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We study quantum gravitational perturbations in the static patch of de Sitter space. In particular,
we determine the symplectic inner product of these perturbations and use it to write down the graviton two-
point function in the state analogous to the Bunch-Davies vacuum in a certain gauge. We find this two-point
function to be infrared-finite and time-translation invariant.
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I. INTRODUCTION

The interest in phenomena in de Sitter space has been
increasing recently, especially due to its relevance to the
inflationary cosmology [1–5], which recently appears to have
gained further evidence from observation [6]. In addition,
current observations indicate that our Universe is expanding
at an accelerated rate and may approach de Sitter space as-
ymptotically [7,8]. Physics in de Sitter space is also attracting
attention because of the dS/CFT correspondence [9].
The analysis of gravitational perturbations in de Sitter

space is important particularly for the inflationary cosmol-
ogy, but the infrared (IR) properties of the graviton two-
point function in de Sitter space have remained a source of
controversies over the past 30 years. The main source of
these controversies is that the graviton mode functions
natural to the spatially flat (or Poincaré) patch of de Sitter
space behave in a manner similar to those for a minimally
coupled massless scalar field [10], which allows no de
Sitter-invariant vacuum state because of IR divergences
[11,12]. Ford and Parker found that this similarity leads to
IR divergences in the graviton two-point function though
they found no IR divergences in the physical quantities they
studied [10]. (In fact their work dealt with a more general
Friedmann-Lemaître-Robertson-Walker spacetime.)
However, since linearized gravity has gauge invariance,

it is important to determine whether or not these IR
divergences are a gauge artifact. Indeed, the IR divergences
and breaking of de Sitter symmetry they cause in the free
graviton theory have been shown to be a gauge artifact in
the sense that they can be gauged away if we allow nonlocal
gauge transformations [13,14]. This point has recently been
made clearer by explicit construction of an IR-finite two-
point function [15]. The authors of Ref. [15] also pointed
out that a local gauge transformation is sufficient to render
the two-point function finite in the infrared in a local region
of the spacetime. It is also worth noting that the two-point

function of the linearized Weyl tensor computed using a de
Sitter-noninvariant propagator with an IR cutoff exhibits
no IR divergences [16] and agrees with the result [17]
calculated using the covariant propagator [18,19]. In fact, in
a recent gauge-invariant formulation of free gravitons [20]
the Weyl-tensor and graviton two-point functions have
been shown to be equivalent in de Sitter space [21]. It has
also been argued recently [22] that there is a de Sitter-
invariant Hadamard state for free gravitons defined in a way
similar to the scalar case [20].
Gravitational perturbations in de Sitter space have been

analyzed mainly in the Poincaré patch for two reasons.
Firstly, this patch is the most relevant to the inflationary
cosmology. Secondly, the graviton mode functions in this
patch are the simplest. But there have been some works that
used other patches. It has been known for some time that in
the global patch of de Sitter space the free graviton field
theory has no IR divergences and that there is a de Sitter-
invariant vacuum state [23] analogous to the Bunch-Davies
vacuum [24] for the scalar field theory (see also Ref. [25]).
As a result there is an IR-finite graviton two-point function
in this patch [26]. An IR-finite graviton two-point function
has also been found in the hyperbolic patch of de Sitter
space [27]. However, there has been little work on quantum
gravitational perturbations in the static patch, which is of
physical importance because it represents the region
causally accessible to an inertial observer.
In this paper we use the formalism developed by Kodama

and Ishibashi [28] to study quantum gravitational pertur-
bations in the static patch of de Sitter space. In particular,
we demonstrate that there is an IR-finite graviton two-point
function in the Bunch-Davies-like state in this patch. We
emphasize that this two-point function is time-translation
invariant unlike that in the global patch [26]. Thus, if
linearized gravity is treated as a thermal field theory inside
the cosmological horizon [29], then one finds no IR
divergences or secular growth of the kind encountered in
the Poincaré patch. Although it has been shown that IR
divergences are a gauge artifact in the sense mentioned
above, it is useful to demonstrate explicitly that there is an
IR-finite and time-translation-invariant graviton two-point
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function since there are objections to the existence of
a de Sitter-invariant Bunch-Davies-like state in de Sitter
space [30,31].
The rest of this paper is organized as follows. In Sec. II,

we give a brief review of the gauge-invariant perturbation
formalism, summarizing some properties of the three types
of perturbations—scalar, vector and tensor—in the back-
ground spacetime, which is de Sitter space of nþ 2
dimensions. The solutions of the linearized Einstein equa-
tions that these three types of perturbations satisfy are
presented. (These solutions were obtained previously by
Natario and Schiappa [32].) In Sec. III, we construct the
graviton two-point function, starting with the normalization
of the modes for each type of perturbation with respect
to symplectic inner product. In particular, we show that
the two-point function is IR-finite in a suitably chosen
gauge. In Sec. IV we present the mode functions in the
3þ 1-dimensional case explicitly and find a simplified
expression for the graviton two-point function. In Sec. V,
we summarize the results found in this paper and discuss
their possible implications. In Appendices A and B we
provide some details of the calculations to normalize the
vector- and scalar-type modes, respectively. In Appendix C
we compute the two-point function for the minimally
coupled scalar field, which is discussed for comparison
with the graviton case. In Appendix D, we show that the
graviton two-point function vanishes identically if one of
the points is at the origin. This result shows clearly that the
values of the graviton two-point functions themselves have
no physical significance. Throughout this paper we use
the metric signature −þþ � � � þ and units such that
c ¼ G ¼ ℏ ¼ 1.

II. GRAVITATIONAL PERTURBATIONS
IN THE STATIC PATCH

A. Background spacetime

In this section we revisit the classical gravitational
perturbation studied in Ref. [32]. The background space-
time will be de Sitter in nþ 2 dimensions with n ≥ 2 and
the line element will take the form

ds2 ¼ gμνdxμdxν ¼−ð1− λr2Þdt2þ dr2

1− λr2
þ r2dσ2n; ð1Þ

where

dσ2n ¼ γijðxÞdxidxj ð2Þ

is the line element on the n-sphere Sn. Thus we are working
inside the cosmological horizon in the so-called static
coordinate system. We shall put λ ¼ 1 for simplicity. We
shall use the notation established in Refs. [28,33], with the
exception of quantities of the background spacetime, for
which we use greek indices. We define the line element of
the two-dimensional orbit space by

ds2orb ¼ gabdxadxb ¼ −ð1 − r2Þdt2 þ dr2

1 − r2
: ð3Þ

We denote the covariant derivatives compatible with the full
metric represented by the line element ds2, the two-
dimensional metric represented by ds2orb and the metric
on Sn represented with dσ2n by ∇μ, Da and D̂i, respectively.
The greek indices are used for spacetime indices running
from 0 to nþ 1, the first latin indices a; b; c;… are for t
and r and the i; j; k;… are for Sn. The connection
coefficients for ds2, ds2orb and dσ2n are denoted by Γα

μν,
Γa
bcðt; rÞ and Γ̂i

jkðxÞ, respectively.
What we will do next in this section is to consider

perturbations in the metric, which can be expanded in terms
of harmonic tensors of rank 0, 1, and 2. These perturbations
are called the scalar-, vector- and (rank-2) tensor-type
perturbations, respectively.

B. Scalar-type perturbations

The scalar-type perturbations can be expanded in terms
of harmonic functions SðlσÞ on the n-sphere which satisfy

ðΔ̂n þ k2SÞSðlσÞ ¼ 0; ð4Þ

where Δ̂n is the Laplace-Beltrami operator on Sn. The set of
eigenvalues takes the form

k2S ¼ lðlþ n − 1Þ: ð5Þ

The label l is a non-negative integer and σ represents all
labels other than l. The harmonic modes of the metric
perturbation are given by

hðS;lσÞab ¼ fðlÞabS
ðlσÞ; ð6Þ

hðS;lσÞai ¼ rfðlÞa SðlσÞ
i ; ð7Þ

hðS;lσÞij ¼ 2r2ðγijHðlÞ
L SðlσÞ þHðlÞ

T SðlσÞ
ij Þ; ð8Þ

where

SðlσÞ
i ¼ −

1

kS
D̂iSðlσÞ; ð9Þ

SðlσÞ
ij ¼ 1

k2S
D̂iD̂jSðlσÞ þ 1

n
γijSðlσÞ; ð10Þ

and the coefficients fðlÞa , fðlÞab, H
ðlÞ
L and HðlÞ

T are all functions
of t and r and are gauge-dependent quantities. Notice that
the tensors SðlσÞ

ij are chosen to be traceless.
The modes with l ¼ 0; 1 are special cases (and some of

the coefficients above are not defined). For l ¼ 0 the
perturbed spacetime will be spherically symmetric, but
the only such solutions to the Einstein equations are in
Schwarzschild–de Sitter spacetime by Birkoff’s theorem
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[28]. Thus, in our case the only perturbation with l ¼ 0 will
be the change in the background spacetime to introduce a
small black hole, which would inevitably be nonperturba-
tive and singular at the origin. Hence, we exclude this case.
For l ¼ 1 one finds that there is no corresponding nonzero
gauge-invariant perturbation as shown in Appendix B of
Ref. [28]. Hence we can impose the condition l ≥ 2.
It can be shown that the perturbations can be related to a

master variable ΦðlÞ
S , which, for the scalar case, obeys the

following equation:

□ΦðlÞ
S −

VS

1 − r2
ΦðlÞ

S ¼ 0; ð11Þ

where the effective potential is given by

VS ¼
1 − r2

4r2
½4lðlþ n − 1Þ þ nðn − 2Þ

− ðn − 2Þðn − 4Þr2�: ð12Þ

The □ is the d’Alembertian operator in the two-
dimensional orbit spacetime with line element ds2orb:

□ ¼ −
1

1 − r2
∂2

∂t2 þ
∂
∂r ð1 − r2Þ ∂

∂r : ð13Þ

The procedure to obtain Eq. (11) involves defining gauge-
invariant quantities (for modes with l ≥ 2), which are given
in terms of the gauge-dependent quantities by

FðlÞ ¼ HðlÞ
L þ 1

n
HðlÞ

T þ 1

r
DaðrXðlÞ

a Þ; ð14Þ

FðlÞ
ab ¼ fðlÞab þDaX

ðlÞ
b þDbX

ðlÞ
a ; ð15Þ

with

XðlÞ
a ¼ r

kS

�
fðlÞa þ r

kS
DaH

ðlÞ
T

�
: ð16Þ

Then, the functions FðlÞ and FðlÞ
ab, defined by Eqs. (14) and

(15), respectively, are given in terms of the master variable

ΦðlÞ
S as follows:

rn−2FðlÞ ¼ 1

2n
ð□þ 2Þðrn=2ΦðlÞ

S Þ; ð17Þ

rn−2FðlÞ
ab ¼ DaDbðrn=2ΦðlÞ

S Þ

−
�
n − 1

n
□þ n − 2

n

�
rn=2ΦðlÞ

S gab: ð18Þ

The details for obtaining the master equation in terms of
these gauge-invariant quantities are highly involved and
can be found in Refs. [28,33].
One can find solutions with Fourier components propor-

tional to e−iωt and that are regular at the origin, which are
given by

ΦðωlÞ
S ðt; rÞ ¼ AðωlÞ

S e−iωtrlþn=2ð1 − r2Þiω=2F
�
1

2
ðiωþ lþ n − 1Þ; 1

2
ðiωþ lþ 2Þ; lþ nþ 1

2
; r2

�
; ð19Þ

where the function Fðα; β; γ; zÞ is Gauss’s hypergeometric

function [34]. The normalization constants AðωlÞ
S will be

determined later.

C. Vector-type perturbations

The vector-type perturbations are expanded in terms of
harmonic vectors V ðlσÞ

i , which satisfy

ðΔ̂n þ k2VÞV ðlσÞ
i ¼ 0; ð20Þ

D̂jV jðlσÞ ¼ 0: ð21Þ

Here,

k2V ¼ lðlþ n − 1Þ − 1; ð22Þ

where l ¼ 1; 2; ::. and σ again represents all labels other
than l. The metric perturbations of the vector type read

hðV;lσÞab ¼ 0; ð23Þ

hðV;lσÞai ¼ rfðlÞa V ðlσÞ
i ; ð24Þ

hðV;lσÞij ¼ 2r2HðlÞ
T V ðlσÞ

ij ; ð25Þ

with

V ðlσÞ
ij ¼ −

1

2kV
ðD̂iV

ðlσÞ
j þ D̂jV

ðlσÞ
i Þ: ð26Þ

For l ¼ 1, the tensors V ðlσÞ
ij vanish, rendering the coefficient

HðlÞ
T undefined. In this case one defines a new gauge-

invariant quantity and this gives rise to a rotational
perturbation, parametrized by a constant, similar to the
Myers-Perry solution [28,35] if the black hole mass is
nonzero. This means that in our case with no black
hole, there is no nonzero gauge-invariant vector-type
perturbation with l ¼ 1.
As in the scalar case, we define a gauge-invariant

quantity for l ≥ 2 as follows:
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FðlÞ
a ¼ fðlÞa þ r

kV
DaH

ðlÞ
T : ð27Þ

This quantity is related to a master variable ΦðlÞ
V by

rn−1FðlÞa ¼ ϵabDbðrn=2ΦðlÞ
V Þ; ð28Þ

where ϵab is the Levi-Civita tensor of the two-dimensional
orbit spacetime. The master variable obeys the following
wave equation:

□ΦðlÞ
V −

VV

1 − r2
ΦðlÞ

V ¼ 0; ð29Þ

with

VV ¼ 1 − r2

r2

�
lðlþ n − 1Þ þ nðn − 2Þ

4
ð1 − r2Þ

�
: ð30Þ

The solutions of Eq. (29) that are regular at the origin are

ΦðωlÞ
V ðt;rÞ¼AðωlÞ

V e−iωtrlþn=2ð1−r2Þiω=2

×F

�
1

2
ðiωþ lþ1Þ;1

2
ðiωþ lþnÞ;lþnþ1

2
;r2

�
:

ð31Þ

The normalization constants AðωlÞ
V will be determined later.

D. Tensor-type perturbations

For n ≥ 3, the tensor-type perturbations of the metric can
be expanded in terms of symmetric harmonic tensors of
second rank T ðlσÞ

ij . They obey the following equations:

ðΔ̂n þ k2TÞT ðlσÞ
ij ¼ 0; ð32Þ

T i
iðlσÞ ¼ 0; ð33Þ

D̂jT i
jðlσÞ ¼ 0: ð34Þ

The set of eigenvalues is given by

k2T ¼ lðlþ n − 1Þ − 2: ð35Þ

The label l is an integer larger than or equal to 2. (It is a well-
known fact that solutions to Eqs. (32), (33) and (34) do not
exist on S2 [36,37]. A concise proof of this fact can be found
in Ref. [38]. Thus, we do not have tensor-type modes for
gravitational perturbations in 3þ 1 dimensions.) The har-
monic modes of the metric perturbation are written as

hðT;lσÞab ¼ 0; ð36Þ

hðT;lσÞai ¼ 0; ð37Þ

hðT;lσÞij ¼ 2r2HðlÞ
T T ðlσÞ

ij : ð38Þ

The quantityHðlÞ
T is already gauge invariant. It is convenient

to introduce a new variable ΦðlÞ
T by

ΦðlÞ
T ¼ rn=2HðlÞ

T : ð39Þ

Then the perturbed Einstein equation for ΦðlÞ
T reads

□ΦðlÞ
T −

VT

1 − r2
ΦðlÞ

T ¼ 0; ð40Þ

where the effective potential is

VT ¼ 1 − r2

r2

�
lðlþ n − 1Þ þ nðn − 2Þ

4

−
nðnþ 2Þ

4
r2
�
: ð41Þ

The solutions of Eq. (40) that are regular at the origin are
given by

ΦðωlÞ
T ðt;rÞ¼AðωlÞ

T e−iωtrlþn=2ð1−r2Þiω=2

×F

�
1

2
ðiωþ lþnþ1Þ;1

2
ðiωþ lÞ;lþnþ1

2
;r2

�
;

ð42Þ

where the normalization constants AðωlÞ
T will be deter-

mined later.

III. GRAVITON TWO-POINT FUNCTION

A. Quantization and the two-point function

Let us explain how to construct the physical1 two-point
function in a free field theory with gauge invariance such as
linearized gravity (see, e.g. Refs. [20,21]). Suppose the
theory is described by a Lagrangian density L, where L is a
local function of hμν and ∇λhμν. (Though we use a
symmetric tensor field theory in our explanation for an
obvious reason, the construction works for any other linear
field theories.) If there are only terms quadratic in the
derivative ∇λhμν in the Lagrangian, then the part of the
Lagrangian involving ∇λhμν is written as

Lder ¼
ffiffiffiffiffiffi−gp
2

Kλμνλ0μ0ν0∇λhμν∇λ0hμ0ν0 ; ð43Þ

where Kλμνλ0μ0ν0 ¼ Kλ0μ0ν0λμν ¼ Kλνμλ0μ0ν0 ; then, we define the
conjugate momentum current pλμν by

1The word “physical” is used here in the sense that all gauge
degrees of freedom are fixed.
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pλμν ¼ Kλμνλ0μ0ν0∇λ0hμ0ν0 : ð44Þ

For any two solutions hμν and h0μν to the Euler-Lagrange
equations and their conjugate momentum currents pλμν and
p0λμν we define their symplectic product by

Ωðh; h0Þ ¼ −
Z
Σ
dΣnαðhμνp0αμν − pαμνh0μνÞ; ð45Þ

where Σ is a Cauchy surface and nα is the future-directed
unit normal vector to Σ. It can readily be shown that
Ωðh; h0Þ is independent of the choice of Σ [39].
Now, suppose that the symplectic product Ω is non-

degenerate, i.e. that there are no solutions hðnullÞμν satisfying
Ωðh; hðnullÞÞ ¼ 0 for all solutions hμν. Suppose further that

hðnÞμν , where n represents all (continuous and discrete) labels

for solutions, and their complex conjugates hðnÞμν form a
complete set of solutions such that ΩðhðnÞ; hðmÞÞ ¼ 0 for all

n and m—i.e. Ω is nonzero only between hðnÞμν and hðmÞ
μν —

and we define the inner product of two solutions by

hhðmÞ; hðnÞi ¼ iΩðhðmÞ; hðnÞÞ: ð46Þ

Now, we expand the quantum field ĥμνðyÞ, where y
represents all spacetime coordinates, as

ĥμνðyÞ ¼
X
n

½anhðnÞμν ðyÞ þ a†nh
ðnÞ
μν ðyÞ�: ð47Þ

Then, the equal-time canonical commutation relations for
the operators ĥμνðyÞ are equivalent to

½am; a†n� ¼ ðM−1Þmn; ð48Þ

where M−1 is the inverse of the matrix Mmn ¼ hhðmÞ; hðnÞi,
and ½am; an� ¼ ½a†m; a†n� ¼ 0.
Unfortunately, linearized gravity cannot be quantized in

this manner because the matrix M defined by Eq. (46) is
degenerate due to the gauge invariance: a pure-gauge

solution of the form hðgÞμν ¼ ∇μΛν þ∇νΛμ has a vanishing
symplectic product with any solution. However, if we fix
the gauge completely so that the matrixM is nondegenerate
when restricted to the solutions satisfying the gauge
conditions, then we can expand the field operator ĥμνðyÞ
using only the solutions satisfying the gauge conditions in
Eq. (47) and quantize this field by requiring the commu-
tation relations given by Eq. (48). This procedure is the
gauge-fixed version of the gauge-invariant quantization
formulated in Ref. [20].
Note that, if we normalize the solutions in a given gauge

by requiring Mmn ¼ δmn in Eq. (46), then we have
½am; a†n� ¼ δmn. Then, on the vacuum state j0i annihilated
by the operators an the two-point function is

h0jĥμνðyÞĥμ0ν0 ðy0Þj0i ¼
X
n

hðnÞμν ðyÞhðnÞμ0ν0 ðy0Þ; ð49Þ

for example. In the next subsections we normalize the
gravitational perturbations found in Sec. II so that we have
Mmn ¼ δmn. This will make the construction of the two-
point function straightforward.

B. Inner product

With a suitable normalization of the gravitational per-
turbation hμν the part of the Lagrangian density involving
derivatives of hμν reads (after some integration by parts)

L ¼ ffiffiffiffiffiffi
−g

p �
∇μhμλ∇νhνλ −

1

2
∇λhμν∇λhμν:

þ 1

2
ð∇μh − 2∇νhμνÞ∇μh

þ terms involving just hμν

�
: ð50Þ

Hence, the conjugate momentum current is

pλμν ≔
1ffiffiffiffiffiffi−gp ∂L

∂ð∇λhμνÞ
¼ gλμ∇κhκν þ gλν∇κhκμ −∇λhμν

þ gμνð∇λh −∇κhλκÞ

−
1

2
ðgλν∇μhþ gλμ∇νhÞ: ð51Þ

Then the inner product (46) between two solutions hðmÞ
μν and

hðnÞμν is

hhðmÞ; hðnÞi ≔ −i
Z
Σ
dΣnλðhðmÞ

μν pðnÞλμν − hðnÞμν pðmÞλμνÞ; ð52Þ

where the integration is to be carried out on a t ¼ constant
Cauchy surface of the static patch of de Sitter space. Next
we find the normalization constants such that the inner
product (52) is simply δmn (which also involves Dirac’s
delta function because ω is a continuous label). The
calculation will closely follow Ref. [40].

C. Normalization of the tensor-type modes

For the tensor-type perturbations, which we denote

by hðT;ωlσÞμν , we have pðT;ωlσÞλμν ¼ −∇λhðT;ωlσÞμν because

hðT;ωlσÞμν given by Eqs. (36)–(38) are transverse (∇μhμν ¼ 0)
and traceless (hμμ ¼ 0). Noting that r ¼ 1 is the position of
the horizon, we find the inner product defined by Eq. (52)
to be
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hhðT;ωlσÞ; hðT;ω0l0σ0Þi ¼ ðωþ ω0Þlim
ρ→1

Z
ρ

0

dr
rn

1 − r2

×
Z

dΩnh
ðT;ωlσÞ
ij hðT;ω0l0σ0Þij; ð53Þ

where the dΩn integration is over the unit hypersphere Sn.
Noting that

Z
dΩnT

ðlσÞ
ij T ðl0σ0Þij ¼ 1

r4
δll

0
δσσ

0
; ð54Þ

we have

hhðT;ωlσÞ; hðT;ω0l0σ0Þi ¼ 4ðωþ ω0Þδll0δσσ0

× lim
ρ→1

Z
ρ

0

dr
1 − r2

ΦðωlÞ
T Φðω0lÞ

T : ð55Þ

We have to evaluate the following integral:

Iρ ¼ lim
ρ→1

Z
ρ

0

dr
1 − r2

ΦðωlÞ
T Φðω0lÞ

T : ð56Þ

Using Eq. (40) satisfied by ΦðωlÞ
T and ΦðωlÞ

T , we find

ω02 − ω2

1 − r2
ΦðωlÞ

T Φðω0lÞ
T ¼ d

dr

�
Φðω0lÞ

T ð1 − r2Þ d
dr

ΦðωlÞ
T

− ΦðωlÞ
T ð1 − r2Þ d

dr
Φðω0lÞ

T

�
: ð57Þ

Integrating the above equation from 0 to ρ and then taking
the limit ρ → 1, we find

lim
ρ→1

Z
ρ

0

dr
1 − r2

ΦðωlÞ
T Φðω0lÞ

T

¼ 1

ω02 − ω2
lim
ρ→1

�
ð1 − r2Þ

×

�
Φðω0lÞ

T
d
dr

ΦðωlÞ
T − ΦðωlÞ

T
d
dr

Φðω0lÞ
T

��
r¼ρ

; ð58Þ

where we have used that ΦðωlÞ
T ð0Þ ¼ Φðω0lÞ

T ð0Þ ¼ 0.
We can write, for r ≈ 1 [41],

ΦðωlÞ ¼ AðωlÞ
T ½Bl

ωð1 − r2Þ−iω=2 þ Bl
ωð1 − r2Þiω=2�; ð59Þ

where

Bl
ω ¼ Γðlþ nþ1

2
ÞΓðiωÞ

Γð1
2
ðlþ iωÞÞΓð1

2
ðlþ iωþ nþ 1ÞÞ : ð60Þ

Then we have

Iρ ¼
Z

ρ

0

dr
1 − r2

ΦðωlÞΦðω0lÞ

¼ ijAðωlÞ
T j2

ω0 þ ω

�
Bl
−ωBl

−ω0 exp

�
i
2
ðω0 þ ωÞ lnð1 − ρ2Þ

�

− Bl
ωBl

ω0 exp

�
−
i
2
ðω0 þ ωÞ lnð1 − ρ2Þ

��

þ ijAðωlÞ
T j2

ω0 − ω

�
Bl
ωBl

−ω0 exp

�
i
2
ðω0 − ωÞ lnð1 − ρ2Þ

�

− Bl
−ωBl

ω0 exp
�
−
i
2
ðω0 − ωÞ lnð1 − ρ2Þ

��
; ð61Þ

noting that Bl
ω ¼ Bl

−ω. Dropping the terms rapidly oscil-
lating as functions of ω and ω0 in the ρ → 1 limit, we find

Iρ ¼
2jAðωlÞ

T j2jBl
ωj2

ω0 − ω
sin

�
ω0 − ω

2
ln

�
1

1 − ρ2

��
: ð62Þ

Using that

lim
L→∞

sinLx
x

¼ πδðxÞ; ð63Þ

we have

I1 ¼ lim
ρ→1

Iρ ¼ 2πjAðωlÞ
T j2jBl

ωj2δðω0 − ωÞ: ð64Þ

Now, we choose

jAðωlÞ
T j2 ¼ 1

16πωjBl
ωj2

¼ sinh πωjΓð1
2
ðlþ iωÞÞΓð1

2
ðlþ iωþ nþ 1ÞÞj2

16π2jΓðlþ nþ1
2
Þj2 ;

ð65Þ

where we have used

jΓðiωÞj2 ¼ π

ω sinh πω
: ð66Þ

Then, the inner product between two modes of the tensor
type is just

hhðT;ωlσÞ; hðT;ω0l0σ0Þi ¼ δll
0
δσσ

0
δðω − ω0Þ: ð67Þ

D. Normalization of the vector-type modes

For the vector-type modes, first let us show that we can
choose a gauge such that the components hij vanish. For a
gauge transformation hμν → hμν þ∇μΛν þ∇νΛμ with

Λa ¼ 0; Λi ¼ r2ϕV i; ð68Þ
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we find

HðlÞ
T → HðlÞ

T − kVϕ; ð69Þ

fðlÞa → fðlÞa þ rDaϕ: ð70Þ

We can readily see that FðlÞ
a defined by Eq. (27) is invariant

under this gauge transformation. Thus, by letting ϕ ¼
HðlÞ

T =kV we have HðlÞ
T ¼ 0 and FðlÞ

a ¼ fðlÞa . This choice of
gauge leads to

hðV;lσÞai ¼ rFðlÞ
a V ðlσÞ

i

¼ 1

rn−2
ϵabDb½rn=2ΦðlÞ

V �V ðlσÞ
i ; ð71Þ

hðV;lσÞab ¼ 0; ð72Þ

hðV;lσÞij ¼ 0: ð73Þ

Then, we find the (gauge-invariant) inner product (52) for
the vector-type modes as

hhðV;ωlσÞ; hðV;ω0l0σ0Þi ¼ 2i
Z

dΩndrrn

× ðhðV;ωlσÞbipðV;ω0l0σ0Þt
bi

−hðV;ω0l0σ0ÞbipðV;ωlσÞt
biÞ; ð74Þ

where pðV;ωlσÞ is expressed in terms of hðV;ωlσÞ in
Eq. (A3). We substitute Eq. (A3) and use Eq. (71)
in Eq. (74). After a cumbersome but straightforward
calculation involving integration by parts with respect
to r and the use of the master equation (29) to eliminate
the second-order time derivative of the master variable,
we find

hhðV;ωlσÞ; hðV;ω0lσ0Þi ¼ 2ðωþ ω0Þδll0δσσ0 ðl − 1Þðlþ nÞ

×
Z

dr
1 − r2

ΦðωlÞ
V Φðω0lÞ

V : ð75Þ

The details of this calculation can be found in Appendix A.

We then require that hðV;ωlσÞμν satisfy the same normalization

condition as hðT;ωlσÞμν , i.e. Eq. (67), to determine the

normalization constants AðωlÞ
V . With the same reasoning

as in the tensor case we find

jAðωlÞ
V j2 ¼ sinh πωjΓð1

2
ðiωþ lþ 1ÞÞΓð1

2
ðiωþ lþ nÞÞj2

8π2ðl − 1Þðlþ nÞjΓðlþ nþ1
2
Þj2 :

ð76Þ

E. Normalization of the scalar-type modes

Now, we shall find the normalization factors AðωlÞ
S for the

scalar-type modes. We first choose a convenient gauge.
Under the gauge transformation with the gauge function Λμ

given by

Λa ¼ ψaðt; rÞS; ð77Þ

Λi ¼ ϕðt; rÞSi; ð78Þ

one finds that the gauge-dependent functions transform
as [33]

fðlÞab → fðlÞab þDaψb þDbψa; ð79Þ

fðlÞa → fðlÞa þ rDa

�
ϕ

r2

�
−
kS
r
ψa; ð80Þ

HðlÞ
T → HðlÞ

T −
kS
r2

ϕ; ð81Þ

HðlÞ
L → HðlÞ

L þ kSϕ
nr2

þDar
r

ψa: ð82Þ

Hence by choosing

ϕ ¼ r2

kS
HðlÞ

T ; ð83Þ

ψa ¼ r

�
1

kS
fðlÞa þ r

k2S
DaH

ðlÞ
T

�
; ð84Þ

we can set the functions fðlÞa and HðlÞ
T to zero. Then the

perturbations will be

hðS;lσÞai ¼ 0; ð85Þ

hðS;lσÞab ¼ FðlÞ
abS

ðlσÞ; ð86Þ

hðS;lσÞij ¼ 2r2γijFðlÞSðlσÞ; ð87Þ

where FðlÞ and FðlÞ
ab are given in terms of the master variable

ΦðlÞ
S by Eqs. (17) and (18), respectively.
The conserved inner product (52) with the conjugate

momentum current defined by Eq. (51) can be found as

hhðS;lσÞ; h0ðS;lσÞi ¼ −2i
Z
Σ
dΣnaJa; ð88Þ

where the conserved current Ja is given by

INFRARED-FINITE GRAVITON TWO-POINT FUNCTION … PHYSICAL REVIEW D 90, 024045 (2014)

024045-7



Ja ¼ Sðl0σ0ÞSðlσÞ
�
2

r
DcrðFðlÞabFðl0Þ

bc − Fðl0ÞabFðlÞ
bcÞ

−
1

2
ðFðlÞbcDaFðl0Þ

bc − Fðl0ÞbcDaFl
bcÞ

þ2ð2 − nÞðFðlÞDaFðl0Þ − Fðl0ÞDaFðlÞÞ
�
: ð89Þ

Though it would be possible to express the inner product
(88) in terms of ΦðlÞ

S directly in the static coordinate system,
it is much easier to do so if we use the Eddington-
Finkelstein coordinates and evaluate it on the future
horizon. Thus, we define the new coordinate

u ¼ t −
1

2
log

1þ r
1 − r

: ð90Þ

This coordinate ranges over all real values. The line
element of the orbit spacetime becomes

ds2orb ¼ −ð1 − r2Þdu2 − 2dudr: ð91Þ

We note that a further coordinate transformation,
u ¼ − logðρ − ηÞ and r ¼ −ρ=η, would result in the
standard metric in the Poincaré patch, ds2 ¼
η−2ð−dη2 þ dρ2 þ ρ2dσ2nÞ, with 0 ≤ ρ and η < 0. From
this we see that the r ¼ ċonstant hypersurface with r > 1 is
almost a Cauchy surface. It is not quite a Cauchy surface
because the timelike line ρ ¼ 0 does not intersect it.
However, we expect the data on this hypersuface to
completely describe the gravitational perturbations because
only one point in the future infinity is removed from it. We
work under this assumption. We calculate the symplectic
inner product only for the perturbations that tend to zero as
u → �∞ so that we can integrate by parts with respect to u.
We believe this is sufficient because perturbations not
satisfying this condition can be considered as limiting
cases of those satisfying them.
On the future cosmological horizon we have ds2orb ¼

−2dudr with −∞ < u < ∞. Hence, if Σ is the constant-r
hypersurface, then in the limit r → 1, i.e. as it approaches
the future cosmological horizon, we have

lim
r→1

dΣna ¼ dΩndu

� ∂
∂u

�
a
: ð92Þ

Thus, the inner product (88) can be evaluated on the future
cosmological horizon as

hhðS;lσÞ; h0ðS;lσÞi ¼ −2i
Z

dΩnduJu: ð93Þ

One can readily see that the first term in the conserved
current (89) does not contribute because, on the horizon, we
have Dar ¼ −ð∂=∂uÞa and

ð∂=∂uÞaDcrðFðlÞabFðl0Þ
bc − Fðl0ÞabFðlÞ

bcÞ ¼ 0: ð94Þ

(This equality follows just from the fact that FðlÞ
ab is a

symmetric tensor on the two-dimensional orbit spacetime.)
Then, after dropping terms that are total derivatives with
respect to u, which do not contribute in the integral (93), we
find that the current Ju on the horizon can be written as

Ju ¼ ½2FðlÞ
rr ∂uF

ðl0Þ
uu − 2Fðl0Þ

rr ∂uF
ðlÞ
uu

− 4FðlÞ
rr F

ðl0Þ
uu þ 4Fðl0Þ

rr F
ðlÞ
uu

þ2nðn − 2ÞðFðlÞ∂uFðl0Þ − Fðl0Þ∂uFðlÞÞ�
× SðlσÞSðl0σ0Þ; ð95Þ

where the relation FðlÞa
a ¼ −2ðn − 2ÞFðlÞ, which can

readily be verified using Eqs. (17) and (18), has been
used. On the horizon we find from Eqs. (17) and (18)

FðlÞ
rr ¼ DrDrðrn=2ΦðlÞ

S Þ ¼ ∂2
rðrn=2ΦðlÞ

S Þ; ð96Þ

FðlÞ
uu ¼ DuDuðrn=2ΦðlÞ

S Þ ¼ ð∂2
u − ∂uÞΦðlÞ

S ; ð97Þ

FðlÞ ¼ r2−n

2n
ð□þ 2Þðrn=2ΦðlÞ

S Þ

¼ −
1

2

�
ð∂u þ 1Þ

�
1þ 2

n
∂r

�
−
2

n

�
ΦðlÞ

S ; ð98Þ

where we have used □ ¼ 2ð∂u þ 1Þ∂r on the horizon. We
substitute these formulas into Eq. (95) and use Eq. (11)
satisfied by ΦðlÞ

S on the horizon. We then find

Ju ¼
n − 1

n
lðl − 1Þðlþ n − 1Þðlþ nÞ

× ðΦðlÞ
S ∂uΦ

ðl0Þ
S − Φðl0Þ

S ∂uΦ
ðlÞ
S ÞSðlσÞSðl0σ0Þ: ð99Þ

Details of this calculation can be found in Appendix B.
The inner product is obtained by substituting Eq. (99)

into Eq. (93). This inner product can be rewritten as

hhðS;ωlσÞ; hðS;ω0l0σ0Þi ¼ i
ðn − 1Þlðl − 1Þðlþ n − 1Þðlþ nÞ

n

× lim
r→1

Z
dΣnλSðlσÞSðl0σ0Þ

× ðΦðωlÞ
S ∂λΦ

ðω0lÞ
S − Φðω0lÞ

S ∂λΦ
ðωlÞ
S Þ:

ð100Þ

Now, evaluating this on a t ¼ constant Cauchy surface in
the original tr coordinates, we have
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hhðS;ωlσÞ; hðS;ω0l0σ0Þi ¼ i
lðl − 1Þðlþ n − 1Þðlþ nÞðn − 1Þ

n
δll

0
δσσ

0
Z

1

0

dr
1 − r2

ðΦðωlÞ
S ∂tΦ

ðω0lÞ
S − Φðω0lÞ

S ∂tΦ
ðωlÞ
S Þ: ð101Þ

We then require the same normalization condition as in the tensor case, i.e. Eq. (67). Then the normalization constants AðωlÞ
S

defined by Eq. (19) can be determined as

jAðωlÞ
S j2 ¼ n sinh πωjΓð1

2
ðiωþ lþ 2ÞÞΓð1

2
ðiωþ lþ n − 1ÞÞj2

2π2ðn − 1Þlðl − 1Þðlþ n − 1Þðlþ nÞjΓðlþ nþ1
2
Þj2 : ð102Þ

F. Infrared-finite two-point function

In this subsection we write down the graviton two-
point function in the state analogous to the Bunch-Davies
vacuum in the gauge we have chosen. Let us first recall the
normalized mode functions we obtained. The tensor-type
modes are

hðT;ωlσÞij ¼ 2rð4−nÞ=2ΦðωlÞ
T T ðlσÞ

ij ; ð103Þ

with all other components vanishing, where ΦðωlÞ
T is given

by Eq. (42) with the normalization constants given by
Eq. (65). The vector-type modes are given by

hðV;ωlσÞai ¼ 1

rn−2
ϵabDbðrn=2ΦðωlÞ

V ÞV ðlσÞ
i ; ð104Þ

with all other components vanishing. The master variable
ΦðωlÞ

V is given by Eq. (31) with the normalization constant
AðωlÞ
V given by Eq. (76). Finally, the scalar-type modes are

given by

hðS;ωlσÞai ¼ 0; ð105Þ

hðS;ωlσÞab ¼ r2−n
�
DaDbðrn=2ΦðωlÞ

S Þ

−
�
n − 1

n
□þ n − 2

n

�
rn=2ΦðωlÞ

S gab

�
SðlσÞ; ð106Þ

hðS;ωlσÞij ¼ r4−n

n
γijð□þ 2Þðrn=2ΦðωlÞ

S ÞSðlσÞ; ð107Þ

where ΦðωlÞ
S is given by Eq. (19) with the normalization

constants AðωlÞ
S given by Eq. (102).

Let us first examine the low-ω behavior of the normal-

ized mode functions hðT;ωlσÞμν , hðV;ωlσÞμν and hðS;ωlσÞμν , which

coincides with the behavior of the master variables ΦðωlÞ
T ,

ΦðωlÞ
V and ΦðωlÞ

S . We readily find that they all behave like
ω1=2 in the limit ω → 0 since l ≥ 2. This is to be contrasted
with the behavior of the normalized minimally coupled
massless scalar modes, which behave like ω−1=2 for l ¼ 0,
as shown in Appendix C. It is interesting to note that the

normalization constants AðωlÞ
T are the same as those for the

minimally coupled massless scalar modes for each l. The
only difference is that the angular momentum quantum
number l is restricted to be greater than or equal to 2 for the
gravitational perturbations whereas in the massless scalar
case it can take the value l ¼ 0, which is responsible for the
IR divergences as shown in Appendix C.
Now, it is well known that the vacuum state with the

two-point function (49) is unphysical because it will have
singularities in the stress-energy tensor on the horizon.
This state is analogous to the Rindler vacuum [42] in
Minkowski spacetime and the Boulware vacuum [43] in
Schwarzschild spacetime. A physically acceptable state is
the de Sitter-invariant Bunch-Davies state [24], which
is the thermal state with temperature H=2π [29], where
H is the Hubble constant. This state is analogous to the
Hartle-Hawking state [44] in Schwarzschild spacetime.
(Strictly speaking, this result has been shown explicitly
only for a scalar field, but it is expected that, for example,
the general proof of Kay and Wald [45] can be extended
to the graviton field with a suitable definition of the
Hadamard state [20].)
Now, we expand the graviton field ĥμνðyÞ as in Eq. (47):

ĥμνðyÞ ¼
X

P¼S;V;T

X∞
l¼2

X
σ

Z
∞

0

dω½aðPÞlσ ðωÞhðP;ωlσÞμν ðyÞ

þ aðPÞ†lσ ðωÞhðP;ωlσÞμν ðyÞ�: ð108Þ

(There is no tensor-type contribution for n ¼ 2.) In the
thermal state of temperature 1=2π—recall that we have set
H ¼ 1—we have the following expectation values:

haðPÞ†lσ ðωÞaðP0Þ
l0σ0 ðω0Þi ¼ 1

e2πω−1
δPP

0
δll

0
δσσ

0
δðω−ω0Þ; ð109Þ

haðPÞlσ ðωÞaðP0Þ†
l0σ0 ðω0Þi¼ 1

1−e−2πω
δPP

0
δll

0
δσσ

0
δðω−ω0Þ; ð110Þ

with haðPÞlσ ðωÞaðP0Þ
l0σ0 ðω0Þi ¼ haðPÞ†lσ ðωÞaðP0Þ†

l0σ0 ðω0Þi ¼ 0. Thus,
we find the graviton two-point function to be
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hĥμνðyÞĥμ0ν0ðy0Þi ¼
X

P¼S;V;T

X∞
l¼2

X
σ

Z
∞

0

dω

×

�
1

e2πω − 1
hðP;ωlσÞμν ðyÞhðP;ωlσÞμ0ν0 ðy0Þ

þ 1

1 − e−2πω
hðP;ωlσÞμν ðyÞhðP;ωlσÞμ0ν0 ðy0Þ

�
:

ð111Þ

As we have seen, all mode functions hðP;ωlσÞμν ðyÞ tend to
zero as ω → 0 like ω1=2. Hence, the two-point function
(111) computed in the Bunch-Davies-like state is finite in
the infrared. Note that the two-point function for the
minimally coupled massless scalar field, which takes a
similar form, is IR divergent (even if there were no thermal
factors) because the l ¼ 0 mode functions behaves like
ω−1=2 in the limit ω → 0 (cf. Appendix C).

IV. MODE FUNCTIONS AND THE TWO-POINT
FUNCTION IN 3þ 1 DIMENSIONS

In this section we present some of our results in four
dimensions, i.e. with harmonic expansion on S2. As we
pointed out before, there are no tensor-type modes in 3þ 1
dimensions. The scalar-type modes will be given in terms
of the usual scalar spherical harmonics Yðl;mÞðθ;ϕÞ. Note
that we have only one additional label other than l.
Therefore, perturbations of the scalar type in the gauge
we have chosen read

hðS;ωlmÞ
ai ¼ 0; ð112Þ

hðS;ωlmÞ
tt ¼ Yðl;mÞðθ;ϕÞ

2

× ½∂2
t þ ð1 − r2Þ2∂2

r �ðrΦðωlÞ
S Þ; ð113Þ

hðS;ωlmÞ
rr ¼ Yðl;mÞðθ;ϕÞ

2

×

�
∂2
r þ

1

ð1 − r2Þ2 ∂
2
t

�
ðrΦðωlÞ

S Þ; ð114Þ

hðS;ωlmÞ
tr ¼ Yðl;mÞðθ;ϕÞ

×

�
∂r∂t þ

r
1 − r2

∂t

�
ðrΦðωlÞ

S Þ; ð115Þ

hðS;ωlmÞ
ij ¼ r2Yðl;mÞðθ;ϕÞ

2
γijð□þ 2ÞðrΦðωlÞ

S Þ; ð116Þ

with γij given by the usual metric on the S2, described by
the line element

dσ22 ¼ dθ2 þ sin2θdϕ2: ð117Þ

The function ΦðωlÞ
S is now

ΦðωlÞ
S ðt; rÞ ¼ AðωlÞ

S e−iωtrlþ1ð1− r2Þiω=2

×F

�
1

2
ðiωþ lþ 1Þ;1

2
ðiωþ lþ 2Þ; lþ 3

2
; r2

�
:

ð118Þ

The normalization constants take a much simpler form:

jAðωlÞ
S j2 ¼ sinh πωjΓð1

2
ðiωþ lþ 2ÞÞΓð1

2
ðiωþ lþ 1ÞÞj2

π2ðl − 1Þlðlþ 1Þðlþ 2ÞjΓðlþ 3
2
Þj2 :

ð119Þ
The solutions to Eqs. (20) and (21) for the vector

harmonics on the S2 can be written as [36,38]

Yðl;mÞ
i ðθ;ϕÞ ¼ ϵijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ∂jYðl;mÞðθ;ϕÞ; ð120Þ

where ϵij is the totally antisymmetric tensor defined by

ϵθθ ¼ ϵϕϕ ¼ 0; ð121Þ

ϵθϕ ¼ −ϵϕθ ¼ sin θ: ð122Þ

Then, the vector-type perturbations are given by

hðV;ωlmÞ
ti ¼ Yðl;mÞ

i ðθ;ϕÞð1 − r2Þ∂rðrΦðωlÞ
V Þ; ð123Þ

hðV;ωlmÞ
ri ¼ Yðl;mÞ

i ðθ;ϕÞ
1 − r2

∂tðrΦðωlÞ
V Þ; ð124Þ

with all other components vanishing. The master variable
ΦðωlÞ

V is given by

ΦðωlÞ
V ðt; rÞ ¼ AðωlÞ

V e−iωtrlþ1ð1− r2Þiω=2

×F

�
1

2
ðiωþ lþ 1Þ;1

2
ðiωþ lþ 2Þ; lþ 3

2
;r2

�
;

ð125Þ

where the normalization constants AðωlÞ
V are now

jAðωlÞ
V j2 ¼ sinh πωjΓð1

2
ðiωþ lþ 1ÞÞΓð1

2
ðiωþ lþ 2ÞÞj2

8π2ðl − 1Þðlþ 2ÞjΓðlþ 3
2
Þj2 :

ð126Þ
We note that ΦðωlÞ

S and ΦðωlÞ
V are essentially the same, with

the precise relation between them being

ΦðωlÞ
V ¼ lðlþ 1Þ

8
ΦðωlÞ

S : ð127Þ
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Next, we simplify our graviton two-point function
in 3þ 1 dimensions. Let us first consider the contribution
from the scalar-type modes. We define the following tensor
differential operators motivated by how the mode functions

hðS;ωlmÞ
μν are given in terms of ΦðωlÞ

S [see Eqs. (113)–(116)]:

DðSÞ
tt ¼ 1

2
½∂2

t þ ð1 − r2Þ2∂2
r �; ð128Þ

DðSÞ
rr ¼ 1

2

�
∂2
r þ

1

ð1 − r2Þ2 ∂
2
t

�
; ð129Þ

DðSÞ
tr ¼ ∂r∂t þ

r
1 − r2

∂t; ð130Þ

DðSÞ
ij ¼ r2

2
γijð□þ 2Þ; ð131Þ

with all other components vanishing. If θ0 ¼ 0 in
y0 ¼ ðt0; r0; θ0;ϕ0Þ, then the contribution to the graviton
two-point function (111) with n ¼ 2 from the scalar-type
modes reads

ΔðSÞ
μνμ0ν0 ðy; y0Þ ¼ DðSÞ

μν D
ðSÞ
μ0ν0Gðy; y0Þ; ð132Þ

where

Gðy; y0Þ ¼
X∞
l¼2

Yðl;0Þðθ0 ¼ 0;ϕ0ÞYðl;0Þðθ;ϕÞ
Z

∞

0

dω

×

�
rΦðωlÞ

S ðt; rÞr0ΦðωlÞ
S ðt0; r0Þ

e2πω − 1

þ rΦðωlÞ
S ðt; rÞr0ΦðωlÞ

S ðt0; r0Þ
1 − e−2πω

�
; ð133Þ

because Yðl;mÞðθ0 ¼ 0;ϕ0Þ ¼ 0, unlessm ¼ 0. We shall find
a simplified expression for Gðy; y0Þ next.
It is well known [24] that the two-point function for the

conformally coupled massless scalar field [of which the
equation is obtained by setting M2 ¼ 2 in Eq. (C1)] is

ΔðcÞðy; y0Þ ¼ 1

8π2ð1 − cos μðy; y0Þ þ iϵðt − t0ÞÞ ; ð134Þ

where μðy; y0Þ is the geodesic distance between the two
points y ¼ ðt; r; θ;ϕÞ and y0 ¼ ðt0; r0; θ0;ϕ0Þ if they are
spacelike separated. For timelike separation of the points,
cos μðy; y0Þ ¼ cosh μTðy; y0Þ, where μTðy; y0Þ is the time-
like geodesic distance of the two points. The term iϵðt − t0Þ,
where ϵ is an infinitesimal positive number, indicates how
the singularity at μðy; y0Þ ¼ 0 is avoided. This two-point
function can be expressed in the static patch (by using
Appendix C) as follows:

ΔðcÞðy; y0Þ ¼
X∞
l¼0

Xl

m¼−l
Yðl;mÞðθ;ϕÞYðl;mÞðθ0;ϕ0Þ

×
Z

∞

0

dωjNðωlÞj2RωlðrÞRωlðr0Þ

×

�
eiωðt−t0Þ

e2πω − 1
þ e−iωðt−t0Þ

1 − e−2πω

�
; ð135Þ

where

jNðωlÞj2 ¼ sinh πω
4π2

×
jΓð1

2
ðiωþ lþ 1ÞÞΓð1

2
ðiωþ lþ 2ÞÞj2

jΓðlþ 3
2
Þj2 ; ð136Þ

RωlðrÞ ¼ rlð1 − r2Þiω=2

× F

�
1

2
ðiωþ lþ 1Þ; 1

2
ðiωþ lþ 2Þ; lþ 3

2
; r2

�
:

ð137Þ

We have used the fact that RωlðrÞ andP
l
m¼−l Y

ðl;mÞðθ;ϕÞYðl;mÞðθ0;ϕ0Þ are both real. Notice that
by Eq. (119) we have

jAðωlÞ
S j2 ¼ 4jNðωlÞj2

ðl − 1Þlðlþ 1Þðlþ 2Þ : ð138Þ

We multiply Eq. (135) by Yðl;0Þðθ0;ϕ0Þ and integrate over
S2. Using Eq. (138) we find by the orthonormality of the
spherical harmonics

rr0

2π2ðl − 1Þlðlþ 1Þðlþ 2Þ

×
Z

dϕ0dθ0 sin θ0
Yðl;0Þðθ0;ϕ0Þ

1 − cos μðy; y0Þ þ iϵðt − t0Þ

¼
Z

∞

0

dω

�
ΦðωlÞ

S ðt; rÞΦðωlÞ
S ðt0; r0Þ

e2πω − 1

þ ΦðωlÞ
S ðt; rÞΦðωlÞ

S ðt0; r0Þ
1 − e−2πω

�
Yðl;0Þðθ;ϕÞ: ð139Þ

Hence, by using the formula

Yðl;0Þðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Plðcos θÞ; ð140Þ

we obtain
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ð2lþ 1Þrr0
8π3ðl − 1Þlðlþ 1Þðlþ 2Þ

×
Z

dϕ0dθ0 sin θ0
Plðcos θ0Þ

1 − cos μðy; y0Þ þ iϵðt − t0Þ

¼
Z

∞

0

dω

�
ΦðωlÞ

S ðt; rÞΦðωlÞ
S ðt0; r0Þ

e2πω − 1

þ ΦðωlÞ
S ðt; rÞΦðωlÞ

S ðt0; r0Þ
1 − e−2πω

�
Yðl;0Þðθ0 ¼ 0;ϕ0ÞYðl;0Þðθ;ϕÞ:

ð141Þ

By comparing this expression and Eq. (133) we find

Gðy; y0Þ ¼ r2r02
Z

dϕ0dθ0 sinθ0
Qðθ0Þ

1− cosμðy; y0Þ þ iϵðt− t0Þ ;

ð142Þ
where

Qðθ0Þ ¼ 1

8π3
X∞
l¼2

2lþ 1

ðl − 1Þlðlþ 1Þðlþ 2Þ Plðcos θ
0Þ: ð143Þ

It can be shown that this series is convergent for all θ0.
Next, let us examine the contribution of the vector-type

modes. If we let θ0 ¼ 0 again, then it can be shown that
only the modes with jmj ¼ 1 contribute. We note first that

X
m¼�1

Yðl;mÞðθ;ϕÞYðl;mÞðθ0;ϕ0Þ

¼ 2lþ 1

2πlðlþ 1Þ P
1
l ðcos θÞP1l ðcos θ0Þ cosðϕ − ϕ0Þ: ð144Þ

We choose ϕ0 ¼ 0. This means that the θ0 direction and ϕ0
direction are identified with the x0 and y0 directions,
respectively, in the Cartesian coordinates. We denote the
unit vectors in the x0 and y0 directions by êðxÞi0 and êðyÞi0 ,
respectively. For small θ0 we have [41]

P1l ðcos θ0Þ ≈ −
lðlþ 1Þ

2
sin θ0: ð145Þ

Then, for θ0 → 0 and ϕ0 → 0 we find

ϵi0j0∂j0 ½P1
l ðcos θ0Þ cosðϕ − ϕ0Þ� → lðlþ 1Þ

2
eðϕÞi0 ; ð146Þ

where

eðϕÞi0 ¼ −eðxÞi0 sinϕþ eðyÞi0 cosϕ: ð147Þ

Then, by Eq. (120) we obtain

X
m¼�1

Yðl;mÞ
i ðθ;ϕÞYðl;mÞ

i0 ðθ0 ¼ 0;ϕ0 ¼ 0Þ

¼ 2lþ 1

4πlðlþ 1Þ ϵij∂
j½P1l ðcosθÞêðϕÞi0 �

¼ 1

lðlþ 1Þ ϵij∂
j ∂
∂θ ½Y

ðl;0Þðθ;ϕÞYðl;0Þðθ0 ¼ 0;ϕ0 ¼ 0ÞêðϕÞi0 �:

ð148Þ

We now define the following differential operators
motivated by how the vector-type modes are given in
terms of ΦðωlÞ

V :

DðVÞ
t ¼ ð1 − r2Þ∂r; ð149Þ

DðVÞ
r ¼ 1

1 − r2
∂t: ð150Þ

Then the contribution of the vector-type modes to our
graviton two-point function can be given as

ΔðVÞ
aia0i0 ðy; y0Þ ¼ DðVÞ

a DðVÞ
a0 Fii0 ðy; y0Þ ð151Þ

with all other components vanishing, where

Fii0 ðy; y0Þ ¼
X∞
l¼2

X
m¼�1

Yðl;mÞ
i ðθ;ϕÞYðl;mÞ

i0 ðθ0 ¼ 0;ϕ0 ¼ 0Þ

×
Z

∞

0

dω

�
rΦðωlÞ

V ðt; rÞr0ΦðωlÞ
V ðt0; r0Þ

e2πω − 1

þ rΦðωlÞ
V ðt; rÞr0ΦðωlÞ

V ðt0; r0Þ
1 − e−2πω

�
: ð152Þ

By substituting Eq. (127) into this equation, using
Eq. (148) and then using the definition (133) of Gðy; y0Þ
we obtain

Fii0 ðy; y0Þ ¼
1

8
ϵij∂j½∂θGðy; y0ÞêðϕÞi0 �: ð153Þ

In summary, if θ0 ¼ 0 in y0 ¼ ðt0; r0; θ0;ϕ0Þ, then
our graviton two-point function in 3þ 1 dimensions is
given by

Δμνμ0ν0 ðy; y0Þ
¼ DðSÞ

μν D
ðSÞ
μ0ν0Gðy; y0Þ

þ 1

2
δafμδ

i
νgδ

a0
fμ0δ

i0
ν0gD

ðVÞ
a DðVÞ

a0 ϵij∂j½∂θGðy; y0ÞêðϕÞi0 �;
ð154Þ

where f:::g indicates symmetrization. (This result is inde-
pendent of the choice of ϕ0.) The differential operatorsDðSÞ

μν
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and DðVÞ
a are defined by Eqs. (128)–(131) and Eqs. (149)–

(150), respectively, the function Gðy; y0Þ is defined by
Eq. (142) in terms of the function Qðθ0Þ defined by
Eq. (143), and the vector eðϕÞi0 is defined by Eq. (147).

V. CONCLUDING REMARKS

In this paper we studied gravitational perturbations in the
static patch, i.e. inside the cosmological horizon, of de
Sitter space. In particular, we used a gauge-invariant
formalism to construct the perturbations and found the
symplectic inner product among these perturbations and the
graviton two-point function with the gauge degrees of
freedom fully fixed. This two-point function (111) was
found to be finite in the infrared because the normalized
perturbations hðP;ωlσÞμν behave like ω1=2 as ω → 0. By
construction this IR-finite two-point function is invariant
under a de Sitter boost which is the time translation with
respect to the timelike Killing vector in the static patch of
de Sitter space.
We note that the IR-divergent two-point function in the

Poincaré patch grows as a function of time. The IR-finite
two-point function in the global patch [26] also grows as a
function of time if the two points are kept at a fixed physical
distance.2 In contrast, the IR-finite two-point function
obtained in this paper is invariant under time translation
as mentioned above and, hence, does not grow as a function
of time.
There have been many works reporting that de Sitter

invariance is broken due to IR gravitons. For example, it
was claimed in Refs. [46–48] that the Hubble constant
would decrease in time because of IR gravitons.
(See Refs. [49,50] for a criticism of these works and the
rebuttal.) There are also other works that found IR growth
of geometrical fluctuations in inflationary spacetimes
[51–53]. It was also claimed that some coupling constants
change in time in the de Sitter background due to IR
divergences of graviton propagators [54–57].
On the other hand, there are some works that suggested

that even the IR divergences of minimally coupled massless
scalar fields have little physical effect in inflationary
cosmology [58–63]. Recently it has been suggested that
this conclusion will extend to linearized gravity [64].
One-loop matter effects on the semiclassical Einstein
equations have also been studied in detail with the result
that the de Sitter background is stable at least against small
metric perturbations [65,66].
The reported de Sitter-breaking effects in the Poincaré

patch described above are caused by interactions, but the
symmetry-breaking mechanism relies heavily on the de
Sitter breaking already present in the propagator in the
Poincaré patch due to IR divergences. Therefore, the IR-
finite and time-translation-invariant graviton two-point

function found in this paper appears to be in conflict with
these claims of de Sitter breaking. (We note that the static
patch is the part of the Poincaré patch that is causally
accessible to a free-falling observer and, hence, is relevant
to the inflationary cosmology.) In this respect we believe
that the “scheme dependence” in some of the de Sitter-
breaking results [67] should be investigated further.
In resolving the issue of whether or not there are gauge-

invariant de Sitter-breaking effects due to IR gravitons, it
would be useful to develop perturbation theory for the
gravitational field in the covariant point of view. Some
progress has been made in the covariant analysis of scalar
field theory [68–75]. It will be interesting to extend these
results to perturbation theory for the gravitational field. As
noted in Ref. [76] the static patch is closely related to the
Euclidean quantum field theory, which in turn is related to
the covariant approach to de Sitter physics. We believe that
our results will be useful in constructing the interacting
field theory of gravity in the static patch, which is both
physically relevant and related to the covariant approach to
perturbative quantum gravity in de Sitter space.
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APPENDIX A: CALCULATION OF THE INNER
PRODUCT FOR THE VECTOR-TYPE MODES

As the vector-type perturbations are traceless (hμμ ¼ 0),
the conjugate momentum current is just

pðVÞλμν ¼ gλμ∇κhðVÞκν þ gλν∇κhðVÞκμ

− gμν∇κhðVÞλκ −∇λhðVÞμν: ðA1Þ

The inner product for the vector case can be written as

hhðV;ωlσÞ; hðV;ω0l0σ0Þi ¼ 2i
Z
Σ
dΩndrrn

×
�
hðV;ωlσÞbipðV;ω0l0σ0Þt

bi

− hðV;ω0l0σ0ÞbipðV;ωlσÞt
bi

	
ðA2Þ

with pðV;ωlσÞ given by2We thank Steve Giddings for pointing this out.
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pðV;ωlσÞa
bi ¼ δabgρν∇ρh

ðV;ωlσÞ
νi − gac∇ch

ðV;ωlσÞ
bi

¼ δab

�
gcdDch

ðV;ωlσÞ
di þ nDcr

r
hðV;ωlσÞci

�

− gac
�
Dch

ðV;ωlσÞ
bi −

Dcr
r

hðV;ωlσÞbi

�
: ðA3Þ

We have

hðV;ωlσÞbipðV;ω0l0σ0Þa
bi

¼ −
V ðlσÞiV ðl0σ0Þ

i

rn−2
DeΩ

ðωlÞ
V ϵbe

×

�
δab

�
ϵdfgcdDc

�
DfΩðω0l0Þ

V

rn−2

�
þ nϵcf

DcrDfΩðω0l0Þ
V

rn−1

�

− gac
�
ϵbfDc

�
DfΩðω0l0Þ

V

rn−2

�
− ϵbf

DcrDfΩðω0l0Þ
V

rn−1

��
;

ðA4Þ

where ΩðωlÞ
V ¼ rn=2ΦðωlÞ

V . This can be simplified as

hðV;ωlσÞbipðV;ω0l0σ0Þa
bi

¼ V ðlσÞiV ðl0σ0Þ
i

rn−2
DeΩðωlÞ

V

×

�
DeDaΩðω0l0Þ

V

rn−2
þ 2

DerDaΩðω0l0Þ
V

rn−1

− n
DarDeΩ

ðω0l0Þ
V

rn−1
−
DarDeΩ

ðω0l0Þ
V

rn−1

�
: ðA5Þ

Now we calculate the integral

IðΩV;Ω0
VÞ ¼ 2i

Z
Σ
dΩndrrnhðV;ωlσÞbipðV;ω0l0σ0Þt

bi ðA6Þ

¼ 2iδll
0
δσσ

0
�Z

1

0

dr∂tΩðωlÞ
V

×

�∂t∂t

rn−2
þ Γt

tr
∂r

rn−2

�
Ωðω0lÞ

V þ
Z

1

0

dr∂rΩðωlÞ
V

×

�∂r∂t

rn−2
þ Γt

rt
∂t

rn−2
þ 2

∂t

rn−1

�
Ωðω0lÞ

V

�
; ðA7Þ

where we used the fact that
R
dΩnV ðlσÞiV ðl0σ0Þ

i ¼ 1
r2 δ

ll0δσσ
0
.

We use the following equation to eliminate the term
∂t∂tΩðω0lÞ

V in Eq. (A7):

∂t∂tΩðω0lÞ
V

rn−2
¼ −∂r

�∂rΩðω0lÞ
V

rn−2

�
þ 2

∂rΩðω0lÞ
V

rn−1

þ ½lðlþ n − 1Þ − n�Ωðω0lÞ
V

rn
: ðA8Þ

We multiply this equation by ∂tΩðωlÞ
V and integrate with

respect to r. We use integration by parts for the second
term, dropping the boundary term because it oscillates
rapidly as a function of ω and ω0 unless ω ¼ ω0 and hence
can be neglected as a distribution of ω and ω0. We substitute
the resulting expression into Eq. (A7) and find the inner
product as

hhðV;ωlσÞ;hðV;ω0l0σ0Þi¼ IðΩV;Ω0
VÞ−IðΩ0

V;ΩVÞ ðA9Þ

¼2iδll
0
δσσ

0 ðl−1ÞðlþnÞ
Z

1

0

dr

×
Ωðω0lÞ

V ∂tΩðωlÞ
V −ΩðωlÞ

V ∂tΩðω0lÞ
V

rn
; ðA10Þ

i.e.

hhðV;ωlσÞ; hðV;ω0l0σ0Þi
¼ 2iδll

0
δσσ

0 ðl − 1Þðlþ nÞ

×
Z

1

0

dr
1 − r2

ðΦðωlÞ
V ∂tΦ

ðω0lÞ
V − Φðω0lÞ

V ∂tΦ
ðωlÞ
V Þ: ðA11Þ

From this equation we find the normalization constants
AðωlÞ
V in Eq. (76) in the same way as in the tensor case.

APPENDIX B: CALCULATION OF THE INNER
PRODUCT FOR THE SCALAR-TYPE MODES

As we stated in Sec. III E, we evaluate the inner product
for the scalar-type modes on the future horizon. Let us first
derive Eq. (92) on the future horizon. A future-pointing
vector orthogonal to an r ¼ constant hypersurface, which is
spacelike if r > 1, is −∇ar. Then, the unit future-pointing
normal vector is

na ¼ ðr2 − 1Þ−1=2∇ar

¼ ðr2 − 1Þ−1=2
� ∂
∂u

	a
þ ðr2 − 1Þ12

� ∂
∂r

	a
: ðB1Þ

Now, the surface element of this hypersurface is

dΣ ¼ dΩnduðr2 − 1Þ1=2: ðB2Þ

Hence

dΣna ¼ dΩndu

�� ∂
∂u

�
a
þ ðr2 − 1Þ

� ∂
∂r

�
a
�
: ðB3Þ

Clearly, in the limit r → 1 we have

lim
r→1

dΣna ¼ dΩndu

� ∂
∂u

�
a
; ðB4Þ

which is Eq. (92).
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Now, to express the conserved current in terms of the
master variable ΦðlÞ

S , we first simplify Eq. (98), which
expresses FðlÞ in terms ofΦðlÞ

S , using the field equation (11),
which reads on the horizon

□ΦðlÞ
S ¼ 2ð∂u þ 1Þ∂rΦ

ðlÞ
S ¼ An;lΦ

ðlÞ
S ; ðB5Þ

with

An;l ¼ ðlþ 1Þðlþ n − 2Þ; ðB6Þ

as

FðlÞ ¼ −
1

2

�
∂u þ 1 −

An;l

n
−
2

n

�
ΦðlÞ

S : ðB7Þ

Then we find

FðlÞ∂uFðl0Þ ¼ 1

4

�
∂u þ 1 −

2

n
−
An;l

n

�
ΦðlÞ

S

× ∂u

�
∂u þ 1 −

2

n
−
An;l

n

�
Φðl0Þ

S

≈ −
∂uΦ

ðl0Þ
S

4

�
∂2
u −

�
1 −

2

n
−
An;l

n

�
2
�
ΦðlÞ

S : ðB8Þ

Here we indicated the equivalence up to a total
derivative with respect to u by ≈ because we will integrate
this quantity over u to obtain the symplectic product
between two scalar-type modes that tend to zero
as u → �∞.
Similarly we find

2FðlÞ
rr ∂uF

ðl0Þ
uu − 4FðlÞ

rr F
ðl0Þ
uu ≈ 2∂uΦ

ðl0Þ
S ð∂2

u þ 3∂u þ 2Þ

×

�
∂2
r þ n∂r þ

nðn − 2Þ
4

�
ΦðlÞ

S ;

ðB9Þ

so that

2FðlÞ
rr ∂uF

ðl0Þ
uu − 4

¯
FðlÞ
rr F

ðl0Þ
uu þ 2nðn − 2ÞFðlÞ∂uFðl0Þ

≈ 2∂uΦ
ðl0Þ
S ð∂u þ 1Þð∂u þ 2Þð∂2

r þ n∂rÞΦðlÞ
S

þ 3nðn − 2Þ
2

∂uΦ
ðl0Þ
S ∂uΦ

ðlÞ
S þ nðn − 2ÞΦðlÞ

S ∂uΦ
ðl0Þ
S

þ nðn − 2Þ
2

�
1 −

2

n
−
An;l

n

�
2

ΦðlÞ
S ∂uΦ

ðl0Þ
S : ðB10Þ

We can rewrite the first term, using Eq. (B5), as

2∂uΦ
ðl0Þ
S ð∂u þ 1Þð∂u þ 2Þð∂2

r þ n∂rÞΦðlÞ
S

¼ 2∂uΦ
ðl0Þ
S ð∂u þ 1Þð∂u þ 2Þð∂2

r þ 2∂rÞΦðlÞ
S

− ðn − 2ÞAn;l∂uΦ
ðl0Þ
S ð∂u þ 2ÞΦðlÞ

S : ðB11Þ

Substituting this equation into Eq. (B10), we find

2FðlÞ
rr ∂uF

ðl0Þ
uu − 4FðlÞ

rr F
ðl0Þ
uu þ 2nðn − 2ÞFðlÞ∂uFðl0Þ

≈ 2∂uΦ
ðl0Þ
S ð∂u þ 1Þð∂u þ 2Þð∂2

r þ 2∂rÞΦðlÞ
S

þ
�
3nðn − 2Þ

2
− ðn − 2ÞAn;l

�
∂uΦ

ðl0Þ
S ∂uΦ

ðlÞ
S

þ
�
2 −

4An;l

n
þ
�
1 −

2

n
−
An;l

n

�
2
�

×
nðn − 2Þ

2
ΦðlÞ

S ∂uΦðl0Þ: ðB12Þ

Now we note that

1

2
½□ðr2□ΦðlÞ

S Þ − 2□ΦðlÞ
S � ¼ 2ð∂u þ 1Þð∂u þ 2Þ

× ð∂2
r þ 2∂rÞΦðlÞ

S : ðB13Þ

To calculate □ðr2□ΦðlÞ
S Þ, we write

□ΦðlÞ
S ¼ Bn;l þ Cn;lr2

r2
ΦðlÞ

S ; ðB14Þ

with

Bn;l ¼
1

4
½4lðlþ n − 1Þ þ nðn − 2Þ� ðB15Þ

and

Cn;l ¼ −
ðn − 2Þðn − 4Þ

4
: ðB16Þ

It is important not to let r ¼ 1 in Eq. (B14) because
we are going to differentiate this expression with respect
to r. Then, we have, noting that An;l ¼ Bn;l þ Cn;l for
r ¼ 1,

□ðr2□ΦðlÞ
S Þ ¼ ðA2

n;l − 4Cn;lÞΦðlÞ
S − 4Cn;l∂uΦ

ðlÞ
S : ðB17Þ

Substituting Eq. (B17) into Eq. (B13) and using the
resulting expression in Eq. (B12), we obtain
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2FðlÞ
rr ∂uF

ðl0Þ
uu − 4FðlÞ

rr F
ðl0Þ
uu þ 2nðn − 2ÞFðlÞ∂uFðl0Þ

≈
�
A2
n;l

2
− An;l − 2Cn;l þ

nðn − 2Þ
2

×

�
2 −

4An;l

n
þ
�
1 −

2

n
−
An;l

n

�
2
��

ΦðlÞ
S ∂uΦ

ðl0Þ
S

þ
�
3nðn − 2Þ

2
− ðn − 2ÞAn;l − 2Cn;l

�

× ∂uΦ
ðl0Þ
S ∂uΦ

ðlÞ
S : ðB18Þ

Substituting this equation into Eq. (88), we find for the
inner product between two scalar-type modes

hhðS;ωlσÞ; hðS;ω0l0σ0Þi ¼ i
ðn − 1Þlðl − 1Þðlþ n − 1Þðlþ nÞ

n

×
Z

dΩnduSðlσÞSðl0σ0Þ

× ðΦðωlÞ
S ∂uΦ

ðω0lÞ
S − Φðω0lÞ

S ∂uΦ
ðωlÞ
S Þ:
ðB19Þ

In tr coordinates and on the t ¼ constant Cauchy surface,
this is given as

hhðS;ωlσÞ; hðS;ω0l0σ0Þi ¼ i
ðn − 1Þlðl − 1Þðlþ n − 1Þðlþ nÞ

n

× δll
0
δσσ

0
Z

1

0

dr
1 − r2

ðΦðωlÞ
S ∂tΦ

ðω0lÞ
S

− Φðω0lÞ
S ∂tΦ

ðωlÞ
S Þ: ðB20Þ

APPENDIX C: THE TWO-POINT FUNCTION
FOR THE SCALAR FIELD

The minimally coupled scalar field equation with
mass M,

r−nDaðrnDaϕÞ þ 1

r2
D̂iD̂

iϕ −M2ϕ ¼ 0; ðC1Þ

can readily be solved with the positive-frequency solutions
being given by

ϕðωlσÞðyÞ ¼ NðωlÞe−iωtrlð1 − r2Þiω=2Fðα−; αþ; γ; r2ÞSðlσÞ;
ðC2Þ

where

α� ¼ 1

2

0
B@iωþ lþ nþ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nþ 1

2

�
2

−M2

s 1
CA; ðC3Þ

γ ¼ lþ nþ 1

2
: ðC4Þ

The normalization constants NðωlÞ are determined by
requiring

hϕðωlσÞ;ϕðω0l0σ0Þi ≔ i
Z
Σ
dΣnλϕðωlσÞ∇↔λϕ

ðω0l0σ0Þ

¼ δll
0
δσσ

0
δðω − ω0Þ: ðC5Þ

Proceeding in exactly the same way as in the graviton case,
we find

jNðωlÞj2 ¼ sinh πωjΓðα−ÞΓðαþÞj2
4π2jΓðlþ nþ1

2
Þj2 : ðC6Þ

The special case with n ¼ 2 agrees with Ref. [40].
For M > 0 we find that the normalization constants

jNðωlÞj2 tend to 0 like ω1=2 as ω → 0. Now, for M ¼ 0 we
have

jNðωlÞj2jM¼0

¼ sinh πωjΓð1
2
ðiωþ lÞÞΓð1

2
ðiωþ lþ nþ 1ÞÞj2

4π2jΓðlþ nþ1
2
Þj2 : ðC7Þ

Thus, the mode functions ϕðω;lσÞðyÞ tend to zero like ω1=2

for l ≥ 1, but the l ¼ 0 mode function diverges like ω−1=2.
The two-point function for the corresponding quantum
field ϕ̂ðyÞ is

hϕ̂ðyÞϕ̂ðy0Þi ¼
X∞
l¼0

X
σ

Z
∞

0

dω

×

�
1

e2πω − 1
ϕðωlσÞðyÞϕðωlσÞðy0Þ

þ 1

1 − e−2πω
ϕðωlσÞðyÞϕðωlσÞðy0Þ

�
: ðC8Þ

This is IR divergent for M ¼ 0 because the l ¼ 0 con-
tribution to the integrand behaves like ω−2 as ω → 0.

APPENDIX D: TWO-POINT FUNCTION
WITH ONE POINT AT r ¼ 0

In this appendix we show that the two-point function
(111) vanishes if one of the two points is at r ¼ 0. This
shows clearly that the values of the graviton two-point
function by themselves have no physical significance.
Since r ¼ 0 is a coordinate singularity of spherical polar

coordinates, we need to contract the indices of the two-
point function at the origin with the vielbein eðaÞμ satisfying

eðaÞμeðbÞνηðaÞðbÞ ¼ gμν ðD1Þ

and

gμνeðaÞμeðbÞν ¼ ηðaÞðbÞ; ðD2Þ
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where ηðaÞðbÞ ¼ diagð−1; 1; 1;…; 1Þ. At any point away
from r ¼ 0 we can choose the following vielbein eμðaÞ:

êð0Þ ¼ ðð1 − r2Þ−1=2; 0;…; 0Þ; ðD3Þ

êð1Þ ¼ ð0; ð1 − r2Þ1=2; 0;…; 0Þ; ðD4Þ

êðiÞ ¼
�
0; 0;…;

1

r
ffiffiffiffiffi
γii

p ; 0;…; 0

�
; ðD5Þ

where the index i is not summed over. We take the limit
r → 0 after contracting the indices of the two-point
function at the origin with this vielbein.

Now we examine the components eðaÞμeðbÞνh
ðP;ωlσÞ
μν ðyÞ as

r in y ¼ ðt; r; θ;ϕ; :::Þ tends to zero. If ðaÞ and ðbÞ are (0) or
(1), then limr→0ê

μ
ðaÞê

ν
ðbÞhμν ¼ hab, where a and b on the

right-hand side are t or r. Hence we can examine the
components hab directly. For the vector- and tensor-type

perturbations this is trivially zero since hðP;ωlσÞab ¼ 0 for P ¼
V and T in the gauge that we have chosen. For the scalar-

type modes, we first note that rn=2ΨðωlÞ
S in Eq. (106)

behaves like rlþn as r → 0. The derivative operators
DaDb and □ change the leading behavior to Oðrlþn−2Þ.
Then it can readily be seen that hðS;ωlσÞab tends to zero like rl

(l ≥ 2) or faster as r → 0.
For ðaÞ ¼ ð0Þ or (1) and ðbÞ ¼ ðiÞ, we find

eðaÞμeðiÞνh
ðP;ωlσÞ
μν ¼ ð1 − r2ÞsignðaÞ=2ðr2γiiÞ−1=2hðP;ωlσÞai ;

ðD6Þ

where signðaÞ ¼ −1 if a ¼ 0 and signðaÞ ¼ 1 if a ¼ 1.
Now, it is the tensor- and scalar-type perturbations that
vanish identically in the gauge we have chosen. For the

vector case, we find that rn=2ΦðωlÞ
V in Eq. (104) behaves like

rlþn as r → 0. Then it can readily be seen that hðV;ωlσÞti and

hðV;ωlσÞri behave like rlþ1 and rlþ2, respectively, with l ≥ 2.

Then Eq. (D6) shows that eðaÞμeðiÞνh
ðP;ωlσÞ
μν → 0 as r → 0.

Finally, we calculate the components with ðaÞ ¼ ðiÞ and
ðbÞ ¼ ðjÞ to find

eðiÞμeðjÞνh
ðP;ωlσÞ
μν ¼ ðγiiγjjÞ−1=2r−2hðP;ωlσÞij : ðD7Þ

The vector case is trivial since hðV;ωlσÞij ¼ 0. The scalar case
is

eðiÞμeðjÞνh
ðS;ωlσÞ
μν ¼ γijSðlσÞ

ðγiiγjjÞ1=2
ð□þ 2Þ
nrn−2

ðrn=2ΦðωlÞ
S Þ; ðD8Þ

which behave like rl, l ≥ 2, as r → 0. For the tensor case,
we have

eðiÞμeðjÞνh
ðT;ωlσÞ
μν ¼ 2T ðlσÞ

ij

ðγiiγjjÞ1=2
r−n=2ΦðωlÞ

T : ðD9Þ

Then these vielbein components for the tensor case behave
like rl, l ≥ 2, for small r. Hence, it will vanish as r → 0.
Since all these components vanish for r → 0, the two-point
function itself vanishes in this limit.
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