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Recently, the one-loop free energy of higher spin (HS) theories in Euclidean AdSdþ1 was calculated and
matched with the order N0 term in the free energy of the largeN “vectorial” scalar CFTon the Sd boundary.
Here we extend this matching to the boundary theory defined on S1 × Sd−1, where the length of S1 may be
interpreted as the inverse temperature. It has been shown that the large N limit of the partition function on
S1 × S2 in the UðNÞ singlet sector of the CFT of N free complex scalars matches the one-loop thermal
partition function of the Vasiliev theory in AdS4, while in the OðNÞ singlet sector of the CFT of N real
scalars it matches the minimal theory containing even spins only. We extend this matching to all dimensions
d. We also calculate partition functions for the singlet sectors of free fermion CFTs in various dimensions
and match them with appropriately defined higher spin theories, which for d > 3 contain massless gauge
fields with mixed symmetry. In the zero-temperature case R × Sd−1 we calculate the Casimir energy in the
scalar or fermionic CFT and match it with the one-loop correction in the global AdSdþ1. For any odd-
dimensional CFT the Casimir energy must vanish on general grounds, and we show that the HS duals obey
this. In the UðNÞ symmetric case, we exhibit the vanishing of the regularized one-loop Casimir energy of
the dual HS theory in AdSdþ1. In the minimal HS theory the vacuum energy vanishes for odd d while for
even d it is equal to the Casimir energy of a single conformal scalar in R × Sd−1 which is again consistent
with AdS/CFT, provided the minimal HS coupling constant is ∼1=ðN − 1Þ. We demonstrate analogous
results for singlet sectors of theories of N Dirac or Majorana fermions. We also discuss extensions to CFTs
containing Nf flavors in the fundamental representation of UðNÞ or OðNÞ.
DOI: 10.1103/PhysRevD.90.024048 PACS numbers: 04.50.-h, 11.25.Tq, 04.62.+v

I. INTRODUCTION AND SUMMARY

The original AdS/CFT conjectures were made for
conformal field theories of N × N matrices with extended
supersymmetry [1–3]. A few years later, a suggestion was
made to study AdS/CFT correspondence for simpler field
theories where dynamical fields are in the fundamental
representation of the UðNÞ or OðNÞ symmetry group [4];
for this reason, these theories are often called “vectorial.” In
these cases, the supersymmetry is not necessary, but it is
important that there is an infinite tower of conserved or
nearly conserved higher spin (HS) currents that areUðNÞ or
OðNÞ singlets. Therefore, the dual theories in anti–de Sitter
(AdS) must contain the corresponding tower of massless
higher spin gauge fields [5]. Theories of this kind have been
extensively explored by Vasiliev and others [6–13].
The first explicit vectorial AdS/CFT conjectures were

made for the higher spin theories in AdS4. For the minimal
type A theory with even spins only, the conjectured duals
were the free or critical OðNÞ models, with N real scalar
fields in the fundamental representation. For the non-
minimal type A theory, where all integer spins are present,
one instead needs to consider free or critical theories

of N complex scalar fields, restricted to the UðNÞ singlet
sector [4]. There also exist type B Vasiliev theories in AdS4
where the bulk spin 0 field is a pseudoscalar, rather than a
scalar. Such theories have been conjectured to be dual to the
UðNÞ or OðNÞ singlet sector of the theory of N Dirac or
Majorana fermions [14,15].
The basic evidence for the initial conjectures involved

the matching of the spectra of currents and higher spin
gauge fields [4,14,15]. A nice way of summarizing this
agreement is to match the CFT partition function on S1 ×
S2 with the corresponding calculation in AdS4. This was
carried out in [16], and a simple explicit formula for the
partition function of the UðNÞ singlet scalar theory was
obtained. A crucial ingredient in these calculations is the
imposition of the singlet constraint in the CFTof free scalar
fields; this was accomplished by integrating over the
holonomy of the UðNÞ gauge field around S1 [17–19].
The resulting UðNÞ singlet partition function then becomes
the square of the character of the “singleton” representation
of SOð3; 2Þ, corresponding to the free conformal scalar in
d ¼ 3. The CFT partition function may then be expanded in
characters of the primary fields of spin s and dimension
sþ 1, which correspond to partition functions of gauge
fields in AdS4. Besides providing a nice test of the vectorial
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AdS4=CFT3 duality [4], this may be viewed as a modern
incarnation of much older ideas [20] (see also [21–27]).
The d ¼ 3 result of [16] was recently reproduced and also
extended to the OðNÞ singlet sector of N real scalars [28]
using the collective field approach [29]. We will further
extend these results in several ways, thus obtaining new
tests of the higher spin AdS/CFT dualities.
Additional evidence for the vectorial AdSdþ1=CFTd

duality for d ¼ 3 has been found in [30–39].
Furthermore, evidence has begun accumulating that it is
valid for all d [40,41]. On the CFT side, we may considerN
complex or real scalar fields in d dimensions and impose
the UðNÞ or OðNÞ singlet constraint.1 The corresponding
theories in AdSdþ1, which involve the tower of totally
symmetric tensor spin s gauge fields were formulated in
[12]. For arbitrary d, we will study the partition function of
such a theory in “thermal” AdS space, which is asymptotic
to S1 × Sd−1, and match it with the singlet partition function
of the free scalar theory on S1 × Sd−1. This result provides
an elegant way of encoding the AdS/CFT matching of the
spectra. The thermal free energy on S1 × Sd−1 includes a
term linear in the inverse temperature which dominates in
the zero-temperature limit. This is related to the Casimir
energy of the CFT on R × Sd−1, and may be computed by
an appropriately regularized sum over the energy spectrum.
We will compare this Casimir energy term on the two sides
of the duality. In this case, the higher spin theory is defined
in the global AdSdþ1, which is asymptotic to R × Sd−1. For
all odd d the Casimir energy must vanish; this is a
completely general fact about odd-dimensional CFT related
to the absence of anomalies (the theory on R × Sd−1 may be
obtained from that on Rd via a Weyl transformation). We
check this vanishing on the higher spin side by using an
appropriate zeta-function regularization of the sum over
spins in global AdSdþ1. The vanishing of Casimir energy in
d ¼ 3was perhaps the reason why it was not emphasized in
[16]. However, the vanishing in odd d is not trivial from the
AdS point of view because it involves summing over the
entire tower of spins. Truncation of the spectrum in AdS4 to
a few low spins, which is commonly performed in “bottom-
up”modeling, would generally spoil the cancellation of the
Casimir energy. This would violate a possible exact duality
to a CFT3, unless there is another reason for the bulk
cancellation, such as supersymmetry (as in [44–46]).
The comparison of the Casimir energies becomes even

more interesting for even d, where they are not required to
vanish. For the N ¼ 4 SUðNÞ gauge theory in d ¼ 4, the
OðN2Þ term in the Casimir energy was reproduced early on
using the stress-energy tensor calculation in AdS5 × S5

[47]. Due to the cancellation of the total derivative

(“D-anomaly”) terms in the full expression for the
trace anomaly, its Casimir energy is proportional to its
a-anomaly coefficient [48,49]. Therefore, the exact
AdS/CFT matching of Casimir energy in that case is
guaranteed by the a-anomaly matching [50]. In the field
theory, the exact result is a ¼ N2 − 1, and the OðN0Þ
correction (i.e. the −1 shift) has been studied using the one-
loop correction in the type IIB supergravity on the AdS5 ×
S5 background [51]. More recently, additional progress has
been made in calculating the OðN0Þ correction to a − c in
various d ¼ 4 theories, where only contributions of short
supermultiplets in AdS5 need to be included [52,53].
In nonsupersymmetric theories, the Casimir energy is not

simply proportional to a due to the presence of the total
derivative anomaly terms [48,49]. This makes the com-
parison of Casimir energies a new check of the vectorial
AdS/CFT conjectures, which is independent of the
comparison of a anomalies carried out in [39,41].
Unfortunately, due to the lack of information about the
form of the classical action, in the higher spin theories there
is no known way to calculate the leading, OðNÞ, terms in
the sphere free energies or Casimir energies. So, as in
[39,41], we will only compare the terms of order N0. In the
nonminimal Vasiliev theory including all integer spins, we
find that the regularized sum in AdSdþ1 vanishes, in line
with the expectation that there is no OðN0Þ correction in
the free complex scalar theory on R × Sd−1. However, in the
minimal theory, which includes even spins only, the
regularized sum equals the Casimir energy of a real scalar
field. These results are analogous to the recent findings in
Euclidean AdSdþ1, where the one-loop correction for the
minimal theory in AdSdþ1 was found to be equal to the free
energy of a single real scalar on Sd [39,41]. The proposed
interpretation of this result is that the bulk coupling
constant in the minimal higher spin theory is GN ∼ 1=
ðN − 1Þ, so that the tree level and one-loop terms can add to
give the answer which is N times the contribution of a free
scalar field. Our new results for Casimir energies in all d
provide additional support for this interpretation.
In this paper we also study the vectorial fermionic models

on S1 × Sd−1 andmatch their partition functions and Casimir
energies with the corresponding quantities in AdSdþ1. Such
calculations are quite useful: for d > 3 the dual higher spin
theory in AdSdþ1 includes massless gauge fields in mixed
symmetry representations [25,27,54–56], in addition to the
totally symmetric higher spin fields found in the Vasiliev
theories dual to the scalar field theories [12]. The AdS
spectrum dual to a fermionic model depends sensitively both
on the dimensiond andonwhat type of fermionswe consider:
Dirac, Majorana orWeyl. These results suggest the existence
of a variety of consistent interacting higher spin theories that
are dual to fermionic CFTs restricted to singlet sectors.
We start in Sec. II with a brief summary of some standard

relations between Casimir energies and partition functions,
and then in Sec. III review the expression for the free

1Perhaps the constraint can be implemented by coupling the
free N-vector theory to an appropriate topological gauge theory,
generalizing the idea of coupling to Chern-Simons theory in d ¼
3 [42,43]. For the purposes of this paper, the details of how the
singlet constraint is imposed do not seem to matter.
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energy of free conformal fields in S1 × Sd−1. In Sec. IV we
compute this free energy for a large number N of complex
or real scalar or fermion fields in the presence of a singlet
constraint. The latter translates into an extra Gaussian
averaging over the density of UðNÞ or OðNÞ holonomy
eigenvalues that leads to a modification of the effective one-
particle partition function. The resulting free energy con-
tains an order N Casimir energy term as well as an order N0

term with nontrivial β-dependence. The scalar free energies
are matched onto the corresponding expressions in the dual
HS theories in AdSdþ1 in Sec. V. Section VI contains a
similar analysis of the vectorial fermionic CFTs in d ¼ 2, 3,
4 and of their higher spin duals. For each admissible type of
fermion, we study the quantum numbers of the currents and
corresponding gauge fields, and demonstrate the AdS/CFT
matching of the Casimir energies and partition functions. In
Sec. VII we briefly discuss the HS duals of the CFTs
containingNf fundamental flavors ofUðNÞ orOðNÞ. In the
large N limit where Nf is held fixed, we demonstrate the
matching of partition functions and Casimir energies with
the field theory results.

II. GENERAL BACKGROUND

Given a CFT in d dimensions, in the standard radial
quantization picture its states may be described as eigen-
states of the Hamiltonian on Rt × Sd−1. Given a set of states
and ignoring interactions one may then consider, e.g., the
corresponding Casimir energy and construct the finite
temperature partition function. The same quantities may
be computed also on the dual AdSdþ1 side as the vacuum
energy in the global AdS or as the one-loop partition
function on a thermal quotient of AdS, i.e. on Euclidean
AdS with boundary S1β × Sd−1.
Let us summarize some standard relations (see, e.g.,

[57]). Given the spectrum of a Hamiltonian H (with
eigenvalues ωn and degeneracies dn where n is a multi-
index) one may consider the “energy” zeta function

ζEðzÞ ¼ trH−z ¼
X
n

dnω−z
n ; ð2:1Þ

so that the Casimir or vacuum energy is given by (for
fermions one needs to add a minus sign)

Ec ¼
1

2

X
n

dnωn ¼
1

2
ζEð−1Þ: ð2:2Þ

One may also define the one-particle or canonical partition
function2

ZðβÞ ¼ tre−βH ¼
X
n

dne−βωn : ð2:3Þ

It is related to ζEðzÞ by the Mellin transform

ζEðzÞ ¼
1

ΓðzÞ
Z

∞

0

dββz−1ZðβÞ; ð2:4Þ

i.e. the two functions contain an equivalent amount of
information about the spectrum. This is the same as the
usual relation between a spectral zeta function for an
operator Δ (here Δ ¼ H) and its heat kernel [here ZðβÞ ¼
KðτÞ ¼ tre−τΔ with β playing role of τ]. Note also that a
special case of (2.4) is the integral representation for the
standard Hurwitz zeta function

ζðz; aÞ ¼
X∞
k¼0

ðkþ aÞ−z ¼ 1

ΓðzÞ
Z

∞

0

dββz−1
e−aβ

1 − e−β
: ð2:5Þ

The multiparticle or grand canonical partition function,
which for bosons is

lnZðβÞ ¼ tr ln ð1− e−βHÞ−1 ¼ −
X
n

dn lnð1− e−βωnÞ; ð2:6Þ

is then directly related to the one-particle one (2.3), with the
free energy given by

Fβ ¼ − lnZðβÞ ¼ −
X∞
m¼1

1

m
ZðmβÞ: ð2:7Þ

For fermions

lnZðβÞ ¼ tr lnð1þ e−βHÞ ¼
X
n

dn lnð1þ e−βωnÞ ð2:8Þ

is then directly related to the one-particle one (2.3), with the
free energy given by

Fβ ¼ − lnZðβÞ ¼
X∞
m¼1

ð−1Þm
m

ZðmβÞ: ð2:9Þ

Thus the knowledge of the one-particle partition function
ZðβÞ determines the thermodynamic partition function
(2.7) as well as the Casimir energy [see (2.2) and (2.4)].

III. PARTITION FUNCTIONS FOR FREE
CFTS ON S1 × Sd−1

Let us first consider the partition function of a free
conformally coupled scalar

F¼− lnZ¼ 1

2
lndetΔ0; Δ0 ¼−∇2þ d− 2

4ðd− 1ÞR; ð3:1Þ

in (Euclidean) Md ¼ R × Sd−1 and Md
β ¼ S1 × Sd−1 where

β is the length of S1.3 We shall assume the length of time
direction in R × Sd−1 to be regularized as

R
dt ¼ β → ∞,

so that the first case may be viewed as the zero-temperature

2For simplicity we shall ignore possible chemical potentials.

3We shall often set the radius l of Sd−1 to 1; dependence on it
can be restored by rescaling β → β

l, etc.
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(β−1 → 0) limit of the second. In general, in R × Sd−1 one
finds (see, e.g., [58–61])

F ¼ F∞ þ Fc; F∞ ¼ ad lnΛ; Fc ¼ βEc; ð3:2Þ

where we separated an a priori possible logarithmically
divergent term from the vacuum (Casimir) energy Ec of a
conformal scalar in the static Einstein universe R × Sd−1.
The logarithmically divergent part (with Λ standing for the
product of a UV cutoff with the scale l) is proportional to
the conformal anomaly coefficient ad which vanishes for
odd d.4 In the present case it vanishes also for even d as for
a conformally coupled scalar in a conformally flat space it
is proportional to the Euler number density but the latter
vanishes for both R × Sd−1 and S1 × Sd−1, i.e.

ad ¼ 0: ð3:3Þ

The scalar curvature of Sd−1 is R ¼ ðd − 1Þðd − 2Þ so that
the operator in (3.1) is Δ0 ¼ −∂2

t −∇2
Sd−1

þ 1
4
ðd − 2Þ2.

Since the eigenvalues and their degeneracies for a
Laplacian −∇2 on a sphere of dimension d − 1 are

λnðSd−1Þ ¼ nðnþ d − 2Þ;

dnðSd−1Þ ¼
�
nþ d − 1

d − 1

�
−
�
nþ d − 3

d − 1

�

¼ ð2nþ d − 2Þ ðnþ d − 3Þ!
ðd − 2Þ!n! ; ð3:4Þ

the eigenvalues of Δ0 on R × Sd−1 are λw;n ¼ w2 þ ω2
n,

where ωn ¼ nþ 1
2
ðd−2Þ, n¼ 0;1;2;… and w∈ ð−∞;∞Þ.

There is no zero mode for d > 2. IntegratingR∞
−∞

dw
2π lnðw2 þ ω2

nÞ over w leads as usual to Fc ¼ βEc with

Ec ¼
1

2

X∞
n¼0

dnωn ¼
X∞
n¼0

ðnþ d − 3Þ!
ðd − 2Þ!n!

�
nþ 1

2
ðd − 2Þ

�
2

:

ð3:5Þ

This is finite if defined using the zeta-function regulariza-
tion (see, e.g., [61–64]), i.e. by starting as in (2.1)–(2.2)
with ωn as energy eigenvalues, one first computes
ζEðzÞ≡P∞

n¼0 dnω
−z
n , and then analytically continues to

z ¼ −1, Ec ¼ 1
2
ζEð−1Þ.5

In the case of Md
β ¼ S1 × Sd−1 the eigenvalues of Δ0 are

λk;n ¼
�
2πk
β

�
2

þ ω2
n; ωn ¼ nþ 1

2
ðd − 2Þ;

k ¼ 0;�1;�2;…; n ¼ 0; 1; 2;… ð3:6Þ

One may define the spectral zeta function

ζΔ0
ðzÞ ¼

X∞
k¼−∞

X∞
n¼0

dnλ
−z
k;n; ð3:7Þ

in terms of which we have for F in (3.1) (see, e.g., [65,66])

F ¼ −ζΔ0
ð0Þ lnΛ −

1

2
ζ0Δ0

ð0Þ ¼ F∞ þ Fc þ Fβ; ð3:8Þ

F∞ ¼ ad lnΛ; Fc ¼ βEc ¼
1

2
β
X∞
n¼0

dnωn; ð3:9Þ

Fβ ¼
X∞
n¼0

dn lnð1 − e−βωnÞ: ð3:10Þ

Here again ad ¼ 0 for a conformally coupled scalar on
S1β × Sd−1 in any d and Fc is the same Casimir energy part
with Ec given by (3.5). The nontrivial part of the free
energy Fβ vanishes in the limit β → ∞ when (3.8) reduces
to (3.2).
Using the standard Riemann ζ-function regularization

[with ζð−2kÞ ¼ 0, ζð−2k − 1Þ ≠ 0] one finds for the
Casimir energy for d > 2 (see, e.g., [61–63])

Ec ¼
X½d−32 �

q¼0

cqζð2qþ 1 − dÞ; ð3:11Þ

d ¼ odd ≥ 3∶ Ec ¼ 0; d ¼ even ≥ 4∶

Ec ¼
X12d−2
q¼0

cqζð2qþ 1 − dÞ; ð3:12Þ

where cq are rational coefficients. Thus Ec is nonvanishing
in even d and can be expressed in terms of the Bernoulli
numbers (see also below).
We conclude that

d ¼ odd ≥ 3∶ F ¼ Fβ; d ¼ even ≥ 4∶

F ¼ βEc þ Fβ; ð3:13Þ

where Fβ in (3.10) has the following explicit form
[cf. (2.3), (2.7)]:

Fβ ¼ −
X∞
m¼1

1

m
Z0ðmβÞ; ð3:14Þ

4In (3.2) we include the volume factor ∼β into ad.
5Note that if we consider the conformal scalar operator on

Sd−1, i.e. Δ0cðSd−1Þ ¼ −∇2
Sd−1

þ 1
4
ðd − 2Þ2, then its eigenvalues

are λn ¼ ω2
n with ωn ¼ nþ 1

2
ðd − 2Þ and the corresponding

spectral zeta function is ζΔ0cðSd−1ÞðzÞ ¼
P∞

n¼0 dnλ
−z
n ¼ ζEð2zÞ.

In particular, Ec ¼ 1
2
ζEð−1Þ ¼ 1

2
ζΔ0cðSd−1Þð− 1

2
Þ [61]. Since the

natural spectral parameter is nþ 1
2
ðd − 2Þ the vacuum energy Ec

can be expressed in terms of the corresponding Hurwitz zeta
functions. It can also be computed using an exponential regu-
larization e−ϵ½nþ1

2
ðd−2Þ� (dropping all singular terms).
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Z0ðβÞ ¼
X∞
n¼0

dne−β½nþ
1
2
ðd−2Þ� ¼ q

d−2
2 ð1þ qÞ

ð1 − qÞd−1

¼ q
d−2
2 ð1 − q2Þ
ð1 − qÞd ; q≡ e−β: ð3:15Þ

The one-particle partition function Z0ðβÞ corresponds to
the character of the free scalar (Dirac singleton) repre-
sentation of the conformal group SOðd; 2Þ; see for
instance [27].
Let us add a few details about the explicit values of the

Casimir energy [(3.5) and (3.12)]. For odd d ¼ 2kþ 1 one

can rewrite (3.5) as Eð2kþ1Þ
c ¼P∞

n¼0

P
k
m¼1cmðnþ 1

2
Þ2m. For

example, Eð3Þ
c ¼P∞

n¼0ðnþ 1
2
Þ2, etc. SinceP∞

n¼0ðnþ 1
2
Þ2m¼

ζð−2m;1
2
Þ¼0 one concludes that the Casimir energy

vanishes for all odd d ¼ 2kþ 1.6 For even d ¼ 2k one
finds

Eð2kÞ
c ¼

X∞
n¼1

Xk−1
m¼1

~cmn2mþ1; ð3:16Þ

which is equivalent to the expression in (3.12)
(~cm ¼ c−m−1þk). For example,

Eð2Þ
c ¼

X∞
n¼1

n ¼ ζð−1Þ ¼ −
1

12
;

Eð4Þ
c ¼ 1

2

X∞
n¼1

n3 ¼ 1

2
ζð−3Þ ¼ 1

240
;

Eð10Þ
c ¼ 1

40320
½ζð−9Þ − 14ζð−7Þ þ 49ζð−5Þ − 36ζð−3Þ�

¼ −
317

22809600
: ð3:17Þ

The same results can be reproduced by introducing a cutoff
(ϵ → 0) with the spectral parameter in the exponent
e−ϵ½nþ1

2
ðd−2Þ� in the sum in (3.5) and dropping all singular

terms in the resulting expression

EcðϵÞ ¼
1

2

e−
1
2
ϵd

ð1 − e−ϵÞd ½dþ ðd − 2Þ cosh ϵ�: ð3:18Þ

Let us also note that an equivalent expression for the
Casimir energy (3.5) may also be obtained by a Mellin
transform of the one-particle partition function (3.15); see
Eqs. (2.2) and (2.4). This gives

Ec ¼
1

2
ζEð−1Þ;

ζEðzÞ ¼
X∞
n¼0

�
nþ d − 2

d − 2

���
nþ d

2
− 1

�
−z

þ
�
nþ d

2

�
−z
�
: ð3:19Þ

In this expression, the parameter z provides a natural
analytic regulator, as one can perform the sum in terms
of the Hurwitz zeta function and then analytically continue
to z ¼ −1. One may verify that this expression for Ec gives
the same values quoted above. In particular, one can see
directly the relation to (3.5) by rearranging the expression
for ζEðzÞ as follows [cf. (3.4)]7:

ζEðzÞ ¼
X∞
n¼0

dn

�
nþ 1

2
ðd − 2Þ

�
−z
;

dn ¼
�
nþ d − 2

d − 2

�
þ
�
nþ d − 3

d − 2

�

¼ 2

�
nþ 1

2
ðd − 2Þ

� ðnþ d − 3Þ!
ðd − 2Þ!n! : ð3:20Þ

It is straightforward to generalize the above analysis to
the case of free complex or real fermion theories. First, for a
single massless Dirac fermion in S1 × Sd−1 the free energy
(2.9) is given by the following analog of the free conformal
scalar expressions in (3.14)–(3.15):

Fβ ¼
X∞
m¼1

ð−1Þm
m

ZFðmβÞ;

ZF ¼ 2
2½d2�qd−1

2

ð1 − qÞd−1 ; q ¼ e−β: ð3:21Þ

The result for a real (Majorana) fermion or Weyl fermion is
half of that,

Z1
2
ðβÞ ¼ 2½d2�qd−1

2

ð1 − qÞd−1 : ð3:22Þ

The expression for ZFðβÞ was given in [18] (taking the
q → 1 limit and comparing it to the real scalar counterpart
in (3.15) one checks that it describes the right number of
degrees of freedom). Z1

2
ðβÞ in (3.22) also has the inter-

pretation of the conformal group character for a complex
fermion representation [27].6This agrees with the vanishing of conformal anomaly in odd-

dimensional space as there is a relation between a combination of
Euler density and total derivative conformal anomaly coeffi-
cients, and the Casimir energy of a conformal scalar (or more
generally CFT), as discussed in [48,61] and references therein.

7One is to change the summation variable in the second term
n → n0 − 1 with n0 running now from 1, and then observe that the
n0 ¼ 0 term in the sum can be added without altering the result.
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The corresponding Casimir energy in the Majorana or
Weyl case is [cf. (2.4), (3.5), (3.19)]8

Ec ¼ −
1

2

X
n

dnωn ¼ −
1

2
ζEð−1Þ;

ζEðzÞ ¼
X∞
n¼0

2½d2�
ðnþ d − 2Þ!
ðd − 2Þ!n!

�
nþ 1

2
ðd − 1Þ

�
−z
: ð3:23Þ

As in the scalar case (3.12), this is zero for odd d and
nonzero for even d; one finds, for instance, Ec ¼
− 1

24
; 17
960

;− 367
48384

in d ¼ 2; 4; 6 respectively.9

IV. FREE CFT PARTITION FUNCTIONS ON
S1 × Sd−1 WITH SINGLET CONSTRAINTS

In the context of AdS/CFT duality [4] we are interested
in a conformal scalar partition function with an extra singlet
constraint. As found in [16,28], in the case of N complex
scalars transforming in the fundamental representation of
UðNÞ, taking the large N limit and imposing the singlet
constraint one effectively gets instead of (3.15) the square
of the one-particle partition function

ZUðNÞðβÞ ¼ ½Z0ðβÞ�2 ¼
qd−2ð1þ qÞ2
ð1 − qÞ2ðd−1Þ : ð4:1Þ

Below we shall first review the derivation of this result in
[16] (which was based on [17–19]) streamlining the argu-
ment and extending it to any dimension d ≥ 3. We shall
then generalize it to the real scalar OðNÞ case as this will
allow us to compare to the minimal HS theory free energy
in thermal AdSdþ1. In the real case we shall find that10

ZOðNÞðβÞ ¼
1

2
½Z0ðβÞ�2 þ

1

2
Z0ð2βÞ

¼ 1

2

qd−2ð1þ qÞ2
ð1 − qÞ2d−2 þ 1

2

qd−2ð1þ q2Þ
ð1 − q2Þd−1 : ð4:2Þ

Similarly, in the complex and real fermion cases we shall
find

Zferm
UðNÞðβÞ ¼ ½Z1

2
ðβÞ�2;

Zferm
OðNÞðβÞ ¼

1

2
½Z1

2
ðβÞ�2 − 1

2
Z1

2
ð2βÞ; ð4:3Þ

where Z1
2
ðβÞ is given in (3.22).

One may also consider free theories with several funda-
mental flavors. For instance, we can start with NNf free
complex scalarsϕia, i ¼ 1;…; N,a ¼ 1;…; Nf, and impose
the UðNÞ singlet constraint, similarly for fermionic theories.
Of course, one can also consider NNf real fields with the
OðNÞ singlet constraint. For such theories, theCasimir term is
simply Fc ¼ NNfβEc, where Ec is the Casimir energy of a
single scalar or fermion. On the other hand, the one-particle
partition functions that contribute to the nontrivial part of the
free energy now take the form (assuming Nf is fixed in the
large N limit)

Z
Nf

UðNÞðβÞ ¼ N2
f½Z0ðβÞ�2;

Z
Nf

OðNÞðβÞ ¼
N2

f

2
½Z0ðβÞ�2 þ

Nf

2
Z0ð2βÞ ð4:4Þ

for the scalar theories, and

Z
Nf−ferm
UðNÞ ðβÞ ¼ N2

f½Z1
2
ðβÞ�2;

Z
Nf−ferm
OðNÞ ðβÞ ¼ N2

f

2
½Z1

2
ðβÞ�2 − Nf

2
Z1

2
ð2βÞ ð4:5Þ

for the fermion ones. These theories are dual to versions of
Vasiliev higher spin theory withUðNfÞ orOðNfÞ bulk gauge
symmetry [11,67]. In Sec. VII we will show how the above
thermal partition functions, as well as the Casimir energies,
are reproduced by the sums over higher spin fields inAdSdþ1.

A. Complex scalar case

Starting with N complex scalars of fundamental repre-
sentation of UðNÞ, to ensure the singlet condition one may
couple them to a constant flat connection A0 ¼ U−1∂0U
with U ∈ UðNÞ and integrate over U. The resulting scalar
operator will have eigenvalues as in (3.6) but with k shifted
by phases αi of the eigenvalues eiαi (i ¼ 1;…; N) of the
holonomy matrix, i.e. λk;n ¼ ð2πkþαi

β Þ2 þ ω2
n. The resulting

scalar determinant is then to be integrated over αi with the
standard UðNÞ invariant measure given by the Van der
Monde determinant, ½dU� ¼ Q

N
k¼1 dαk

Q
N
i≠j¼1 jeiαi − eiαj j

(see, e.g., [68]). As a result, the singlet partition function Ẑ
is the following modification of Z in (3.1) and (3.8) (for 2N
real scalars) [16,19]:

Ẑ ¼ e−F̂; F̂ ¼ F̂c þ F̂β;

e−F̂β ¼
Z YN

k¼1

dαke−
~Fβðα1;…;αNÞ; ð4:6Þ

8The expression (3.23) agrees, of course, with the spectrum of
the Dirac operator −∇2 þ 1

4
R on Sd−1: the eigenvalues are λn ¼

½nþ 1
2
ðd − 1Þ�2 ¼ ω2

n (n ¼ 0; 1; 2;….) and their degeneracy is

twice dn ¼ 2½d2�
� nþ d − 2

d − 2

�
[there are two ðn� 1

2
; 1
2
; 0;…Þ

representations]. For Majorana fermions these are to be counted
with normalization 1

2
relative to a real scalar contribution, leading

to Ec ¼ − 1
2

P∞
n¼0 dnωn equivalent to (3.23).

9This agrees, e.g., with the standard values of the Majorana fer-
mion Casimir energy in d ¼ 2 (i.e. − c

12
; c ¼ 1

2
) and also with the

value of the Dirac fermion Casimir energy in d ¼ 4: 2 × 17
960

[61].
10The d ¼ 3 case of this expression was found in [28] using a

collective field theory approach to vectorial duality.
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~Fβ ¼ −
1

2

XN
i≠j¼1

ln sin2
αi − αj

2
þ 2

XN
i¼1

fβðαiÞ; ð4:7Þ

fβðαÞ ¼
X∞
m¼1

cmðβÞ cosðmαÞ; cmðβÞ ¼ −
1

m
Z0ðmβÞ:

ð4:8Þ

Here Z0ðβÞ is the same one-particle partition function as in
(3.15) (“one-letter” partition function of [18]) so that in the
formal limit of αi → 0 we get ~Fβ reducing to 2N times free
energy of a real scalar Fβ in (3.14). The trivial (not sensitive
to αi averaging) Casimir part F̂c is the same as in (3.5) and
(3.9) up to the 2N factor

F̂c ¼ 2NβEc: ð4:9Þ

In the large N limit F̂c scaling as N should match the
contribution of the classical higher spin action in the
AdSdþ1 bulk. At the same time, the nontrivial part of F̂β

which will happen to scale as N0 due to extra averaging
over αk [16] should thus be matched with the one-loop
partition function of HS theory in thermal AdSdþ1.
Considering the large N limit one introduces as usual the

eigenvalue density ρðαÞ; α ∈ ð−π; πÞ and replaces the
integral over αi by the path integral over the perdiodic
field ρðαÞ defined on a unit circle with the action

~FβðρÞ ¼ N2

Z
dαdα0Kðα − α0ÞρðαÞρðα0Þ

þ 2N
Z

dαρðαÞfβðαÞ; ð4:10Þ

KðαÞ ¼ −
1

2
lnð2 − 2 cos αÞ;

fβðαÞ ¼
X∞
m¼1

cmðβÞ cosðmαÞ: ð4:11Þ

Note that the fact the second term in (4.11) scales as N is
because the matter is in the fundamental representation.
Then, in the large N limit and as long as the temperature is
parametrically smaller than a power of N [16], the saddle
point solution for the eigenvalue density takes the form
ρðαÞ ¼ 1

2π þ 1
N ~ρðαÞ, where ~ρðαÞ does not contain a constant

part.11 An important point is that the constant part of ρðαÞ
does not couple to the source fβ (which does not contain a
zero mode term) so that it can be effectively projected out
without changing the nontrivial β-dependent part of the
result. This allows us, in particular, to ignore the constant

part of K.12 Then doing the formal Gaussian path integral
over periodic nonconstant ρðαÞ gives an N-independent
result for F̂β in (4.6)

F̂β ¼ −
Z

dαdα0K−1ðα − α0ÞfβðαÞfβðα0Þ: ð4:12Þ

The kernel K and its inverse K−1 have simple Fourier
expansions,13

KðαÞ ¼
X∞
m¼1

1

m
cosðmαÞ; K−1ðαÞ ¼ 1

π2
X∞
m¼1

m cosðmαÞ:

ð4:13Þ
We conclude that (4.12) is given by

F̂β ¼ −
X∞
m¼1

m½cmðβÞ�2; ð4:14Þ

where cmðβÞ was defined in (4.8), or explicitly [16]

F̂β ¼−
X∞
m¼1

1

m
ZUðNÞðmβÞ; ZUðNÞðβÞ¼ ½Z0ðβÞ�2: ð4:15Þ

Compared to the “unprojected” free energy of a single real
scalar in (3.14) here one gets the second power of the one-
particle partition function Z0 factor in (3.15) and (4.1). As
we have seen above, this squaring ofZ0 has its origin in the
Gaussian averaging over the density of the large N
distribution of the eigenvalues of the holonomy matrix.
In Sec. V, we will see that this result precisely matches the
one-loop partition function of the higher spin theory in
thermal AdS. Note that an important difference compared
to the Yang-Mills case [18] is that in these vectorial models
there is no phase transition at temperatures T ∼ 1 (i.e.
temperatures of order of the AdS scale). A phase transition
only occurs at much higher (Planck scale) temperatures
T ∼ N

1
d−1 [16], where the calculation above breaks down

[see the discussion below Eq. (4.11)].

B. Real scalar case

Let us now repeat the above discussion in the case of N
real scalars transforming as a fundamental representation of
OðNÞ. Since we are interested only in the large N limit we
may chooseN to be even, N ¼ 2N.14 An orthogonalN × N

11The constant mode of ρ ensures that it satisfies the normali-
zation condition

R
π
−π dαρðαÞ ¼ 1.

12Note that up to the factor of 1
π the kernel K is the same as the

restriction of the Neumann function on a unit disc to its boundary.
13We used the identity lnð1þ b2 − 2b cos αÞ ¼

−2
P∞

m¼1
bm
m cosðmαÞ. Note also that the delta-function on non-

constant functions on a circle is δ̄ðαÞ ¼ 1
π

P∞
m¼1 cosðmαÞ withR

dα cosðmαÞ cosðnαÞ ¼ πδmn.
14We expect that the 1=N expansion for OðNÞ should not be

sensitive to whether N is even or odd. See for instance [69] for an
explicit example of the large N expansion of SOðNÞ Chern-
Simons theory.
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matrix can be put into a canonical form with N diagonal
2 × 2 blocks ðcos α −sin α

sin α cos α Þ which can be further diagonalized

to ð eiα 0
0 e−iαÞ. This may be formally viewed as a special

UðNÞ case where N eigenvalues αi are chosen as
ðα1;−α1; α2;−α2;…; αN;−αNÞ. Then the analog of ~Fβ in
(4.7) becomes (here we use r; s ¼ 1; 2;…;N to label αi
from different 2-planes)

~Fβ ¼ −
1

2

XN
r≠s¼1

ln sin2
αr − αs

2
−
1

2

XN
r;s¼1

sin2
αr þ αs

2

þ 1

2

XN
r¼1

ln sin2αr þ 2
XN
r¼1

fβðαrÞ; ð4:16Þ

where fβðαrÞ is given by the same expression as in (4.8)
[that for αr ¼ 0 the last term becomes Nfβð0Þ or N times
Fβ in (3.14) as it should be for N real scalars]. The Casimir
energy term is the same as in (4.9) with N → N. In the large
N limit (4.16) is then replaced by

~FβðρÞ ¼ N2

Z
dαdα0Kðα; α0ÞρðαÞρðα0Þ

þ 2N
Z

dαρðαÞkðαÞ þ 2N
Z

dαρðαÞfβðαÞ;

ð4:17Þ

Kðα; α0Þ ¼ −
1

2
lnð½2 − 2 cosðα − α0Þ�½2 − 2 cosðαþ α0Þ�Þ

¼ 2
X∞
m¼1

1

m
cosðmαÞ cosðmα0Þ;

kðαÞ ¼ 1

4
lnð2 − 2 cos 2αÞ ¼ −

X∞
m¼1

1

2m
cosð2mαÞ:

ð4:18Þ
Since fβðαÞ in (4.8) contains only cosmα modes in its
expansion, the constant and sin mα modes of a
generic periodic function ρðαÞ ¼ a0 þ

P∞
m¼1ðam cos mαþ

bn sin mαÞ do not couple to the β-dependent source, i.e. we
may restrict the integration to even nonconstant functions
ρðαÞ ¼ P∞

m¼1 am cos mα (this allows us, in particular, to
ignore constant terms in K and K). Then the Gaussian
integration gives again an order N0 term [cf. (4.12)]

F̂β ¼ −
Z

dαdα0K−1ðα; α0ÞjðαÞjðα0Þ; ð4:19Þ

K−1ðα; α0Þ ¼ 1

2π2
X∞
m¼1

m cosðmαÞ cosðmα0Þ; ð4:20Þ

j ¼ fβðαÞ þ kðαÞ

¼
X∞

m¼1;3;5;…

cm cosðmαÞ þ
X∞

m¼2;4;6;…

c0m cosðmαÞ; ð4:21Þ

cm ¼ −
1

m
Z0ðmβÞ;

c0m ¼ cm −
1

m
¼ −

1

m
½Z0ðmβÞ þ 1�; ð4:22Þ

where we used (4.8). As a result, we find in the real scalar
case (omitting the β-independent constant)

F̂β ¼ −
X∞
m¼1

1

m
ZOðNÞðmβÞ;

ZOðNÞðβÞ ¼
1

2
½Z0ðβÞ�2 þ

1

2
Z0ð2βÞ: ð4:23Þ

The second term in ZOðNÞðβÞ originates from the cross-term
between the source kðαÞ coming from the measure and the
β-dependent source fβðαÞ. The explicit form ZOðNÞðβÞ was
already given in (4.2).
If the case of Nf free complex or real scalar flavors in the

fundamental of UðNÞ/OðNÞ, with Nf fixed in the large N
limit, the only modification is that the last term in (4.10)
and (4.17) acquires an extra factor of Nf. Then the same
calculation as described above readily leads to the results in
(4.4) for complex or real scalars.

C. Fermionic theories

In the UðNÞ invariant case of N Dirac fermions the
singlet constraint is again implemented by averaging the
Dirac operator determinant over the UðNÞ holonomy
eigenvalues [16,19]. One difference compared to the scalar
case in (4.6) is that now we will have the Casimir part of
free energy (4.9) replaced by its fermion analog; also, the
nontrivial β-dependent term fβ in (4.8) will be replaced by

fβðαÞ ¼
X∞
m¼1

cmðβÞ cosðmαÞ;

cmðβÞ ¼ −
ð−1Þmþ1

m
Z1

2
ðmβÞ; ð4:24Þ

whereZ1
2
was defined in (3.22), i.e. one is to replace the real

scalar one-particle partition function Z0 in (4.8) by the real
or Weyl fermion partition function Z1

2
[and add an extra

ð−1Þmþ1 factor].15

The rest of the argument is unchanged, so we again end
up with (4.14), now with cm given in (4.24), i.e.

15The normalization can be checked by considering the Uð1Þ
case when the free energy of a single complex scalar or Fβ ¼
−2

P∞
m¼1

1
mZ0ðmβÞ [cf. (3.14)] should be replaced by free

energy of a single Dirac fermion, or Fβ ¼
−2

P∞
m¼1

ð−1Þmþ1

m Z1
2
ðmβÞ [cf. (3.21)–(3.22)]. An extra factor of

2 in Eq. (24) of [16] appears to be a misprint.
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F̂β ¼ −
X∞
m¼1

1

m
Zferm

UðNÞðmβÞ;

Zferm
UðNÞðβÞ ¼ ½Z1

2
ðβÞ�2: ð4:25Þ

In the OðNÞ singlet sector of N Majorana fermions, the
starting point is (4.16) with the same function fβ as in
(4.24). Doing the obvious replacement in (4.22), i.e.
cm ¼ ð−1Þm

m Z1
2
ðmβÞ; c0m ¼ cm − 1

m (so that c02m ¼
1
2m ½Z1

2
ð2mβÞ − 1�) we finish with the following analog of

(4.23):

F̂β ¼ −
X∞
m¼1

1

m
Zferm

OðNÞðmβÞ;

Zferm
OðNÞðβÞ ¼

1

2
½Z1

2
ðβÞ�2 − 1

2
Z1

2
ð2βÞ: ð4:26Þ

We shall see in Sec. VI how the partition functions in (4.25)
and (4.26) are reproduced on the dual AdS higher spin
theory side.
While the above calculation was presented in the case of

a single fundamental fermion, it is straightforward to
generalize it to the case of Nf flavors (Nf ≪ N). One
simply includes an extra factor of Nf in the free fermion
one-particle partition function (4.24), and performing the
Gaussian integral over the eigenvalue density immediately
leads to the results quoted in (4.5).

V. HIGHER SPIN PARTITION FUNCTION
IN AdSdþ1 WITH S1 × Sd−1 BOUNDARY

Our aim in this section will be to compare the singlet
sector scalar CFT free energies, calculated above, with their
counterparts for higher spin theories in thermal AdSdþ1. The
HS free energy can be found by summing the individual
massless spin s contributions16:

F ¼
X
s

FðsÞ; FðsÞ ¼ − lnZs;

Zs ¼
�

det½−∇2 þ ðs − 1Þðsþ d − 2Þ�s−1⊥
det½−∇2 − sþ ðs − 2Þðsþ d − 2Þ�s⊥

�
1=2

; ð5:1Þ

where the operators are defined on symmetric traceless
transverse tensors [73,74].17

On general grounds, for a quantum field in AdSdþ1 with
boundary S1β × Sd−1 one expects the one-loop free energy to
have the following structure [cf. (3.8)]:

F ¼ F0 þ Fβ; F0 ¼ βF̄0 ¼ F∞ þ Fc;

F∞ ¼ adþ1 lnΛ; ð5:2Þ

where F0 is linear in β (i.e. proportional to the volume)
while the part Fβ with nontrivial β dependence is finite and
vanishes in the zero-temperature limit β → ∞. We have
split F0 into a possible UV logarithmically divergent part,
and a finite part Fc (power divergences are assumed to be
regularized away).
The coefficient adþ1 of the UV divergent term vanishes

automatically if dþ 1 is odd. For even dþ 1 it is given by
an integral of the corresponding local Seeley coefficient,
which, in the case of AdSdþ1, is proportional to the product
of the volume factor and 1

2
ðdþ 1Þ power of the constant

curvature. Since this curvature factor is the same for any β
or regardless of the topology of the boundary, the depend-
ence of aðsÞdþ1 on the spin s should be the same as that found
in [39,41] for the case of Euclidean AdSdþ1, i.e. the
hyperboloid Hdþ1, whose boundary is Sd. In particular,
it was shown in [39,41] (for various values of d) that the
total anomaly coefficient

P
sa

ðsÞ
dþ1 vanishes after summing

over spins (assuming the zeta-function regularization of the
sum), so that there are no logarithmic UV divergences in
the standard or minimal HS theory. Thus in what follows
we shall set F∞ ¼ 0.
The problem of computing the β-dependent part Fβ of

the one-loop free energy in thermal AdSdþ1 can be
approached from the Hamiltonian point of view [44,57],
using group-theoretic considerations to determine the
energy spectrum [44] of a spin s field in global AdSdþ1

with reflective boundary conditions [75,76]. An equivalent
result for Fβ is found in the path integral approach by
starting with the heat kernel for the hyperboloid Hdþ1

[77–79] and using the method of images to find its
counterpart for thermal AdSdþ1 viewed as a quotient
Hdþ1=Z (see [80,81] for the AdS3 case and [73,82] for
the general case).18 In this heat kernel approach F0 in (5.2)
is the zero-mode part of the sum over the images, and it is

thus natural to identify it with F̂0 ¼ VolðHdþ1=ZÞ
VolðHdþ1Þ FðHdþ1Þ,

where FðHdþ1Þ is the free energy on Hdþ1. This F̂0

requires a proper definition or regularization (cf. [80])
and was not studied in [82].19

At the same time, the expected correspondence with the
free energy (3.8) of the boundary CFT in S1 × Sd−1

suggests that the finite part of F0 should be closely related
to the vacuum or Casimir energy of the corresponding
fields in AdSdþ1. As this relation appears to be obscure in
the Hdþ1=Z construction let us discuss an alternative
approach to justify it.

16Here we consider free massless totally symmetric higher
spins with the Lagrangian originally found by Fronsdal in AdS4
[70]. An extension of Fronsdal’s work to higher dimensions was
carried out in [71,72].

17We set the AdS scale to 1. The energies (or scaling
dimensions) of the corresponding representations are Δ ¼ e0 ¼
sþ d − 2 for the physical field [71] and Δ ¼ e0 ¼ sþ d − 1 for
the ghost one.

18Ref. [82] used, in fact, an analytic continuation of a heat
kernel of a quotient of a sphere Sdþ1.

19For a related recent discussion of F̂0 in the case of a massive
scalar in AdS2 and AdS4 see [83].
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Let us recall that starting with the Euclidean AdSdþ1,
realized as a hyperboloid x2dþ1 − x20 − xixi ¼ 1 in R1;dþ1,
one may choose different sets of coordinates (see, e.g.,
[84]). For example, one may set xdþ1 ¼ cosh ξ, xm ¼
ðx0; xiÞ ¼ sinh ξnm where nmnm ¼ 1, getting the Hdþ1

metric ds2ξ ¼ dξ2 þ sinh2 ξdΩd with Sd as its boundary.
One may also choose the coordinates as
xdþ1 ¼ cosh ρ cosh t, x0 ¼ cosh ρ sinh t, xi ¼ sinh ρni,
nini ¼ 1 obtaining the Euclidean continuation of the global
AdSdþ1 metric, i.e. ds2t ¼ cosh2ρdt2þdρ2þsinh2ρdΩd−1.
Compactifying t on a circle of length β gives thermal
AdSdþ1 metric ds2t;β with S1β × Sd−1 as the boundary. A
direct computation of the full expression for the
determinant of a scalar Laplacian in the case of AdSdþ1

with ds2t or ds2t;β metric did not seem to appear in the
literature. In particular, it is not obvious how a finite part Fc
of the β → ∞ limit of F computed for ds2t;β will match the
expression found in [77,79] in the case of the hyper-
boloid ds2ξ .
The AdSdþ1 metric ds2t may be written also as

ds2t ¼ 1
cos2 θ ðdt2 þ dθ2 þ sin2 θdΩd−1Þ, where θ ∈ ½0; π

2
Þ

with the boundary R × Sd−1 at θ ¼ π
2
. Thus, it is conformal

to a half of the Einstein universe R × Sd. Indeed, there is a
close correspondence [85] between the spectrum of the
energy operator in AdSdþ1 and the spectrum of the
Laplacian in the half of the Einstein universe with reflective
boundary conditions (Dirichlet or Neumann) at the equator
of Sd [75,76]. In particular, the Casimir energies in AdS4
(as defined in [44]) and in R × S3 are the same up to a factor
[85]. This implies also that this energy spectrum determines
the nontrivial part Fβ of the free energy,20 in agreement
with its alternative derivations in [86] (from direct evalu-
ation of the scalar stress tensor in AdS) and in [74,80,82]
(from the Hdþ1=Z construction of the heat kernel).21

It remains then to understand the relation between the F0

part of free energy in AdSdþ1 and in the conformally related
Einstein universe. Given an ultrastatic space-time R ×Md

with a Euclidean metric ds2 ¼ dt2 þ ~gijðxÞdxidxj, one can
readily show that, up to a standard logarithmically diver-
gent term proportional to ζð0Þ [65,88], the corresponding
free energy or − lnZ is given by the Casimir energy term

Fc ¼ βEc. Here β → ∞ is the length of the time interval
and Ec ¼ 1

2

P
ndnωn, with ω2

n being the eigenvalues of the
Laplacian restricted to Md (cf. Sec. II). For a conformally
related static space-time ds2 ¼ g00ðxÞdt2 þ gijðxÞdxidxj
the full expression for the free energy will contain, in
addition to Fc, extra g00-dependent local terms reflecting
the required conformal rescaling by g00ðxÞ [58,89] (see
also, e.g., [78,90]).
These extra terms are linear in β, i.e. not changing the Fβ

part in the finite temperature case. These terms are similar
[91] to the “integrated conformal anomaly” terms found for
conformally invariant matter fields. They should be closely
related to the ζð0Þ-type terms that contribute to the F∞ part
of F in (5.2) and should thus vanish like

P
sa

ðsÞ
dþ1 after one

sums over the spins. For that reason in what follows we
shall assume that the β → ∞ limit of the UV finite part of
the free energy (5.2) in thermal AdSdþ1 has indeed the
interpretation of the Casimir energy term, i.e. Fc ¼ βEc. As
we shall see below, this is fully consistent with the AdS/
CFT correspondence.

A. Temperature-dependent part of the free energy

Let us first discuss the temperature-dependent part, Fβ,
of the free energy of higher spin theories and then turn to
the Casimir part in the next subsection.
The expression for Fβ of the totally symmetric massless

spin s field is [73,82]

FðsÞ
β ¼ −

X∞
m¼1

1

m
ZsðmβÞ; ð5:3Þ

ZsðβÞ ¼
qsþd−2

ð1 − qÞd ðds − ds−1qÞ; q≡ e−β ð5:4Þ

ds ¼ ð2sþ d − 2Þ ðsþ d − 3Þ!
ðd − 2Þ!s! : ð5:5Þ

Here ds is the number of symmetric traceless rank s tensors
in d dimensions or dimension of ðs; 0; 0;…Þ representation
of the “little” group SOðdÞ (i.e. dsjd¼3 ¼ 2sþ 1, dsjd¼4 ¼
ðsþ 1Þ2 etc.). Note that ds is exactly the same as the
degeneracy of eigenvalues of the scalar Laplacian on Sd−1 if
we replace the angular momentum quantum number n in dn
in (3.4) by the spin s.
ZsðβÞ in (5.4) thus has an interpretation of the corre-

sponding one-particle partition function [cf. (2.3) and
(2.7)]. From the point of view of d-dimensional CFT,
Zs is the character of the representation of SOðd; 2Þ
containing the spin s primary field of dimension Δ ¼
sþ d − 2 and its descendants [27,57]. The explicit results
for d ¼ 2; 3; 4 are

d ¼ 2∶ Zs>1ðβÞ ¼
2qs − 2qsþ1

ð1 − qÞ2 ¼ 2qs

ð1 − qÞ ; ð5:6Þ

20Note that for conformally invariant fields Fβ is always the
same in conformally related static spaces [58].

21It should be noted that while one may expect the vacuum
energy to scale as volume of global AdS space (which should
factorize as AdS is a homogeneous space) this is actually in
contradiction with reflective energy-conserving boundry condi-
tions (appropriate for finite temperature set up) which lead to
discrete spectrum of the Laplacian (see [87] for a discussion in the
AdS2 case). We expect that under an appropriate regularization,
the large β limit of the stress energy computation in [86] should
reproduce the “non-extensive” expression for the total AdS
vacuum energy as a sum over global energy eigenvaluaes (2.2)
found in the Hamiltonian approach [44,57]. One possibility may
be to do the integration over the radial AdS direction for finite β
and then take the limit β → ∞ in the result.
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d ¼ 3∶ Zs>0ðβÞ ¼
qsþ1

ð1 − qÞ3 ½2sþ 1 − ð2s − 1Þq�; ð5:7Þ

d ¼ 4∶ ZsðβÞ ¼
qsþ2

ð1 − qÞ4 ½ðsþ 1Þ2 − s2q�: ð5:8Þ

The low spin cases in d ¼ 2; 3 are special. For the spin 0
primary field of general dimension Δ,

ZðΔÞ
0 ¼ qΔ

ð1 − qÞd ; ð5:9Þ

since no ghosts need to be subtracted (this ghost term
vanishes automatically for s ¼ 0 for all d > 3). In AdS3
there are two possibilities for s ¼ 1. For the Maxwell
action, which was conjectured to be relevant to the d ¼ 2

scalar theory [41], ZMaxwell
1 ¼ 2q−q2

ð1−qÞ2; for the Chern-Simons

action, which is relevant to the d ¼ 2 fermionic

theory, ZCS
1 ¼ 2q−2q2

ð1−qÞ2 .

Putting these elements together, we find the total free
energy of the standard Vasiliev theory in AdSdþ1 where
each integer spin is counted once [12]. Including the s ¼ 0
contribution withΔ ¼ d − 2, and s ¼ 1Maxwell theory for
d ¼ 2, we find that in all dimensions d ≥ 2

Fβ ¼
X∞
s¼0

FðsÞ
β ¼ −

X∞
m¼1

1

m
ZðmβÞ; ð5:10Þ

ZðβÞ ¼ Zðd−2Þ
0 þ

X∞
s¼1

ZsðβÞ

¼ qd−2ð1þ qÞ2
ð1 − qÞ2d−2 : ð5:11Þ

Comparing to (4.15), (4.1) and (3.15) we conclude that this
is exactly the same as the order N0 term in the large N limit
of the free energy of a complex UðNÞ scalar in S1 × Sd−1

with the singlet condition imposed. This is thus a gener-
alization to all dimensions d ≥ 2 of the matching found in
[16] (and also, in the collective field theory approach, in
[28]) in the d ¼ 3 case. This matching is a consistency
check that the boundary and the bulk theories have the
same spectrum of states: indeed, the free spectra determine
both the one-loop term in the β-dependent bulk theory free
energy and also the leading order N0 term in the boundary
theory free energy.
The identity (5.11) also has an interpretation as an

expansion of the CFT partition function in terms of
characters Zs of the conformal group. This expansion is
completely determined by the spectrum of primary fields
and by the conformal symmetry. For example, if we
consider the large N limit of the d ¼ 3 critical UðNÞ
model, then the dimension of the singlet scalar primary
operator ϕ̄iϕ

i changes from 1 to 2, while the dimensions of
singlet higher spin primaries remain the same as in the free
theory.22 Therefore, the partition function of such a large N
CFT must have the form23

ZcritðβÞ ¼
q2

ð1 − qÞ3 þ
X∞
s¼1

qsþ1

ð1 − qÞ3

× ½2sþ 1 − ð2s − 1Þq�: ð5:12Þ
This is equal to the one-particle partition function of the
Vasiliev theory in AdS4 with theΔ ¼ 2 boundary condition
for the bulk scalar. Therefore, once again, the AdS/CFT
agreement of the partition functions follows from the
conformal symmetry and the agreement of the spectra.
Let us note that the HS partition function corresponding

to (5.10)–(5.11) may be rewritten as24

Fβ ¼ − lnZβ ¼
X∞
n¼1

�
nþ 2d − 4

2d − 3

�
ln½ð1 − qnþd−3Þð1 − qnþd−2Þ2ð1 − qnþd−1Þ�

¼ ln½ð1 − qd−2Þð1 − qd−1Þ2d� þ
X∞
n¼1

Cn lnð1 − qnþd−1Þ;

Cn ¼
�
nþ 2d − 4

2d − 3

�
þ 2

�
nþ 2d − 3

2d − 3

�
þ
�
nþ 2d − 2

2d − 3

�
¼ ðnþ 2d − 2Þ!

ð2d − 3Þ!ðnþ 1Þ! ½4nðnþ 2d − 2Þ þ 2dð2d − 3Þ�: ð5:13Þ

This generalizes to any d the expressions given for
d ¼ 3; 4; 6 in [73].
In the minimal Vasiliev theory in AdSdþ1, which

should be dual to the OðNÞ singlet sector of the d-
dimensional real scalar theory, one is to sum over all even
spins only. Then instead of (5.10)–(5.11) one finds from
(5.4)–(5.5)

24One is to use that
P∞

m¼1
1
m

qma

ð1−qmÞb ¼ −
P∞

n¼1ð
nþ b − 2

b − 1
Þ ×

lnð1 − qnþa−1Þ since ð1 − xÞ−b ¼ P∞
n¼1ð

nþ b − 2

b − 1
Þxn−1.

22In the critical vector model, the anomalous dimension of the
spin s currents is of order 1=N.

23While this is guaranteed on general grounds, it would be nice
to give a direct path integral derivation.
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Fβmin ¼
X∞

s¼0;2;4;…

FðsÞ
β ¼ −

X∞
m¼1

1

m
ZminðmβÞ; ð5:14Þ

ZminðβÞ ¼ Zðd−2Þ
0 þ

X∞
s¼2;4;…

ZsðβÞ

¼ 1

2

qd−2ð1þ qÞ2
ð1 − qÞ2d−2 þ 1

2

qd−2ð1þ q2Þ
ð1 − q2Þd−1 : ð5:15Þ

This nicely matches the order N0 term (4.23) and (4.2) in
the free energy of the OðNÞ singlet CFT.25

B. Casimir part of the free energy

Since we have already matched the N0 part of dual scalar
free energy, the Casimir energy part of the HS free energy
in (4.6) should vanish after the summation over spins. The
Casimir part of the scalar free energy (4.9) scales as N and
thus should be compared to the classical order N part of the
HS free energy.
More precisely, the above should apply to the standard

HS theory dual toUðNÞ complex scalar theory. In theOðNÞ
real scalar theory there is a subtlety noticed in [39]: the
matching should work provided the classical HS coupling
constant is not N but N − 1 (cf. also [28]). In this case the
Casimir energy of the minimal HS theory should not vanish
but should match the Casimir energy of a single real
conformal scalar in R × Sd−1, i.e. (3.5). In other words, we
should have the NβEc term in the free energy of the
boundary theory matching the sum of the classical
ðN − 1ÞβEc term plus the one-loop βEc term in the minimal
HS theory. We shall indeed confirm this below.
The Casimir part Fc ¼ βEc is the same as in the case of

the global AdSdþ1 with boundary R × Sd−1 (with time
interval regularized by β → ∞). It is defined by the
spectrum of the Hamiltonian associated to the global
AdS time. Equivalently, it can also be determined [e.g.,
via (2.2) and (2.4)] from the one-particle HS partition
functions (5.11) and (5.15) found above. Explicitly, in the
standard HS theory we should get

Ec ¼
1

2
ζEð−1Þ; ζEðzÞ ¼

1

ΓðzÞ
Z

∞

0

dββz−1ZðβÞ;

ð5:16Þ

ZðβÞ ¼ e−ðd−2Þβð1þ e−βÞ2
ð1 − e−βÞ2d−2

¼ cosh2 β
2

4d−2ðsinh2 β
2
Þd−1 : ð5:17Þ

Using that

ð1 − qÞ−b ¼
X∞
n¼1

�
nþ b − 2

b − 1

�
qn−1;

1

ΓðzÞ
Z

∞

0

dββz−1e−aβ ¼ a−z; ð5:18Þ

this gives for a general d26

ζEðzÞ ¼
X∞
n¼1

�
nþ 2d − 4

2d − 3

��
1

ðnþ d − 3Þz þ
2

ðnþ d − 2Þz

þ 1

ðnþ d − 1Þz
�

¼
X∞
n¼1

bnðdÞ
ðnþ d − 3Þz ; ð5:19Þ

bnðdÞ ¼
�
nþ 2d − 4

2d − 3

�
þ 2

�
nþ 2d − 5

2d − 3

�

þ
�
nþ 2d − 6

2d − 3

�

¼ ðnþ 2d − 6Þ!
ðn − 1Þ!ð2d − 3Þ! ½4n

2 þ 8ðd − 3Þn

þ 4d2 − 22dþ 32�: ð5:20Þ

One can then compute Ec in (5.16), i.e.
Ec ¼ 1

2

P∞
n¼1 bnðdÞðnþ d − 3Þ, using the standard

Riemann ζ-function regularization, finding that the stan-
dard HS theory vacuum energy in AdSdþ1 vanishes for
any d,

Ec ¼
1

2
ζEð−1Þ ¼

X∞
s¼0

Ec;s ¼ 0: ð5:21Þ

For example, for the HS theory in AdS4, AdS5 and AdS7
we get

25Reference [28] also checked this matching in the d ¼ 3 case
using the collective field formalism.

26Here [as also earlier in (3.20)] we have shifted the summation
variable and noted that one can restore the lower value of the
summation interval due to vanishing of the coefficients of the
second and third terms at n ¼ 1; 2.

GIOMBI, KLEBANOV, AND TSEYTLIN PHYSICAL REVIEW D 90, 024048 (2014)

024048-12



d ¼ 3∶ ζEðzÞ ¼
X∞
n¼1

1

6
nðnþ 1Þðnþ 2Þ½n−z þ 2ðnþ 1Þ−z þ ðnþ 2Þ−z�

¼
X∞
n¼1

1

3
ð2n2 þ 1Þn−z ¼ 1

3
½2ζðz − 3Þ þ ζðz − 1Þ�;

d ¼ 4∶ ζEðzÞ ¼
X∞
n¼1

4

5!
nðnþ 1Þðnþ 2Þðn2 þ 2nþ 2Þðnþ 1Þ−z ¼ 1

30
½ζðz − 5Þ − ζðz − 1Þ�;

d ¼ 6∶ ζEðzÞ ¼
X∞
n¼1

4

9!
nðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þðnþ 6Þðn2 þ 6nþ 11Þðnþ 3Þ−z

¼ 4

9!
½ζðz − 9Þ − 12ζðz − 7Þ þ 21ζðz − 5Þ þ 62ζðz − 3Þ − 72ζðz − 1Þ�: ð5:22Þ

These expressions vanish at z ¼ −1 due to ζð−2nÞ ¼ 0.
Equivalently, one may use an exponential cutoff e−ϵðnþd−3Þ
with the spectral parameter ðnþ d − 3Þ appearing in
(5.19). Then the sum in (5.19) can be done exactly at
z ¼ −1, giving for the regularized vacuum energy (2.2)
[cf. (3.18)]

EcðϵÞ ¼
1

2
ζEð−1; ϵÞ

¼ 4e−ϵd

ð1 − e−ϵÞ2d ½dþ ðd − 2Þ cosh ϵ� sinh ϵ: ð5:23Þ

Expanding in ϵ → 0 and subtracting the singular 1
ϵk
terms

one finds that the finite part in (5.23) is always zero.
One can see the reason for this vanishing of the Casimir

energy directly from (5.16). Since Γð−1Þ ¼ ∞, the result

for Ec can be nonzero only if the remaining integral over β
has a pole at z ¼ −1. The pole cannot appear since the
partition function ZðβÞ appearing in the integrand of (5.16)
is even in β, i.e. contains only even powers of β in its small
β expansion: ZðβÞ ¼ 4β−2ðd−1Þ½1þ 1

12
ðd − 4Þβ2 þ…�.

Let us now repeat the above analysis in the case of the
minimal HS theory with the one-particle partition function
in (5.15). Here we get the following analog of (5.16):

Emin
c ¼ 1

2
ζmin
E ð−1Þ; ζmin

E ðzÞ ¼ 1

2
ζEðzÞ þ δζðzÞ; ð5:24Þ

δζðzÞ≡ 1

2

1

ΓðzÞ
Z

∞

0

dββz−1
e−ðd−2Þβð1þ e−2βÞ
ð1 − e−2βÞd−1 ; ð5:25Þ

where ζEðzÞ in (5.24) is the standard HS function given by
(5.16) and (5.19) which vanishes at z ¼ −1 (5.21) as
discussed above. Using (5.18) we find [cf. (5.19)]

δζðzÞ ¼ 1

2

X∞
n¼1

�
nþ d − 3

d − 2

�
½ð2nþ d − 4Þ−z þ ð2nþ d − 2Þ−z� ¼ 1

2

X∞
n¼1

ðnþ d − 4Þ!
ðd − 2Þ!ðn − 1Þ! ð2nþ d − 4Þ1−z: ð5:26Þ

Thus we get

Emin
c ¼ 1

2
δζð−1Þ ¼ 1

4

X∞
n¼1

ðnþ d − 4Þ!
ðd − 2Þ!ðn − 1Þ! ð2nþ d − 4Þ2 ¼

X∞
n¼0

ðnþ d − 3Þ!
ðd − 2Þ!n!

�
nþ 1

2
ðd − 2Þ

�
2

: ð5:27Þ

Comparing this expression to (3.5) we observe that it is
exactly the same as the Casimir energy Ec of a single real
conformal scalar in R × Sd−1 given in (3.12). We conclude
that, as already mentioned above, this is consistent with
the N → N − 1 shift in identification of the coupling
constant in the minimal HS theory–OðNÞ real scalar
duality [39,41].
The equivalence between the scalar Casimir energy in

R × Sd−1 (3.5) and the minimal HS theory Casimir energy
in AdSdþ1 (5.27) is seen at the level of formal series so the

equality of the resulting finite expressions requires the use
of the same (zeta-function) regularization on both sides of
the duality.
While the Casimir energy (5.16) of the standard

HS theory vanishes in AdSdþ1 for any value of d, the
Casimir energy of the minimal HS theory vanishes only for
odd d, i.e. in AdS4, AdS6 etc. It is nonvanishing for even d,
i.e. in AdS5, AdS7 etc. [see (3.12)]. This is to be compared
with the well-known vanishing of vacuum energies
of N > 4 extended gauged supergravities in AdS4 [44]
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and of each Kaluza-Klein level of the massive spectrum of
11-dimensional supergravity compactified on S7 [45,46].27

The expressions for the HS theory vacuum energies in
(5.21) and (5.27) were found above by first doing the
formally convergent sum over spins s for fixed β under the
integral in (5.16) and then regularizing the sum over n. If
instead we first found the standard (zeta-function regular-
ized) expressions for the Casimir energies of each spin s
field and then summed over spin we would get a divergent
series that would require a zeta-function regularization,
now of the sum over s. While the cancellation of vacuum
energy in supergravities happened due to a large amount of
supersymmetry, in the HS theory it may be viewed as
being due to a special (zeta-function) definition of the
formally divergent sum over spins—a definition that

should be consistent with the underlying symmetries of
HS theory.
To further illustrate the role of the regularization of the

sum over spins (already emphasized earlier in the case of
the partition function in the Euclidean AdSdþ1 with Sd

boundary in [39,41,92]) below we shall consider explicitly
the individual spin s contributions to the Casimir energy for
some particular values of dimension d.

C. Casimir energies of individual higher
spin fields in AdSdþ1

The vacuum energy for a given massless spin s field in
AdSdþ1 can be found for a general d by using the
expression for ZsðβÞ from (5.4) in the representation
(2.4) for the corresponding energy zeta function

ζE;sðzÞ ¼
1

ΓðzÞ
Z

∞

0

dββz−1
e−ðsþd−2Þβ

ð1 − e−βÞd ðds − ds−1e−βÞ ¼
X∞
n¼1

�
nþ d − 2

d − 1

�
½dsðnþ sþ d − 3Þ−z − ds−1ðnþ sþ d − 2Þ−z�;

ð5:28Þ

Ec;s ¼
1

2
ζE;sð−1Þ ¼

1

2

X∞
n¼1

�
nþ d − 2

d − 1

�
½dsðnþ sþ d − 3Þ − ds−1ðnþ sþ d − 2Þ�: ð5:29Þ

The expression for ds was given in (5.5) and we used again
the relations in (5.18).
For example, for a scalar s ¼ 0 in (5.1) (with the operator

−∇2 − 2dþ 4) we have d0 ¼ 1 and thus28

Ec;s¼0 ¼
1

2
ζE;s¼0ð−1Þ ¼

1

2

X∞
n¼0

ðnþ d − 1Þ!
ðd − 1Þ!n! ðnþ d − 2Þ:

ð5:30Þ

This expression for the vacuum energy of a scalar (with
dimension Δ ¼ e0 ¼ d − 2) in AdSdþ1 is similar but
different from the one (3.5) for the vacuum energy of a
conformal scalar in R × Sd or in R × Sd−1.29

Let us consider cases of few low values of the boundary
dimension d. Let us start with d ¼ 2 or the AdS3 case
(ds ¼ 2; s > 1)

d ¼ 2∶ ζE;s>1ðzÞ ¼ 2ζðz; sÞ;

Ec;s>1 ¼ ζð−1; sÞ ¼ −
1

12
½1þ 6sðs − 1Þ�; ð5:31Þ

where ζðz; aÞ ¼ P∞
r¼0ðrþ aÞ−z is the standard Hurwitz

zeta function. The above formula is applicable for s ≥ 2
while s ¼ 0, 1 are special cases that need to be discussed
separately [41]. Note that in the d ¼ 2 case the Casimir
energy coefficient is directly related to the conformal
anomaly [61] but this will not be true in general.
For d ¼ 3 or AdS4 one finds

d ¼ 3∶

ζE;sðzÞ ¼
X∞
n¼1

1

2
nðnþ 1Þ½ð2sþ 1Þðnþ sÞ−z

− ð2s − 1Þðnþ sþ 1Þ−z�

¼
X∞
n¼1

nðnþ 2sÞðnþ sÞ−z

¼ ζðz − 2; sþ 1Þ − s2ζðz; sþ 1Þ; ð5:32Þ

Ec;s>0 ¼
1

2
ζE;s>0ð−1Þ ¼

1

8
s4 −

1

12
s2 þ 1

240
;

Ec;0 ¼
1

480
: ð5:33Þ

For completeness, let us recall that the computation of the
vacuum energies for massless higher spin fields in AdS4

27The computation of the vacuum energy of individual fields in
[44] still required, of course, the use of the standard zeta-function
regularization of the sum over radial quantum number n [as, e.g.,
in the scalar case on the sphere in (3.11)].

28In the scalar case one should drop the second ghost term in
the bracket in (5.28) but the general expression (5.28) applies also
for the s ¼ 0 case as ds−1¼ð2sþd−4Þðsþd−4Þ!

ðd−2Þ!ðs−1Þ! vanishes automatically
for s ¼ 0 if d > 3.

29For example, for d ¼ 3 Eq. (5.30) gives Ec;s¼0 ¼
1
4

P∞
n¼1ðnþ 1Þn2 ¼ 1

4
ζð−3Þ ¼ 1

480
while for a conformal scalar

in R × S3 one finds from (3.5) that Ec ¼ 1
2
ζð−3Þ ¼ 1

240
and for

R × S2 one has Ec ¼ 0.
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was originally discussed in the context of extended gauged
supergravities [44], starting directly from the energy
spectrum En ¼ ωn for massless spin s ¼ 0; 1

2
;…; 2 fields

(assuming reflective boundary conditions at infinity giving
discrete energy spectrum [75,76]). Explicitly, for a massless
spin s > 0 field corresponding to SOð2; dÞ ¼ SOð2; 3Þ
representation ðe0; sÞ ¼ ðsþ 1; sÞ with lowest energy or
dimension Δ ¼ e0 ¼ sþ 1 one has30 ωk;j ¼ kþ jþ 1;,
dk;j ¼ 2jþ 1 where k ¼ 0; 1; 2;…. and j ¼ s,
sþ 1; sþ 2;…. This leads to the following expression
for the corresponding energy zeta function [44]

d ¼ 3∶

ζE;sðzÞ ¼
X∞
k¼0

X∞
j¼s

ð2jþ 1Þðkþ jþ 1Þ−z

¼
X∞
r¼0

ðrþ 1Þðrþ 2sþ 1Þðrþ sþ 1Þ−z: ð5:34Þ

This is equivalent to (5.32) and thus gives the same
expression for the vacuum energy as in (5.33).
Note that Ec;s>0 in (5.33) formally applies also for s ¼ 0

if the scalar is assumed to be complex, i.e. carries the same
number (two) of degrees of freedom as all other massless
spin s fields in dþ 1 ¼ 4.31 The expression in (5.33) is true
also for half-integer spins and thus one can directly apply
(5.33) to compute the vacuum energies of extended four-
dimensional supergravity theories using the supermultiplet
sum rules [93]

P
sð−1Þ2sdðsÞsp ¼ 0, p < N ¼ 1;…; 8

where s ¼ 0; 1
2
; 1; 3

2
; 2 and dðsÞ are multiplicities of the

spin s fields. One then finds that the vacuum energy
vanishes in N > 4 extended gauged supergravities [44].
The vanishing of vacuum energy was found also at each
level of the massive KK spectrum of 11-dimensional
supergravity compactified on S7 [45,46].

We can now see directly that similar cancellation of
vacuum energy happens also in the purely bosonic HS
theory assuming the sum over all spins is zeta-function
regularized (as suggested in [39,41,92]):

d ¼ 3∶

ðEcÞHS ¼ Ec;0 þ
X∞
s¼1

Ec;s

¼ 1

480
þ
X∞
s¼1

�
1

8
s4 −

1

12
s2 þ 1

240

�
¼ 0; ð5:35Þ

where we used that ζð0Þ ¼ − 1
2
;, ζð−2Þ ¼ ζð−4Þ ¼ 0. Such

cancellation happens also in the minimal HS theory in
AdS4 where one sums over even spins only. As discussed
above, this is consistent (in agreement with AdS/CFT) with
the vanishing (3.12) of the Casimir energy of a conformal
scalar in d ¼ 3, i.e. in R × S2.
Let us note that the expression appearing in the vanishing

of vacuum energy in (5.35) is similar but not identical to the
one found for the vanishing coefficient of the UV loga-
rithmically divergent part ðlnZHSÞ∞ ¼ −aHS lnΛ of the
partition function of HS theory in the Euclidean AdS4 with
S3 as the boundary [39],

aHS ¼
1

360
þ
X∞
s¼1

�
5

24
s4 −

1

24
s2 þ 1

180

�
¼ 0: ð5:36Þ

In general, for d ≥ 3 the spin-dependent coefficients in the
Casimir energy and in the coefficient of the UV divergence
in AdSdþ1 appear to be different.
Finally, let us consider the AdS5 or d ¼ 4 case of

(5.28)–(5.29),

d ¼ 4∶ ζE;sðzÞ ¼
X∞
n¼1

1

6
nðnþ 1Þðnþ 2Þ½ðsþ 1Þ2ðnþ sþ 1Þ−z − s2ðnþ sþ 2Þ−z�

¼
X∞
n¼1

1

6
nðnþ 1Þ½ð2sþ 1Þnþ 3s2 þ 4sþ 2�ðnþ sþ 1Þ−z

¼ 1

6
½ð2sþ 1Þζðz − 3; sþ 2Þ − 3sðsþ 1Þζðz − 2; sþ 2Þ

− ð2sþ 1Þζðz − 1; sþ 2Þ þ sðs3 þ 2s2 þ 2sþ 1Þζðz; sþ 2Þ�; ð5:37Þ

30For the spin 0 case ωk;j ¼ kþ jþ e0;, dk;j ¼ 2jþ 1 where k ¼ 0; 2; 4;…;, j ¼ 0; 1; 2;… and e0 ¼ 1 (in the conformal coupling
case) or e0 ¼ 2 (in the standard massless case).

31One can check directly that the vacuum energy corresponding to a real scalar in either (1,0) or (2,0) representations is [45,57]
Ec;s¼0 ¼ 1

480
. In general, for a real scalar field in representation ðe0; 0Þ one has [45]

ζE;s¼0ðz; e0Þ ¼
P∞

k;j¼0ð2jþ 1Þðe0 þ 2kþ jþ 1Þ−z ¼ 1
2
½ζðz − 2; e0Þ þ ð3 − 2e0Þζðz − 1; e0Þ þ ðe0 − 2Þðe0 − 1Þζðz; e0Þ�

so that ζE;s¼0ð−1; e0Þ ¼ − 1
24
e40 þ 1

4
e30 − 1

2
e20 þ 3

8
e0 − 19

240
, giving 1

2
ζE;0ð−1; 2Þ ¼ 1

2
ζE;0ð−1; 1Þ ¼ 1

480
.
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Ec;s ¼
1

2
ζE;sð−1Þ ¼ −

1

1440
sðsþ 1Þ½18s2ðsþ 1Þ2 − 14sðsþ 1Þ − 11�: ð5:38Þ

For example, for low spin s ¼ 0; 1; 2 fields (with
e0 ¼ sþ 2) this expression reproduces the values of the
Casimir energies (0;− 11

240
;− 553

240
) found in [57]. Summing

Ec;s over s ¼ 0; 1; 2;…. should be done again using an
appropriate spectral zeta-function regularization as
in [41], or, equivalently, introducing a cutoff function
e−ϵ½sþ1

2
ðd−3Þ� ¼ e−ϵðsþ1

2
Þ and dropping all singular terms in

the limit ϵ → 0. As one readily checks, this gives

X∞
s¼1

Ec;se−ϵðsþ
1
2
Þjϵ→0;fin ¼ 0: ð5:39Þ

This is in agreement with our earlier general result (5.21)
obtained directly from the total (summed over spin)
partition function (5.17) and using the standard zeta-
function regularization of the sum over n in (5.19) and
(5.21).32 Similarly, one can sum up the individual Casimir
energies Ec;s over even spins only, corresponding to the
minimal HS theories in AdSdþ1, and in all d the result is
equal to the Casimir energy of a real conformal scalar on
R × Sd−1, in agreement with the computation of Sec. V B.

VI. MATCHING FERMIONIC CFTS WITH
HIGHER SPINE THEORIES

Having checked the higher spin AdS/CFT correspon-
dence for singlet sectors of free scalar field theories on
S1 × Sd−1, we proceed to analogous checks for similar
fermionic theories. More precisely, we will consider the
UðNÞ singlet sector of the theory of N free Dirac fermions
or the OðNÞ singlet sector of the theory of N free Majorana
fermions on S1 × Sd−1 and compare them with appropri-
ately defined higher spin theories in AdSdþ1. We will
explicitly discuss d ¼ 2, 3, 4, but extensions to higher d
should not be difficult. These checks are interesting
because the spectra of higher spin currents in such
fermionic theories are more complicated than in the scalar
theories. Correspondingly, the dual higher spin description
of the fermionic theories generally involves massless gauge
fields in more general representations than the fully
symmetric ones [25,27].

A. d ¼ 2

Let us first discuss d ¼ 2 fermionic CFTs. We may start
withN massless free Dirac fermions and impose the SUðNÞ
singlet condition. This may be accomplished by gauging

the SUðNÞ symmetry and then adding the Wess-Zumino-
Witten term for the SUðNÞ gauge field Aμ ¼ ig∂μg−1 with a
coefficient k. In the limit k → ∞ we expect to find the free
fermion theory restricted to the SUðNÞ singlet sector.33

Alternatively, we may start with N massless free Majorana
fermions and impose the OðNÞ singlet constraint by
similarly gauging the OðNÞ symmetry.
In d ¼ 2 CFTs, the Casimir energy on R × S1 is

completely determined by the central charge: E ¼ − 1
12
c.

Therefore, the AdS3=CFT2 matching of Casimir energies is
equivalent to matching of the central charge c. For UðNÞ
and OðNÞ singlet scalar theories, the central charge
matching was carried out in [41]. It was found that the
sum of higher spin one-loop contributions vanishes in the
theory of all integer spins, while in the theory of even spins
it equals 1, which is the central charge of a real scalar field.
Just as in the scalar cases, we find that the d ¼ 2 UðNÞ

and OðNÞ singlet fermionic theories contain conserved
currents of spin s > 1, and the dual theories in AdS3
contain corresponding massless gauge fields. The contri-
bution of such fields to the one-loop central charge is as in
(5.31) [41]

cð1Þs ¼ 1þ 6sðs − 1Þ; s ≥ 2: ð6:1Þ

In carrying out the matching for the fermionic theories,
we find subtle but important differences from the scalar
case that affect the fields of spin 1 and 0. For the theory
of N Dirac fermions, the spin 1 current is ψ̄ iγ

μψ i,
and it generates the standard Kac-Moody algebra.
Correspondingly, the dual vector field in AdS3 has the
Chern-Simons action [98]. The contribution of the Chern-
Simons field is cð1ÞCS ¼ 1; this can be deduced from the
central charge of the current algebra in the dual theory or
can be found from a direct calculation in AdS3. In contrast,
in the d ¼ 2 scalar CFT the vector current does not satisfy
the standard Kac-Moody algebra. It is plausible to con-
jecture that in this case the s ¼ 1 gauge field in AdS3 has
the Maxwell action [41], and its contribution to the central
charge is cð1ÞMaxwell ¼ 1

2
. There are two spin 0 operators of

dimension Δ ¼ 1 in the fermionic theory: a scalar, ψ̄ iψ
i,

and a pseudoscalar, ψ̄ iγ3ψ
i. Therefore, the dual theory in

AdS3 must contain a complex scalar field with m2 ¼ −1
which is right at the Breitenlohner-Freedman bound. In
general, the contribution of a real scalar field to one-loop
central charge is cð1Þ0 ðΔÞ ¼ − 1

2
ðΔ − 1Þ3. Therefore, the

32Note again that the 6th order polynomial in s in (5.38) is
similar but not equivalent to the coefficient of the logarithmic
infrared divergence in the massless higher spin partition function
in AdS5 [92] that also vanishes when summed over spins with a
zeta-function regularization [41].

33Such a construction is similar to the Gaberdiel-Gopakumar
conjectures [94–96] which involve coset CFTs in d ¼ 2. The
λ → 0 limit of the coset CFT used in [94–96] is simply the singlet
sector of the CFT of N free Dirac fermions, but with the Uð1Þ
current ψ̄ iγ

μψ i removed [95,97].
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complex scalar field makes no contribution to the central
charge, while the Chern-Simons vector does, and their total
contribution is 1.
Let us compare this with the AdS3 theory dual to the

UðNÞ symmetric scalar model. Such a theory contains one
m ¼ 0 scalar, which is dual to the Δ ¼ 0 operator ϕ̄iϕ

i; it
contributes cð1Þ0 ¼ 1

2
. As suggested in [41], it also contains a

Maxwell field. Thus, the s ¼ 0, 1 fields in the UðNÞ singlet
fermionic model make the same combined contribution to
the central charge as in the scalar model. The s > 1 fields
work in the same way in the fermionic and scalar models;
therefore, the cancellation occurs in both models.
Indeed, in the UðNÞ invariant fermionic theory, the total

one-loop correction to central charge is cð1ÞCS þ
P∞

s¼2 c
ð1Þ
s .

Using the zeta-function regularization for the sum, we see
that this vanishes. In the OðNÞ invariant fermionic theory,
the total contribution is the regularized sum of cð1Þs over
positive even spins. This equals 1

2
, in agreement with the

central charge of a single Majorana fermion. This is
consistent with the proposed identification of the coupling
constant,GN ∼ 1=ðN − 1Þ, in the bulk dual ofOðNÞ singlet
models.
As a further test of the spectra of the AdS3 theories dual

to the d ¼ 2 fermionic CFTs, we consider the calculation of
the thermal free energy. According to (3.22), in d ¼ 2 one
half of the free Dirac fermion one-particle free energy is34

Z1
2
ðβÞ ¼ 2q

1
2

1 − q
: ð6:2Þ

According to (4.25), matching of the thermal free energies
requires that the square of this partition function equals the
sum of the one-particle partition functions in AdS3. Indeed,
for the theory dual to the UðNÞ singlet sector of N free
Dirac fermions, we find

2q
ð1 − qÞ2 þ

X∞
s¼1

�
2qs

ð1 − qÞ2 −
2qsþ1

ð1 − qÞ2
�
¼ 4q

ð1 − qÞ2

¼ ½Z1
2
ðβÞ�2: ð6:3Þ

The first term here is the contribution of the two Δ ¼ 1
scalars in AdS3, and the sum corresponds to the contribution
of all gauge fields with s ≥ 1 [98], including the Chern-
Simons gauge field dual to the spin 1 current ψ̄ iγμψ

i. This
matching is essentially a special case of certain identities for
a product of characters of the conformal group [27].
Now let us consider the minimal higher spin theory in

AdS3, which is dual to the OðNÞ singlet sector of N free

Majorana fermions. Since for Majorana fermions ψ̄ iγ3ψ
i

vanishes, this theory has only one real bulk scalar dual to
the Δ ¼ 1 operator ψ̄ iψ

i. It also contains massless gauge
fields of positive even spins. Therefore, the sum over one-
particle partition functions in AdS3 is

q
ð1 − qÞ2 þ 2

X∞
s¼2;4;…

qs

1 − q
¼ qþ 3q2

ð1 − qÞ2ð1þ qÞ

¼ 1

2
½Z1

2
ðβÞ�2 − 1

2
Z1

2
ð2βÞ;

ð6:4Þ
and we find agreement with the field theory result (4.26).

B. d ¼ 3

Next, let us consider the d ¼ 3 fermionic duality con-
jectures of [14,15]. In the case of N free Dirac fermions
restricted to the UðNÞ singlet sector, the “single trace”
spectrum includes a unique pseudoscalar operator ψ̄ iψ

i

which has dimension 2, and a set of totally symmetric
higher spin currents, one for each integer spin. The
matching of the thermal partition function on S1 × S2

follows from the identity [27,42]

q2

ð1 − qÞ3 þ
X∞
s¼1

�
ð2sþ 1Þ qsþ1

ð1 − qÞ3 − ð2s − 1Þ qsþ2

ð1 − qÞ3
�

¼ 4q2

ð1 − qÞ4 ¼ ½Z1
2
ðβÞ�2; ð6:5Þ

where Z1
2
ðβÞ ¼ 2q

ð1−qÞ2 is half of the free Dirac fermion one-

particle partition function in d ¼ 3 [see (3.21), (3.22)].
Note that this is the same as the expression (5.12) for
the critical scalar theory. This is because at large N the
spectrum of the free fermion theory is the same as the one
of the critical scalar theory, where the s ¼ 0 operator ϕiϕi

has dimension Δ ¼ 2þOð1=NÞ, as opposed to Δ ¼ 1 at
the free fixed point.35 Analogously, in the minimal theory
with even spins only, one has

q2

ð1 − qÞ3 þ
X∞

s¼2;4;…

�
ð2sþ 1Þ qsþ1

ð1 − qÞ3 − ð2s − 1Þ qsþ2

ð1 − qÞ3
�

¼ 1

2
½Z1

2
ðβÞ�2 − 1

2
Z1

2
ð2βÞ; ð6:6Þ

in agreement with (4.26).
One may also consider the large N interacting Gross-

Neveu model, where the scalar operator has dimension 1
instead of 2. The same s ¼ 0 operator dimensions appear in

34To recall, in general dimensions, the character of the free
fermion representation of the conformal group is given by [18,27]

Z1
2
ðβÞ ¼ 1

2
ZFðβÞ ¼ nF

q
d−1
2

ð1−qÞd−1, where nF ¼ 2
d
2
−1 for a Weyl fer-

mion in even dimensions, and nF ¼ 2
d−1
2 for a Dirac fermion in

odd dimensions. A Dirac fermion in even dimensions can be
decomposed as the sum of left and right Weyl spinors.

35One difference between the free fermion and critical scalar
spectrum is that in the former the s ¼ 0 operator is a pseudo-
scalar. However, this difference does not affect the calculation at
this order.
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the Wilson-Fisher and free scalar models and correspond to
the two different boundary conditions for the m2 ¼ −2
scalar in AdS4. As noted in Sec. V C, for either choice of
scalar operator dimension, Ec;0 ¼ 1

480
. The spectrum of the

s > 0 currents in the UðNÞ fermionic models (dual to type
B Vasiliev theory) is the same as in the UðNÞ scalar models
(dual to type A Vasiliev theory), and their zeta-function
regularized contribution to Casimir energy is − 1

480
, prop-

erly canceling the s ¼ 0 contribution. Similarly, the can-
cellation of the Casimir energy in the OðNÞ fermionic
models (dual to minimal type B theory) is exactly the same
as in the OðNÞ scalar models (dual to minimal type A
theory).

C. d ¼ 4

It is interesting to look at the higher dimensional free
fermion theories, as in this case the dual higher spin theory
contains new higher spin representations besides the totally
symmetric ones [25,27]. As an explicit example, let us
consider the d ¼ 4 theory ofN free Dirac fermions restricted
to theUðNÞ singlet sector. The single trace primary operators
in this theory consist of two Δ ¼ 3 scalar operators,

O ¼ ψ̄ iψ
i; ~O ¼ ψ̄ iγ5ψ

i; ð6:7Þ
two sets of totally symmetric higher spin currents, schemati-
cally [54–56]

Jμ1���μs ¼ ψ̄ iγðμ1∂μ2 � � � ∂μsÞψ
i þ…;

~Jμ1���μs ¼ ψ̄ iγ5γðμ1∂μ2 � � � ∂μsÞψ
i þ…; s ≥ 1 ð6:8Þ

and a tower of mixed symmetry higher spin operators of the
schematic form

Bμ1���μs;ν ¼ ψ̄ iγνðμ1∂μ2 � � � ∂μsÞψ
i þ…; s ≥ 1: ð6:9Þ

The latter operators have the symmetries of the Young
tableaux with s boxes in the first row and one box in the
second row. This set of primary operators is dual to twoAdS5
scalar fields with m2 ¼ −3, two towers of totally symmetric
higher spin gauge fields and a tower ofmixed symmetry fields
corresponding to (6.9). In particular, at s ¼ 1 we have a
massive antisymmetric tensor field dual to the operator
ψ̄ iγμνψ

i. The agreement between single trace primaries
and single particle states in AdS5 can again be seen by
computing the thermal partition function on S1 × S3.
Representations of the d ¼ 4 conformal group can be labeled
by ðΔ; j1; j2Þ, whereΔ is the conformal dimension and j1; j2
the SUð2Þ × SUð2Þ spins. In this notation, the mixed
symmetry operators (6.9) for a given s correspond to the
sum of representations

�
sþ 2;

sþ 1

2
;
s − 1

2

�
⊕
�
sþ 2;

s − 1

2
;
sþ 1

2

�
; ð6:10Þ

and the corresponding character, or one-particle partition
function, is [27]

Zmixed
s ðβÞ ¼ 2

qsþ2

ð1 − qÞ4 ½sðsþ 2Þ − qðs2 − 1Þ�: ð6:11Þ

It would be interesting to derive this directly in AdS by
computing the heat kernel and one-loop determinant for the
mixed symmetry fields in the bulk. Putting this together with
the scalar and totally symmetric higher spin contributions and
summing over spins one gets

2q3

ð1 − qÞ4 þ 2
X∞
s¼1

qsþ2

ð1 − qÞ4 ½ðsþ 1Þ2 − qs2�

þ 2
X∞
s¼1

qsþ2

ð1 − qÞ4 ½sðsþ 2Þ − qðs2 − 1Þ�

¼ 16q3

ð1 − qÞ6 ¼ ½Z1
2
ðβÞ�2; ð6:12Þ

which indeed agrees with (4.25) and the form of the free
fermion character (3.21) in d ¼ 4. This is another example of
an identity between a product of characters of two singleton
representations of the conformal group, and the character of
the corresponding direct sum of higher spin representations,
generalizing the Flato-Fronsdal relation discovered in
d ¼ 3 [20].36

By using (2.2) and (2.4), the knowledge of ZðβÞ for each
representation is enough to determine the corresponding
Casimir energies of the AdS5 fields. For the Δ ¼ 3 scalar
field, we get

ζΔ¼3
E;0 ðzÞ ¼

X∞
n¼1

1

6
nðnþ 1Þðnþ 2Þðnþ 2Þ−z; ð6:13Þ

which yields

EΔ¼3
c;0 ¼ 1

2
ζΔ¼3
E;0 ð−1Þ ¼ −

1

480
: ð6:14Þ

The Casimir energy for the totally symmetric higher spins
in AdS5 was already computed in (5.37)–(5.38). Its
regularized sum over all integer spins vanishes (5.39).
For the mixed symmetry fields, from (6.11) we get [using
the same regularization of the sum over spins as in (5.39)]

36In d ¼ 4 one may consider not only the j ¼ 0 and j ¼ 1
2

singletons [25,99,100] (i.e. free massless scalar and spinor fields
of boundary CFT), but also j ¼ 1 and higher spin ones [101]. In
such cases, one finds similar relations between characters [27].
The d ¼ 4 CFT corresponding to the j ¼ 1 singleton has N free
Maxwell fields restricted to theOðNÞ singlet sector [102]. Similar
theories may be considered in higher dimensions. For example, in
d ¼ 6, one may study the OðNÞ singlet sector of N free
antisymmetric tensor fields; this theory has a higher spin AdS7
dual.

GIOMBI, KLEBANOV, AND TSEYTLIN PHYSICAL REVIEW D 90, 024048 (2014)

024048-18



ζmixed
E;s ðzÞ ¼

X∞
n¼1

1

6
nðnþ 1Þðnþ 2Þ½sðsþ 2Þðnþ sþ 1Þ−z − ðs2 − 1Þðnþ sþ 2Þ−z�;

Emixed
c;s ¼ 1

2
ζmixed
E;s ð−1Þ ¼ 1

720
½−3 − 19sðsþ 1Þ þ 44s2ðsþ 1Þ2 − 18s3ðsþ 1Þ3�;

Emixed
c ¼

X∞
s¼1

1

720
½−3 − 19sðsþ 1Þ þ 44s2ðsþ 1Þ2 − 18s3ðsþ 1Þ3�e−ϵðsþ1

2
Þjϵ→0;fin ¼

1

240
: ð6:15Þ

Thus the total one-loop bulk Casimir energy is

Ec ¼ 2 ×

�
−

1

480

�
þ 2 × 0þ 1

240
¼ 0: ð6:16Þ

This is in agreement with the expected vanishing of order
N0 correction to the Casimir energy of N free Dirac
fermions. Note that in this section we have chosen to
compute the total Casimir energy by summing up the
individual Casimir energies of each bulk field with a
suitable regulator [41]. Equivalently, one can obtain the
same result by first summing over spins the one-particle
partition functions, and then performing the Mellin trans-
form (2.4), as described in Sec. V B for the scalar theories.
Analogously, we can consider the theory of N Majorana

fermions, restricted to the OðNÞ singlet sector as discussed
in Sec. IV C. The spectrum of operators is a projection of
the one described above for the Dirac case. Given any two
Majorana fermions χ1, χ2, one has the identities

χ̄1χ2 ¼ χ̄2χ1; χ̄1γ5χ2 ¼ χ̄2γ5χ1; ð6:17Þ

χ̄1γμχ2 ¼ −χ̄2γμχ1; χ̄1γμγ5χ2 ¼ χ̄2γμγ5χ1; ð6:18Þ

χ̄1γμνχ2 ¼ −χ̄2γμνχ1: ð6:19Þ

The identities in the first line imply that both Δ ¼ 3 scalar
operators are present in the Majorana theory. On the other
hand, using the identities in the second line and integration
by parts, one can see that the totally symmetric operators
Jμ1���μs with odd spins and the “axial” ~Jμ1���μs with even spins
are projected out (they are total derivatives). This leaves
effectively a single tower of totally symmetric higher spins
of all integer s. Finally, the identity in the last line implies
that the mixed symmetry operators Bμ1���μs;ν with odd spin
are projected out. Then the total one-loop bulk Casimir
energy is

Ec×min ¼ 2 ×

�
−

1

480

�
þ 0þ

X∞
s¼2;4;…

Emixed
c;s e−ϵðsþ1

2
Þjϵ→0;fin

¼ 17

960
: ð6:20Þ

This is precisely equal to the Casimir energy of a single
Majorana fermion in d ¼ 4, in agreement with the shift

N → N − 1 in the HS coupling which we observe in the
real theories in all dimensions.
We can also consider the thermal partition function of

this free real fermion theory. The sum over one-particle
partition functions of the bulk AdS5 fields yields

2q3

ð1− qÞ4 þ
X∞
s¼1

qsþ2

ð1− qÞ4 ½ðsþ 1Þ2 − qs2�

þ 2
X∞

s¼2;4;…

qsþ2

ð1− qÞ4 ½sðsþ 2Þ− qðs2 − 1Þ�

¼ 8q3

ð1− qÞ6 −
2q3

ð1− q2Þ3 ¼
1

2
½Z1

2
ðβÞ�2 − 1

2
Z1

2
ð2βÞ: ð6:21Þ

This is indeed in perfect agreement with the expression
for the corresponding real free fermion partition function
on S1 × S3 with the OðNÞ singlet constraint found in
Sec. IV B (4.26).
Finally, let us note that in d ¼ 4 we could also consider

the free theory of N complex Weyl fermions in the UðNÞ
singlet sector. In this theory, the UðNÞ invariant operators
form a single tower of totally symmetric currents with all
integer spins s ≥ 1. In particular, there is no scalar operator
and no mixed symmetry operators.37 The one-loop Casimir
energy in the bulk then vanishes due to (5.39).

VII. HIGHER SPIN DUALS OF THEORIES
WITH Nf FLAVORS

It is straightforward to generalize the above calculations
to the case of free theories with Nf scalars or fermions in
the fundamental representation of UðNÞ or OðNÞ. To be
concrete, let us consider NNf free complex scalars in the
UðNÞ singlet sector. The spectrum of single trace primaries
is then given by

Oa
b ¼ ϕ̄ibϕ

ia; ðJðsÞÞab ∼ ϕ̄ib∂sϕia;

a; b ¼ 1;…; Nf:
ð7:1Þ

37For a Weyl spinor ψ i
α, one can construct a Lorentz scalar by

contracting the SUð2Þ index with ψα;i. However, the correspond-
ing object is not UðNÞ invariant because ψ i

α and ψα;i are both in
the fundamental of UðNÞ.
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The dual HS theory should then be a version of Vasiliev
theory where all fields are promoted to matrices carrying
the UðNfÞ indices [11]. As usual, the global UðNfÞ
symmetry of the CFT becomes a UðNfÞ gauge symmetry
in the bulk. At the free field level we simply haveN2

f copies
of each field, and the calculations described in Sec. VA
readily lead to the result quoted in (4.4) for the UðNÞ case.
The situation is slightly more interesting in the OðNÞ

case. For Nf ¼ 1, recall that all odd spin currents are
projected out in this case because the scalar field is real.
However, for general Nf it is not difficult to see that there
are NfðNf þ 1Þ=2 even spin operators and NfðNf − 1Þ=2
odd spin ones, corresponding to symmetric or antisym-
metric combinations of the flavor indices. Then the sum
over the HS one-particle partition functions (5.4) gives

NfðNf þ 1Þ
2

X
s¼0;2;4;…

ZsðβÞ þ
NfðNf − 1Þ

2

X
s¼1;3;5;…

ZsðβÞ

¼ N2
f

2
½Z0ðβÞ�2 þ

Nf

2
Z0ð2βÞ; ð7:2Þ

in agreement with (4.4). Similarly, one can analyze the dual
of the fermionic theories with Nf complex or real flavors,
and the result for the corresponding higher spin sums is
readily seen to agree with (4.5).
Let us also briefly comment on the matching of the

Casimir energy. In this case, the CFT predicts that the
Casimir term in the thermal free energy should simply be
Fc ¼ NNfβEc, with Ec the Casimir energy of a single free
field. In the HS dual of the UðNÞ theories, the results for
Nf ¼ 1 immediately imply that the sum of one-loop
Casimir energies vanishes. So, assuming that Fc is entirely

reproduced by the classical bulk calculation (which we do
not address here), we would get a result consistent with the
duality. For the OðNÞ theories, on the other hand, one finds
a nonvanishing one-loop Casimir energy. For instance, in
the HS dual of the free scalar theories, the sum over one-
loop bulk Casimir energies gives, in any dimension,38

NfðNf þ 1Þ
2

X
s¼0;2;…

Ec;s þ
NfðNf − 1Þ

2

X
s¼1;3;…

Ec;s

¼ NfEscalar
c ; ð7:3Þ

where Escalar
c is the Casimir energy of a single conformal

scalar. Then agreement with the duality again requires the
same shift N → N − 1 in the map between N and the bulk
coupling constant that we observed in the case Nf ¼ 1, i.e.
G−1

bulk ∼ N − 1. The same result can be seen to apply to the
OðNÞ singlet sectors of real fermionic theories for generalNf.
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