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In this paper we calculate the effect of acceleration on the decay and excitation rates of scalar fields into a
final state of arbitrary multiplicity. The analysis is carried out using standard field operators as well as an
Unruh-DeWitt detector. Using the equivalence of the two methods, we show how to correctly set up the
computation and interpret the results in terms of the particle content of the initial and final state Rindler and
Minkowski spacetimes. We find the dominant transition pathway, and thus final state multiplicity, is
acceleration dependent. The formalisms developed are then used to analyze the electron and muon system.
We compute the transition rates and lifetimes for accelerated electrons and muons as well as the branching
fractions for muon decay.
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I. INTRODUCTION

Since the discoveries of Parker [1], Hawking [2], and
Unruh [3], namely cosmological particle creation, black
hole evaporation, and accelerated radiation, respectively, a
general notion has emerged that the particle content of
spacetime is an observer-dependent quantity. For example,
with the Unruh effect an observer undergoing uniform
acceleration a will find the Minkowski vacuum state to be a
thermalized bath of particles at temperature t ¼ a

2π. Directly
measuring this, or related phenomena, has remained out-
side the reach of our current experimental capabilities.
Indirect measurements, such as the acceleration-dependent
lifetime of particles, could provide a better avenue for
verifying these effects. Muller [4] first calculated how
acceleration affects the decay rates of muons, pions, and
protons using scalar fields. A more detailed calculation of
the accelerated decay of protons and neutrons, and related
processes, using fermions coupled to semiclassical vector
currents was carried out by Matsas and Vanzella [5–7].
The weak decay processes that have been considered so far
have final states containing only two or three particles.
By generalizing the formalism to arbitrary final state
multiplicities we are able to model all decay processes
regardless of the number of daughter products and gain
insight into how the branching fractions of the various
decay chains change with acceleration. The scalar field
formalisms developed can be applied to a wide range of
weak decay processes including the previously analyzed
cases of proton, neutron, pion, and muon decays.
A comprehensive analysis of how the branching fraction
of these processes evolve under acceleration has yet to be
carried out. This paper carries out the branching fraction
analysis for the muon and also gives a first estimate for the

lifetime of an accelerated electron using a scalar field
approximation.
In this paper, Sec. II focuses on calculating the transition

rates and lifetimes for an accelerated particle to decay
into nM massless Minkowski particles. The calculation is
carried out using standard field operators operating on
the fock states of their respective spacetimes. We derive the
Wightman functions and then evaluate them along the
trajectory of the accelerated particle. This formalism is
effectively a lab frame calculation of the transition rates. In
Sec. III, we use an Unruh-DeWitt detector to model the
inclusion of a massive final state and calculate the transition
rates and lifetimes for an accelerated two-level system to
undergo a transition with the simultaneous emission of nM
massless particles into Minkowski space. We also insert
the trajectory prior to calculating the Wightman functions.
The subsequent calculations give insight into the physics
in the rest frame of the detector and are effectively a proper
frame calculation of the transition rates. Section IV deals
with the comparison of the first two methods of calculation.
We show how to calculate the transition rate for an initially
accelerated particle to decay into nR particles of arbitrary
energy into Rindler space and nM massless particles into
Minkowski space. In Sec. V we apply the formalisms to
model the accelerated weak decay of muons and the
accelerated excitation of electrons back into muons. The
acceleration-dependent branching fractions of muon decay
are also included in the analysis. Section VI summarizes
the conclusions of the manuscript. We use natural units
ℏ ¼ c ¼ kB ¼ 1 throughout.

II. METHOD OF FIELD OPERATORS

In this section we determine the probability per unit time
that a massive scalar particle will decay into nM massless
scalar particles using the method of field operators.
Denoting the massive initial state by Ψ and the massless*mhlynch@uwm.edu
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final states by ϕi, the process we are concerned with is
given by

Ψ→a ϕ1ϕ2ϕ3 � � �ϕnM . ð1Þ

It should be noted that there may be symmetry factors
associated with the final state products if there are more
than one of the same particle species in the final state. For
the current considerations we ignore any symmetry factors
which may arise since we will have an arbitrary coupling
constant which may be rescaled to take into account any
degeneracy, statistical, or color factors. In order to describe
this decay process, we consider the following interaction
action:

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ffiffiffiffiffi
2

σκ

r
GΨ̂

YnM
l¼1

ϕ̂l. ð2Þ

The coupling constant G will be determined by the
specific interaction and, for the eventual concern of this
paper, will be related to the Fermi coupling Gf. The

additional factor of
ffiffiffiffi
2
σκ

q
will be used for the later conven-

ience of absorbing the Jacobian of a proper time

reparametrization and normalization constant. Note that
we are modeling decay processes at tree level and provided
the energy scale, i.e. the proper acceleration, remains below
the W� and Z boson masses we need not worry about the
nonrenormalizability of this effective Fermi interaction. All
fields under consideration are assumed to be real and thus
so is the interaction action. Note, all interactions, fields,
trajectories, and thus the transition rate will eventually be
evaluated in the Rindler coordinate chart. The probability
amplitude for the acceleration induced decay of our
massive initial state into n massless particles is given by

A ¼ h
YnM
m¼1

kmj ⊗ h0jŜIjΨii ⊗ j0i. ð3Þ

That is, the initial fock state jΨii of our massive field Ψ
decays into the n-particle momentum eigenstate jQnM

i¼1 kii
of our massless fields ϕi under the influence of the
interaction ŜI . Note we have used the shorthand notation
jQnM

i¼1 kii ¼ jk1;k2;…;knMi to denote our final state.
Defining

QnM
i¼1 d

3kj ¼ D3
nMk, we can set up the differential

probability, i.e. the magnitude squared of the probability
amplitude per unit final state momenta, via

dP
D3

nMk
¼ jAj2

¼
����h
YnM
m¼1

kmj ⊗ h0jŜIjΨii ⊗ j0i
����
2

¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p ����h
YnM
m¼1

kmj ⊗ h0jΨ̂ðxÞ
YnM
l¼1

ϕ̂lðxÞjΨii ⊗ j0i
����
2

¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
jh0jΨ̂ðxÞjΨiij2

����h
YnM
m¼1

kmj
YnM
l¼1

ϕ̂lðxÞj0i
����
2

. ð4Þ

The above inner product containing our massless fields ϕl, its complex conjugate, and the product of momentum
integrations in Eq. (4) allow us to factor out nM complete sets of momentum eigenstates, e.g.

R
d3kjkihkj ¼ 1. The total

transition probability is then given by

P ¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
jh0jΨ̂ðxÞjΨiij2

YnM
j¼1

Z
d3kj

����h
YnM
m¼1

kmj
YnM
l¼1

ϕ̂lðxÞj0i
����
2

¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
jh0jΨ̂ðxÞjΨiij2

YnM
l¼1

h0jϕ̂lðx0Þϕ̂lðxÞj0i. ð5Þ

In examining the above equation, it serves to recall the
expression h0jΨ̂ðxÞjΨii selects the positive frequency
mode function ukðx; τÞ of the initial state Ψ. These positive
frequency mode functions are eigenfunctions of the Rindler

coordinate proper time τ such that ∂τuk ¼ −iωuk. In the
accelerated frame this particle is at rest and its energy is
only the rest mass m. Letting fΨi

ðxÞ denote the spatial
variation of the particle, we find
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h0jΨ̂ðxÞjΨii ¼ h0j
Z

d3k0½âk0uk0 ðxÞ þ h.c�jΨii

¼
Z

d3k0δðk0 − kÞuk0 ðxÞ

¼ ukðxÞ
¼ fΨi

½xðτÞ�e−imτ. ð6Þ

Furthermore, each of the two-point functions
h0jϕ̂lðx0Þϕ̂lðxÞj0i in Eq. (5) characterizes the probability
amplitude for a field quanta to be created at the spacetime
point x and propagate within the lightcone to the spacetime

point x0. If t0 > t then the particle is traveling forward
through time and has a postive frequency. This defines
the appropriately named positive frequency Wightman
function denoted Gþðx0; xÞ. Similarly if t > t0 then this
defines the negative frequency Wightman function,
denoted G−ðx0; xÞ, and describes a particle of negative
frequency propagating backwards through time. The time
ordered sum of the positive and negative frequency
Wightman functions make up the more common
Feynman propagator [8]. Denoting the general two point
functionG�ðx0; xÞ, our probability can now be simplified to
the following form:

P ¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
jh0jΨ̂ðxÞjΨiij2

YnM
l¼1

h0jϕ̂lðx0Þϕ̂lðxÞj0i

¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
fΨi

½xðτÞ�f�Ψi
½x0ðτ0Þ�eimðτ0−τÞ½G�ðx0; xÞ�nM . ð7Þ

The Wightman functions for the massless scalar field can be evaluated analytically by inserting the canonically
normalized mode decomposition of our field operator ϕ̂ ¼ R

d3k
ð2πÞ3=2 ffiffiffiffi

2ω
p ½âkeiðk·x−ωtÞ þ â†ke

−iðk·x−ωtÞ�. Thus,

G�ðx0; xÞ ¼ h0ljϕ̂lðx0Þϕ̂lðxÞj0li

¼ 1

2ð2πÞ3
ZZ

d3k0d3kffiffiffiffiffiffiffiffi
ω0ω

p h0lj½âk0eiðk0·x0−ω0t0Þ þ â†k0e
−iðk0·x0−ω0t0Þ�½âkeiðk·x−ωtÞ þ â†ke

−iðk·x−ωtÞ�j0li

¼ 1

2ð2πÞ3
ZZ

d3k0d3kffiffiffiffiffiffiffiffi
ω0ω

p h0ljâk0 â†keiðk
0·x0−k·x−ω0t0þωtÞj0li

¼ 1

2ð2πÞ3
ZZ

d3k0d3kffiffiffiffiffiffiffiffi
ω0ω

p eiðk0·x0−k·x−ω0t0þωtÞδðk0 − kÞ

¼ 1

2ð2πÞ3
Z

d3k
ω

eiðk·Δx−ωΔtÞ. ð8Þ

To facilitate the resultant integral we move into momentum space spherical coordinates and rotate until our momentum is
aligned along the z axis. Recall that in the massless limit ω ¼ k the integration simplifies further to

G�ðx0; xÞ ¼ 1

2ð2πÞ3
Z

d3k
ω

eiðk·Δx−ωΔtÞ

¼ 1

2ð2πÞ3
Z

∞

0

Z
π

0

Z
2π

0

dkdθdϕk sin θeiðkΔx cos θ−kΔtÞ

¼ 1

2ð2πÞ2
Z

∞

0

Z
1

−1
dkdðcos θÞkeiðkΔx cos θ−kΔtÞ

¼ 1

2ð2πÞ2
i
Δx

Z
∞

0

dk½e−ikðΔxþΔtÞ − e−ikð−ΔxþΔtÞ�: ð9Þ

In order for the above integration to be well defined we must damp the oscillation at infinity via the introduction of a
complex regulator to our time interval, e.g. Δt → Δt − iϵ with ϵ > 0. Hence,
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G�ðx0; xÞ ¼ 1

2ð2πÞ2
i
Δx

Z
∞

0

dk½e−ikðΔxþΔtÞ − e−ikð−ΔxþΔtÞ�

¼ 1

2ð2πÞ2
i
Δx

Z
∞

0

dk½e−ikðΔxþðΔt−iϵÞÞ − e−ikð−ΔxþðΔt−iϵÞÞ�

¼ 1

2ð2πÞ2
i
Δx

�
1

iðΔxþ ðΔt − iϵÞÞ −
1

ið−Δxþ ðΔt − iϵÞÞ
�

¼ 1

ð2πÞ2
1

Δx2 − ðΔt − iϵÞ2 . ð10Þ

Having determined the functional form of our massless
Wightman function we return to the integrations over the
spatial coordinates in our decay probability, Eq. (7). These
can be dealt with by examining the covariant 4-volume
element of Rindler space. The proper coordinates [9]
ðτ; ξ;x⊥Þ seen by a particle undergoing uniform proper
acceleration a along the z axis are given by

τðt; zÞ ¼ 1

2a
ln
zþ t
z − t

;

ξðt; zÞ ¼ −
1

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − t2

p
. ð11Þ

The perpendicular coordinates x⊥ do not change in
Rindler space. Note, the coordinate ξ parametrizes dis-
tances seen by the accelerated observer along the axis of
acceleration and the point ξ ¼ 0 labels the origin of this
axis and is defined to be the location of the uniformly
accelerated particle. For an inertial observer, this point will
then characterize the trajectory of the accelerated particle.
In this coordinate chart, the metric takes the form

ds2 ¼ ð1þ aξÞ2dτ2 − dξ2 − dx2⊥. ð12Þ

The corresponding metric determinant of this spacetime
used to covariantly scale our 4-volume of integration is
jgj ¼ 1þ aξ. Inverting our proper coordinate chart,
Eq. (11), and translating until ξ ¼ 0 and x⊥ ¼ 0 yields
the trajectory of our particle,

t ¼ 1

a
sinh aτ;

z ¼ 1

a
cosh aτ;

x⊥ ¼ 0: ð13Þ

It should be noted that under this trajectory our
Wightman function, Eq. (10), depends only on the proper
time τ and is therefore not affected by the spatial integra-
tions. Returning to the decay probability, Eq. (7), we can
handle the spatial components of the integration via

P ¼ G2
2

σκ

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
fΨ½xðτÞ�f�Ψ½x0ðτ0Þ�eimðτ0−τÞ½G�ðx0; xÞ�nM

¼ G2
2

σκ

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aξ

p Z
d3x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aξ0

p
fΨ½xðτÞ�f�Ψ½x0ðτ0Þ�

ZZ
dτdτ0eimðτ0−τÞ½G�ðx0; xÞ�nM

¼ G2
2

σκ
κ

ZZ
dτdτ0eimðτ0−τÞ½G�ðx0; xÞ�nM

¼ G2
2

σ
F nMðmÞ. ð14Þ

The mode functions have the form fΨ½xðτÞ� ∼
Kiω=aðma eaξÞgðx⊥Þ where gðx⊥Þ is an envelope function
or wave packet describing the spatial distribution of our
accelerated field in the directions perpendicular to the
acceleration. With the mode functions properly normal-
ized [10], the expression κ ¼jR d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aξ

p
fΨ½xðτÞ�j2

will be of order unity. We see the probability of an
acceleration induced transition is then given by the
Fourier transform of the product of the nM final state
Wightman functions. This is known as the response
function F nMðmÞ. The effective coupling constant G2 for

the process being considered will be determined by
taking the limit a → 0 and matching the coefficient to
the known inertial decay process. Note this compact
form of the transition probability is valid for a more
general class of trajectories provided their parametriza-
tion only depends on the proper time. Using the
trajectories from Eq. (13), the coordinate transforma-
tions u ¼ τ0−τ

ρ and s ¼ τ0þτ
σ , and the inversion τ0 ¼ ρuþσs

2

and τ ¼ σs−ρu
2

with arbitrary σ and ρ, we find the explicit
form of the spacetime intervals in the massless
Wightman function to be
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Δx2 − ðΔt − iϵÞ2 ¼ 1

a2
f½cosh ðaτ0Þ − cosh ðaτÞ�2 − ½sinh ðaτ0Þ − sinh ðaτÞ − iϵ�2g

¼ 1

a2

��
2 sinh

�
aρu
2

�
sinh

�
aσs
2

��
2

−
�
2 sinh

�
aρu
2

�
cosh

�
aσs
2

�
− iϵ

�
2
�

¼ 1

a2

�
4sinh2

�
aρu
2

�
sinh2

�
aσs
2

�
− 4sinh2

�
aρu
2

�
cosh2

�
aσs
2

�
þ 4iϵ sinh

�
aρu
2

�
cosh

�
aσs
2

��

¼ 1

a2

�
4sinh2

�
aρu
2

�
sinh2

�
aσs
2

�
− 4sinh2

�
aρu
2

�
cosh2

�
aσs
2

�
þ 8iϵ sinh

�
aρu
2

�
cosh

�
aρu
2

��

¼ −4
a2

sinh2
�
aρu
2

− iϵ

�
. ð15Þ

Note we have rescaled ϵ by the positive definite factor
2 coshðaρu

2
Þ= coshðaσs

2
Þ and used the Taylor expansion of

sinh2ðx − iϵÞ to combine the arguments. Thus we obtain

G�ðx0; xÞ ¼ −
1

ð2πÞ2
a2

4sinh2ðaρu
2
− iϵÞ . ð16Þ

In changing the proper time integration variables we pick
up the Jacobian σρ

2
and our transition probability induced by

the uniformly accelerated trajectory then becomes

P¼G2
2

σ
F nMðmÞ

¼G2
2

σ

ZZ
dτdτ0eimðτ0−τÞ½G�ðx0;xÞ�nM

¼G2
2

σ

ZZ
dτdτ0eimðτ0−τÞ

�
1

ð2πÞ2
1

Δx2−ðΔt− iϵÞ2
�
nM

¼G2
2

σ

ZZ
dτdτ0eimðτ0−τÞ

�
−

1

ð2πÞ2
a2

4sinh2ðaρu
2
− iϵÞ

�
nM

¼G2ð−1ÞnMρ
�
a
4π

�
2nM

ZZ
dsdu

eimρu

½sinhðaρu
2
−iϵÞ�2nM . ð17Þ

By dividing out the infinite proper time interval
R
ds we

obtain the probability of transition per unit proper time
ΓnMðm; aÞ ¼ P

Δs. After rescaling u → ρu we see that the
result is independent of the parametrization of u. The
parametrization of s yielded a factor of σ

2
which we

absorbed by the initial rescaling of our coupling constant.
The probability per unit time is thus given by

ΓnMðm; aÞ ¼ G2

�
ia
4π

�
2nM

Z
du

eimu

½sinh ðau
2
− iϵÞ�2nM . ð18Þ

Focusing on the integration, we note that in the absence
of the iϵ prescription there will be poles of order 2nM when
u ¼ 2απi=a with α being any integer. To integrate over the
real axis in the presence of the pole at u ¼ 0 we will close
our contour in the upper half plane to damp the oscillation
at infinity. In doing so we also pick up the additional tower
of poles along the imaginary axis. Furthermore, with the
negative iϵ prescription we will also capture the pole at
α ¼ 0. We will now remove the regulator ϵ → 0 now that
we understand the appropriate pole structure. The integrand
can be cast into a simpler form via the change of variables
w ¼ eau. Hence,
Z

du
eimu

½sinhðau
2
Þ�2nM ¼ 22nM

Z
∞

−∞
du

eimu

½eau
2 − e−

au
2 �2nM

¼ 22nM
Z

∞

−∞
du

eimu

½eau
2 − e−

au
2 �2nM

¼ 22nM
Z

∞

−∞
du

eimuþaunM

½eau − 1�2nM

¼ 22nM

a

Z
∞

0

dw
wim=aþnM−1

½w − 1�2nM . ð19Þ

We see that there are poles when w ¼ 1, i.e. w ¼ ei2πα

where we keep the integer α ≥ 0. Evaluation of this integral
may be accomplished via the residue theorem. Thus

22nM

a

Z
∞

0

dw
wim=aþnM−1

½w − 1�2nM ¼ 22nM

a
2πi

ð2nM − 1Þ!
X∞
α¼0

d2nM−1

dw2nM−1

�
½w − 1�2nM wim=aþnM−1

½w − 1�2nM
�
w¼ei2πα

¼ 22nM

a
2πi

ð2nM − 1Þ!
X∞
α¼0

�
wim=a−nMΓðim=aþ nMÞ
Γðim=aþ 1 − nMÞ

�
w¼ei2πα

¼ 22nM

a
2πi

ð2nM − 1Þ!
Γðim=aþ nMÞ

Γðim=aþ 1 − nMÞ
X∞
α¼0

e−2π
m
aα−2πinMα

¼ 22nM

a
2πi

ð2nM − 1Þ!
Γðim=aþ nMÞ

Γðim=aþ 1 − nMÞ
1

1 − e−2πm=a . ð20Þ
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The presence of the factor of ½1 − e−2πm=a�−1 is indicative
of the thermal nature of the vacuum associated with the
Unruh effect. From our total rate, Eq. (18), for a uniformly
accelerated particle of mass m to decay into nM massless
particles under the influence of a uniform acceleration is
then found to be

ΓnMðm; aÞ ¼ G2

�
ia
2π

�
2nM 1

a
2πi

ð2nM − 1Þ!

×
Γðim=aþ nMÞ

Γðim=aþ 1 − nMÞ
1

1 − e−2πm=a . ð21Þ

We can normalize the above expression by defining
~Γ ¼ Γ=Γ0, with Γ0 ¼ G2, to better analyze the normalized
decay rate for an arbitrary nM particle multiplicity final
state. The normalized decay rates ~ΓnM for the first few
integer values of nM are given by

~Γ1ðm;aÞ ¼ m
2π

1

1− e−2πm=a ;

~Γ2ðm;aÞ ¼ m3

48π3
1þ ðamÞ2

1− e−2πm=a ;

~Γ3ðm;aÞ ¼ m5

3840π5
1þ 5ðamÞ2 þ 4ðamÞ4

1− e−2πm=a ;

~Γ4ðm;aÞ ¼ m7

645120π7
1þ 14ðamÞ2 þ 49ðamÞ4 þ 36ðamÞ6

1− e−2πm=a ;

~Γ5ðm;aÞ ¼ m9

185794560π9

×
1þ 30ðamÞ2 þ 273ðamÞ4 þ 820ðamÞ6 þ 576ðamÞ8

1− e−2πm=a .

ð22Þ

Below, in Figs. 1 and 2, we plot both the normalized
decay rates and lifetimes ~τ ¼ 1= ~Γ for a particle of mass
m ¼ 1 to decay into nM massless particle states as a
function of the proper acceleration. It is clear from both
Eq. (22) and the plots below that there exists a crossover
scale of acceleration where the accelerated particle will
preferentially choose the decay chain with the most final
state products. This implies that an inertially decaying
particle chooses the decay chain which contains the least
allowable amount of end products and by imparting a
sufficiently high acceleration on an unstable particle it will
chose the decay chain which contains the most allowable
final state products.
The prescription for this method of calculation can be

seen by inspecting Eq. (14). In general, for nM final state
products, the response function is computed by taking the
Fourier transform of the product of each of the Wightman
functions of the nM massless final states. The number of
final states determines the number of derivatives taken in
calculating the residues of Eq. (20), which yields the

gamma functions, and thus the number of terms in the
decay rate polynomial as can be seen by Eq. (22). In the
next section we will analyze the same situation utilizing an
Unruh-DeWitt detector.

III. THE METHOD OF DETECTORS

In this section we utilize the formalism of Unruh-DeWitt
detectors; see Ref. [3,11]. As such, we form a two-level
system consisting of two particles of arbitrary mass
and determine the associated decay and excitation rates,
accompanied by the simultaneous emission of nM massless
particles, of the system under uniform acceleration. These
processes are illustrated schematically as

Ψ1→a Ψ2ϕ1ϕ2 � � �ϕnM . ð23Þ

The utility of this method is that it allows the inclusion of
a massive final state in a rather uncomplicated fashion and,
more importantly, allows for a description of acceleration

a~
0 2 4 6 8 10 12 14 16 18 20

Γ∼

–1310

–1210

–1110

–1010

–910

–810

–710

–610

–510

–410

–310

–210

–110

1

10

 = 1Mn
 = 2Mn
 = 3Mn
 = 4Mn
 = 5Mn

FIG. 1 (color online). The normalized decay rates, Eq. (22),
with ~a ¼ a=m and m ¼ 1.

a~
0 2 4 6 8 10 12 14 16 18 20

τ∼

–110

1

10

210

310

410

510

610

710

810

910

1010

1110

1210

1310  = 1Mn
 = 2Mn
 = 3Mn
 = 4Mn
 = 5Mn

FIG. 2 (color online). The normalized lifetimes, ~τ, with ~a ¼
a=m and m ¼ 1.
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induced excitation rather than just decay. To accomplish
this, we will now promote the massive scalar fields Ψi to a
two-level system, e.g. an Unruh-DeWitt detector. These
fields, and their transitions, will now be characterized by
the time evolved monopole moment operator,

m̂ðτÞ ¼ eiĤτm̂0e−iĤτ. ð24Þ
The monopole moment operator m̂0 is assumed to be

Hermitian. The operator Ĥ denotes the detectors or fields
proper Hamiltonian with the property

ĤjΨii ¼ mijΨii; i ¼ 1; 2 ð25Þ
since, in the proper frame, the total energy will be that of
the rest mass of our field mi. Utilizing this formalism, we
define the interaction action as

ŜI ¼
Z

dτ

ffiffiffi
2

σ

r
m̂ðτÞ

YnM
l¼1

ϕ̂l. ð26Þ

Again we have pulled out the additional factor of
ffiffi
2
σ

q
to

absorb the Jacobian of a proper time reparametrization.
Furthermore, this action is only integrated over the detector
proper time and not the full spatial extent of the accelerated

field as in the previous section, Eq. (2), since we are
considering the fields as a time-dependent two-level system
with no spatial extent. In calculating matrix elements of
the form hΨfjm̂ðτÞjΨii we define the effective coupling
constant to be

G ¼ hΨfjm̂0jΨii. ð27Þ

It is this effective coupling constant that encodes the
physical characteristics of the particular transition under
consideration. The probability amplitude for the process
induced by the interaction, Eq. (26), is given by

A ¼ h
YnM
j¼1

kjj ⊗ hΨfjŜIjΨii ⊗ j0i. ð28Þ

We again use the same notation for our Fock states and
accommodate any complications due to the statistics or
degeneracies of the final state products by rescaling our
effective coupling. Utilizing the shorthand notationQnM

j¼1 d
3kj ¼ D3

nMk, the differential probability for the
two-level system to undergo a transition and be accom-
panied by the emission of nM massless particles per unit
momentum is given by

dP
D3

nMk
¼ jAj2

¼ h0j ⊗ hΨijŜIjΨfi ⊗ j
YnM
j0¼1

kj0 ih
YnM
j¼1

kjj ⊗ hΨfjŜIjΨii ⊗ j0i

¼ 2

σ

ZZ
dτ0dτh0j ⊗ hΨijm̂ðτ0Þ

YnM
l0¼1

ϕ̂l0 ðx0ÞjΨfi ⊗ j
YnM
j0¼1

kj0 ih
YnM
j¼1

kjj ⊗ hΨfjm̂ðτÞ
YnM
l¼1

ϕ̂lðxÞjΨii ⊗ j0i: ð29Þ

Operation of the time evolved monopole moment in the relevant inner product and recalling the definition of our effective
coupling, Eq. (27), yields

hΨfjm̂ðτÞjΨii ¼ hΨfjeiĤτm̂0e−iĤτjΨii ¼ eiðmf−miÞτhΨfjm̂0jΨii ¼ GeiΔmτ. ð30Þ

Then our differential probability, Eq. (29), becomes

dP
D3

nMk
¼ 2

σ

ZZ
dτ0dτ h0j ⊗ hΨijm̂ðτ0Þ

YnM
l0¼1

ϕ̂l0 ðx0ÞjΨfi ⊗ j
YnM
j0¼1

kj0 ih
YnM
j¼1

kjj ⊗ hΨfjm̂ðτÞ
YnM
l¼1

ϕ̂lðxÞjΨii ⊗ j0i

¼ G2
2

σ

ZZ
dτ0dτe−iΔmðτ0−τÞ

����h
YnM
j¼1

kjj
YnM
l¼1

ϕ̂lðxÞj0i
����
2

: ð31Þ

In this section we will endeavor to evaluate the above
integral in a different way than in the previous section.
Originally we factored out the complete set of momentum
eigenstates to yield the Wightman functions. We then
showed that each massless Wightman function was, up

to a constant, the inverse of the spacetime interval traversed
along an arbitrary trajectory. The interval was then evalu-
ated along the hyperbolic trajectory associated with uni-
form acceleration. Here, we evaluate the inner product
without factoring out the complete set of momentum
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eigenstates. This allows us to insert the hyperbolic trajec-
tory into the resultant mode functions then perform the
integrations over momentum. In doing so, we gain insight
into the physical properties of the emitted decay products.
We also find, as expected, the end result to be identical to
that of the previous section. Evaluation of the decay rate

using these two different methods lends a greater under-
standing to the underlying character of these processes.
Operation on the vacuum with our massless fields in

Eq. (31) will yield nM momentum integrals of the negative
frequency mode functions over their momentum. Hence the
above inner product will reduce to

h
YnM
j¼1

kjj
YnM
l¼1

ϕ̂lðxÞj0i ¼ h
YnM
j¼1

kjj
YnM
l¼1

1

ð2πÞ3nM2
1

2
nM
2

Z
d3klffiffiffiffiffiffi
ωl

p ½â†kl
e−iðkl·x−ωkl

tÞ þ h.c.�j0i

¼ 1

ð2πÞ3nM2
1

2
nM
2

YnM
l¼1

Z
d3klffiffiffiffiffiffi
ωl

p e−iðkl·x−ωkl
tÞh
YnM
j¼1

kjjkli

¼ 1

ð2πÞ3nM2
1

2
nM
2

YnM
l¼1

Z
d3klffiffiffiffiffiffi
ωl

p e−iðkl·x−ωkl
tÞYnM

j¼1

δðkj − klÞ

¼ 1

ð2πÞ3nM2
1

2
nM
2

e−i
P

nM
j¼1

ðkj·x−ωkj
tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQnM

j0¼1
ωj0

q . ð32Þ

Utilizing the above expression, our differential probability becomes

dP
D3

nMk
¼ G2

2

σ

ZZ
dτ0dτe−iΔmðτ0−τÞ

����h
YnM
j¼1

kjj
YnM
l¼1

ϕ̂lðxÞj0i
����
2

¼ G2
2

σ

1

ð2πÞ3nM
1

2nM

ZZ
dτ0dτe−iΔmðτ0−τÞ e

i
P

nM
j¼1

ðkj·ðx0−xÞ−ωkj
ðt0−tÞÞQnM

j0¼1
ωj0

. ð33Þ

It should be noted that we are integrating over the accelerated particles proper time. As such, the position and time
intervals in the above exponential need to be recast along the trajectory and expressed in terms of the proper time of the
acceleratd frame. Then, recalling the trajectory from the previous section, Eq. (13), we have

dP
D3

nMk
¼ G2

2

σ

1

ð2πÞ3nM
1

2nM

ZZ
dτ0dτe−iΔmðτ0−τÞ e

i
P

nM
j¼1

ðkj·ðx0−xÞ−ωkj
ðt0−tÞÞQnM

j0¼1
ωj0

¼ G2
2

σ

1

ð2πÞ3nM
1

2nM

ZZ
dτ0dτe−iΔmðτ0−τÞ e

i
a

P
nM
j¼1

ðkzj ½cosh ðaτ0Þ−cosh ðaτÞ�−ωkj
½sinh ðaτ0Þ−sinh ðaτÞ�ÞQnM

j0¼1
ωj0

. ð34Þ

Again, utilizing the change of variables, u ¼ ðτ0 − τÞ=ρ and s ¼ ðτ þ τ0Þ=σ, we recall

cosh ðaτ0Þ − cosh ðaτÞ ¼ 2 sinh

�
aρu
2

�
sinh

�
aσs
2

�
; sinh ðaτ0Þ − sinh ðaτÞ ¼ 2 sinh

�
aρu
2

�
cosh

�
aσs
2

�
. ð35Þ

In changing variables we will again pick up the factor of ρσ
2
due to the Jacobian. Using these proper time parametrizations

the differential probability becomes

dP
D3

nMk
¼ G2

2

σ

1

ð2πÞ3nM
1

2nM

ZZ
dτ0dτe−iΔmðτ0−τÞ e

i
a

P
nM
j¼1

ðkzj ½cosh ðaτ0Þ−cosh ðaτÞ�−ωkj
½sinh ðaτ0Þ−sinh ðaτÞ�ÞQnM

j0¼1
ωj0

¼ G2

ð2πÞ3nM
ρ

2nM

ZZ
dsdue−iΔmρu e

2i
a

P
nM
j¼1

½kzj sinhðaσs2 Þ−ωkj
coshðaσs

2
Þ� sinhðaρu

2
ÞQnM

j0¼1
ωj0

. ð36Þ
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Noting that our acceleration is along the z axis only, we
can examine the 4-velocity of the accelerated particle using
the new affine proper time parametrization ~s ¼ σs

2
. Hence

uμð~sÞ ¼ dxμ

d~s
¼ ðcosh ða~sÞ; 0; 0; sinh ða~sÞÞ. ð37Þ

We can then read off the relativistic factors associated
with this motion, γ ¼ cosh ða~sÞ and βγ ¼ sinh ða~sÞ. Then,
restricting our analysis to the 2-D subspace along the
hyperbolic trajectory, we find that given a 2-momentum kμ

we can boost to the frame instantaneously at rest with the
accelerated motion to find

~kν ¼ Λν
μkμ ¼

�
γ −βγ

−βγ γ

��
ω
kz

�

¼
�

cosh ða~sÞ − sinh ða~sÞ
− sinh ða~sÞ cosh ða~sÞ

��
ω
kz

��
~ω
~kz

�

¼
�

ω cosh ða~sÞ − kz sinh ða~sÞ
−ω sinh ða~sÞ þ kz cosh ða~sÞ

�
. ð38Þ

Upon inspection of the exponential in Eq. (36), we
see the argument in the sum is merely the frequency of
the emitted particles as seen in the boosted frame

instantaneously at rest with accelerated field, i.e. ~ω. As
such we may rewrite the exponential in terms of the boosted
frequencies yielding

dP
D3

nMk
¼ G2

ð2πÞ3nM
ρ

2nM

ZZ
dsdue−iΔmρu

×
e
2i
a

P
nM
j¼1

½kzj sinhðaσs2 Þ−ωkj
coshðaσs

2
Þ� sinhðaρu

2
ÞQnM

j0¼1
ωj0

¼ G2

ð2πÞ3nM
ρ

2nM

ZZ
dudse−iΔmρu e

−2i
a ½
P

nM
j¼1

~ωkj
� sinhðaρu

2
ÞQnM

j0¼1
ωj0

.

ð39Þ

Note the integrand of our differential probability is now
independent of the proper time parameter s. Therefore we
can now divide out the total proper time interval

R
ds ¼ Δs

to obtain the transition probability per unit proper time,
ΓnMðΔm; aÞ ¼ P=Δs. Furthermore, since we have the
proper quantity ~ω in the exponent we will need to change
the remaining momentum variables to the boosted frame as
well. Upon inversion of the Lorentz transformations in
Eq. (38) we obtain kz ¼ ~ω sinh ða~sÞ þ ~kz cosh ða~sÞ and
ω ¼ ~ω cosh ða~sÞ þ ~kz sinh ða~sÞ. Recalling first that
~k⊥ ¼ k⊥, we then examine the quantity dkz=ω. Hence

dkz
ω

¼ dkz
d~kz

d~kz
ω

¼ d

d~kz
½ ~ω sinh ða~sÞ þ ~kz cosh ða~sÞ�

d~kz
ω

¼
�
~kz
~ω
sinh ða~sÞ þ cosh ða~sÞ

�
d~kz
ω

¼
~kz sinh ða~sÞ þ ~ω cosh ða~sÞ

~ω

d~kz
ω

¼ d~kz
~ω

. ð40Þ

The recasting of our transition rate in terms of proper frame variables, accompanied by the rescaling of our proper time
via u → ρu, yields the following more convenient expression:

ΓnMðΔm; aÞ ¼ P
Δs

¼ G2

ð2πÞ3nM
1

2nM

ZZ
duD3

nMke
−iΔmu e

−2i
a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
ωj0

¼ G2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

d3kle−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
ωj0

¼ G2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

d3 ~kle−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
~ωj0

. ð41Þ

The isotropy of the momentum of the emitted particles in the proper frame is apparent from the above expression. To
further facilitate the calculation, we exploit this spherical symmetry by moving our momentum integrations into spherical
coordinates. Thus
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ΓnMðΔm; aÞ ¼ G2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

d3 ~kle−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
~ωj0

¼ G2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

~k2l sinð~θlÞd~kld~θld ~ϕle−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
~ωj0

¼ ð4πÞnMG2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

~k2ld~kl e−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
~ωj0

. ð42Þ

Then, for the final state massless fields ϕi, we have ~ωi ¼ ~ki and we may further simplify the above integrations to

ΓnMðΔm; aÞ ¼ ð4πÞnMG2

ð2πÞ3nM
1

2nM

ZZ
du

YnM
l¼1

~k2ld~kle−iΔmu e
−2i

a ½
P

nM
j¼1

~ωkj
� sinhðau

2
ÞQnM

j0¼1
~ωj0

¼ G2
1

ð2πÞ2nM
ZZ

du
YnM
l¼1

~k2ld~kle−iΔmu e
−2i

a ½
P

nM
j¼1

~kj� sinhðau2 ÞQnM
j0¼1

~kj0

¼ G2
1

ð2πÞ2nM
ZZ

du
YnM
l¼1

~kld~kle−iΔmue−
2i
a ½
P

nM
j¼1

~kj� sinhðau2 Þ

¼ G2
1

ð2πÞ2nM
Z

due−iΔmu

�Z
d~k ~k e−

2i
a
~k sinhðau

2
Þ
�
nM
. ð43Þ

The integral over ~k will require the use of a regulator to
the ensure convergence of the integral. In order to damp the
oscillation at infinity, we let sinhðau

2
Þ → sinhðau

2
Þ − iϵ ≈

sinh ðau
2
− iϵÞ with ϵ > 0. As such, the momentum integra-

tion yields

Z
d~k ~k e−

2i
a
~k sinhðau

2
Þ

¼
Z

∞

0

d~k ~k e−
2i
a
~kðsinhðau

2
Þ−iϵÞ

¼
�
e−

2i
a
~kðsinhðau

2
Þ−iϵÞ ð1þ 2

a
~kðsinhðau

2
Þ − iϵÞÞ

ð2a ðsinhðau2 Þ − iϵÞÞ2
�∞
0

¼ −
a2

4

1

sinh2ðau
2
− iϵÞ . ð44Þ

It should be noted that, up to a multiplicative constant,
we have reproduced the Wightman function for a mass-
less scalar field in Rindler space, Eq. (16). We arrived at
this expression by inserting the hyperbolic trajectory into
the mode functions prior to evaluating the two point
function rather than evaluating the two point function
first and then inserting the trajectory as we did in the
previous section. The fact that we obtained the same
result serves as a self-consistency check. This method
also served to shed light on the physics of the emission
process in the proper frame. For a more comprehensive
analysis of the physics of the proper frame we refer the

reader to Ref. [6]. Our acceleration induced transition
rate, Eq. (43), then takes the form

ΓnMðΔm; aÞ

¼ G2
1

ð2πÞ2nM
Z

due−iΔmu

�Z
d~k ~k e−

2i
a
~k sinhðau

2
Þ
�
nM

¼ G2
1

ð2πÞ2nM
Z

due−iΔmu

�
−
a2

4

1

sinh2ðau
2
− iϵÞ

�
nM

¼ G2

�
ia
4π

�
2nM

Z
du

e−iΔmu

½sinh ðau
2
− iϵÞ�2nM . ð45Þ

A similar integral, Eq. (18), was encountered in the
previous section. By making the replacement in the
integrandm → −Δm we can quote the result by inspection.
Hence,

ΓnMðΔm; aÞ ¼ G2

�
ia
2π

�
2nM 1

a
2πi

ð2nM − 1Þ!

×
Γð−iΔm=aþ nMÞ

Γð−iΔm=aþ 1 − nMÞ
1

1 − e2πΔm=a .

ð46Þ

To recast the above gamma functions into the same
form as the previous section we recall the identity
ΓðzÞΓð1 − zÞ ¼ π

sin ðπzÞ to find
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Γð−iΔm=aþ nMÞ
Γð−iΔm=aþ 1 − nMÞ

¼ −
ΓðiΔm=aþ nMÞ

ΓðiΔm=aþ 1 − nMÞ
. ð47Þ

Thus, our total rate, Eq. (46), of our two-level system to
undergo an acceleration induced transition and simulta-
neously emit nM massless scalar fields is given by

ΓnMðΔm; aÞ ¼ G2

�
ia
2π

�
2nM 1

a
2πi

ð2nM − 1Þ!

×
ΓðiΔm=aþ nMÞ

ΓðiΔm=aþ 1 − nMÞ
1

e2πΔm=a − 1
. ð48Þ

As expected, we have reproduced the same expression as
in the previous section provided we made the appropriate
identifications for m. The use of an Unruh-DeWitt detector
has provided us with a relatively simple procedure for
including a massive particle in the final state but at the
expense of keeping it confined to Rindler space. This is due
to one of the final state particles being locked in the
detector. Again, normalizing the transition rate via ~Γ ¼
Γ=Γ0 with Γ0 ¼ G2, we write out the first few normalized
decay rates ~ΓnM . Hence,

~Γ1ðΔm; aÞ ¼ Δm
2π

1

e2πΔm=a − 1

~Γ2ðΔm; aÞ ¼ ðΔmÞ3
48π3

1þ ð a
ΔmÞ2

e2π
Δm
a − 1

~Γ3ðΔm; aÞ ¼ ðΔmÞ5
3840π5

1þ 5ð a
ΔmÞ2 þ 4ð a

ΔmÞ4
e2πΔm=a − 1

~Γ4ðΔm; aÞ ¼ ðΔmÞ7
645120π7

1þ 14ð a
ΔmÞ2 þ 49ð a

ΔmÞ4 þ 36ð a
ΔmÞ6

e2πΔm=a − 1

~Γ5ðΔm; aÞ ¼ ðΔmÞ9
185794560π9

1þ 30ð a
ΔmÞ2 þ 273ð a

ΔmÞ4 þ 820ð a
ΔmÞ6 þ 576ð a

ΔmÞ8
e2πΔm=a − 1

. ð49Þ

Comparing with the previous rates from Eq. (22), the use
of an Unruh-DeWitt detector to model particle decays
produces a similar form for the decay rate but with a more
general mass transition. This is due to the fact that the
particle that is coupled into the two-level system with
the initial accelerated particle remains in Rindler space. In
the previous section all final state particles were emitted
into Minkowski space and it was the Wightman functions
of these particles which contributed to the polynomial.

Therefore one must take care when analyzing a system to
ensure that the final state particles, i.e. fields, are expressed
in terms of the mode functions of the appropriate
spacetime.
By using the Unruh-DeWitt detector we can analyze

not only acceleration induced decays but also excita-
tions. By letting Δm ¼ −1 we can reproduce the results
of the previous section. Rather we set Δm ¼ 1
to analyze an initially accelerated particle that excites

a~
2 4 6 8 10 12 14 16 18 20

Γ∼

–1210

–1110

–1010

–910

–810

–710

–610

–510

–410

–310

–210

–110

1

10

 = 1Mn
 = 2Mn
 = 3Mn
 = 4Mn
 = 5Mn

FIG. 3 (color online). The normalized excitation rates, Eq. (49),
with ~a ¼ a=Δm and Δm ¼ 1.

a~
2 4 6 8 10 12 14 16 18 20

τ∼
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1
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210

310

410

510
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710

810

910

1010

1110

1210  = 1Mn
 = 2Mn
 = 3Mn
 = 4Mn
 = 5Mn

FIG. 4 (color online). The normalized excitation lifetimes
~τ ¼ 1= ~Γ with ~a ¼ a=Δm and Δm ¼ 1.
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into a more massive state. We can now look at
normalized ~ΓnM detector excitation rates with the simul-
taneous emission of nM massless particles into
Minkowski space. We focus this analysis for a ≥ Δm
since the relevant plots rapidly diverge at low accel-
eration to reflect the infinite lifetimes for stable particles
in inertial frames (see Figs. 3 and 4).
We have found in this section that the use of an

Unruh-DeWitt detector allows for a more general mass
transition when examining the effect of acceleration on
unstable particles. This is due to the coupling of one of
the final state products into the accelerated detector
which effectively keeps this particle in Rindler space.
This situation arises, for example, when the acceleration
mechanism is an electric field and an initial charged
particle undergoes a transition into another charged
particle with the simultaneous emission of two neutral
particles. The final state charged particle remains in
Rindler space on account of the acceleration due to the
electric field while the neutral particles are unaffected by
the electric field and are thus effectively in Minkowski
space. A muon accelerated by an electric field and
decaying into an electron and two neutrinos is an
example of this type of process. This and the reverse
process of electron excitation will be analyzed in a later
section. In the next section we generalize the accelerated
field transition process to arbitrary final state multiplic-
ities in both Rindler and Minkowski spacetimes.

IV. GENERALIZED N PARTICLE SCALAR
MULTIPLICITIES

In the previous sections we evaluated the acceleration
induced transition rate using two different methods. We
now demonstrate the equivalence between the two
methods and also show how to correctly interpret and
make use of the overall formalism—considering an initial
particle in Rindler spacetime and allowing it to decay

into nR particles in Rindler space and nM particles into
Minkowski space. Schematically we are examining the
process

Ψi→a Ψ1Ψ2 � � �ΨnRϕ1ϕ2 � � �ϕnM . ð50Þ

We denote the initial accelerated massive field by Ψi, the
final state Rindler particles of arbitrary mass by Ψj, and the
massless final state Minkowski particles by ϕk. In order to
analyze this process we consider the following more
general interaction action:

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ffiffiffiffiffi
2

σκ

r
GΨ̂i

YnR
r¼1

Ψ̂r

YnM
m¼1

ϕ̂m. ð51Þ

As before, the coupling constant G will be determined
by the inertial limit of the specific interaction in question

and the additional factor
ffiffiffiffi
2
σκ

q
is defined for later conven-

ience. The probability amplitude for the acceleration
induced transition of our massive initial state into n total
particles is given by

A ¼ h
YnM
l¼1

klj ⊗ h
YnR
j¼1

ΨjjŜIjΨii ⊗ j0i. ð52Þ

The Rindler states jΨji are labeled by the index j
while the Minkowski states jkli are labeled by their
momenta. We again use the same notation for our Fock
states and accommodate any complications due to the
statistics or degeneracies of the final state products by
rescaling our effective coupling. With the same notationQnM

n¼1 d
3knM ¼ D3

nMk the differential probability for the
accelerated field to decay and emit nR particles into
Rindler space and nM particles into Minkowski space is
given by

dP
D3

nMk
¼ jAj2

¼ G2
2

σκ

����
Z

d4x
ffiffiffiffiffiffi
−g

p h
YnM
l¼1

klj ⊗ h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞ
YnM
m¼1

ϕ̂mðxÞjΨii ⊗ j0i
����
2

¼ G2
2

σκ

����
Z

d4x
ffiffiffiffiffiffi
−g

p h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨiih
YnM
l¼1

klj
YnM
m¼1

ϕ̂mðxÞj0i
����
2

¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii
����
2
����h
YnM
l¼1

klj
YnM
m¼1

ϕ̂mðxÞj0i
����
2

. ð53Þ

We can now factor out the nM complete set of momentum eigenstates. The result will give the product of Wightman
functions of the massless Minkowski fields,
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P ¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii
����
2 YnM
n¼1

Z
d3knM

����h
YnM
l¼1

klj
YnM
m¼1

ϕ̂mðxÞj0i
����
2

¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii
����
2 YnM
m¼1

h0jϕ̂mðx0Þϕ̂mðxÞj0i

¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii
����
2

½G�ðx0; xÞ�nM . ð54Þ

We now examine the remaining Rindler space inner products. As before, we have seen that each field operator serves to
extract the appropriate mode function of each Rindler particle. The Rindler coordinate proper time of the initial field will
again serve as our time coordinate. As such we can examine the above inner products. Hence

h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii ¼ fΨi
½xðτÞ�e−imiτ

YnR
r¼1

f�Ψr
½xðτÞ�eiωrτ

¼
�
fΨi

½xðτÞ�
YnR
r¼1

f�Ψr
½xðτÞ�

�
eiΔERτ. ð55Þ

The Rindler mode frequencies ωr correspond to the energies of final state Rindler particles which may not necessarily be
the appropriate rest masses. Also we have definedΔER ¼ P

ωr −mi to be the total energy difference between the final and
initial Rindler space field configuration. Our total transition probability, Eq. (54), then becomes

P ¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����h
YnR
j¼1

ΨjjΨ̂iðxÞ
YnR
r¼1

Ψ̂rðxÞjΨii
����
2

½G�ðx0; xÞ�nM

¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����
�
fΨi

½xðτÞ�
YnR
r¼1

f�Ψr
½xðτÞ�

�
eiΔERτ

����
2

½G�ðx0; xÞ�nM

¼ G2
2

σκ

ZZ
d4xd4x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����fΨi
½xðτÞ�

YnR
r¼1

f�Ψr
½xðτÞ�

����
2

e−iΔERðτ0−τÞ½G�ðx0; xÞ�nM . ð56Þ

We again define κ to be the overall normalization of the
product of envelope functions fΨ, i.e.

κ ¼
ZZ

d3xd3x0
ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p ����fΨi
½xðτÞ�

YnR
r¼1

f�Ψr
½xðτÞ�

����
2

. ð57Þ

As such the total probability for our transition
becomes

P ¼ G2
2

σ

ZZ
dτdτ0e−iΔERðτ0−τÞ½G�ðx0; xÞ�nM . ð58Þ

In carrying out this analysis we see that one can consider
having a transition involving an arbitrary number of final
state particles in Rindler space to be equivalent to having an
Unruh-DeWitt detector with the energy levels being the
initial and final state energies of the Rindler space field
configuration as seen in the proper frame of the initially
accelerated field. Having evaluated this expression before
we know the remaining procedures are to formulate the
transition rate and evaluate the Fourier transform of the
product of the Minkowski final state Wightman functions
evaluated along the accelerated trajectory of the initial
Rindler particle state. We now quote the final form of the
transition probability. Thus

ΓnMðΔER; aÞ ¼ G2

�
ia
2π

�
2nM 1

a
2πi

ð2nM − 1Þ!
ΓðiΔER=aþ nMÞ

ΓðiΔER=aþ 1 − nMÞ
1

e2πΔER=a − 1
. ð59Þ
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This is the same form of the expression that we have arrived at previously but now we have a clearer understanding of the
role each of the Rindler and Minkowski space fields plays in the transition rate. For the sake of completeness, we list the
normalized decay rates ~ΓnMðΔERaÞ, for the first few multiplicities. Hence,

~Γ1ðΔER; aÞ ¼
ΔER

2π

1

e2πΔER=a − 1
;

~Γ2ðΔER; aÞ ¼
ΔE3

R

48π3
1þ ð a

ΔER
Þ2

e2πΔER=a − 1
;

~Γ3ðΔER; aÞ ¼
ΔE5

R

3840π5
1þ 5ð a

ΔER
Þ2 þ 4ð a

ΔER
Þ4

e2πΔER=a − 1
;

~Γ4ðΔER; aÞ ¼
ΔE7

R

645120π7
1þ 14ð a

ΔER
Þ2 þ 49ð a

ΔER
Þ4 þ 36ð a

ΔER
Þ6

e2πΔER=a − 1
;

~Γ5ðΔER; aÞ ¼
ΔE9

R

185794560π9
1þ 30ð a

ΔER
Þ2 þ 273ð a

ΔER
Þ4 þ 820ð a

ΔER
Þ6 þ 576ð a

ΔER
Þ8

e2πΔER=a − 1
: ð60Þ

The difficulty in measuring these effects is that the
acceleration scale currently accessible in laboratory settings
is significantly smaller than the energy scale of the
transition. If, through some mechanism, we could not only
control the acceleration but also the transition energy scale
we could bring the effects closer to our experimental reach.
A mathematical analysis of the energy spectra of Rindler
particles which have decay products in both Rindler and
Minkowski spacetime has yet to be carried out but would
provide a much clearer insight into the how any Rindler
particle energies would be perceived in the proper frame
of the accelerated field. With this in mind we plot
the normalized decay rates and lifetimes for a constant
acceleration a ¼ 1 while varying the energy scale ΔER
(see Figs. 5 and 6).
To better understand the role each spacetime field

configuration has in the transition rate, we define the
polynomial of multiplicity MnMðΔER; aÞ as follows:

MnMðΔER; aÞ ¼
�
ia
2π

�
2nM 1

a
2πi

ð2nM − 1Þ!

×
ΓðiΔER=aþ nMÞ

ΓðiΔER=aþ 1 − nMÞ
. ð61Þ

We then find the general form for the decay rate to be

ΓnMðΔER; aÞ ¼ G2MnMðΔER; aÞfðΔER; aÞ. ð62Þ

We see that the rate factors into the inertial interaction
specific coupling, the polynomial of multiplicity, and the
thermal distribution fðΔER; aÞ associated with the Unruh
effect. The final state multiplicity in Minkowski space
governs the number of terms in the polynomial while the
total change of the energy in Rindler space sets the
acceleration scale of the transition rate. The inertial
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FIG. 5 (color online). The normalized transition rates, Eq. (60),
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FIG. 6 (color online). The normalized transition lifetimes
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interaction coupling constant sets the overall normalization
of the transition rate.
In this section we generalized the analysis of acceleration

induced field transitions to that of arbitrary Rindler and
Minkowski space particle multiplicities. We determined
the roles that each spacetime field configuration plays in the
transition rate and examined how the rates evolve with the
total energy change of Rindler space at constant acceler-
ation. The next section focuses on the application of the
above formalism to that of the electron and muon system.

V. THE ELECTRON AND MUON SYSTEM

The weak decay of muons into electrons could possibly
provide a robust setting to investigate the effects of
acceleration on certain aspects of the physics of unstable
particles. We will apply the results of the previous section
to model both muon decay as well as the reverse process of
electron excitation utilizing the scalar field approximation.
In addition to the standard decay/excitation rates, we will
also compute the branching fractions of the muon decay
chains as a function of proper acceleration. To model the
muon and electron transitions we will assume the accel-
eration mechanism is something like an electric field so that
both the muon and the electron are effectively in Rindler
space, due to their charge, while the neutral neutrinos are
emitted into Minkowski space. This setup more closely
resembles an actual experimental setting which could, in
principle, investigate this phenomena. Schematically we
will analyze the following processes:

μ�→a e� þ ν̄e þ νμ; e�→a μ
� þ ν̄μ þ νe. ð63Þ

The transition rate which describes both of these proc-
esses is given by the nM ¼ 2 case from Eq. (60),

Γμ↔eðΔER; aÞ ¼ G2
ðΔERÞ3
48π3

1þ ð a
ΔER

Þ2
e2πΔER=a − 1

. ð64Þ

To determine the coupling constant G we compare the
inertial limit of the above accelerated decay rate to that of
the known inertial muon decay rate. The known decay rate
of inertial muons, to lowest order in perturbation theory
[12], is given by

Γμ
i ¼

G2
fm

5
μ

192π3
; ð65Þ

where Gf is the Fermi coupling constant. Note we have
disregarded higher order terms which contain powers of
me=mμ. As such, in our analysis of muon decay we may
consider the electron, and of course the neutrinos, to be
massless. In addition to considering the electron to be
massless, we will also assume that the total energy of the
electron emitted into Rindler space will be insignificant

when compared to the muon mass. The specrta of the final
state Minkowski particles has been calculated in Ref. [6]
and indicates that each particle will have an energy
distribution, as measured in the inertial frame instanta-
neously at rest with the initial accelerated particle, peaked
about the proper acceleration. A computation of the energy
spectra with the appropriate particles emitted into Rindler
space has yet to be carried out. This would help more
accurately determine the final state electron energy asso-
ciated with the decay of accelerated muons. Recalling that
ΔER ¼ P

ωR −mi, we will then have ΔER ¼ −mμ for the
current analysis. By taking the limit a → 0 of the accel-
eration induced decay rate, Eq. (64), and equating it with
the known inertial decay rate, Eq. (65), we can determine
our effective coupling constant. Thus,

lim
a→0

Γμ→eðΔER; aÞ ¼ Γμ
i ;

lim
a→0

G2
m3

μ

48π3
1þ ð a

mμ
Þ2

1 − e−2πmμ=a
¼ G2

fm
5
μ

192π3
;

G2m3
μ

48π3
¼ G2

fm
5
μ

192π3
;

G ¼ 1

2
mμGf. ð66Þ

As such, the properly normalized muon decay rate under
the influence of acceleration is given by

Γμ→eðaÞ ¼ G2
fm

5
μ

192π3
1þ ð a

mμ
Þ2

1 − e−2πmμ=a
. ð67Þ

Our result differs from that of Mueller [4] by having a
lower order polynomial due to our assumption of keeping
the final state electron in Rindler space. Had we allowed the
electron to be created in Minkowski space we would have
recovered the same result as Mueller. Furthermore, the
inclusion of fermions in the analysis would also yield a
higher order polynomial due to the addition factors of
frequency in the standard fermionic normalization [5–7].
This yields higher powers of frequency to be integrated
over when summing over the final state momentum of the
Minkowski particles. In either case, the resultant expres-
sions are equivalent at low accelerations but also illustrate
the fact that at high accelerations one needs to be precise in
describing such processes. By recalling that Gf ¼ 1.166 ×
10−5 GeV−2 and mμ ¼ 105.7 MeV, we can evaluate the

canonical inertial muon lifetime 192π3

G2
fm

5
μ
¼ τμ ¼ 2.184 μs

which sets the overall scale of our transition rate. We need
to also mention that the energy scale of the interaction is set
by the acceleration. In this analysis we are using a scalar
approximation of an effective Fermi interaction. The non-
renormalizability of this approximation necessitates the
interaction energy to be less than the rest masses of the
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weak gauge bosons. With masses mW , mZ ∼ 1000 GeV we
have carried out all our analysis with accelerations from
0 to 20 in muon mass units. With the muon system under

consideration we have 20mμ

mW;mZ
∼ .01 ≪ 1 and therefore our

analysis remains valid. Plots of the acceleration-dependent
muon decay rate and lifetime are shown below (see Figs. 7
and 8).
We now apply the detector transition rate, Eq. (64), to the

case of electron excitation. To do so, we use the detailed
balance between the transitions Γe→μ ¼ e−2πΔER=aΓμ→e at
thermal equilibrium [10]. This is affected by merely
reversing the sign ΔER → −ΔER or rather we take
mμ → −mμ in Eq. (67). This also enables us to keep the
overall coupling constant from the muon decay by using the
symmetry between the two thermalized processes.
Furthermore, this implies that the Rindler space energy
of the created muon comprises mainly the mass with no
appreciable momentum. Again we note that a better
understanding of the energy spectra of all particles in all

spacetimes is necessary to more accurately model these
processes. With these considerations we can now estimate
the acceleration induced excitation of electrons back into
muons to be

Γe→μðaÞ ¼ G2
fm

5
μ

192π3

1þ ð a
mμ
Þ2

e2πmμ=a − 1
. ð68Þ

We can now plot, in Figs. 9 and 10, the excitation rate as
well as the lifetime. Note the fact that the decay rate rapidly
approaches zero as a → 0, and thus causes the lifetime to
diverge. This reflects the stability of inertial electrons.
Hence, this is a first estimate of the electron lifetime under
the presence of uniform acceleration. A more accurate
calculation would necessitate the inclusion of fermion
fields as well as a weak or Fermi interaction Lagrangian.
The use of fermions in the mathematically similar process
of acceleration induced proton decay [6] yields a higher
order polynomial of multiplicity in the decay rate due to
additional factors of frequency in the fermionic normali-
zation. This will not affect our result in the limit of low
acceleration a < mμ. For higher accelerations, the differ-
ence between the scalar and fermionic description would
be a higher order polynomial of multiplicity.
This analysis can be further utilized to investigate the

various decay chains of accelerated muons. In this inves-
tigation we will assume all final state products to be
massless and are emitted into Minkowski space, i.e.
ΔER ¼ −mμ. This will allow us to get a better under-
standing of the overall conceptual properties of how the
branching fractions of unstable particles change as a
function of acceleration. Excluding any exotic or lepton
number violating modes [13], there are three known
decay channels for muons. These decay chains and their
associated branching fractions are listed below:
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FIG. 7 (color online). The muon decay rate, Eq. (67), as a
function of ~a ¼ a

mμ
.
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FIG. 8 (color online). The muon lifetime τμ ¼ 1=Γμ as a
function of ~a ¼ a
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FIG. 9 (color online). The electron excitation rate, Eq. (68), as a
function of ~a ¼ a

mμ
.
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Γ1½μ → eν̄eνμ�∶ Br1 ¼ 0.98599966;

Γ2½μ → eν̄eνμγ�∶ Br2 ¼ 0.014;

Γ3½μ → eν̄eνμeē�∶ Br3 ¼ 0.000034. ð69Þ

We have seen in the previous sections that the high
acceleration limit favors the decay chain with the most final
state products. Below we include the decay rate and
lifetime plots of each decay channel, appropriately nor-
malized to the inertial muon limit, for nM ¼ 3, 4, 5 final
states from Eq. (60) weighted by their associated branching
fractions (see Figs. 11 and 12). The crossover from the
primary channel to the secondary and then tertiary takes
place at approximately a ∼ 4mμ ∼ 400 MeV. We also
include, for completeness, the various branching fractions
as a function of proper acceleration given by

BriðaÞ ¼
BriΓiðaÞP
jBrjΓjðaÞ

. ð70Þ
Rather than looking for direct evidence of acceleration

induced decays it may be more experimentally tenable
to measure these processes through the branching fractions
of the decay chains and their dependence on proper
acceleration (see Fig. 13). This may provide an easier
method of discovering this or related phenomena.

VI. CONCLUSIONS

In this paper we analyzed how acceleration affects the
decay and excitation properties scalar fields with the
simultaneous emission of an arbitrary number of final
state products. We utilized methods of field operators
and Unruh-DeWitt detectors to carry out the analysis.
Generalized analytic results of n-particle multiplicities into
both Rindler and Minkowski spacetimes were obtained. We
included plots of all transition rates and lifetimes for
various multiplicities as a function of acceleration and
transition energy gaps. We found that high accelerations
favor the decay chain with the most amount of Minkowski
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FIG. 10 (color online). The electron lifetime τe ¼ 1=Γe as a
function of ~a ¼ a
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FIG. 11 (color online). The muon decay rates for the three
known branching ratios, Eq. (69), as a function of ~a ¼ a
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FIG. 12 (color online). The muon lifetimes τμ ¼ 1=Γμ for the
three known branching ratios, Eq. (69), as a function of ~a ¼ a
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FIG. 13 (color online). The muon decay branching fractions,
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space final state products. The resultant formulas were
applied to the muon-electron weakly interacting system and
used to estimate the muon and electron lifetimes under
acceleration. The evolution of the known branching frac-
tions of muon decay under acceleration were analyzed.
Plots of all decay and excitation rates, proper lifetimes, and
branching fractions were also included.
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