΔθÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgvrΔr� gvθΔθÞ2 − gvvgθθΔθ2

q
�: ð72Þ

If the fields are strong enough, this constraint takes into
account the bending of the light cones.
In this work, we use the CFL condition given by

Eq. (69), with K ¼ 0.75. We observe in practice that Ny
has to be at least 3 times Nr to guarantee stability.

-15

-10

-5

 0

 5

 10

 15

 0  5  10  15

Y

X

FIG. 4. Distribution of the grid points on the ingoing light cone
using a pseudo-Cartesian space X ¼ r cosϑ, Y ¼ r sin ϑ, where
ϑ ¼ π=2 − θ. The points X ¼ 0 denote the axis of symmetry,
whereas Y ¼ 0 denotes the equatorial plane. The grid is uniform
in r and y but nonuniform in θ.
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D. Timing

Using a grid Nr × Ny ¼ 256 × 90, an evolution up to
v ¼ 1M requires 7 minutes (without output) of a 2.4 GHz
Intel Core i5.

E. Second-order convergence

We measure the convergence in terms of the norm

QðvÞ ¼
Z

rW

rin

Z
1

−1
ψ2r2drdy; ð73Þ

using the second-order-accurate Simpson’s formula

Q ¼
X
i;j

1

2
½ðrψÞ2j;i þ ðrψÞ2j;iþ1Þ�ΔrΔy: ð74Þ

For the convergence test, we take rin ¼ 2.23M and
rW ¼ 60M, λ ¼ 10−3M and l ¼ 2. The following grids
were used, for which Δr and Δy scale as 4∶2∶1:

(i) Coarse: Nr ¼ 125, Ny ¼ 43.
(ii) Medium: Nr ¼ 250, Ny ¼ 86.
(iii) Fine: Nr ¼ 500, Ny ¼ 172.

Assuming that the quantity Q behaves as Q ¼ aþ bΔn, it
can be shown that the convergence rate is

n ¼ log2

�
Qc −Qm

Qm −Qf

�
; ð75Þ

where Qc, Qm, Qf refer the to computed values of
Q using the coarse, medium, and fine grids, respectively
[25,26]. The results in Table I show that the two-
dimensional EKG code is second-order convergent in
amplitude.
We also measure the convergence in phase. It can be

easily shown that the order of convergence in phase is
expressed by

n ¼ log2

�
Qcm

Qmf

�
; ð76Þ

where

Qcm ¼
Z

rW

rin

Z
1

−1
ðψc − ψmÞ2r2drdy ð77Þ

and

Qmf ¼
Z

rW

rin

Z
1

−1
ðψm − ψfÞ2r2drdy ð78Þ

are calculated at the same grid points and at the same time
by subsampling from the fine to the medium grid, and from
the medium to the coarse grid. The results in Table II
confirm that our code is also second-order convergent
in phase.
The same boundary conditions, initial data and marching

algorithm were used to calibrate the radial code. The
convergence rate in amplitude for the radial code is 1.71
for the radial grid sizes of Nr ¼ 126, 251, 501; 1.93 for
Nr ¼ 501, 1001, 2001; and 2.03 forNr ¼ 751, 1501, 3001;
all measured at v ¼ 1M. The convergence rate in phase for
the radial code is 2.55 for the radial grid sizes of Nr ¼ 126,
251, 501 at v ¼ 1M. Such a behavior, in both convergen-
ces, is shown by the nonlinear 2D EKG code.

IV. NUMERICAL RESULTS

A. Quasinormal Modes

QNMs for the scalar radiation can be read off at finite
regions inside the world tube and one particular direction—
for instance, at rout ¼ 10M, θ ¼ π=4. For the simulations in
this section, we use a grid with sizes Nr ¼ 2000 and
Ny ¼ 90; the initial data correspond to Eqs. (13) and (14)
with λ ¼ 10−4. As in Ref. [4], to extract the QNM we have
used the free software package HARMINV [27], which
employs a low-storage filter diagonalization method
(FDM) for finding the quasinormal modes in a given
frequency interval. This software package is based on
the FDM algorithm described in Refs. [28,29]. HARMINV

provides better accuracy than the fast Fourier transform and
is more robust than the least square fit. We do not have
other reason for its use, beyond its simplicity.
In performing a fit with HARMINV to the scalar field

waveforms, sometimes it is necessary to factor out, at least
approximately, the exponential decay of the signal. This
happens when the magnitude of the imaginary part of the
frequency (the decay rate) is comparable to the real
(oscillatory) part, where the FDM method fails to find a
fitting frequency. In those cases, we premultiply the signal
by an exponentially increasing function f ¼ expfωfvg,
perform the fit with HARMINV, and adjust the frequency
obtained accordingly. When an analytic value for the
frequency is available, we take its imaginary part as the

TABLE I. Convergence in amplitude of the 2D EKG code.

v Qc (10−7) Qm (10−7) Qf (10−7) n

0.05 2.108 2.396 2.466 2.04
0.10 2.070 2.359 2.430 2.02
0.15 2.033 2.323 2.395 2.00
0.20 1.997 2.287 2.361 1.99

TABLE II. Convergence in phase of the 2D EKG code.

v Qcm (10−11) Qmf (10−11) n

0.05 3.207 0.517 2.63
0.10 4.457 0.790 2.50
0.15 6.489 1.207 2.43
0.20 9.286 1.763 2.40
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value for ωf. In general, when the imaginary part of the
frequency is not known, it suffices to use a rough estimate
of the decay rate, which can obtained graphically. We also
need to decide what range of values of v to use to extract
this information. We do this by plotting the signal rψ and
noting when the waveform is clearly periodic with an

exponentially decaying envelope. From Figs. 5, 6, and 7,
one can see that the regime starts at v ≈ 40M. We take the
end of the fitting interval when the signal no longer appears
to be a damped sinusoidal waveform. For initial data of the
form as in Eq. (14), with l ¼ 0, 1, 2, we use HARMINV

to extract the frequency, using v ∈ ½40; 100� as the
fitting interval. For l ¼ 0, the measured frequency
is ω ¼ 0.1102ð0.3%Þ − 0.0971ið3.7%Þ; l ¼ 1 is ω¼
0.2951ð0.7%Þ−0.0974ið0.3%Þ; l¼2 is ω¼0.4896ð1.3%Þ
−0.0970ið0.2%Þ. Here the values in parentheses indicate
the percentage deviation from the value calculated in
Ref. [22] via the WKB method to sixth order. We confirm
that these results are better than those of Ref. [4], because
we are using the ingoing radial formulation. In fact, we
read off the frequencies with an error between 0.2%
and 3.7%.

B. Energy conservation

With the same initial data used to get the QNMs, Fig. 8
shows the energy conservation in the linear regime. It is
immediately clear from the graph that the energy contained
on the initial slice increases with the value of l. In all cases
energy is conserved within some error depending on
resolution. Thus, we can use energy conservation, as well
as the results from running the same initial data on the
radial code, to debug and calibrate the nonlinear code, as
well as to estimate the evolution time needed and its
computational requirements. Figure 9 shows the variation
in the energy balance ΔΣðvÞ, defined as the percentage
variation in ΣðvÞ relative to the initial value, Σðv0Þ, i.e.,
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v

FIG. 5 (color online). Log of the absolute value of the function
rψ at r ¼ 10M as a function of Bondi time, showing the
quasinormal mode regime oscillations for l ¼ 0. The solid line
is the output for Ny ¼ 90 and Nr ¼ 2000; the dashed line is the
quasinormal mode extracted from the data.
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FIG. 6 (color online). Log of the absolute value of the function
rψ at r ¼ 10M as a function of Bondi time, showing the
quasinormal mode regime oscillations for l ¼ 1. The solid line
is the output for Ny ¼ 90 and Nr ¼ 2000; the dashed line is the
quasinormal mode extracted from the data.
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FIG. 7 (color online). Log of the absolute value of the function
rψ at r ¼ 10M as a function of Bondi time, showing the
quasinormal mode regime oscillations for l ¼ 2. The solid line
is the output for Ny ¼ 90 and Nr ¼ 2000; the dashed line is the
quasinormal mode extracted from the data.

W. BARRETO PHYSICAL REVIEW D 90, 024055 (2014)

024055-10



ΔΣðvÞ ¼ ðΣðvÞ=Σð0Þ − 1Þ × 100: ð79Þ

It can be seen from Fig. 9 that during the simulation, the
relative change ΔΣðvÞ stays below 0.5% for l ¼ 0, 2.0%
for l ¼ 1, and 4.5% for l ¼ 2. The oscillations observed in

the profiles increase with the value of l as would be
expected.

C. MTS and q boundary

We solve Eq. (32) using the bisection method with one
iteration. Thus, Fig. 10 shows a rough radius of the q
boundary as a function of y ¼ − cosðθÞ for l ¼ 2,
Ny ¼ 90, Nr ¼ 2000, λ ¼ 0.1 at different Bondi times v.
Because the q boundary is always a sphere, Fig. 10 is
actually showing curves with q ¼ 0, where the q boundary
seems to be the largest r on each curve. Clearly, in this
(early) nonlinear evolution, the MTS develops an angular
structure like l ¼ 4. This could be connected with the
nonlinear harmonic generation reported in Ref. [15], and
deserves a future detailed study.

D. Additional test

In order to get a first glimpse of the type of simulations
that our framework enables us to perform, in the final
calibration check of the code, we select initial data given by
Eqs. (13) and (14), with λ ¼ 10−4, r0 ¼ 3M, σ ¼ 1

2
M,

l ¼ 8, and evolve this configuration until v ¼ 7.5M. The
angular grid has the size of Ny ¼ 90, while the radial grid
has Nr ¼ 2000 points. This simulation requires 17 hours
for each snapshot. Figure 11 displays rψ as a function of r
and θ at v ¼ 0, 2.5M, 5M, and 7.5M. We assign no
particular significance to the selected initial data, other than
the fact that its angular complexity provides an excellent
test of the code. Despite the oscillatory nature of these first
cycles, examination of the signal shows that only for later
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FIG. 8 (color online). Energy conservation (multiplied by 108)
as a function of theBondi time forl ¼ 0 (curve 0),l ¼ 1 (curve 1),
NS l ¼ 2 (curve 2). This calculation was done using the same
grid parameters as for Fig. 5. For each specific l, the descending
curve corresponds to energy given by Eq. (24). The ascending
curve corresponds to the algebraic sum of Ein ¼

R
Pindv and

Eout ¼
R
Poutdv.
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FIG. 9 (color online). Percentage variation in ΣðvÞ with respect
to Σð0Þ as a function of Bondi time for l ¼ 0 (curve 0), l ¼ 1
(curve 1), and l ¼ 2 (curve 2). The graph shows that energy is
conserved to within less than 4.5% of the energy content of the
initial surface.
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FIG. 10 (color online). Radius of the q boundary as a func-
tion of y ¼ − cosðθÞ for l ¼ 2, Ny ¼ 90, Nr ¼ 2000, λ ¼ 0.1,
and different Bondi times v: 0 (curve 1), 0.4 (curve 2), and 0.8
(curve 3). The MTS is estimated using the q boundary method
(see Ref. [23]) with one iteration.
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oscillations does the black hole spacetime approach the
typical quasinormal mode ringing.

V. CONCLUSIONS AND REMARKS

We have extended a computational framework, in the
context of the characteristic approach in numerical

relativity, to make scalar perturbations of nonrotating black
holes. The implementation has been used to solve the
model problem of a massless scalar field minimally
coupled to gravity (the two-dimensional Einstein-Klein-
Gordon problem). The procedure is based on the ingoing
light-cone formulation for an axially and reflection-
symmetric spacetime. We have shown that our nonlinear
code is globally second-order convergent in amplitude and
phase, and how accurately we can follow the quasinormal
mode ringing for the massless scalar field, including its
energy conservation in the linear approximation. As a non-
linear result, we show an early MTS evolution developing a
higher harmonic. As an additional calibration test, we evolve
an l ¼ 8 initial harmonic that the code solves quite well,
requiring reasonable grid sizes and computing times.
Currently, we are exploring accurately nonlinear effects

in the neighborhood of a central black hole. Of particular
interest is the study of gravitational waveforms, the margin-
ally trapped surface inside the distorted horizon, and the
global energy conservation. Besides the nonlinear effects
(see Ref. [15]), we are studying the flux of energy across
and away from the horizon, for the gravitational (and
scalar) radiation, including the global energy conservation
issues. In this respect, in Ref. [30], global energy con-
servation was obtained, within some minimized numerical
error, using the Galerkin spectral method to solve the Bondi
axial symmetric vacuum problem. Recently, in the spheri-
cal symmetric context of the EKG system [16], we obtained
the global energy conservation in nonlinear and extreme
characteristic evolutions. That was possible using the
propagation of the descriptor of the asymptotic symmetry
and the linkages notion. We are considering such an
approach to finite regions using the Galerkin spectral
method and the ingoing characteristic formulation.
Other future directions include the application of the

present extended framework to a massive and complex
scalar field. We envisage the simulation of an initial
toroidal boson star which distorts with evolution a spherical
black hole.
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FIG. 11 (color online). Sequence of snapshots illustrating the
evolution of finite-amplitude black hole oscillations via an
ingoing light-cone approach. The upper-left panel shows the
scalar field rψ (multiplied by 106) at v ¼ 0, representing a
localized finite-amplitude perturbation of a black hole. The plot
coordinates are pseudo-Cartesian: X ¼ r cos ϑ, Y ¼ r sin ϑ,
where ϑ ¼ π=2 − θ, hence placing the axis of symmetry along
X ¼ 0 and the equator along Y ¼ 0. Shown are contour levels of
the distortion of the light cone. In this case, the initial datum is an
l ¼ 8 harmonic. The next snapshot (upper-right panel) shows the
evolution of rψ at v ¼ 2.5M. The outward propagation of
the data is visible, but also the change of phase near the horizon.
The sequence proceeds with the lower-left panel, at time
v ¼ 5M. The evolution continues in the lower-right panel
(v ¼ 7.5M). The panel shows only the innermost region of the
computational domain (about 1=12 of the total radial extent).
Despite the oscillatory nature of these first cycles, examination of
the signal shows that only for later oscillations does the black
hole spacetime approach the typical quasinormal mode ringing.
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