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Infrared-finite graviton two-point function in static de Sitter space
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We study quantum gravitational perturbations in the static patch of de Sitter space. In particular,
we determine the symplectic inner product of these perturbations and use it to write down the graviton two-
point function in the state analogous to the Bunch-Davies vacuum in a certain gauge. We find this two-point
function to be infrared-finite and time-translation invariant.
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I. INTRODUCTION

The interest in phenomena in de Sitter space has been
increasing recently, especially due to its relevance to the
inflationary cosmology [1-5], which recently appears to have
gained further evidence from observation [6]. In addition,
current observations indicate that our Universe is expanding
at an accelerated rate and may approach de Sitter space as-
ymptotically [7,8]. Physics in de Sitter space is also attracting
attention because of the dS/CFT correspondence [9].

The analysis of gravitational perturbations in de Sitter
space is important particularly for the inflationary cosmol-
ogy, but the infrared (IR) properties of the graviton two-
point function in de Sitter space have remained a source of
controversies over the past 30 years. The main source of
these controversies is that the graviton mode functions
natural to the spatially flat (or Poincaré) patch of de Sitter
space behave in a manner similar to those for a minimally
coupled massless scalar field [10], which allows no de
Sitter-invariant vacuum state because of IR divergences
[11,12]. Ford and Parker found that this similarity leads to
IR divergences in the graviton two-point function though
they found no IR divergences in the physical quantities they
studied [10]. (In fact their work dealt with a more general
Friedmann-Lemaitre-Robertson-Walker spacetime.)

However, since linearized gravity has gauge invariance,
it is important to determine whether or not these IR
divergences are a gauge artifact. Indeed, the IR divergences
and breaking of de Sitter symmetry they cause in the free
graviton theory have been shown to be a gauge artifact in
the sense that they can be gauged away if we allow nonlocal
gauge transformations [13,14]. This point has recently been
made clearer by explicit construction of an IR-finite two-
point function [15]. The authors of Ref. [15] also pointed
out that a local gauge transformation is sufficient to render
the two-point function finite in the infrared in a local region
of the spacetime. It is also worth noting that the two-point
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function of the linearized Weyl tensor computed using a de
Sitter-noninvariant propagator with an IR cutoff exhibits
no IR divergences [16] and agrees with the result [17]
calculated using the covariant propagator [18,19]. In fact, in
a recent gauge-invariant formulation of free gravitons [20]
the Weyl-tensor and graviton two-point functions have
been shown to be equivalent in de Sitter space [21]. It has
also been argued recently [22] that there is a de Sitter-
invariant Hadamard state for free gravitons defined in a way
similar to the scalar case [20].

Gravitational perturbations in de Sitter space have been
analyzed mainly in the Poincaré patch for two reasons.
Firstly, this patch is the most relevant to the inflationary
cosmology. Secondly, the graviton mode functions in this
patch are the simplest. But there have been some works that
used other patches. It has been known for some time that in
the global patch of de Sitter space the free graviton field
theory has no IR divergences and that there is a de Sitter-
invariant vacuum state [23] analogous to the Bunch-Davies
vacuum [24] for the scalar field theory (see also Ref. [25]).
As a result there is an IR-finite graviton two-point function
in this patch [26]. An IR-finite graviton two-point function
has also been found in the hyperbolic patch of de Sitter
space [27]. However, there has been little work on quantum
gravitational perturbations in the static patch, which is of
physical importance because it represents the region
causally accessible to an inertial observer.

In this paper we use the formalism developed by Kodama
and Ishibashi [28] to study quantum gravitational pertur-
bations in the static patch of de Sitter space. In particular,
we demonstrate that there is an IR-finite graviton two-point
function in the Bunch-Davies-like state in this patch. We
emphasize that this two-point function is time-translation
invariant unlike that in the global patch [26]. Thus, if
linearized gravity is treated as a thermal field theory inside
the cosmological horizon [29], then one finds no IR
divergences or secular growth of the kind encountered in
the Poincaré patch. Although it has been shown that IR
divergences are a gauge artifact in the sense mentioned
above, it is useful to demonstrate explicitly that there is an
IR-finite and time-translation-invariant graviton two-point
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function since there are objections to the existence of
a de Sitter-invariant Bunch-Davies-like state in de Sitter
space [30,31].

The rest of this paper is organized as follows. In Sec. II,
we give a brief review of the gauge-invariant perturbation
formalism, summarizing some properties of the three types
of perturbations—scalar, vector and tensor—in the back-
ground spacetime, which is de Sitter space of n+ 2
dimensions. The solutions of the linearized Einstein equa-
tions that these three types of perturbations satisfy are
presented. (These solutions were obtained previously by
Natario and Schiappa [32].) In Sec. III, we construct the
graviton two-point function, starting with the normalization
of the modes for each type of perturbation with respect
to symplectic inner product. In particular, we show that
the two-point function is IR-finite in a suitably chosen
gauge. In Sec. IV we present the mode functions in the
3 + 1-dimensional case explicitly and find a simplified
expression for the graviton two-point function. In Sec. V,
we summarize the results found in this paper and discuss
their possible implications. In Appendices A and B we
provide some details of the calculations to normalize the
vector- and scalar-type modes, respectively. In Appendix C
we compute the two-point function for the minimally
coupled scalar field, which is discussed for comparison
with the graviton case. In Appendix D, we show that the
graviton two-point function vanishes identically if one of
the points is at the origin. This result shows clearly that the
values of the graviton two-point functions themselves have
no physical significance. Throughout this paper we use
the metric signature —+ +---+ and units such that
c=G=h=1.

II. GRAVITATIONAL PERTURBATIONS
IN THE STATIC PATCH

A. Background spacetime

In this section we revisit the classical gravitational
perturbation studied in Ref. [32]. The background space-
time will be de Sitter in n + 2 dimensions with n > 2 and
the line element will take the form

dr?

ds? = g, dx'dx* = —(1—Ar?)di* + +r2des, (1)

1=
where
doy = y;i(x)dx'dx’ (2)

is the line element on the n-sphere S”. Thus we are working
inside the cosmological horizon in the so-called static
coordinate system. We shall put 4 = 1 for simplicity. We
shall use the notation established in Refs. [28,33], with the
exception of quantities of the background spacetime, for
which we use greek indices. We define the line element of
the two-dimensional orbit space by
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dr . 3)

dsgrb = gupdx®dx® = —(1 — r*)df* + 1

We denote the covariant derivatives compatible with the full
metric represented by the line element ds”, the two-
dimensional metric represented by ds2, and the metric
on S” represented with do? by V,, D, and D;, respectively.
The greek indices are used for spacetime indices running
from O to n + 1, the first latin indices a, b, c, ... are for ¢
and r and the i,j,k,... are for §". The connection
coefficients for ds®, ds, and do, are denoted by I,
['5.(t,r) and Ty (x), respectively.

What we will do next in this section is to consider
perturbations in the metric, which can be expanded in terms
of harmonic tensors of rank 0, 1, and 2. These perturbations
are called the scalar-, vector- and (rank-2) tensor-type
perturbations, respectively.

B. Scalar-type perturbations

The scalar-type perturbations can be expanded in terms
of harmonic functions SU?) on the n-sphere which satisfy

(A, +K3)st?) =0, (4)

where An is the Laplace-Beltrami operator on S”. The set of
eigenvalues takes the form

K =1(+n-1). (5)

The label [ is a non-negative integer and ¢ represents all
labels other than /. The harmonic modes of the metric
perturbation are given by

Silo ) e(ls
ny'? = Fst), (6)
pSile) _ rfgl)g(la) (7)
o l 5 [ lo
W' =272 (y,;HYSU) + HYS!), (8)
where
(lo) 1 o
S\ = —— p.Slo) (9)
1 kS 1
lo PN 4 1 3
Sy = 2 DDt 4y, S1), (10)
S

and the coefficients f 0, f 52, H (LZ) and H (Tl) are all functions
of ¢ and r and are gauge-dependent quantities. Notice that
the tensors Sl(-l-") are chosen to be traceless.

The modes with [ = 0, 1 are special cases (and some of
the coefficients above are not defined). For [ =0 the
perturbed spacetime will be spherically symmetric, but
the only such solutions to the Einstein equations are in
Schwarzschild—de Sitter spacetime by Birkoff’s theorem
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[28]. Thus, in our case the only perturbation with [ = 0 will
be the change in the background spacetime to introduce a
small black hole, which would inevitably be nonperturba-
tive and singular at the origin. Hence, we exclude this case.
For [ = 1 one finds that there is no corresponding nonzero
gauge-invariant perturbation as shown in Appendix B of
Ref. [28]. Hence we can impose the condition [ > 2.

It can be shown that the perturbations can be related to a
master variable <I><S), which, for the scalar case, obeys the
following equation:

VS !
1_r2q>§>=0, (11)

0o —

where the effective potential is given by

1—r2

—(n=2)(n-4)r?. (12)

The [0 is the d’Alembertian operator in the two-
dimensional orbit spacetime with line element ds2,,

VS:

|GG 0

_ = _ 2\
H= 1—r28t2+8r(1 r)ar'

(13)

The procedure to obtain Eq. (11) involves defining gauge-
invariant quantities (for modes with [ > 2), which are given
in terms of the gauge-dependent quantities by

|

; ol) _; (1 1.
o (1,r) = AP emion pn2 (| — p2)iol2F <§(lco +in=1).5(io+1+2);

where the function F(a, f;7;z) is Gauss’s hypergeometric

function [34]. The normalization constants AW will be

determined later.

C. Vector-type perturbations

The vector-type perturbatlons are expanded in terms of
harmonic vectors \/ , which satisfy

(A, + k)W =0, (20)
D;vitle) = 0. (21)
Here,
kb =1(l+n-1)-1, (22)
where [ = 1,2, ... and ¢ again represents all labels other

than /. The metric perturbations of the vector type read

hy' =0, (23)
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1 1
FO = )+~ Hy + - D*(rx{)). (14)
FO = /4 p,x¥ + D,x!!) (15)
with
0 _ 0
x¢ =2 (0 + Zp,HY 16
T (f o ) (16)

Then, the functions F() and F'), defined by Egs. (14) and
(15), respectively, are given in terms of the master variable

<I>(Sl) as follows:

in (O +2)(m2a), (17)

rn—ZF(l) _

m2FY) — DD, (r20{))

-1 -2
- <n O+ " )r”/zég)gab. (18)
n

n

The details for obtaining the master equation in terms of
these gauge-invariant quantities are highly involved and
can be found in Refs. [28,33].

One can find solutions with Fourier components propor-
tional to e’ and that are regular at the origin, which are
given by

1
" er ;r2>, (19)
I

ho ' = rfd v (24)
R =22V, (25)

with

o 1 a o} a (o}
Vi = =5 OV D). (26)
2ky

For [ = 1, the tensors \/%G) vanish, rendering the coefficient

H(Tl) undefined. In this case one defines a new gauge-
invariant quantity and this gives rise to a rotational
perturbation, parametrized by a constant, similar to the
Myers-Perry solution [28,35] if the black hole mass is
nonzero. This means that in our case with no black
hole, there is no nonzero gauge-invariant vector-type
perturbation with / = 1.

As in the scalar case, we define a gauge-invariant
quantity for [ > 2 as follows:
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r

D HY. (27)
ky

FO=r+
This quantity is related to a master variable CDE,I) by
- ; !
7 lF(l)a _ eabDb<r1/2q)§/))’ (28)
where €, is the Levi-Civita tensor of the two-dimensional

orbit spacetime. The master variable obeys the following
wave equation:

I Vy ~u
0o _m@y =0, (29)

with

_1—r2

Vy = {l(l+n—1)+m

(1= r2)} (30)

I%

The solutions of Eq. (29) that are regular at the origin are

(I)E;UI)O’ r) :Agf)l)e—imtrl+n/2(1 _ r2)iw/2

1 1 1
xF —(iao+l+1),—(iw+l+n);l+’hL i)

2 2 2
(31)

(@)

The normalization constants A}, will be determined later.

D. Tensor-type perturbations

For n > 3, the tensor-type perturbations of the metric can
be expanded inl terms of symmetric harmonic tensors of
second rank TE ja). They obey the following equations:

(B, + )T =0, (32)
T,il0) = 0, (33)
DT/t = 0. (34)
The set of eigenvalues is given by
K=I1l+n-1)-2. (35)

The label / is an integer larger than or equal to 2. (Itis a well-
known fact that solutions to Egs. (32), (33) and (34) do not
exist on $? [36,37]. A concise proof of this fact can be found
in Ref. [38]. Thus, we do not have tensor-type modes for
gravitational perturbations in 3 + 1 dimensions.) The har-
monic modes of the metric perturbation are written as

) — g, (36)
AE) (37)
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T;lo I)(lo
h'? = 2P HP T, (38)

The quantity H (TZ) is already gauge invariant. It is convenient
to introduce a new variable <I><TI) by
o) = ey (39)

Then the perturbed Einstein equation for <I>(Tl) reads

%
0ol — 1_—T,2‘1’(Tl) —0, (40)

where the effective potential is

_1—r2

[ — {l(l—kn—l)—i—w

4

r

nn+2) ,
—Tr]. (41)

The solutions of Eq. (40) that are regular at the origin are
given by

(I)gf”l) ([, }") :A’(If"l)e—iwtrlwtn/Z(l _ r2)iw/2
1. 1. n+1l_ ,
xF|z(io+l+n+1),z(io+1);l+——r" |,
2 2 2
(42)

where the normalization constants A(Twl)

mined later.

will be deter-

III. GRAVITON TWO-POINT FUNCTION

A. Quantization and the two-point function

Let us explain how to construct the physical1 two-point
function in a free field theory with gauge invariance such as
linearized gravity (see, e.g. Refs. [20,21]). Suppose the
theory is described by a Lagrangian density £, where L is a
local function of h,, and V,h,. (Though we use a
symmetric tensor field theory in our explanation for an
obvious reason, the construction works for any other linear
field theories.) If there are only terms quadratic in the
derivative V,h,, in the Lagrangian, then the part of the
Lagrangian involving VA, is written as

\/_g I
Lier = TKMV 4 Vlhﬂyvﬂ/h i (43)

W'

s 1ot s
where KMARY — gAWVIw — gV then, we define the
conjugate momentum current p** by

"The word “physical” is used here in the sense that all gauge
degrees of freedom are fixed.
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P = KW . (44)

For any two solutions %, and /,, to the Euler-Lagrange
equations and their conjugate momentum currents p** and
p"* we define their symplectic product by

mmw——/ﬁmxmym>pwmm (45)
>

where X is a Cauchy surface and n* is the future-directed
unit normal vector to X. It can readily be shown that
Q(h, 1') is independent of the choice of X [39].

Now, suppose that the symplectic product Q is non-
degenerate, i.e. that there are no solutions h,(fLuu) satisfying

Q(h, k™) = 0 for all solutions h,,,. Suppose further that

hf,’f,), where n represents all (continuous and discrete) labels

for solutions, and their complex conjugates h,(f,ﬂ) form a

complete set of solutions such that Q(2"), h(™)) = 0 for all

n and m—i.e. Q is nonzero only between h,(,',i) and h,(ff)—
and we define the inner product of two solutions by

(R0 By = QR0 | p). (46)

Now, we expand the quantum field fzﬂ,,(y), where y
represents all spacetime coordinates, as

b () = Y lahfl) () + aih) ()

n

(47)

Then, the equal-time canonical commutation relations for
the operators /1, (y) are equivalent to

(. an] = (M) (48)

mn’

where M~ is the inverse of the matrix M = (h(") h("),

and [a,,, a,| = [al;,,a;’;] =0.

Unfortunately, linearized gravity cannot be quantized in
this manner because the matrix M defined by Eq. (46) is
degenerate due to the gauge invariance: a pure-gauge

solution of the form h,(f,f) =V,A, + V,A, has a vanishing
symplectic product with any solution. However, if we fix
the gauge completely so that the matrix M is nondegenerate
when restricted to the solutions satisfying the gauge
conditions, then we can expand the field operator fzw(y)
using only the solutions satisfying the gauge conditions in
Eq. (47) and quantize this field by requiring the commu-
tation relations given by Eq. (48). This procedure is the
gauge-fixed version of the gauge-invariant quantization
formulated in Ref. [20].

Note that, if we normalize the solutions in a given gauge
by requiring M"™ =§™ in Eq. (46), then we have
(@, a%] = . Then, on the vacuum state |0) annihilated
by the operators a, the two-point function is

PHYSICAL REVIEW D 90, 024045 (2014)

(O (9, (110) = > m AL (), (49)

for example. In the next subsections we normalize the
gravitational perturbations found in Sec. II so that we have
M™ = §™". This will make the construction of the two-
point function straightforward.

B. Inner product

With a suitable normalization of the gravitational per-
turbation 4, the part of the Lagrangian density involving
derivatives of h,, reads (after some integration by parts)

£ - \/—_g Vﬂh’MV”hM - %V,lhm,vﬁh””.
1
+ 5 (V= 2VR )V

+ terms involving just A, |. (50)

Hence, the conjugate momentum current is

1oL

T V90(Vihy)

= "V h + gV I — VA
+ ¢ (V*h — V*I,)

Auv
pﬂ

- % (G + gHVeh). (51)

T(ln)an the inner product (46) between two solutions h,(,'f) and
hy is

<h(m>, h(”)> = —] /Z dZn,l(h%)pw)ﬂ”” - hftr;)p(m)iﬂy)’ (52)

where the integration is to be carried out on a t = constant
Cauchy surface of the static patch of de Sitter space. Next
we find the normalization constants such that the inner
product (52) is simply 6™ (which also involves Dirac’s
delta function because @ is a continuous label). The
calculation will closely follow Ref. [40].

C. Normalization of the tensor-type modes
For the tensor-type perturbations, which we denote
by hLZ;wla), we have p(Twlo)w — _\gip(Twlo)uw pecayse
h,(lz;'"l”) given by Eqs. (36)—(38) are transverse (V¥h,,, = 0)
and traceless (h*, = 0). Noting that » = 1 is the position of

the horizon, we find the inner product defined by Eq. (52)
to be

024045-5
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r}’l

(Tl {T )y — (4 o Ylim [ dr
=1 Jo 1-r

x / dQ, h p(Te 1) (53)

2

where the dQ, integration is over the unit hypersphere S”.
Noting that

(lo)(re)ij 1 N
/ dQ, T, T _F(s”(s , (54)

we have

<h(T;a)la)’ h(T;w’l’a’)> — 4((0 + a)/)5ll’5¢m’

d ® o4
xlim [ g0l (ss)

p=1Jo 1—r

We have to evaluate the following integral:

L=tim [~ g, (56)

p=1Jo L—=r

Using Eq. (40) satisfied by <I>(T'"l> and @g”l), we find

0 = i@ d [ d (el
-2 Or Py :a|:q)T (1—”2)5‘%
wl d 'l
3 >(1—r2)E<I><T .67

Integrating the above equation from 0 to p and then taking
the limit p — 1, we find

[P dr ) o ()
/171—I>Ill 0 1—r2(I)T (I)T

@2 — @2 porl

:;lim[(l _ )

o'l d wl wl d o'l
% <<I><T >E<I>(T ) ol )Ecb; >>]r,,’ (58)

where we have used that " (0) = @\ (0) = 0.
We can write, for r~ 1 [41],

(I)(a)l) — Agf"l) [Bl

b(1 = )72 £ Bl (1= )], (59)

@

where

B Il + 5 (io)
B, ’F(%(l+iw))r(%2(l+iw+"+ 0 o

Then we have

PHYSICAL REVIEW D 90, 024045 (2014)

podr ——
I = @) @)
’ A -

. wl
_ il
w! + o

— B.,B! exp {—% (@ + w) In(1 — p2)”

[B’_wBl_w/ exp B (0 + @) In(1 - pz)]

+7i|A(Tw”|2 B B!  exp i(a)’ —w)In(1 = p?)
o —w | 2
~ BB exp [—%(a}/ —o)In(1 —p2)H, (61)

noting that B_i, = B! . Dropping the terms rapidly oscil-
lating as functions of w and @’ in the p — 1 limit, we find

20AYRIBLR | [0 — o 1
1,= T sin In 5. (62)

o' —w 2 1—p
Using that
. sinLx
Lh_r}{}lo P 7é(x), (63)
we have

1, = liml, = 27|AYY2|BL25(0f — @), (64)
p—

Now, we choose

1
~ 1670|BL,
~sinhzo[T( (1 + iw))U (1 +io +n +1))[?
167°|0(1 + 1) [? ’
(65)

(@l) 2
A7

where we have used

T

IC(io)* = (66)

wsinhzw

Then, the inner product between two modes of the tensor
type is just

<h(T;mla)’ h(T;w/l/g/)> _ 511’50—5’5(0) _ w/)‘ (67)

D. Normalization of the vector-type modes
For the vector-type modes, first let us show that we can
choose a gauge such that the components £;; vanish. For a
gauge transformation h,, — h,, +V,A, +V, A, with

A, =0, A; =V, (68)

024045-6
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we find
1Y > HY — ko, (69)
D= 9 4 rD . (70)

We can readily see that F, ! defined by Eq. (27) is invariant
under this gauge transformation. Thus by letting ¢ =
H( /ky we have H() =0 and Fg> —fa This choice of
gauge leads to

h(V§l¢7> _ ’,.F(l)\/(lo')

= — e D [PV (71)
n,' =0, (72)
RV = . (73)

L

Then, we find the (gauge-invariant) inner product (52) for
the vector-type modes as

(hViwlo) p(Vielld)y = 9 / dQ,drr"
% (h(V;wlo)bip(V;w’l’n’)tbi
_h(V;u/l’o’)bip(V;mla)tbi)’ (74)

Viwlo) Viwlo)

where p! is expressed in terms of Al in
Eq. (A3). We substitute Eq. (A3) and use Eq. (71)
in Eq. (74). After a cumbersome but straightforward
calculation involving integration by parts with respect
to r and the use of the master equation (29) to eliminate
the second-order time derivative of the master variable,
we find

(hViwlo) p(Veolle)y — 2 () + )8 877 (1 - 1) (1 + n)
N / dr
-7

The details of this calculation can be found in Appendix A.

We then require that h,(),f wlo)

Tl
condition as hﬁw wlo)

o\l (75)

satisfy the same normalization
ie. Eq. (67),

/
normalization constants A((”)
as in the tensor case we fmd

to determine the

With the same reasoning

sinh 7|0 (i + [+ 1)T( (i + 1+ n))2
872(1 — 1)(I+ n)|0(1 + 1) ?

(wl)
Ay =

(76)
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E. Normalization of the scalar-type modes

Now, we shall find the normalization factors Agwl) for the

scalar-type modes. We first choose a convenient gauge.
Under the gauge transformation with the gauge function A,
given by

Ay =y (1.7)S, (77)
A; = ¢(t.7)S;, (78)

one finds that the gauge-dependent functions transform
as [33]

fﬁfﬁ - f(alﬁ + Dy, + Dy (79)
R 4 P
HY 1Y -5, (81)
2 - B 4 @ + D: Ve (82)

Hence by choosing

¢=—HD (83)

1
V. = r<k—sf5f> + kzD H(T>) (84)

we can set the functions fg) and H<Tl) to zero. Then the

perturbations will be

ny' =0, (85)
5 = F0) 86
' =272, FOS(e), (87)

where F() and F , are given in terms of the master variable
CID() by Egs. (17) and (18), respectively.

The conserved inner product (52) with the conjugate
momentum current defined by Eq. (51) can be found as

<h(S;ZG), h/(S;llT)> — —21/2 dZnaJ“, (88)

where the conserved current J¢ is given by

024045-7
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Jo = S(Z’ NG <o) 2Dc (F(l)angle _ F(l/)abF_(blg)

1 —& / , —
_ E (F(l)bcDanglc) _ F(I )bcDaFéc)

+2(2 = n)(FOpap®) — F)pap®) |, (89)

Though it would be possible to express the inner product
(88) in terms of (I>( ) directly in the static coordinate system,
it is much easier to do so if we use the Eddington-
Finkelstein coordinates and evaluate it on the future
horizon. Thus, we define the new coordinate

, 110 1+r
u=t-—- .
2%

(90)
This coordinate ranges over all real values. The line
element of the orbit spacetime becomes

ds2, = —(1—r?)du* = 2dudr. (91)
We note that a further coordinate transformation,
u=—log(p—n) and r=—p/y, would result in the
standard metric in the Poincaré patch, ds? =
02 (—=dy? + dp* + p*do?), with 0 <p and n < 0. From
this we see that the r = constant hypersurface with r > 1 is
almost a Cauchy surface. It is not quite a Cauchy surface
because the timelike line p =0 does not intersect it.
However, we expect the data on this hypersuface to
completely describe the gravitational perturbations because
only one point in the future infinity is removed from it. We
work under this assumption. We calculate the symplectic
inner product only for the perturbations that tend to zero as
u — too so that we can integrate by parts with respect to u.
We believe this is sufficient because perturbations not
satisfying this condition can be considered as limiting
cases of those satisfying them.

On the future cosmological horizon we have ds2, =
—2dudr with —co < u < oo0. Hence, if X is the constant-r
hypersurface, then in the limit » — 1, i.e. as it approaches
the future cosmological horizon, we have

0\a
limdXn® = dQ,du|{ — | . 92
iz = a5 2

Thus, the inner product (88) can be evaluated on the future
cosmological horizon as

(h(Sit0) p/(Silo)y = 2 / dQ,dul,. (93)

One can readily see that the first term in the conserved
current (89) does not contribute because, on the horizon, we
have D*r = —(0/0u)* and
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(0/0u) D r(FOb E) — pabplDy — o (94)
(This equality follows just from the fact that FEIZZ is a
symmetric tensor on the two-dimensional orbit spacetime.)
Then, after dropping terms that are total derivatives with
respect to u, which do not contribute in the integral (93), we
find that the current J, on the horizon can be written as

7, =FYo,F) —2F0 o, Fl)

—4FF) 4 4 E

+2n(n - 2)(FD9,F) — F)g,FD)]

x Sto)s), (95)
where the relation F(?, = —2(n—2)F"), which can

readily be verified using Eqs. (17) and (18), has been
used. On the horizon we find from Egs. (17) and (18)

FY) =D,D,(r?o0) = 2(r23y),  (96)

FY) = D,D,(r?0V) = (2 - 9,8, (97)

2—n

— (@ +2)("e)
-2 [(au + 1)(1 +%8r> —%] oy (98)

where we have used O = 2(9,, + 1)0, on the horizon. We
substitute these formulas into Eq. (95) and use Eq. (11)
satisfied by @g) on the horizon. We then find

o =7

L= )4+ n= 1)1+ n)

n

x (09,0 — o

19,80)50IS(7). (99)

Details of this calculation can be found in Appendix B.
The inner product is obtained by substituting Eq. (99)
into Eq. (93). This inner product can be rewritten as

(n=DI(l-1)l+n=1)(l+n)

n

dznlg(la)g(l’a’)

<h(S;wla)’ h(S;w’l’a’)> —

x lim

r—1
gw 1)8/1(D§wl)>‘
(100)

x (0,0 — @

Now, evaluating this on a ¢t = constant Cauchy surface in
the original ¢r coordinates, we have
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<h(S;wla)’ h(S;w’l’a’)> — ll(l - 1)(l +n-— 1)(1 + n) (l’l

n

We then require the same normalization condition as in the tensor case, i.e. Eq. (67). Then the normalization constants A

defined by Eq. (19) can be determined as

wl
‘Ag )|2 _

_1 ! / 1 d . '
Ly [ 40 (@ -
0
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9,0, (101)

—-r

(wl)

S 222 (n—=1)I(1-

F. Infrared-finite two-point function

In this subsection we write down the graviton two-
point function in the state analogous to the Bunch-Davies
vacuum in the gauge we have chosen. Let us first recall the
normalized mode functions we obtained. The tensor-type
modes are

h<T§(l’l‘7) —2r (4-n )/Z(I)(wl) (Io)

ij ll ’

(103)
with all other components vanishing, where <I>¥”l) is given
by Eq. (42) with the normalization constants given by
Eq. (65). The vector-type modes are given by

. 1
niy) = —— € DP (" 20y V),

(104)
with all other components vanishing. The master variable
) i given by Eq. (31) with the normalization constant

given by Eq. (76). Finally, the scalar-type modes are
given by

A&’

h(S;a)lo') _ 0’

ai

(105)
hié[;;wlo') _ rz_n{DaDh(rn/Zq)gwl))

-1 -2
_ (I’l 0 +n_> rn/Z(bg'wl)gab}S(la)’ (106)
n

n

4—n
S:wlo r N wl "
hy " = @ ) (RS, (107)
where <I>(Swl) is given by Eq. (19) with the normalization

constants A Swl) given by Eq. (102).

Let us first examine the low-w behavior of the normal-
and Ay which

coincides with the behavior of the master variables <I>(Twl>,

@5;”1) and CD(Swl>. We readily find that they all behave like
@'/? in the limit @ — 0 since [ > 2. This is to be contrasted
with the behavior of the normalized minimally coupled
massless scalar modes, which behave like w™!/2 for I = 0,
as shown in Appendix C. It is interesting to note that the

normalization constants A(T(”I)

(Tl Vil
ized mode functions h,wa“’), hfw wlo)

are the same as those for the

nsinh zo|C(} (io + 1+ 2))T( (iw + 1+ n = 1))[?
D(l+n—-1)(I+

I+ 0P e

[

minimally coupled massless scalar modes for each /. The
only difference is that the angular momentum quantum
number [ is restricted to be greater than or equal to 2 for the
gravitational perturbations whereas in the massless scalar
case it can take the value / = 0, which is responsible for the
IR divergences as shown in Appendix C.

Now, it is well known that the vacuum state with the
two-point function (49) is unphysical because it will have
singularities in the stress-energy tensor on the horizon.
This state is analogous to the Rindler vacuum [42] in
Minkowski spacetime and the Boulware vacuum [43] in
Schwarzschild spacetime. A physically acceptable state is
the de Sitter-invariant Bunch-Davies state [24], which
is the thermal state with temperature H/2z [29], where
H is the Hubble constant. This state is analogous to the
Hartle-Hawking state [44] in Schwarzschild spacetime.
(Strictly speaking, this result has been shown explicitly
only for a scalar field, but it is expected that, for example,
the general proof of Kay and Wald [45] can be extended
to the graviton field with a suitable definition of the
Hadamard state [20].)

Now, we expand the graviton field sz (v) as in Eq. (47):

A swlo
h/w (y) Z / dw alo- I(415 ) (y)

P= SVTI 2

+ P (@)hT (). (108)

(There is no tensor-type contribution for n = 2.) In the
thermal state of temperature 1/2z—recall that we have set
H = 1—we have the following expectation values:

! 1 / 4 /
<a§:)T<a))a§,I;) (') :Tlépp 857 5(w—a'), (109)
e —

<a§:)(a))a§ﬁ)+(w/)> — 5PP/5”/560J5(60—60/), (1 10)

1— e—27zm

with (@ (@)al?) (@) = (@7 (@)al") (@')) = 0. Thus,

we find the graviton two-point function to be
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<I:l;w(y)i;lylw(y/)> = P;/ngﬁ:%m dw

1 P.wlc P.wlc
X {eZJra) -1 h/(“’ >(y)h£¢’y’ )(y/)

1 swlo wlo
e " (V) )(y’)}-

1— e—Zﬂw 174%

(111)

As we have seen, all mode functions A4 " (y) tend to
zero as w — 0 like w'/?. Hence, the two-point function
(111) computed in the Bunch-Davies-like state is finite in
the infrared. Note that the two-point function for the
minimally coupled massless scalar field, which takes a
similar form, is IR divergent (even if there were no thermal
factors) because the [ = 0 mode functions behaves like
w~'/2 in the limit @ — 0 (cf. Appendix C).

IV. MODE FUNCTIONS AND THE TWO-POINT
FUNCTION IN 3 + 1 DIMENSIONS

In this section we present some of our results in four
dimensions, i.e. with harmonic expansion on . As we
pointed out before, there are no tensor-type modes in 3 + 1
dimensions. The scalar-type modes will be given in terms
of the usual scalar spherical harmonics Y- (8, ¢). Note
that we have only one additional label other than I.
Therefore, perturbations of the scalar type in the gauge
we have chosen read

h‘(g;wlm) _ 0’ (112)
h(S;wlm) _ Y(l’m) (67 ¢)
It 2
X [07 + (1= PR (r2l™), (113)
h(S;(ulm) _ Y(Z'm) (67 ¢>
rr 2
x |62 +;az (ro\), (114)
(=)
hErS;wlm) _ Y<l’m)(9, ¢)
« 0,0, +—"—a (r&") (115)
rv't 1_ 1’2 t S ’
wlm 2y(l.m) 9’ ‘U
e ~ LY 0D @) ealeh). (116)

with y;; given by the usual metric on the §2, described by
the line element

dos = d6* + sin®0d¢’. (117)
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The function <I>(Swl) is now

@gwl)(l, r) — AEWZ)e—ifz)trl+l(1 _ r2)ia)/2

2
(118)

1 1 3
xF(E(ia)—l—l—l—1),5(ia)+l—|—2);l+—;r2>.

The normalization constants take a much simpler form:

sinh zo|T( (io + 1 4+ 2))T( (io + 1 + 1))]?
2 (L= DI+ 1)1 +2)[0(1 +3))?

(wl)
jAS 2 =
(119)

The solutions to Egs. (20) and (21) for the vector
harmonics on the S? can be written as [36,38]

YSl,m) (9’ ¢) _ oiy(Lm) (6’ qﬁ), (120)

JIT+1)

where ¢;; is the totally antisymmetric tensor defined by
00 = €4 = 0, (121)
€9¢ = —€¢g =sind. (122)

Then, the vector-type perturbations are given by

n o =y (0, )(1 = ), (rey").  (123)
lm
I’

with all other components vanishing. The master variable
(I)E,’”l) is given by

(Pg/wl)(l, I") _ Ag/ﬂ’l)e—iwtrlJrl (1 _ r2)iw/2

1 1 3
xF(Z(ia)+l+ 1),2(ia)+l+2);l+2;r2>,

(125)

(@)

where the normalization constants Ay~ are now

AR = sinh 7w|T(3 (io + 1 + 1)I(5 (io + 1 +2))?
(@2 =
I+

872(1— 1)(1+ 2)[(1 +3)]2
(126)

We note that &\ and ®!”") are essentially the same, with

the precise relation between them being

o 1+ 1
plon _ 1+

wl

(127)
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Next, we simplify our graviton two-point function
in 3 4+ 1 dimensions. Let us first consider the contribution
from the scalar-type modes. We define the following tensor
differential operators motivated by how the mode functions

hf,ff“’lm) are given in terms of <I>gf"l) [see Egs. (113)—(116)]:

1
D) = 5 0% + (1 — r2)262), (128)
(S) _ 1 2 1 2
D)) == |02 + ——— 82|, 12
] o
D) = 0,0, + =0, (130)
2
S r
DY = Zry(@0+2), (131)

with all other components vanishing. If ¢ =0 in
y =(¢,7,0,¢), then the contribution to the graviton
two-point function (111) with n = 2 from the scalar-type
modes reads

A

S N
) (33) =D DY) G(y.y). (132)

where

Gly) = Y10 =090 0.) [ do
=2 0

[rfb(swl) (t,r)r <I><Swl) (7,r)
x 2w
e — 1

N r@gwl) (t,7) r’q)gwl) (7, r’)}

—2nw

s (133)

because Y"")(§' = 0, ¢') = 0, unless m = 0. We shall find
a simplified expression for G(y,y’) next.

It is well known [24] that the two-point function for the
conformally coupled massless scalar field [of which the
equation is obtained by setting M? = 2 in Eq. (C1)] is

1
Al (y, y') = ,
(5) 872(1 —cosp(y,y') +ie(t—1))

(134)

where u(y,y’) is the geodesic distance between the two
points y = (t,r,0,¢) and y = (¢,7,0,¢') if they are
spacelike separated. For timelike separation of the points,
cosp(y,y') = coshpr(y,y'), where ur(y,y’) is the time-
like geodesic distance of the two points. The term ie(t — '),
where € is an infinitesimal positive number, indicates how
the singularity at u(y,y’) = 0 is avoided. This two-point
function can be expressed in the static patch (by using
Appendix C) as follows:

PHYSICAL REVIEW D 90, 024045 (2014)

oo 1
A (y,y) = > ¥im(e,p)ytm(g, ¢)
1=0 m=-I1
X /oo dw|N<(”l) |2Rwl(r)R(ul(r/)
0
eia}(t—t’) e—iw(t—t’)
, 135
X |:627zw -1 + 1= 6—27[0):| ( )
where
V@D = sinh 7w
472
5 T (iw + 14 1)T (3 (io + 1 + 2))]? (136)

T +3)P ’

Roi(r) = r'(1 = )il

1 1 3
X F(z(iw+l+ 1),2(ia)+l+2);l+2;r2).
(137)
We have used the fact that R, (r) and
L YEm(9,$)YEm) (¢, ¢') are both real. Notice that
by Eq. (119) we have
ol 4|N(wl) |2
g = (138)

(I=-DII+1)(1+2)

We multiply Eq. (135) by Y0 (@', ¢') and integrate over
§?. Using Eq. (138) we find by the orthonormality of the
spherical harmonics

rr

2221 =D)I(I+ 1)(1+2)

Y(Z’O)(Hl, ¢/)
1 —cosu(y,y) +ie(t—1)

X / d¢'dO' sin @

= ["aw [@é“”) (r.r)2g" (1. )
0

ean -1

(wl) (0l) /1
O (8, )P (Y

+ -8 (1 r) —S27nu( V)] Y(I'O)(H, b). (139)

—e
Hence, by using the formula
21 +1
Y0 (0, 4) = 4/ 4+ P,(cos @), (140)
T

we obtain
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2L+ 1)rr
8z (1= 1)I(I+1)(I+2)

X / dg'do sin @

P;(cos®)
1 —cosu(y,y) +ie(t—1)

[ a0 [‘1%“’%, ey (¢, r)
0

2mu_1

o (1, )@l (¢

1-— 6—2;1(0

/
v = 0.0 010.6)
(141)
By comparing this expression and Eq. (133) we find

0(¢)
1—cosu(y.y') +ie(t—1)’
(142)

G(y,y)= rzﬂz/d(i)’dé?’ sin®’

where

I & 2l+1
/ /
o) =37 g =y )(l+2)Pl(COS€)' (143)

It can be shown that this series is convergent for all ',
Next, let us examine the contribution of the vector-type

modes. If we let & = 0 again, then it can be shown that

only the modes with |m| = 1 contribute. We note first that

> Y. )y )

m==1
21 +1

= mP} (cos O)P} (cos @) cos(¢p — ¢').

(144)

We choose ¢ = 0. This means that the 8 direction and ¢’
direction are identified with the x’ and y directions,
respectively, in the Cartesian coordinates. We denote the

unit vectors in the x’ and y’ directions by él(.,> and e(, ),
respectively. For small &' we have [41]
P!(cos®) ~ — W+ sind'. (145)
Then, for @ — 0 and ¢’ — 0 we find
ey 0[P} (cos @) cos(¢p — ¢')] — 1(1—2’— D el(.fp), (146)
where
egfp) = —eg,x) sin ¢ + eg,y) cos ¢. (147)

Then, by Eq. (120) we obtain
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> V0.9 (@ =0.4/=0)
m==1
21+ 1 .
- _e..0V Pl "(/45)
47:1(1—1—1)6’-’8[ J(cos@)e,” ]
1 19}
_ i & y(1.0) y(0) (g — I A(fb).
(148)

We now define the following differential operators
motivated by how the vector-type modes are given in
terms of <I>( al),

(149)

(150)

Then the contribution of the vector-type modes to our

graviton two-point function can be given as
14 V)NV

ALY () =DV DY Fu(vy)  (151)

with all other components vanishing, where

=33 v prie

=2 m==%x1

8

=0.¢/ = 0)

7o _

y /ooo o rp 3l ez)fcp Wiy, )

152
1— e—27m) ( )

r@i}”l)(t, r)r’@&ﬁ"” (7, r’)}

+ .

By substituting Eq. (127) into this equation, using

Eq. (148) and then using the definition (133) of G(y,y’)
we obtain

1 . .
Fir(v.y) = ge@0,G (2. (153)

In summary, if & =0 in y =(¢,/,0,¢'), then
our graviton two-point function in 3 4+ 1 dimensions is
given by

Ay (3.Y')
=D/ D)G(y.y)

15a 5[ 56{ 51 (

+504,0,0(,0, P D e,;0[0,G(y. )2,

(154)

where {...} indicates symmetrization. (This result is inde-
pendent of the choice of ¢’.) The differential operators wa)
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and DEJV) are defined by Egs. (128)—(131) and Eqgs. (149)—
(150), respectively, the function G(y,y’) is defined by
Eq. (142) in terms of the function Q(€') defined by
Eq. (143), and the vector ¢\ is defined by Eq. (147).

V. CONCLUDING REMARKS

In this paper we studied gravitational perturbations in the
static patch, i.e. inside the cosmological horizon, of de
Sitter space. In particular, we used a gauge-invariant
formalism to construct the perturbations and found the
symplectic inner product among these perturbations and the
graviton two-point function with the gauge degrees of
freedom fully fixed. This two-point function (111) was
found to be finite in the infrared because the normalized
perturbations h,(f,j;'"l” behave like @'/? as @ — 0. By
construction this IR-finite two-point function is invariant
under a de Sitter boost which is the time translation with
respect to the timelike Killing vector in the static patch of
de Sitter space.

We note that the IR-divergent two-point function in the
Poincaré patch grows as a function of time. The IR-finite
two-point function in the global patch [26] also grows as a
function of time if the two points are kept at a fixed physical
distance.” In contrast, the IR-finite two-point function
obtained in this paper is invariant under time translation
as mentioned above and, hence, does not grow as a function
of time.

There have been many works reporting that de Sitter
invariance is broken due to IR gravitons. For example, it
was claimed in Refs. [46-48] that the Hubble constant
would decrease in time because of IR gravitons.
(See Refs. [49,50] for a criticism of these works and the
rebuttal.) There are also other works that found IR growth
of geometrical fluctuations in inflationary spacetimes
[51-53]. It was also claimed that some coupling constants
change in time in the de Sitter background due to IR
divergences of graviton propagators [54-57].

On the other hand, there are some works that suggested
that even the IR divergences of minimally coupled massless
scalar fields have little physical effect in inflationary
cosmology [58-63]. Recently it has been suggested that
this conclusion will extend to linearized gravity [64].
One-loop matter effects on the semiclassical Einstein
equations have also been studied in detail with the result
that the de Sitter background is stable at least against small
metric perturbations [65,66].

The reported de Sitter-breaking effects in the Poincaré
patch described above are caused by interactions, but the
symmetry-breaking mechanism relies heavily on the de
Sitter breaking already present in the propagator in the
Poincaré patch due to IR divergences. Therefore, the IR-
finite and time-translation-invariant graviton two-point

*We thank Steve Giddings for pointing this out.
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function found in this paper appears to be in conflict with
these claims of de Sitter breaking. (We note that the static
patch is the part of the Poincaré patch that is causally
accessible to a free-falling observer and, hence, is relevant
to the inflationary cosmology.) In this respect we believe
that the “scheme dependence” in some of the de Sitter-
breaking results [67] should be investigated further.

In resolving the issue of whether or not there are gauge-
invariant de Sitter-breaking effects due to IR gravitons, it
would be useful to develop perturbation theory for the
gravitational field in the covariant point of view. Some
progress has been made in the covariant analysis of scalar
field theory [68-75]. It will be interesting to extend these
results to perturbation theory for the gravitational field. As
noted in Ref. [76] the static patch is closely related to the
Euclidean quantum field theory, which in turn is related to
the covariant approach to de Sitter physics. We believe that
our results will be useful in constructing the interacting
field theory of gravity in the static patch, which is both
physically relevant and related to the covariant approach to
perturbative quantum gravity in de Sitter space.

ACKNOWLEDGMENTS

We would like to acknowledge Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq),
Coordenagdo de Aperfeicoamento de Pessoal de Nivel
Superior (CAPES) and Marie Curie action NRHEP-
295189- FP7-PEOPLE-2011-IRSES for partial financial
support. A. H. and L. C. also acknowledge partial support
from the Abdus Salam International Centre for Theoretical
Physics  through the Visiting Scholar/Consultant
Programme and Associates Scheme, respectively. A.H.
thanks the Universidade Federal do Para (UFPA) in Belém
for the kind hospitality.

APPENDIX A: CALCULATION OF THE INNER
PRODUCT FOR THE VECTOR-TYPE MODES

As the vector-type perturbations are traceless (7, = 0),
the conjugate momentum current is just

p(V)A;w — gﬂﬂth(V)Ky _|_g/1pvkh(v)m

_ gyvah(V)/IK — VAW (Al)

The inner product for the vector case can be written as

(hViele) p(Vi'le)y — 2j / dQ,drr"
z
% (h(\/;wla)bip(v;a)’l’o’)tbi

- h(v;w/me) (A2)

with p(V:®!o) given by
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p(V;a)lry) J—C gpyv l’l V’Ul”) _ gacvch(b?WZO')
. D¢ .
— 5ab <gcchhEi‘i/sCUZO'> + n ; rhg/‘a)lo')>
aL (Viwlo) D.r (Viwlo)
= (D =P ) (a)
We have
h(V;ml(f)bip(V;w’l’rr’)ahi
\/(lo‘)i\/('l/g/) wl
= D Q" ebe
(DI Derp/ Q")
X {5“[, |:€dfngDc <rn_v2> + l’l(:’cf rn_lV:|
_ q4c D DfQE;U/l/) _ Dchfgi/wlll)
g €bf c rn_z €hf rn—l ’
(A4)
where Qg/wl) =r zq)i,wl). This can be simplified as
h(V;wlv)bip(V;w’l’o")ab
\/(ZG)[\/(IIU/> —o
= DeQl
5 D,DQ\"" " D,rpQ\")
rn—2 rn—l
a (/1) a (o'l)
D“rD, Qy, DrD ,Qy,
—-n rn—l - rn—l ) . (AS)

Now we calculate the integral

I(Q_V, Q/\/) —2i L dgndrrnh(V;mln)bip(v;w’l’rr’)thi (A6)

A
= 25" 577 [ / dro' Q)
0
0,0" 0\ ol Lo
x< 5+ T 2)9@ ”+/ drorQy”
0

0,0' o' o' o
( n—2+F” 7= 2+2ﬁ>9§/ l>:|’ (A7)

where we used the fact that f dQ, Vo) \/( ) =1 L5 57,
We use the following equation to ehmmate the term
0,009\ in Eq. (A7):

(@) rey (@) ry (@)
0,0 :_ar(agv >+2agv

rn—Z rn_z rn_l
I(1+n—1)—nQ®"
+ L r3 12y ) (A8)
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We multiply this equation by 6@2&;‘)1) and integrate with
respect to r. We use integration by parts for the second
term, dropping the boundary term because it oscillates
rapidly as a function of @ and @’ unless @ = @’ and hence
can be neglected as a distribution of w and @’. We substitute
the resulting expression into Eq. (A7) and find the inner
product as

(hViole) VT — (€2, )~ 1(9%, ) (A9)
1
=208 67 (1-1)(1+n) / dr
0
(') oty (@]) (@l) o (@'])
Qp I'Q Q0'Q
\4 |4 - \4 \4 , (AIO)
r
ie.
<h(V;wla)’ h(V;w’l’a’)>
=2i6""5°7 (1 = 1)(1 + n)
L dr wl o'l o'l wl
XA — @\"o,0\") — alo,ely. (A1)

From this equation we find the normalization constants

Agﬁ"l) in Eq. (76) in the same way as in the tensor case.

APPENDIX B: CALCULATION OF THE INNER
PRODUCT FOR THE SCALAR-TYPE MODES

As we stated in Sec. Il E, we evaluate the inner product
for the scalar-type modes on the future horizon. Let us first
derive Eq. (92) on the future horizon. A future-pointing
vector orthogonal to an r = constant hypersurface, which is
spacelike if > 1, is =V, r. Then, the unit future-pointing
normal vector is

n = (r? - 1)_1/2V“r

:<r2—1)—1/2(%)”+(r2—1)%(%)“. (B1)
Now, the surface element of this hypersurface is
dT = dQ,du(r* — 1)"/2, (B2)
Hence
dxn® = dQ,du K%)a +(r* =1) <§r> a} (B3)
Clearly, in the limit » — 1 we have
limdZn? = dQ,du <g> a, (B4)
r—1 Ou

which is Eq. (92).
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Now, to express the conserved current in terms of the
master variable <I>(S , we first simplify Eq. (98), which
expresses F(!) in terms of <I>(S), using the field equation (11),
which reads on the horizon

06y =20, + 10,8 = 4,,@,  (B5)
with
Ay =(1+1)(1+n-2), (B6)
as
1 A, 2
FO—_(o nl_ =)W, B7
s(ar1-2-2)ap. @)
Then we find
Fg,F) = (a 412 A o
n n
A ")
xa(a b1-2e ”’><I>’
n n
9,0 2 AN\ =0
o~ R— (1= oW (BS
N I

Here we indicated the equivalence up to a total
derivative with respect to u by ~ because we will integrate
this quantity over u to obtain the symplectic product
between two scalar-type modes that tend to zero
as u — Foo.

Similarly we find

2700, F) — 4 Fl) ~ 20,00 (02 + 30, + 2)
-2 T
X (8% +no, + n(n4 )> CIDg),
(B9)
so that
2P0, Fl) — 4FWFL) + 2n(n - 2)F9, FO)
~20,80(8, + 1)(9, + 2)(8 + nd,)dY
3n(n — ) 0 a Al
| 3nn=2) 5 9,809,874 n(n—2)2 0,8
n(n —2) 2 3049 &0
1-2- 39,0\ B10
+ 2 < n n > s Ous ( )
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We can rewrite the first term, using Eq. (BYS), as

20,0(8, + 1)(9, + 2)(8 + nd,)®\
= 20,0 (8, + 1)(, +2)(2 +20,)00
— (n=2)A4,,0,0 (8, +2)0P. (B11)
Substituting this equation into Eq. (B10), we find
2700, FL) — 4FDFD) 4 2n(n —2)F09,F®)
20,0 (8, + 1)(8, +2)(92 +29,)07
3 -2
+ {%—(n— 2)A n,}a o900
4A 2 A
ot oty
n n o on
-2 ,
x ”("2 )<I><S’>a”<1><l>. (B12)
Now we note that
Lo 0
5 [0(P08{)) - 200() = 2(9, + 1)(9, +2)
x (82 +20,)8Y (B13)
To calculate D(rQE@(Sl)), we write
! Bn,l + Cn,1r2 [
0o :ch‘s), (B14)
with
1
B, :Z[4l(l+n— 1) +n(n—2)] (B15)
and
—2)(n—4
Cn,l =~ (n )4(” ) (B16)

It is important not to let » =1 in Eq. (B14) because
we are going to differentiate this expression with respect
to r. Then, we have, noting that A,, = B, + C,, for
r=1,

O(P08Y)) = (42, - 4C, )@} - 4C,,0,9). (B17)
Substituting Eq. (B17) into Eq. (B13) and using the
resulting expression in Eq. (B12), we obtain
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2F0,F) —4FWFL) 4+ 2n(n —2)F0,FU)

A n(n-2)
N{—=—A,,—-2C
{ D) n,l n,l + 2

4A 2 AN 0
x [2— nly <1 ————’”) ]}@g”au@g”
n n n
3n(n—2)
+ f_(n_z)An,l_zcn.l

x 0,800,0. (B18)
Substituting this equation into Eq. (88), we find for the
inner product between two scalar-type modes

<h(S;a)la) h(S;w’l’a’)) _ i(n - 1)1(1 _ 1)(l +n-— 1)(l + n)

’

n

X / dQ,, duS\?) s
x (@§"9,0y"" — o\, "),
(B19)

In #7 coordinates and on the r = constant Cauchy surface,
this is given as

(n=DI(I=1)(I+n—-1)1I+n)

<h(S;mla) h(S;m’l’a’)> =

’

n

U ! 1 d T o
x 8l 577 / L @o,ay"
0 1—r

— o906, (B20)

APPENDIX C: THE TWO-POINT FUNCTION
FOR THE SCALAR FIELD

The minimally coupled scalar field equation with
mass M,

1 oan
F D (r" DA} + — D;Dip — M2 = 0, (C1)
r

can readily be solved with the positive-frequency solutions
being given by

¢(wla) (y) —_ N(wl)e—iwtrl(l _ r2)iw/2F(a_’ gy },.2)8(10)7

(C2)
where
n+1 n+1)\2
=-1i + -M?
ap =5 o+ 1+ > <2> . (C3)
1
r=1+" (c4)
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The normalization constants N®) are determined by
requiring

<¢(wl(i)’ ¢(a)’l’0’)> = l/ dzniqﬁ(mlo')%ﬂqﬁ(a)’l'o’/)
z
=667 8(w — ). (C5)

Proceeding in exactly the same way as in the graviton case,
we find

NP = sinh zo|T(a_)[ (o) [?
4 |0(1 425412

(Co)

The special case with n = 2 agrees with Ref. [40].

For M > 0 we find that the normalization constants
IN@D|2 tend to O like @'/ as @ — 0. Now, for M = 0 we
have

NI

_sinh [T (io + 0)TQ (io + 1+ 1+ 1)) (©7)
- Az |T(1 + 252 ’

Thus, the mode functions ¢“*)(y) tend to zero like w'/?
for [ > 1, but the / = 0 mode function diverges like w~'/2.
The two-point function for the corresponding quantum
field ¢(y) is

GO =33 [ aw

X |: > 1 ¢(a)lﬂ)(y)¢(ml(r)(y/)
2o _ |

1

+ 1_67_27”‘)@5(&)10) (y)¢(wla) (y/) .

(C8)

This is IR divergent for M = 0 because the / =0 con-
tribution to the integrand behaves like @2 as @ — 0.

APPENDIX D: TWO-POINT FUNCTION
WITH ONE POINT AT r =0

In this appendix we show that the two-point function
(111) vanishes if one of the two points is at r = 0. This
shows clearly that the values of the graviton two-point
function by themselves have no physical significance.

Since r = 0 is a coordinate singularity of spherical polar
coordinates, we need to contract the indices of the two-
point function at the origin with the vielbein e,)* satisfying

e(a)”e<b)’“;1(“)<b) =g (D1)

and
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where 7, = diag(=1,1,1,...,1). At any point away
from r = 0 we can choose the following vielbein e’(’a):

)= ((1=r)7120,...,0), (D3)
ey = (0.(1=r%)12,0,...,0), (D4)
1
o = (0,0,..., ,o,...,o), (D5)
r\/ﬁ

where the index i is not summed over. We take the limit
r — 0 after contracting the indices of the two-point
function at the origin with this vielbein.

Now we examine the components e(a)”e(b)”h,(f;;wl”) (y) as
riny = (t,r,0, ¢, ...) tends to zero. If (a) and (b) are (0) or
(1), then lim,_)oé?‘@é’(“b)hﬂy = h,,, where a and b on the
right-hand side are ¢ or r. Hence we can examine the
components h,;, directly. For the vector- and tensor-type

perturbations this is trivially zero since hs;;wz”) =0forP =
V and T in the gauge that we have chosen. For the scalar-

type modes, we first note that r"/zlllg"l) in Eq. (106)

behaves like r*" as r — 0. The derivative operators

D,D, and [ change the leading behavior to O(r/t"=2).

Then it can readily be seen that hgj")l")

(I > 2) or faster as r — 0.
For (a) = (0) or (1) and (b) = (i), we find

tends to zero like !

e(a e W = (1= P22y, ) =240,

(D6)

PHYSICAL REVIEW D 90, 024045 (2014)

where sign(a) = —1 if @ =0 and sign(a) =1 if a = 1.
Now, it is the tensor- and scalar-type perturbations that
vanish identically in the gauge we have chosen. For the

vector case, we find that r*/ 2<I>§f)l) in Eq. (104) behaves like
(Viwlo)

r'* as r — 0. Then it can readily be seen that h,; and

hﬁ,.V;“””) behave like /*! and 7'+, respectively, with [ > 2.

Then Eq. (D6) shows that e<a>”e(,»)”h,<f;;wl”) —0asr—0.
Finally, we calculate the components with (a) = (i) and
(b) = (j) to find

v1. (Piolo _ _ Pwlo
ew e ™" = (rar )2 hg . (D7)
(Viwlo)

The vector case is trivial since £;; = 0. The scalar case

18

.. §lo)
vy (Siwlo) 7/11S (D +2) n (wl)
e(l.)ﬂe(j) h,ul/ = (}/7/)]/2 nrn—Z (r /2@5 )a
wrjj

(D8)

which behave like #/, [ > 2, as r — 0. For the tensor case,
we have

(10)
o1
vy (Twlo) i
ew'e) ™ =55

r—n/Zq)(wl) )
(7ii7jj) / !

(D9)

Then these vielbein components for the tensor case behave
like !, 1 > 2, for small r. Hence, it will vanish as r — 0.
Since all these components vanish for r — 0, the two-point
function itself vanishes in this limit.
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