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In this paper we study the structure of the phase space in noncommutative geometry in the presence of a
nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable
manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider
noncommutative spaces due to the quantization of the symplectic structure and determine the momentum
operators that guarantee a set of canonical commutation relations, appropriately extended to include the
nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality.
This enables us to write down the form of the full phase space algebra on these noncommutative spaces,
both in the noncompact and in the compact case. We test our results against the class of four-dimensional
and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes
the general formalism.
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I. INTRODUCTION

The most challenging conceptual problem of modern
theoretical physics is the lack of a complete understanding
of the physics of phenomena related to the fundamental
constants GN and ℏ. These are quantum gravitational
phenomena that become important near the Planck scale,

defined by the mass scale mP ¼
ffiffiffiffiffi
ℏc
GN

q
, or by the length

scale lP ¼
ffiffiffiffiffiffiffi
ℏGN
c3

q
.

Quantum field theory describes physical processes
where both c and ℏ are important. In this sense, it is a
unifying framework for special relativity and quantum
mechanics. Its success is unquestionable, since it success-
fully incorporates three of the four fundamental inter-
actions, the electromagnetic, weak and strong ones, in a
particular unifying theory, the standard model. The latter
has achieved unprecedented agreement with experimental
data and a unique corroboration of its merit as a valid
theory, at least up to energy scales of 1 TeV.
Incorporating gravitational interactions in a unifying

scheme with the rest of the forces is a notoriously difficult
problem. String theory is at present the only framework
where this is possible in a mathematically consistent way.
The fundamental degrees of freedom in string theory are
one-dimensional objects that do not propagate on a
predetermined spacetime continuum, but instead they
determine the geometry of spacetime. Indeed, the concept
of spacetime and its dynamics is a derived or emergent
concept that arises from the quantization of the two-
dimensional nonlinear sigma model that models the propa-
gation of a string world sheet.

The fact that strings are extended objects means that they
cannot be associated to points in spacetime. This indicates
that string geometry should have no points, unlike classical
differential geometry. Pointless geometries are best accom-
modated in the mathematical framework of noncommuta-
tive geometry [1–3]. In such geometries, the spacetime
coordinates become noncommuting operators and therefore
a single point cannot by definition be resolved in any
thought experiment, much like points in the phase space of
quantum mechanics. This close relation between the
geometry probed by a string and noncommutative space-
time geometries has been confirmed through the many
connections that were established between string theory
and noncommutative geometry [4,5] (see also Ref. [6] for a
review of more recent progress and the related literature). In
this sense, these two frameworks are close collaborators
regarding questions of quantum gravitational phenomena.
String theory and noncommutative geometry introduce

their respective scales, namely the string length ls in the
first case and the length scale lNC where the classical
description of spacetime is lost in the second. Equivalently
one can think in terms of the string slope parameter α0,
which is equal to the square of the string length, or a
noncommutativity scale l2NC that appears in the commutator
of coordinate operators in a noncommutative algebra. The
above arguments suggest that there should exist a relation
α0 ∼ l2NC among the two. However, the generally accepted
statement that at extremely small distances the classical
notion of spacetime breaks down and has to be replaced
by some notion of quantum or fuzzy spacetime can be
supported with arguments that are independent of string
theory too [1,7].
The physical motivation for the present work is to derive

some lessons on the interplay between quantum mechanics
and gravity through noncommutative geometry. In order to*thanasis@itp.uni‑hannover.de
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do so, one has to understand how the scalesGN and ℏ come
together in a noncommutative algebra. This can be under-
stood in the context of a noncommutative phase space,
whose algebraic structure is in general

½x̂a; x̂b� ¼ il2NCθ
abðx̂cÞ;

½x̂a; p̂i� ¼ iℏeaiðx̂cÞ ¼ iℏδai þ imNCfaibx̂b þOðx̂2Þ;

½p̂i; p̂j� ¼ i
ℏ2

l2NC
Fij;

where all the undefined quantities will be explained in
detail below. What we point out here are the scales that
appear in the algebra.1 As already discussed, the length
scale lNC should be related to a small fundamental length,
for example the Planck length l2NC ∼ GNℏ (or the string
length, if one wishes to relate the two scales). Moreover,
we denoted as mNC the combination ℏ=lNC (recall that
c ¼ 1) and this should be related to the Planck mass,
m2

NC ∼ ℏ=GN . It will become clear in the following that
turning off the gravitational field the commutation relation
between positions and momenta becomes the canonical
commutation relation of quantum mechanics, and the
momenta commute, as long as there are no magnetic
sources in the problem. Thus by turning off gravity we
get noncommutative quantum mechanics and furthermore
standard quantum mechanics in the limit lNC → 0.
The reason that we consider the full phase space instead

of just the commutator of coordinates should be clear by the
fact that quantum mechanics appears as a limiting case.
Indeed, quantum mechanics teaches us that the phase space
is an essential concept in the understanding of the under-
lying physics, a fact that is sometimes overlooked in
applications of noncommutative geometry in high-energy
physics. It is reasonable to expect that phase space plays
an equally important role in quantum gravity.2 It should
be mentioned that this was already emphasized long ago
by Madore [1], who examined the role and properties of
momenta in noncommutative geometry within the non-
commutative frame formalism. More recent developments
in this framework include Refs. [8–10]. The importance of
noncommutative phase space in physical problems, such
as quantum particles in strong magnetic fields, was also
emphasized in Refs. [11–15].
In this paper we are interested in examining the algebraic

properties of the phase space when it is quantized in the
presence of a nontrivial frame. The main physical reason to
do this is that the frame is associated to the gravitational

field. Therefore we expect to get some first lessons for
physical problems that involve the behavior of quantum
particles in the presence of gravity. These are situations that
generalize the cases studied in Refs. [11–18], relevant for
physical problems such as quantum particles moving in
electromagnetic fields or the quantum Hall effect. On the
other hand, although the noncommutativity of phase space
in quantum mechanics was based on experimental facts,
there is no experimental result yet that points to the phase
space we describe here. However there are good conceptual
reasons to consider it, as described above, and moreover
one could hope for some basic experimental support of the
general framework by experiments such as the Fermilab
Holometer [19,20], which is designed to test proposals
associated to the quantization of spacetime.
In order to carry out the above task, one basic assumption

wemake is that the spaces we investigate admit a symplectic
structure. It is well known that symplectic manifolds have
tractable quantization properties, either via deformation
quantization [21] or Weyl quantization [22]. Moreover,
we assume that the space is parallelizable so that a globally
well-defined frame exists on it. Nontrivial symplectic,
parallelizable and curved manifolds exist and we are going
to provide a class of examples, the symplectic nilmanifolds.
At this point it is useful to recall that in classical

mechanics in d-dimensional flat space, the Hamiltonian
formalism includes a set of coordinates xa; a ¼ 1;…; d and
momenta pa, building up a 2d-dimensional phase space
in d dimensions. This phase space has the structure of a
symplectic manifold with symplectic structure,

ω ¼ δbadxa∧dpb; ð1:1Þ

where summation is implied. xa and pa are the canonical
coordinates with differentials (1-forms) dxa and dpa.
The corresponding dual derivations are ∂xa ¼ ∂=∂xa and
∂pa

¼ ∂=∂pa. The symplectic structure defines a Poisson
bracket, given as

ff; gg ¼ δbað∂xbf∂pa
g − ∂pa

f∂xbgÞ: ð1:2Þ

In particular,

fxa; pbg ¼ δab: ð1:3Þ

On the other hand, in quantum mechanics, where xa

and pa become Hermitian operators, the structure of dxa,
dpa, ∂xa and ∂pa

exhibits a degree of redundancy in the
following sense. Since the wave function ΨðxÞ in the
coordinate representation is a function of the positions
only and not of both positions and momenta Ψðx; pÞ, the
quantum physics in the coordinate representation does not
involve ∂pa

at all. Indeed, the canonical commutation
relation (CCR)

1We set c ¼ 1, since we are not interested in the corresponding
physics here.

2This statement can be made more precise once a dynamical
theory for quantum fields in phase space that incorporates the
gravitational field is established. Although we do not directly
address this problem in the present paper, we discuss a possible
way to achieve this goal in the discussion section.
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½x̂a; p̂b� ¼ iℏδab; ð1:4Þ

which can be thought of as the quantization of the Poisson
bracket,3 is represented on the Hilbert space by the
operators

x̂aΨ ¼ xaΨ; p̂aΨ ¼ −iℏδba∂xbΨ; ð1:5Þ

in accord with the Stone-von Neumann theorem. In the dual
picture of the momentum representation, where the wave
function depends on the momenta ΨðpÞ, the operators are
represented as

x̂aΨ ¼ iℏδab∂pb
Ψ; p̂aΨ ¼ paΨ: ð1:6Þ

Of course there is a continuum of intermediate mixed
pictures but these are not particularly useful. In any case, a
simultaneous consideration of ∂xa and ∂pa

is unnecessary.
From a different point of view, employing the position
representation, there is a commutative algebra of operators
x̂a and the momentum operators are included as outer
derivations in the algebra and thus do not belong to the
algebra which the position operators generate.
On the contrary to the latter statement, in noncommu-

tative geometry the momenta do not necessarily correspond
to outer derivations and they can also be elements of the
noncommutative algebra A generated by the position
operators; namely they can also be inner. Thus, the start-
ing point is the noncommutative but associative algebra
A of coordinate operators and the momenta can be
formally expressed in terms of the coordinate operators,
p̂a ¼ p̂aðx̂bÞ. This leads to a picture where the full phase
space is associated to a noncommutative algebra where not
only coordinates but also momenta do not necessarily
commute among themselves. In the simplest case of non-
commutative quantum mechanics in the absence of curva-
ture, the CCRs are retained and they are supplemented
by commutation relations among coordinates and among
momenta separately. In the absence of sources and gravity,
the momenta commute. However, this is not true anymore
where sources are included or the gravitational field is
present.
In the present work we are interested in the case of the

gravitational field, associated with a frame4 eia. As already
stated, we assume that the space is parallelizable and admits
a symplectic structure and that the symplectic 2-form ω,
as well as the corresponding symplectic 2-vector θ, is
constant in the basis of the globally well-defined frame.
Noncommutativity is introduced in the commutator of the

position operators, setting it equal to the components of the
symplectic structure in the curved basis,

½x̂a; x̂b� ¼ iθabðx̂cÞ; ð1:7Þ

where from now on we set lNC ¼ 1. In this basis the
parameters are not necessarily constant. However, we will
see that there exists an interesting class of noncommutative
spaces with curvature where they are constant in a chosen
coordinate system. In the presence of a nontrivial frame eia
with inverse eai, the appropriate commutation relations
between momenta and coordinates are augmented to

½x̂a; p̂i� ¼ iℏeaiðx̂cÞ; ð1:8Þ

where on the right-hand side we encounter the noncom-
mutative frame which is related to the gravitational field
[9]. In the following we will find the expression for the
momenta and show how the full phase space algebra is
determined. This algebra is required to satisfy the Jacobi
identities. Going one step further, we depart from the
noncompact case and study the phase space algebra when
a periodicity condition that compactifies the space is
imposed. This is analogous to the condition that compac-
tifies a d-plane to a d-torus. In such cases, the operators x̂a

turn out to be unphysical and the correct position operators
are obtained with exponentiation of x̂a. Moreover, we test
our results both in the noncompact and compact cases in a
class of explicit examples, the symplectic nilmanifolds in
four and six dimensions.

II. QUANTUM MECHANICS AND
NONCOMMUTATIVITY

A. Phase space of the noncommutative plane and torus

In standard quantum mechanics, phase space is non-
commutative. This is just the statement that a nontrivial
commutation relation between positions and momenta
exists, the CCR, which is the basis of the uncertainty
principle. However, both the position space and the momen-
tum space are commutative. The full phase space algebra
is simply

½x̂i; x̂j� ¼ 0; ½x̂i; p̂j� ¼ iℏδij; ½p̂i; p̂j� ¼ 0; ð2:1Þ

where we use flat indices for both positions and momenta.5

As discussed in the introduction, this algebra of operators
can be represented in the position representation, where the
eigenvalues of the Hermitian operators x̂i are ordinary real

3This is in the sense of Dirac, where the replacement f·; ·g →
1
iℏ ½·; ·� accounts for quantization. This simple relation should be
treated cautiously, since it is not a sufficient and complete rule.
For more details see for example the lecture notes [23].

4Throughout this paper, i; j;… are flat (tangent space) indices,
while a; b;… are curved (world) indices.

5In the present case the classical globally well-defined 1-forms
are simply ei ¼ δiadxa ¼ dðδiaxaÞ and therefore we can introduce
flat coordinates xi ¼ δiaxa and the corresponding quantum
operators. Similarly, the dual vector fields are just θi ¼ δai ∂a
and we can define p̂i ¼ δai p̂a. Thus we can work fully in flat
indices instead of cluttering with the tensors δai and δia.
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numbers xi ∈ R and the momentum operators are trans-
lations, namely partial derivatives with respect to xi, or in
the dual momentum representation where the roles are
exchanged. As we already stressed above, the momenta are
introduced as outer derivations in the algebra of position
operators. In standard quantum mechanics the momentum
operators cannot be inner derivations of the algebra.
On the other hand, one can consider the quantum

mechanics of particles on a noncommutative space, as
for example in Refs. [11–15,24]. The simplest possibility is
a noncommutative plane in d dimensions or a noncommu-
tative d-torus. Although these cases are well known, let us
review the main steps and results in order to warm up for
the more general cases that we will present in the rest of
this paper.
Let us first consider the noncompact case of a non-

commutative d-plane of even dimension. This is specified
by a set of coordinate operators which satisfy a commu-
tation relation of the form ½x̂i; x̂j� ¼ iθij. Here, θij is the
set of constant noncommutativity parameters. They can be
identified with the components of a symplectic structure on
the corresponding classical manifold, namely with a con-
stant symplectic 2-vector in the globally well-defined basis.
The quantum mechanics of particles on this space is
associated with the noncommutative phase space algebra

½x̂i; x̂j� ¼ iθij; ½x̂i; p̂j� ¼ iℏδij; ½p̂i; p̂j� ¼ 0;

ð2:2Þ

which extends the standard algebra (2.1).6 The prime
question to address concerns the realization of this algebra,
which cannot be the same as in standard quantum mechan-
ics for obvious reasons. One way to think about this
problem is to associate x̂i to a set of Hermitian matrices
from a matrix algebra A (in particular the Heisenberg
algebra in d dimensions) and the momenta to inner deriva-
tions of the algebra A, similarly to Ref. [25]. Although
representing momenta with inner derivations was impos-
sible in standard quantum mechanics, it works perfectly
in the noncommutative case. Inner derivations in matrix
algebras act with the adjoint action and therefore we
consider the following ansatz for the momenta,

p̂i ¼ cijadx̂j ¼ cij½x̂j; ·�; ð2:3Þ

where · is a placeholder for arbitrary elements of the algebra
A and cij are constants to be determined. First we consider
the CCRswith the position operators. Acting on an arbitrary
function f ∈ A they imply

iℏδjif ¼ ½x̂j; p̂i�f ¼ x̂jcik½x̂k; f� − cik½x̂k; x̂jf�
¼ cikx̂j½x̂k; f� − cikx̂j½x̂k; f� − cik½x̂k; x̂j�f
¼ −icikθkjf; ð2:4Þ

where we used the fact that cij are constant and we applied
the Leibniz rule. Then we obtain

cij ¼ ℏδkiωkj ¼ ℏωij; ð2:5Þ

whereωij are the constant components of the nondegenerate
symplectic 2-form which satisfies the relation

θijωjk ¼ −δik ð2:6Þ

with the symplectic 2-vector components. Therefore the
momenta are given as

p̂i ¼ ℏωij½x̂j; ·�: ð2:7Þ

Their trivial commutation relation remains to be examined.
We compute

0 ¼ ½p̂i; p̂j�f ¼ ℏωik½x̂k;ℏωjl½x̂l; f�� − ℏωjl½x̂l;ℏωik½x̂k; f��
¼ ℏ2ωikωjlð½x̂k; ½x̂l; f�� − ½x̂l; ½x̂k; f��Þ
¼ ℏ2ωikωjl½½x̂k; x̂l�; f� ¼ iℏ2ωikωjl½θkl; f�; ð2:8Þ

which holds because of the constancy of θkl. In this
computation the only additional input that has to be used
is the Jacobi identity in the algebra A, which we assume
is valid.
A different but equivalent point of view is to write the

ansatz for the momentum operators as

p̂i ¼ cijðx̂j þ ŷjÞ; ð2:9Þ

with some appropriate operators ŷj. Under the assumption
that

½x̂i; ŷj� ¼ 0; ð2:10Þ

the commutation relation with x̂i fixes cij to be ℏωij, as
before. Then the vanishing commutator among the
momenta gives

0 ¼ ½p̂i; p̂j� ¼ ℏ2ωikωjlð½x̂k; x̂l� þ ½ŷk; ŷl�Þ
⇒ ½ŷi; ŷj� ¼ −½x̂i; x̂j�: ð2:11Þ

This means that

½ŷi; ŷj� ¼ −iθij: ð2:12Þ

In other words, the momenta are realized with two mutually
commuting copies of the algebra A. Although this might

6We are interested in the case where no magnetic sources are
present. Otherwise the commutator of the momenta is also
nonvanishing and proportional to the magnetic field [13].
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seem puzzling, it is fully equivalent to the previous
approach, as explained in Ref. [25]. The equivalence is
established upon the identification

ŷi ¼ −x̂iR; ð2:13Þ

where x̂iR denotes the generators of the AR copy of the
algebra A which act on states from the right, instead of
acting from the left as implicitly assumed up to now. The
right and left acting copies of A are mutually commuting
indeed. Then the momenta become

p̂i ¼ ℏωijðx̂jL − x̂jRÞ; ð2:14Þ

which is the same as the expression (2.7). It should be
appreciated that whenever a commutator action is encoun-
tered in noncommutative theories, there are two copies of
the algebra A involved, the left and the right acting ones.
We will see in the following that this distinction between
left and right acting operators becomes crucial in more
involved cases than the planar one.
The above considerations provide an understanding of

the phase space algebra of noncommutative quantum
mechanics and its realization in the absence of sources.
The next step is to consider the compact case, which
corresponds to a noncommutative torus. We follow the
analysis of Ref. [13] in order to illustrate this case. The
starting point of the analysis is that the standard periodicity
condition of a d-torus has to be imposed, i.e.

x̂i ∼ x̂i þ 2πRjδij; ð2:15Þ

where Ri are the d radii of the corresponding cycles, not
necessarily equal for a rectangular torus. The central
observation is that, due to this condition, the operators
x̂i are not single valued and therefore they are unphysical,
i.e. they do not correspond to observables. The physical
operators of positions on the noncommutative torus are
obtained by exponentiation as

Xi ¼ eib
i
jx̂

j
; ð2:16Þ

where bij are constants to be determined. This is achieved
by demanding the unitary operators Xi to be globally well
defined, i.e. to be invariant under the shift (2.15). The
condition for this to happen is

ibij2πR
kδjk ¼ 2πiNδik; N ∈ N; ð2:17Þ

which gives

bij ¼
N
Rj δ

i
j: ð2:18Þ

This results in the well-defined operators

Xi ¼ e
ix̂i

Ri ; ð2:19Þ

where we set N ¼ 1 for simplicity. Then the stage is set
to write down the full phase space algebra for the non-
commutative torus. The momenta are given as before and
they are now outer derivations instead of inner, which was
the noncompact case. The algebra is

XiXj ¼ e−
iθij

RiRjXjXi; ð2:20Þ

p̂iXj ¼ Xj

�
p̂i þ

ℏ
Rj δ

j
i

�
; ð2:21Þ

½p̂i; p̂j� ¼ 0; ð2:22Þ

in agreement with the approach of Ref. [4] on non-
commutative tori. Representations and quantum bundles
over this algebra were discussed in detail in Refs. [13,26].
Here we are interested in the generalization of the above
phase space algebras in the presence of a nontrivial
frame.

B. Left vs right action and symplectic duality

Before introducing curvature, it is useful to discuss
further the left and right realizations of the noncommutative
algebra A. To this end we return to curved indices and we
consider the algebra A, generated by x̂a. The latter
operators satisfy the relation ½x̂a; x̂b� ¼ iθab, with the
parameters θab being in the curved basis and therefore
not necessarily constant. We denote as x̂aL the left acting
position operators and as x̂aR the right acting ones, and AL
and AR denote the corresponding algebras. Clearly,
½x̂aL; x̂bL� ¼ iθab. It is also obvious that ½x̂aL; x̂bR� ¼ 0 in full
generality. On the other hand, for f ∈ A we find

½x̂aR; x̂bR�f ¼ ðx̂aRx̂bR − x̂bRx̂
a
RÞf ¼ fðx̂bx̂a − x̂ax̂bÞ

¼ fð−iθabÞ ¼ −iθabf þ i½θab; f�: ð2:23Þ

In the flat case, the last term on the right-hand side is zero
and then x̂aR form a copy of the algebra A, as in Sec. II A.
This is not generally true when the curved components
of the symplectic structure are not constant. In order to be
able to proceed further, two additional minimal assump-
tions are due. First, we demand that f ∈ AL, a very mild
assumption which is made anyway in all similar
approaches. Second, in order to obtain ½θab; f� ¼ 0 with
general θab, we assume that these components depend on
the right acting operators x̂aR if they are not constant. Then,
due to the commutativity between left and right acting
operators, we get
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½x̂aR; x̂bR�f ¼ −iθabf: ð2:24Þ

This means that the full set of relations is

½x̂aL; x̂bL� ¼ iθab; ½x̂aL; x̂bR� ¼ 0; ½x̂aR; x̂bR� ¼ −iθab:
ð2:25Þ

The different sign of the left and right commutators makes
manifest the symplectic duality among the two sets. The
concept of symplectic dual is very simple. Given a
symplectic manifold with symplectic structure ω, its
symplectic dual is again a symplectic manifold based
on the same underlying manifold and an opposite sym-
plectic structure −ω [23]. This symplectic duality is
elegantly realized in the context that we examine here.
Let us now take a look at the momentum operators too.

In the flat case, the CCR ½x̂j; p̂i� ¼ iℏδji holds as it is for the
left acting position operators. However, it is a straightfor-
ward calculation to show that it holds the same for the right
acting ones too, i.e.

½x̂jR; p̂i� ¼ iℏδji : ð2:26Þ

This obviates the need for right acting momentum oper-
ators. This should be expected from the fact that these
operators already involve both the left and right acting
position operators. On the other hand, in the curved case
we will show that, although ½x̂aL; p̂i� ¼ iℏeai, in the most
interesting cases it holds that

½x̂aR; p̂i� ¼ iℏeai þ ℏωcb½x̂aR; eci�ðx̂bL − x̂bRÞ: ð2:27Þ

This shows that left and right operators are liberated and
they play asymmetric roles in the formalism. Finally, it
should be clear that, had we focused on the momentum
representation, the roles of momentum and position oper-
ators would have been fully exchanged, as in standard
quantum mechanics. In this paper we work on the position
representation.

III. QUANTIZED PHASE SPACES AND
CURVATURE

A. Introduction of curvature

In the previous section we reviewed the phase spaces
of standard quantum mechanics, noncommutative planar
quantum mechanics and noncommutative toroidal quantum
mechanics. In all cases the space is flat and there is no sign
of the gravitational field. This is evident by the fact that
only flat indices appear. Essentially, the flat tensor δia is
implicitly present in all the formulas, through the relation
x̂i ¼ δiax̂a that holds in the flat case.
An elegant way to introduce the gravitational field is

through the vielbein and the frame formalism, as for
example in the treatment of gravity as a gauge theory

(see e.g. Ref. [27] for a concise presentation). There one
substitutes7

δia → eiaðxÞ: ð3:1Þ

This substitution indicates that the CCRs are augmented to
a set of extended CCRs (ECCRs)

½x̂a; p̂i� ¼ iℏeaiðx̂bÞ: ð3:2Þ

Such an approach was advocated and followed in
Refs. [8–10] and many aspects of our approach are similar,
although not identical. In Eq. (3.2), eai is the (inverse of
the) noncommutative vielbein, obtained by the commuta-
tive one upon promoting the coordinates to operators, as in
standard quantum mechanics. Note that in Sec. II we
emphasized the role of left and right acting operators.
Although we indicated the dependence of the frame as x̂b,
it is not a priori clear which of the two sets of operators
is to be taken. Our approach is to keep an open mind and
let the consistency of the formalism decide. It will in fact
turn out that the frame depends on the right acting set of
operators x̂bR.
Let us give a list of our assumptions, which we already

mentioned in the introduction, with some additional details.
First we assume that the classical manifold admits a
symplectic structure. In other words it is endowed with
a nondegenerate closed 2-form ω, dω ¼ 0, which is
invertible. Second, we assume that the classical manifold
is parallelizable and therefore it admits a set of globally
well-defined 1-forms ei which serves as a basis of its
cotangent bundle. In this basis the symplectic 2-form is
assumed to have constant coefficients. In flat space the eis
are just dxi, but this is no longer true for an arbitrary,
possibly curved, manifold. In general, they are related to an
explicit coordinate basis by

ei ¼ eiaðxÞdxa: ð3:3Þ

In geometric terms eiaðxÞ is the twist matrix which relates
the two bases. It is invertible and its inverse is denoted as
eaiðxÞ, as already stated; thus

dxa ¼ eaiei: ð3:4Þ

In gravitational language, it defines the gravitational field,
relating flat and curved indices. Its exterior derivative is a

7Up to now we did not bother about the horizontal position of
the indices, since only the flat tensor appeared where there is no
difference when the inverse or the transpose is taken. From now
on the position is important so let us explain how we denote these
tensors. We do not use an explicit notation for the inverse or the
transpose. It should be clear from the index structure. The inverse
of eia is eai and the transpose is eai. The inverse transpose is eia.
Also we often refrain from explicitly writing the x-dependence of
all these tensors.
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2-form, which can be expanded in the basis of the cotangent
bundle,

dei ¼ −
1

2
fijkejk; ð3:5Þ

where from now on we use the notation eij ¼ ei∧ej. These
are essentially the Maurer-Cartan equations. Solving for the
coefficients, we get

fijk ¼ 2ea½jebk�∂beia: ð3:6Þ

The symplectic 2-form can be expanded in the basis
2-forms too. It has the form

ω ¼ 1

2
ωijeij; ð3:7Þ

where ωij is independent of xa. It is useful to present its
components in the curved basis as well. We compute

ω ¼ 1

2
ωijeiaejbdxab ⇒ ωab ¼ ωijei½aejb�: ð3:8Þ

The symplectic 2-vector has the form

θ ¼ 1

2
θijθi∧θj; ð3:9Þ

where the θis are the dual vectors to the basis 1-forms ei. Its
components are opposite to the components of the inverse
of the symplectic 2-form, namely

θij ¼ −ðω−1Þij: ð3:10Þ

Obviously, it holds that

θijωjk ¼ −δik; ð3:11Þ

and similarly for the curved indices.
Moreover, we assume the validity of the Leibniz rule and

the Jacobi identities. The first means that for any three
functions f; g; h ∈ AL

½f; gh� ¼ g½f; h� þ ½f; g�h: ð3:12Þ

The Jacobi identities are

Jacðf; g; hÞ ≔ ½f; ½g; h�� þ ½h; ½f; g�� þ ½g; ½h; f�� ¼ 0:

ð3:13Þ

These two assumptions are valid in the compact case too. In
fact we extend the above requirements to the full AL ×AR
algebra. Although our pool of configuration space observ-
ables lies in AL, this is important because x̂aR appear in the
phase space algebra too.

Our interest is to construct the quantum mechanical
phase spaces of noncommutative manifolds with a non-
trivial vielbein, guided by Eq. (3.2). In this process, it is
often needed to perform a Weyl ordering and we will
explain when this is needed and how it is implemented.
We always assume that the quantization is performed along
the symplectic structure of the manifold and therefore the
commutator of position operators corresponds to the
components of the symplectic 2-vector in the curved basis.
On the other hand, we do not assume anything for the
commutator among the momenta and instead we are going
to derive it. According to the above, the notation we use is

½x̂a; x̂b� ¼ iθab; ð3:14Þ

½x̂a; p̂i� ¼ iℏeai; ð3:15Þ

½p̂i; p̂j� ¼ iFij: ð3:16Þ

When we write x̂a without a subscript, we implicitly mean
the left acting operators. The right acting ones will always
be indicated explicitly as x̂aR, and their commutation
relation with the momentum operators should be imple-
mented in the above algebra. This will be done explicitly
in the following. Finally, let us recall that this notation is
appropriate for the noncompact cases. As we saw in the
example of the noncommutative torus, the position oper-
ators have to be exponentiated in the compact case. We will
denote these exponentiated operators as Xa, as we did in
the previous section.

B. Momentum operators in the presence
of a nontrivial frame

Let us proceed a step further and determine the general
properties of the position and momentum operators for an
arbitrary symplectic parallelizable manifold in d dimen-
sions. We begin with the noncompact case. We would like
to determine the momenta which guarantee that the mixed
commutation relation ½x̂a; p̂i� ¼ eai is satisfied. To this end
we consider a similar ansatz as for the case with a trivial
frame in Sec. II,

p̂i ≕ ciaðx̂bL; x̂bRÞðx̂aL − x̂aRÞ∶; ð3:17Þ

with two notable differences than previously. First, we let
the quantities cia, which have to be determined, depend
on x̂a. For the moment this dependence can be both on
the left and right acting operators but we will see that a
reduction of this dependence is necessary. The above ansatz
and the x̂a dependence of cia immediately introduces an
ordering issue. This is similar to quantum mechanics, when
products of position and momentum operators are encoun-
tered. The usual rule is to introduce a Weyl ordering of the
operators, denoted as ∶ · ∶, such as
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∶x̂ p̂ ∶ ¼ 1

2
ðx̂ p̂þp̂ x̂Þ; ð3:18Þ

and similarly for higher order ambiguities. Presently, the
Weyl ordering means that8

p̂i ¼
1

2
ðciax̂aL þ x̂aLcia − ciax̂aR − x̂aRciaÞ: ð3:19Þ

Having specified the ansatz, let us insert it in the ECCRs
in order to determine the unknown functions cia:

iℏebi¼½x̂b;p̂i�¼
1

2
ðx̂bLciax̂aLþ x̂bLx̂

a
Lcia− x̂bLciax̂

a
R− x̂bLx̂

a
Rcia

−ciax̂aLx̂
b
L− x̂aLciax̂

b
Lþciax̂aRx̂

b
Lþ x̂aRciax̂

b
LÞ:

ð3:20Þ

In order to be able to solve this condition, an assumption on
the dependence of cia has to be made. If we assume that the
dependence is on x̂aL, the commutation relation ½x̂aL; x̂bR� ¼ 0
may be used to obtain

iℏebi ¼
1

2
ðx̂bLciax̂aL þ x̂bLx̂

a
Lcia − 2½x̂bL; cia�x̂aR

− ciax̂aLx̂
b
L − x̂aLciax̂

b
LÞ: ð3:21Þ

This equation is in general not sufficient to determine cia.
The situation is greatly improved by the alternative choice
of cia depending on x̂aR. In this case we are led to9

iℏebi ¼ ciaðx̂cRÞ½x̂bL; x̂aL� ¼ −iciaðx̂cRÞθab; ð3:22Þ

which implies

ciaðx̂cRÞ ¼ ℏebiωba: ð3:23Þ

It is important to stress that this works only if we assume
that the noncommutative frame also depends on the right
acting set of operators, which is in full agreement with the
discussion and assumptions of Sec. II B. This was up to
now not specified but it is forced on us by the computation
itself and the consistency of the algebra. Therefore we find
that the momenta are given as

p̂i ¼ ℏ∶eaiωabðx̂bL − x̂bRÞ∶ ¼ ℏ∶eaiωab½x̂b; ·�∶: ð3:24Þ

A simple consistency check shows that when the frame is
trivialized the momenta of the noncommutative plane are

recovered. It is observed that in the presence of a nontrivial
frame the momenta are complicated operators. Due to the
noncommutativity of the frame, it is difficult to proceed in a
general evaluation of the momentum commutatorFij and to
present a closed form for the conditions due to the Jacobi
identities. These tasks are tractable once the frame is given
and the symplectic form is known. This will be the case in
the next section.
However, let us examine the momentum commutator

under some assumptions, which will prove valid in the
next section. First, let us assume that ωab, and therefore θab

too, are constant parameters.10 Then the momenta are
simplified to

p̂i ¼ ℏωab∶eaiðx̂bL − x̂bRÞ∶: ð3:25Þ

We introduce the following notation:

½eai; x̂bL� ¼ 0;

½eai; x̂bR� ¼ Kab
i ; ð3:26Þ

½eai; ebj� ¼ Lab
ij : ð3:27Þ

The first equation is due to the fact that the frame is
x̂aR-dependent. Moreover, it holds that Lab

ij ¼ −Lba
ji and we

do not assume any other symmetry property for Lab
ij or Kab

i .
This allows us to compute the momentum commutator and
find the simple expression11

½p̂i; p̂j� ¼ ℏ2ωacωbd

�
Lcd
ij ðx̂aL − x̂aRÞðx̂bL − x̂bRÞ

− 2Kcb
½i e

d
j�ðx̂aL − x̂aRÞ

�
: ð3:28Þ

It is clear from the structure that the right-hand side
contains linear and quadratic terms in p̂i and possibly
constant terms too. We express this as

½p̂i; p̂j� ¼ Mij þ Nij
kp̂k þ Pkl

ij p̂kp̂l; ð3:29Þ

where Mij; Nij
k; Pkl

ij are parameters antisymmetric in their
lower indices, while Pkl

ij is symmetric in its upper indices.
We should stress that a quadratic algebra for the momenta
was proven by Madore to be the only consistent choice for
matrix algebras [1]. Comparing the last two expressions,
we determine the coefficients to be

Pkl
ij ¼ ekceldLcd

½ij�; ð3:30Þ

8If the cias are higher than linear order, then they are also
normal ordered. We refrain from explicitly indicating this in our
notation.

9Had we made the additional assumption that ½ciaðx̂cLÞ; x̂bL� ¼ 0
in the previous case, we would have arrived at the same
expression. However, this route would not lead in general to
consistent results.

10This might seem strange, since they carry curved indices, but
in Sec. IV we will show that it is a relevant case.

11In order to reach this expression, we assume that
ωacωbd½edj; Kcb

i � ¼ ωacωbd½x̂bR; Lcd
ij � ¼ 0, which can be checked

retrospectively in specific cases.
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Nij
k ¼ ℏωbdekc

�
2Kcb

½i e
d
j� þ Pml

ij ðKcb
l edm þ Kdb

ðme
c
lÞÞ
�
;

ð3:31Þ

Mij ¼ −
ℏ2

4
ωacωbdPkl

ijK
ca
k Kdb

l : ð3:32Þ

Having determined the general form of Fij, the last
remaining piece is to examine the commutators of x̂aR.
These commute with x̂aL and they satisfy the opposite
algebra to them (symplectic duality). The only unknown
commutator is the one with the momentum operators,
which we now compute, and we find

½x̂aR; p̂i� ¼ iℏeai − ℏωbcKba
i ðx̂cL − x̂cRÞ ¼ iℏeai − ekbKba

i p̂k:

ð3:33Þ

Therefore, if the frame is known then the full phase space
algebra is uniquely determined.
Before proceeding, let us comment on the compact case

too. This proceeds along similar lines that led us from the
d-plane to the d-torus, with some additional input due to
the x̂aR-dependence of the frame. A periodicity condition
is imposed, but this time there is a difference between
the right acting and the left acting operators. The key
to understand which conditions to impose for each set
is to appreciate that x̂aL are to be associated to positions
(property of e.g. a quantum mechanical particle), while x̂aR
are to be associated with the frame or gravitational field and
therefore to coordinates (property of space itself). This
distinction between position and coordinate suggests that
the conditions that compactify the space should be applied
to the right acting operators, as

x̂aR ∼ x̂aR þ 2πRiτaiðx̂bRÞ; ð3:34Þ

with some appropriate x̂aR-dependent tensor τ
a
i that has to

be specified. This tensor is related to eai but it is not the
same as that, as it will become obvious in the next section.
On the other hand, the positions, which are associated to the
operators x̂aL, should be single valued when we return on the
same point after traversing a cycle of the compact space.
For nontrivial elliptic fibrations, where the cycles are of
toroidal nature, this means that the periodicity condition on
the left acting operators should be analogous to Eq. (2.15),
namely

x̂aL ∼ x̂aL þ 2πRiδai: ð3:35Þ

This is the correct condition because single valuedness
has to be guaranteed along the cycle that is traversed and
not along other directions too, since in this process
the positions in the other directions might have changed
due to the nontrivial fibration structure. Then the position
operators are obtained by exponentiation as

Xa ¼ e
ix̂a

Ra : ð3:36Þ
The momenta are now outer, as in the toroidal case, as well
as the operators x̂aR which do not correspond to observables
and they do not necessarily have to be exponentiated. The
phase space algebra in the compact case turns out to be

XaXb ¼ e−
iθab

RaRbXbXa; ð3:37Þ

p̂iXa ¼ Xa

�
p̂i þ

ℏ
Ra e

a
i

�
; ð3:38Þ

and the rest of the commutators remain the same as in
the noncompact case. Similar considerations appeared in
Refs. [28,29], although in a different and less general
context and without reference to symplectic structures.
In particular, in those papers the commutator of either
the positions or the momenta is set to zero, which is not a
consistent choice in the present context, while Jacobi
anomalies appear, which is at odds with our assump-
tions here.

IV. QUANTIZED PHASE SPACE
OF SYMPLECTIC NILMANIFOLDS

The main general assumptions that we made are the
existence of symplectic structure and parallelizability, as
well as the Leibniz rule and the Jacobi identity. Having so
far worked on the general case, it is now time to examine
whether these assumptions include any nontrivial examples.
We already know the trivial ones, which are the d-plane
in the noncompact case and the d-torus in the compact case.
On the other hand, spheres are completely excluded.
The only symplectic sphere, S2, is not parallelizable and the
only parallelizable spheres, S3 and S7, are not symplectic.12

An interesting class of nontrivial symplectic and paral-
lelizable manifolds is provided by group manifolds based
on nilpotent Lie algebras and the associated compact
nilmanifolds. Therefore we would like to apply the above
formalism to this class of spaces. We are going to work in
dimensions 4 and 6. This is a choice based on the following
reasons. First, symplectic manifolds are always even-
dimensional.13 Second, there are no nilmanifolds in two
dimensions, apart from the trivial one of the 2-torus.
Dimension 4 contains only two nontrivial cases of nilmani-
folds [36,37] and they are both symplectic. Symplectic
nilmanifolds in six dimensions are also fully classified [37].
They number 26 cases (or, more precisely, classes) and they
may be read off either from Chap. 8, Sec. III of Ref. [37] or

12Spheres can be quantized with different methods, such as the
ones used in Refs. [30–33].

13This does not mean that odd-dimensional nilmanifolds
cannot be quantized using their symplectic leaves. In Ref. [34]
a deformation quantization of the three-dimensional Heisenberg
nilmanifold is presented (see also Ref. [35]).

PHASE SPACE QUANTIZATION, NONCOMMUTATIVITY, … PHYSICAL REVIEW D 90, 024038 (2014)

024038-9



from the table at the end of Ref. [38]. In this section
construct the quantized phase space of these spaces both in
the noncompact and compact cases.

A. Step classification of four-dimensional and
six-dimensional nilmanifolds

Nilmanifolds were introduced as simple examples
of manifolds which admit symplectic structure but not
Kähler structure.14 From another point of view, they may be
described as nontrivial generalizations of the torus, in the
sense that any nilmanifold is an iterated twisted fibration of
toroidal fibers over toroidal bases. Employing this point of
view, the globally defined basis of the cotangent bundle of a
nilmanifold can be obtained in an elegant way by twisting
the corresponding one for a flat torus. In particular,
consider a nilpotent Lie algebra with structure constants
fabc. In accord with commonly used notation we present
such an algebra as a d-tuple ðab; cd;…; yzÞ, whence its
structure constants are f1ab; f2cd; :…; fdyz. Then we form
the (1,1) tensor

F ¼ 1

2
μðabÞfcabxbdxa∧∂c; ð4:1Þ

parametrized by constants μðabÞ, where the indices between
parentheses are not summed and there is no symmetry
property that provides a direct relation between μðabÞ and
μðbaÞ. Exponentiating this tensor and acting with it on the
basis 1-forms δiadxa of the d-torus we get

ei ¼ δiaeFdxa: ð4:2Þ

The action is performed with the standard interior product
between vectors and forms. Since we are going to work
with nilmanifolds up to dimension 6, we use an expanded
expression for the frame up to terms which are non-
vanishing in such cases, i.e.

eia ¼ δia þ
1

2
κðabÞfiabxb þ

1

8
κðbcadÞfibcfbadxcxd

þ 1

48
κðbcpdaqÞfibcfbpdfpaqxcxdxqþ

þ 1

384
κðbcpdrqasÞfibcfbpdfprqfrasxcxdxqxs: ð4:3Þ

Note that this expression is more general than a simple
expansion of Eq. (4.2), since the constants κð…Þ in front of
each term are now not fixed by lower step terms. No
symmetry properties for these constants are assumed. The
amount of nonvanishing terms on the right-hand side is on a
par with the nilpotency step of the underlying Lie algebra.

For step 1 only the first term is there, which agrees with the
fact that a step 1 nilmanifold is a torus. For step 2 we get the
first two terms, since in this case it holds that

fibcfbad ¼ 0; ð4:4Þ

even without summation in the index b, by the definition of
step 2. For step 3, Eq. (4.4) is violated but it holds that

fibcfbpdfpaq ¼ 0; ð4:5Þ

again without summation in the repeated indices. Similarly,
for step 4, Eqs. (4.4) and (4.5) are violated but the following
relation holds:

fibcfbpdfprqfras ¼ 0: ð4:6Þ

Finally, the step 5 cases violate all the above relations. Step
6 nilmanifolds do not exist in six dimensions by definition.
This is the reason that we stopped the expansion of the
general formula to these five terms.
The basis 1-vectors can be determined in the same way.

Moreover, the inverse eai of the frame eia satisfies

eiaeaj ¼ δij and eaieib ¼ δba; ð4:7Þ

and it is given by the analogous expanded formula

eai ¼ δai −
1

2
λðibÞfaibxb þ

1

8
λðcbidÞfacbfcidxbxd

−
1

48
λðcbpdiqÞfacbfcpdfpiqxbxdxq

þ 1

384
λðcbpdrqisÞfacbfcpdfprqfrisxbxdxqxs; ð4:8Þ

where

λðibÞ ¼ κðibÞ;

λðcbidÞ ¼ −κðcbidÞ þ 2κðcbÞκðidÞ;

λðcbpdiqÞ ¼ κðcbpdiqÞ − 3κðpdiqÞκðcbÞ þ 6κðcbÞκðpdÞκðiqÞ;

λðcbpdrqisÞ ¼ −κðcbpdrqisÞ þ 4ðκðpdrqisÞκðcbÞ þ κðcbpdrqÞκðisÞÞ
þ 6κðcbpdÞκðrqisÞ − −12ðκðcbpqÞκðrqÞκðisÞ
þ κðrqisÞκðpqÞκðcbÞÞ þ 24κðcbÞκðpdÞκðrqÞκðisÞ:

Let us turn our attention to the parameters κð…Þ that were
introduced. Clearly, they are not arbitrary since they are
constrained by the Maurer-Cartan equations. It is easy to
determine this constraint if we focus on the step 2 case,
where

eia ¼ δia þ
1

2
κðabÞfiabxb:

14The only Kähler nilmanifold is the d-torus [39]. Moreover,
nilmanifolds that do not admit a symplectic structure exist too
[38].

ATHANASIOS CHATZISTAVRAKIDIS PHYSICAL REVIEW D 90, 024038 (2014)

024038-10



We compute

−
1

2
fijkejk¼ dei¼ dðeiadxaÞ¼ ∂beiadxba¼ ebjeak∂beiaejk

⇒fijk¼ eajebkð∂beia−∂aeibÞ
⇒ κðabÞ þκðbaÞ ¼ 2: ð4:9Þ

The most symmetric choice would be κðabÞ ¼ κðbaÞ ¼ 1,
which was used for example in Ref. [29]. However, this
is not the choice we make in the present paper and there
is a very good reason for this, related to the symplectic
structures on the nilmanifolds. We return to this immedi-
ately after we discuss these structures.
The classification of nilpotent (but not solvable) Lie

algebras in four dimensions can be found in Ref. [36].
There are only three cases to consider. The first is the
4-torus, which is step 1 and symplectic. As we already
mentioned, it is a rather degenerate case, in the sense that
unlike all the other nilmanifolds, the torus is a Kähler
manifold. Moreover, it is a flat space. Its symplectic 2-form
can be chosen to be ω ¼ e12 þ e34, with ei ¼ δiadxa. We
will not discuss it further since it was already discussed in
Sec. II in any dimension. The other two cases are given
by (0,0,0,12) and (0,0,42,12). The first one is a toroidal
extension of the Heisenberg algebra in dimension 3 and
it has nilpotency step 2. The second one has nilpotency
step 3, since it clearly contains the nonzero second order
commutator of algebra generators ½T2; ½½T1; T2�� ¼ −T3,
or equivalently the nonvanishing quantity f342f412, but
no third order nonvanishing commutator. Both cases
admit a nondegenerate symplectic structure. All these are
summarized in the following table.
We move on to six dimensions, where there are 26

classes of symplectic nilmanifolds. We subclassify them
according to their nilpotency step. As before, the 6-torus is
the only step 1 nilmanifold. In the following four tables we
present the step 2, 3, 4 and 5 six-dimensional symplectic
nilmanifolds along with their symplectic 2-form, the latter
taken from the single table of Ref. [38].
The above five tables contain 27 cases where we can

apply the results of Sec. III. It is interesting and welcome
that a lot of diversity is exhibited, since there are indeed
cases up to step 5 which do admit symplectic structure.

B. Determining the phase space algebra

It is obvious from the above tables that in the flat basis
of ei, the components of the symplectic 2-form and the
corresponding 2-vector are constant. However, this is not
in general true for the symplectic 2-form in an arbitrary
curved basis. Let us discuss how and when the curved
basis components ωab and θab can be constant as well. This
is essentially the reason that we introduced the constants
κð…Þ previously, instead of making the symmetric choice
for them.

We propose the following:
Proposition:For four-dimensional and six-dimensional

symplectic nilmanifolds whose symplectic structure has
the same form as the corresponding torus, there exists a
coordinate system, specified by a choice of parameters
κð…Þ, such that the components ωab (θab) of the symplectic
2-form (2-vector) in the curved basis are constant and equal
to the flat components ωij (θij).
Proof:It is a straightforward task to determine the form of

κð…Þ for each case separately and the corresponding frame
eia that delivers the required result. The full list of results
for the frame eia appears in the tables of the appendix and
proves the proposition. ▪
This proposition shows that all but four symplectic

nilmanifolds satisfy the assumption that led to Eqs. (3.28)
and (3.29) with coefficients (3.30)–(3.32), which are
central for our purposes.15 This in turn means that the full
phase space algebra can be determined in a closed form for
all these cases. To this end, the momentum commutator has
to be fully determined and this will be the case once we
compute the quantities Kab

i and Lab
ij , defined in Eqs. (3.26)

and (3.27). This is possible because the frame is known
explicitly in all cases.
Let us work out in full detail the step 2 case. We compute

Kab
i ¼ −

i
2
κðicÞfaicθbc ð4:10Þ

and

Lab
ij ¼ i

4
i4κðicÞκðjdÞfaicfbjdθdc: ð4:11Þ

We directly obtain that

Pkl
ij ¼

i
4
κðicÞκðjdÞfk½icflj�dθdc; ð4:12Þ

due to Eq. (4.4), where the underlined index is excluded
from the antisymmetrization. The same equation implies
also that

Pkl
ijK

ab
l ¼ 0: ð4:13Þ

Then the Eqs. (3.31) and (3.32) give

Mij ¼ 0; Nij
k ¼ −iℏfkij; ð4:14Þ

where Eq. (4.9) was used. Let us mention once more that
the constants κðiaÞ are known for each case, since they
determine the frame components that guarantee the

15The four cases that are not covered are indicated accordingly
in the tables of the appendix and they are three step 4 cases and
one step 5. They can also be found in Tables IVand Vas the ones
whose symplectic form involves four summands.
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constancy of θab. This leads to the following phase space
algebra in the step 2 case:

½x̂a; x̂b� ¼ iθab; ½x̂a; p̂i� ¼ iℏeai;

½p̂i; p̂j� ¼ −iℏfkijp̂k þ
i
4
κðicÞκðjdÞfk½ic

Additionally,

½x̂aR; x̂bR� ¼ −iθab; ½x̂aR; p̂i� ¼ iℏeai þ
i
2
κðicÞfkicθacp̂k:

ð4:16Þ

The Jacobi identities have to be satisfied as well. Nontrivial
ones include

Jacðp̂i; p̂j; p̂kÞ ¼ 0; ð4:17Þ

which is satisfied due to Eq. (4.4), and

Jacðp̂i;p̂j;x̂aÞ¼0⇒½eai;p̂j�−½eaj;p̂i�¼iℏfaij−2Pkl
ije

a
ðkp̂lÞ:

ð4:18Þ

The latter is not obvious, but we have checked that it is
satisfied in all step 2 cases, using the data of the appendix.
In the following, it will be examined in some explicit
examples of higher step nilmanifolds too. The same holds
for the Jacobi identities that involve x̂aR.
We point out that the resemblance to the planar

case is exhausted in the constancy of the parameters θab.
A comparison of Eqs. (4.15) and (4.16) with the corre-
sponding ones of the planar case shows that the two
algebras are very different.

C. Remarks on the compact case

As a final task, we examine the compact case. This is
captured by the general expressions (3.37) and (3.38),
where the parameters θab and eai are explicitly known for
the cases at hand. Here we would like to include some
additional remarks on the compactification of the group
manifold, in order to make clear why the exponentiated
coordinates are given by Eq. (3.36) in the nontoroidal case
and they do not have to be modified from the toroidal ones
of Eq. (2.19).
Consider the simplest case of step 2 nilmanifolds, since

the higher step cases are just direct generalizations of the
procedure. Here we work on the classical manifold. The
globally well defined 1-forms are

ei ¼
�
δia þ

1

2
κðabÞfiabxb

�
dxa: ð4:19Þ

Consider shifting the coordinate xb → xb þ 2πδbiRi. Then

ei → eiadx0a þ
1

2
κðabÞfiabδbi2πRidx0a: ð4:20Þ

Since the frame is global, it should remain invariant under
this shift and this means that xa cannot remain the same.
Indeed we observe that they have to change to

x0a ¼ xa −
1

2
κðbiÞfabixb2πRi: ð4:21Þ

Then, using Eq. (4.4) again, we find that ei → ei, as it
should. Evidently, although the 1-forms ei are globally
well defined, this is not true for the coordinates xa. On
the contrary, on a torus it is possible to define global
coordinates besides global 1-forms. In other words, a shift
around a cycle in the toroidal case leads back to the same
point and therefore the position in every direction has to be
exactly the same, which is achieved with exponentiation.
In the nilmanifold case, a shift around a cycle associated
with the topologically nontrivial fibration structure of the
manifold leads to the same point in the direction of the
cycle, but to a different point in the orthogonal directions,
since the fibered tori have changed geometrically according
to the nontrivial twist. This means that the position has to
be single valued in the direction of the shift, but in the
fiber directions this position will naturally change, exactly
because the test particle never returned to the exact same
position that it had before the shift in those directions. This
result indicates that the single valuedness along the shifted
direction is taken care of by exponentiation, exactly as for
the toroidal case. On the other hand, the change of position
due to the twist is encoded in the commutation relation
between the momenta (which are translation operators and
as such correspond to the generators of the shift) and the
positions, as in Eq. (3.38).
As we explained in Sec. III B, the compactification of

the nilmanifold in the noncommutative case requires a
stronger periodicity condition on the operators x̂aR that
provide the frame dependence. This is given by Eq. (3.34).
Equation (4.21) suggests that the overall periodic shift in
the x̂aR is

x̂aR ∼ x̂aR þ 2πRi

�
δai −

1

2
κðbiÞfabix̂bR

�
: ð4:22Þ

This gives the dual noncommutative frame

τai ¼ δai −
1

2
κðbiÞfabix̂bR ð4:23Þ

for the step 2 case and we can see that this is different than
eai, since κðiaÞ has no symmetry property. Its inverse is

τia ¼ δia þ
1

2
κðbaÞfibax̂bR: ð4:24Þ
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Although these considerations seem very different than
the simple toroidal case, it should be reminded that in the
case of the compactification of the plane one also encoun-
ters two different tori dual to each other, one associated to
the periodicity condition (2.15) and one to the algebraic
relation (2.21). The situation is analogous here, where there
are two nilmanifolds, one associated to the inverse frame
eai in Eq. (3.38) and one to the dual inverse frame τai of the
periodicity condition (3.34).

V. BENCHMARK EXAMPLES OF QUANTIZED
PHASE SPACES

A. Dimension 4

Let us now proceed and apply the general results in some
benchmark cases from the tables of symplectic nilmani-
folds, beginning with dimension 4. There are only two
cases, so we examine both of them.

1. Step 2: (0,0,0,12)

In the present case the only nonvanishing structure
constant is the f412 ¼ −f421 ¼ 1. The basis of the cotan-
gent bundle is

ei ¼ dxi; i ¼ 1; 2; 3; e4 ¼ dx4 þ x2dx1: ð5:1Þ
In other words, κð12Þ ¼ 2 and κð21Þ ¼ 0. All the other
parameters vanish. It holds that

de4 ¼ −e12;

which is essentially the Maurer-Cartan equation. The
symplectic structure in the natural basis is specified by
the 2-form

ω ¼ e14 þ e23 ð5:2Þ
and it is easily confirmed that it is closed and nondegen-
erate. Moreover, it is easily confirmed that

e14 ¼ dx14 and e23 ¼ dx23:

The dual basis is spanned by the vectors

θ1 ¼ ∂1 − x2∂4; θi ¼ ∂i; i ¼ 2; 3; 4: ð5:3Þ
The symplectic 2-vector is16

θ ¼ θ14 þ θ23 ¼ ∂14 þ ∂23: ð5:4Þ
Then we set

½x̂1; x̂4� ¼ i and ½x̂2; x̂3� ¼ i: ð5:5Þ

The fact that the only nonvanishing off-diagonal element
of eia is the e41 ¼ x2 means that for its inverse eai the
corresponding component is equal to −x2 and therefore the
noncommutative frame will have e41 ¼ −x̂2R, according to
the analysis of Sec. III.17 This means that

½x̂4; p̂1� ¼ −iℏx̂2R: ð5:6Þ

The momenta are determined by Eq. (3.25) and they turn
out to be

p̂1 ¼ ℏð½x̂4; ·� þ x̂2R½x̂1; ·�Þ;
p̂2 ¼ ℏ½x̂3; ·�;
p̂3 ¼ −ℏ½x̂2; ·�;
p̂4 ¼ −ℏ½x̂1; ·�:

We observe that no ordering is necessary in any of the four
momentum operators. Computing the commutators of the
momenta, we find that the only nonvanishing one is

½p̂1; p̂2� ¼ −iℏp̂4; ð5:7Þ

in accord with the general results of the previous section for
the quantity Nk

ij. For the right acting operators we find the
nonvanishing off-diagonal commutators

½x̂3R; p̂1� ¼ −ip̂4; ½x̂4R; p̂1� ¼ −iℏx2R: ð5:8Þ

It is a straightforward task to show that all the Jacobi
identities are satisfied identically.
Let us now consider the compact case. From Eq. (5.1) we

get that for the classical manifold

x2 → x2 þ 2πR2 ⇒ x4 → x4 − 2πR2x1; ð5:9Þ

which means that the periodicity condition (3.34) in the
noncommutative case involves the off-diagonal component

τ42 ¼ −x̂1R: ð5:10Þ

According to Eq. (3.36) the position operators are given by

Xa ¼ e
i
Rax̂

a
; a ¼ 1; 2; 3; 4:

Then we can find the phase space algebra in the compact
case, which is

16Here θ14 ¼ θ1∧θ4 and it should not be confused with the
constant component θ14 ¼ 1.

17This can be directly derived from Eq. (4.8), or one can write
the frame as a matrix and find its inverse, in particular

eia ¼

0
B@

1 0 0 0

0 1 0 0

0 0 1 0

x2 0 0 1

1
CA ⇒ eai ¼

0
B@

1 0 0 0

0 1 0 0

0 0 1 0

−x2 0 0 1

1
CA;

for the present example.
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X1X4 ¼ e−
i

R1R4X4X1; X2X3 ¼ e−
i

R2R3X3X2;

p̂1X4 ¼ X4

�
p̂1 −

ℏ
R4

x̂2R

�
; ð5:11Þ

plus the diagonal mixed relations and the momentum
commutators which were already written down above.

2. Step 3: (0,0,42,12)

In this case the nonvanishing structure constants are
f342 ¼ f412 ¼ 1. The basis of the cotangent bundle is taken
to be

ei ¼ dxi; i ¼ 1; 2; e3 ¼ dx3 − x4dx2 − x1x2dx2;

e4 ¼ dx4 þ x2dx1: ð5:12Þ

This time the only nonvanishing parameters are κð24Þ ¼
κð12Þ ¼ 2 and κð4221Þ ¼ 8. The dual vectors are easily found,

θ1¼∂1−x2∂4; θ2¼∂2þðx4þx2x1Þ∂3; θi¼∂i; i¼3;4:

ð5:13Þ

The symplectic 2-form is

ω ¼ e14 þ e23 ¼ dx14 þ dx23;

while the corresponding 2-vector is

θ ¼ θ14 þ θ23 ¼ ∂14 þ ∂23;

and we set again

½x̂1; x̂4� ¼ i and ½x̂2; x̂3� ¼ i: ð5:14Þ

The only nonvanishing off-diagonal elements of eai are the
e32 ¼ −ðx4 þ x2x1Þ and e41 ¼ x2; the noncommutative
frame has e32 ¼ x̂4R þ x̂1Rx̂

2
R and e41 ¼ −x̂2R, which sets

the commutation relations

½x̂3; p̂2� ¼ iℏðx̂4R þ x̂1Rx̂
2
RÞ; ½x̂4; p̂1� ¼ −iℏx̂2R: ð5:15Þ

The momenta are again found using Eq. (3.25) and they
turn out to be

p̂1 ¼ ℏð½x̂4; ·� þ x̂2R½x̂1; ·�Þ;
p̂2 ¼ ℏð½x̂3; ·� − ðx̂4R þ x̂1Rx̂

2
RÞ½x̂2; ·�Þ;

p̂3 ¼ −ℏ½x̂2; ·�;
p̂4 ¼ −ℏ½x̂1; ·�:

The nonvanishing momentum commutators are

½p̂2; p̂4� ¼ iℏp̂3; ½p̂1; p̂2� ¼ −iℏp̂4: ð5:16Þ

Once more, all the Jacobi identities are satisfied. The least
trivial one is

Jacðp̂1; p̂2; x̂3Þ ¼ ½½p̂1; p̂2�; x̂3�þ ½½x̂3; p̂1�; p̂2�þ ½½p̂2; x̂3�; p̂1�
¼ 0þ0− iℏ½x̂4Rþ x̂1Rx̂

2
R; p̂1�

¼ ℏ2x̂2R−ℏ2x̂2R ¼ 0; ð5:17Þ

where we used the fact that a direct computation gives
½x̂4R; p̂1� ¼ −iℏx2R. The rest of the commutators involving
x̂aR are

½x̂3R; p̂1� ¼ −ip̂4; ½x̂3R; p̂2� ¼ iℏðx̂4R þ x̂1Rx̂
2
RÞ þ ix̂1Rp̂3;

½x̂1R; p̂2� ¼ −ip̂3; ½x̂4R; p̂2� ¼ ix̂2Rp̂3:

For the compact case, the frame (5.12) suggests the
nontrivial shifts

x4 → x4 þ 2πR4 ⇒ x3 → x3 þ 2πR4x2;

x2 → x2 þ 2πR2 ⇒ x4 → x4 − 2πR2x1;

x1 → x1 þ 2πR1 ⇒ x3 → x3 þ 2πR1

2
ðx2Þ2;

in the classical case. This means that in the noncommu-
tative case the off-diagonal τai components are

τ34 ¼ x̂2R; τ31 ¼
1

2
ðx̂2RÞ2; τ42 ¼ −x̂1R: ð5:18Þ

Then it is straightforward to compute the relations among
the Xa and p̂i, which turn out to be (we write down only the
nontrivial ones)

X1X4 ¼ e−
i

R1R4X4X1; X2X3 ¼ e−
i

R2R3X3X2;

p̂2X3 ¼ X3

�
p̂2 −

ℏ
R3

ðx̂4 þ x̂1x̂2ÞR
�
;

p̂1X4 ¼ X4

�
p̂1 −

ℏ
R4

x̂2R

�
: ð5:19Þ

B. Dimension 6

In six dimensions there are many cases and we will
not present all of them in detail. The phase spaces for each
case can be reconstructed with the data we collect in the
appendix. Here we would like to examine in detail two
representative examples, one step 2 and one step 5, which
have properties that are absent in the four-dimensional cases.

1. Step 2: ð0;0;0;0;13þ 42;14þ 23Þ
We pick this representative case of step 2 nilmanifold

in six dimensions because its momentum commutator
contains a quadratic term, i.e. Pkl

ij ≠ 0, which did not
happen in the four-dimensional cases.
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According to the corresponding entry in the appendix,
the basis 1-forms are

ei ¼ dxi; i ¼ 1;…; 4;

e5 ¼ dx5 þ x3dx1 − x4dx2;

e6 ¼ dx6 þ x4dx1 þ x3dx2:

ð5:20Þ

It is immediately confirmed that for the symplectic 2-form
it holds that

e16 þ e25 þ e34 ¼ dx16 þ dx25 þ dx34;

as it is required in our analysis. The dual vectors are

θ1 ¼ ∂1 − x3∂5 − x4∂6; θ2 ¼ ∂2 þ x4∂5 − x3∂6;

θi ¼ ∂i; i ¼ 3;…; 6; ð5:21Þ

and obviously

θ ¼ θ16 þ θ25 þ θ34 ¼ ∂16 þ ∂25 þ ∂34:

Then the nonvanishing position commutators are

½x̂1; x̂6� ¼ ½x̂2; x̂5� ¼ ½x̂3; x̂4� ¼ i: ð5:22Þ

The nonconstant inverse frame components read as

e51¼−x̂3R; e52¼ x̂4R; e61¼−x̂4R; e62¼−x̂3R; ð5:23Þ

leading to the mixed commutators

½x̂5; p̂1� ¼ ½x̂6; p̂2� ¼ −iℏx̂3R; ½x̂5; p̂2� ¼ −½x̂6; p̂1� ¼ iℏx̂4R:

ð5:24Þ

Equation (3.25) yields the momenta

p̂1 ¼ ℏð½x̂6; ·� þ x̂3R½x̂2; ·� þ x̂4R½x̂1; ·�Þ;
p̂2 ¼ ℏð½x̂5; ·� − x̂4R½x̂2; ·� þ x̂3R½x̂1; ·�Þ;
p̂3 ¼ ℏ½x̂4; ·�; p̂4 ¼ −ℏ½x̂3; ·�;
p̂5 ¼ −ℏ½x̂2; ·�; p̂6 ¼ −ℏ½x̂1; ·�:

Their commutation relations can be determined by direct
computation and the nonvanishing ones are

½p̂1; p̂3� ¼ ½p̂4; p̂2� ¼ −iℏp̂5;

½p̂1; p̂4� ¼ ½p̂2; p̂3� ¼ −iℏp̂6;

½p̂1; p̂2� ¼ iðp̂5Þ2 þ iðp̂6Þ2: ð5:25Þ

We observe a quadratic commutator in the last line, which
is essentially due to the nonvanishing P55

12 ¼ P66
12 ¼ i

parameters, as listed in the appendix.

The Jacobi identities involve a nontrivial cancellation.
This appears in the identities Jacðp̂1; p̂2; x̂5Þ ¼ 0 and
Jacðp̂1; p̂2; x̂5RÞ ¼ 0. Let us go through the first, since
the second works the same way. We compute

½½p̂1; p̂2�; x̂5� ¼ ½iðp̂5Þ2 þ iðp̂6Þ2; x̂5� ¼ i½ðp̂5Þ2; x̂5� ¼ 2ℏp̂5;

½½x̂5; p̂1�; p̂2� ¼ ½−iℏx̂3R; p̂2� ¼ −ℏp̂5;

½½p̂2; x̂5�; p̂1� ¼ ½−iℏx̂4R; p̂1� ¼ −ℏp̂5; ð5:26Þ

where we directly computed and used that ½x̂3R; p̂2� ¼
½x̂4R; p̂1� ¼ ip̂5. Adding up the three terms we indeed
confirm that the Jacobi identity is satisfied. Moreover,
the rest of the nontrivial commutators involving x̂aR are

½x̂3R; p̂1� ¼ −½x̂4R; p̂2� ¼ ip̂6; ½x̂5R; p̂1� ¼ ½x̂6R; p̂2� ¼ −iℏx̂3R;

½x̂5R; p̂2� ¼ −½x̂6R; p̂1� ¼ iℏx̂4R:

For the compact case, the frame leads to the classical
relations

x3→ x3þ2πR3 ⇒ x5→ x5−2πR3x1; x6→ x6−2πR3x2;

x4 → x4þ2πR4 ⇒ x5 → x5þ2πR4x2; x6→ x6−2πR4x1;

which imply the following off-diagonal τai components for
the noncommutative case:

τ53 ¼ τ64 ¼ −x̂1R; τ54 ¼ −τ63 ¼ x̂2R: ð5:27Þ

The algebra in the compact case is easily constructed using
Eqs. (3.37) and (3.38) and we do not write it explicitly.

2. Step 5: ð0;0;12;13;14þ 23;15þ 24Þ
The last case we highlight is a step 5 nilmanifold (the

last entry of Table X in the appendix), which is the most
complicated one and also the only one that leads to an x̂aR-
dependent quadratic term in the momentum commutator.
We would like in particular to examine how the Jacobi
identities are satisfied.
The 1-forms in this case are taken to be

e1¼dx1; e2¼dx2; e3¼dx3þx2dx1; e4¼dx4−x1dx3;

e5¼dx5þðx4−x1x3Þdx1þðx3þx1x2Þdx2;

e6¼dx6þðx5þ2x2x3þ1

2
x1ðx2Þ2Þdx1−ðx4−x1x3Þdx2

þ2x1x2dx3−2x2dx4:

A direct computation shows that

ω ¼ e16 þ 2e34 − e25 ¼ dx16 þ 2dx34 − dx25

for the symplectic 2-form. Simlarly, the symplectic 2-vector
satisfies
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θ ¼ θ16 þ
1

2
θ34 − θ25 ¼ ∂16 þ

1

2
∂34 − ∂25; ð5:28Þ

and the position commutators are

½x̂1; x̂6� ¼ ½x̂5; x̂2� ¼ i; ½x̂3; x̂4� ¼ i
2
: ð5:29Þ

Finding the inverse of the frame,

eai ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

x2 0 1 0 0 0

0 0 −x1 1 0 0

x4 − x1x3 x3 þ x1x2 0 0 1 0

x5 þ 2x2x3 þ 1
2
x1ðx2Þ2 −x4 þ x1x3 2x1x2 −2x2 0 1

1
CCCCCCCCA

−1

¼

0
BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

−x2 0 1 0 0 0

−x1x2 0 x1 1 0 0

−x4 þ x1x3 −x3 − x1x2 0 0 1 0

−x5 − 2x2x3 − 1
2
x1ðx2Þ2 x4 − x1x3 0 2x2 0 1

1
CCCCCCCCA
; ð5:30Þ

provides the mixed commutators ½x̂a; p̂i� ¼ iℏeaiðx̂bRÞ,
which we do not write explicitly. The momenta are found
to be

p̂1¼ℏ

�
½x̂6; ·�−2x̂2R½x̂4; ·�þ2x̂1Rx̂

2
R½x̂3; ·�−ðx̂4R− x̂1Rx̂

3
RÞ½x̂2; ·�

þ
�
x̂5Rþ2x̂2Rx̂

3
Rþ

1

2
x̂1Rðx̂2RÞ2

�
½x̂1; ·�

�
;

p̂2¼−ℏð½x̂5; ·�þðx̂3Rþ x̂1Rx̂
2
RÞ½x̂2; ·�þðx̂4R− x̂1Rx̂

3
RÞ½x̂1; ·�Þ;

p̂3¼2ℏð½x̂4; ·;�− x̂1R½x̂3; ·�Þ;
p̂4¼−2ℏð½x̂3; ·�þ x̂2R½x̂1; ·�Þ;
p̂5¼ℏ½x̂2; ·�; p̂6¼−ℏ½x̂1; ·�;

with quadratic commutation relations (we do not explicitly
write the ones that are simply linear):

½p̂1; p̂2� ¼ −iℏp̂3 þ
i
2
ðp̂5Þ2 þ ix̂2Rðp̂6Þ2 − ix̂1Rp̂5p̂6;

ð5:31Þ

½p̂1; p̂4� ¼ −iℏp̂5 þ 2iðp̂6Þ2: ð5:32Þ

We observe that the commutator (5.31) contains
x̂aR-dependent quadratic terms. In the present case, the
Jacobi identities involve highly nontrivial cancellations.
For example, Jacðp̂1; p̂2; x̂5RÞ contains the terms

½½p̂1; p̂2�; x̂5R� ¼ ℏp̂5 − ðp̂6Þ2 − ℏx̂1Rp̂6;

½½x̂5R; p̂1�; p̂2� ¼ −
3

2
ℏp̂5 þ ðp̂6Þ2 − ℏx̂1Rp̂6;

½½p̂2; x̂5R�; p̂1� ¼
1

2
ℏp̂5 þ 2ℏx̂1Rp̂6; ð5:33Þ

and we observe that they sum to zero. A number of such
cancellations occurs for the rest of the Jacobi identities
too.
The treatment of the compact case follows the same lines

as in the previous examples and therefore we do not present
it explicitly.

VI. DISCUSSION

The main arena of quantum mechanics is phase space,
which is quantized and without points in the classical
sense of geometry, due to the uncertainty principle. On
the other hand, general relativity accounts for the gravi-
tational interaction by describing the dynamics of space-
time. The question of how these two theories become
compatible is the most challenging conceptual problem
in theoretical physics today. It is conceivable that one
way that might illustrate the path towards quantum
gravitational physics is to determine a framework where
phase space and dynamical spacetime are reconciled in a
dynamical theory of phase space (see e.g. Ref. [40] for a
recent argumentation).
In this paper we employed an algebraic point of view and

examined the algebraic properties of noncommutative
phase spaces in the presence of a nontrivial frame.
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Although we did not study any dynamics, our results
indicate that this can be possible at a later stage. In
particular we showed that there exist consistent algebraic
structures that incorporate quantized phase spaces with
curvature and we studied a particular class of explicit
examples. The new element that did not appear in previous
similar approaches is that two copies of the noncommu-
tative algebra are necessary, consisting of operators with a
left and right action respectively. Most importantly, in
curved cases these operators play an asymmetric role and
satisfy different commutation relations with the momenta,
a fact that is hidden in the flat case. This result should be
taken into account in any attempt to construct a dynamical
theory of phase space.
Considering that we are working in the framework of

noncommutative geometry, one of the most motivating
ways to think of an incarnation of such a dynamical theory
of phase space is matrix models. Recall that in the well-
known Ishibashi-Kawai-Kitazawa-Tsuchiya model [41]
spacetime emerges dynamically (see e.g. Ref. [42] for a
recent review). Moreover, the model can be quantized via
an integral over matrices, given by the partition function

Z ¼
Z

dAdΨe−S; S¼ −
1

4
Tr½AM;AN �2 þ Smatter; ð6:1Þ

with AM being ten Hermitian matrices. Correlation func-
tions may be similarly defined and they are in principle
computable with analytical or numerical methods. Classical
solutions of the model are typically noncommutative
spaces, where coordinate operators are identified with
the matrices. On the other hand, according to the general
arguments that we presented here, it would be preferable to
obtain classical solutions that correspond to noncommu-
tative phase spaces, such as the ones studied in this paper, in
order to understand the role of the gravitational field too.
Presumably, these are solutions of an extended matrix
model that can account for the dynamics of phase space and
can be quantized in a way similar to the above. We hope to
report on this in a future publication.
In this paper we started with four basic assumptions,

namely
(i) parallelizability, or equivalently the existence of a

globally well-defined frame,
(ii) symplectic structure,
(iii) Leibniz rule and
(iv) Jacobi identities.
Then we set the position commutators equal to the

components of the symplectic 2-vector and implement
the frame by setting the mixed commutator between
positions and momenta proportional to it. Consistency of
these relations allowed us to determine the general form of
the momentum operators as well as their commutation
relation, which turned out to be quadratic in the momenta in
accord with previous results [1].

In the process of our investigation we emphasized the
distinct role of left and right acting operators and discussed
the symplectic duality among the two sets. Although in
simple cases, like the d-plane or the d-torus, this does not
have any nontrivial consequences, departure from flatness
breaks the symmetric role among the two. In particular,
consistency of the formalism led us to associate the
noncommutative frame to the set of right acting operators,
when the observables of the theory lie in the pool of left
acting ones. This made it necessary to consider an extended
algebra of position operators x̂aL, momentum operators p̂i
and quantized coordinate operators x̂aR. This extended
algebra was fully determined and it turned out that all
the Jacobi identities are satisfied.
The general approach finds an elegant realization in a

class of spaces which are known as nilmanifolds. These
are iterated nontrivial fibrations of tori over tori and they
yield several cases of symplectic manifolds in four and six
dimensions. These symplectic cases were classified already
in Ref. [37] and here we reclassified them according to their
nilpotency step. Then we applied the general results and
discussed some benchmark cases in detail.
In analogy to the compactification of a d-plane to a

d-torus, manifolds based on nilpotent Lie algebras can be
also compactified with a similar procedure based on
identification conditions. It is well known that in compact
cases the position operators have to be exponentiated in
order to be single valued. This holds true in the case of
nilmanifolds too, although one has to be cautious about
some additional complications due to the liberation
between left and right operators. In particular it turned
out that the identification conditions have to be imposed
on the right operators, thus compactifying the noncom-
mutative manifold, while the left acting operators are
simply exponentiated, thus rendering the positions single
valued. Similarly to the flat case, where two dual tori
appear in the compactification process, in the curved case
we encounter two dual nilmanifolds.
We already emphasized that the main goal would be to

derive some dynamical theory of phase space that would
be relevant for quantum gravity. Apart from this, there are
four more immediate and clear paths that call for further
investigation. First, an important next step of the present
analysis is to define and compute the curvature of the
quantized spaces in question. One can expect to derive an
expression that converges to the classical curvature in the
commutative limit but carries more terms in the quantum
case. A similar approach was employed in Refs. [8–10].
Such a task will also assist in understanding the common
features and the differences with other recent approaches,
such as [43–48]. Second, a different direction would be
to go beyond the symplectic case. In general, nilmani-
folds are not always symplectic, while symplectic nilma-
nifolds are not always only symplectic. At least in six
dimensions, all nilmanifolds admit generalized complex
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structures, as proven in Ref. [38]. This fact was used in
the analysis of Dirac structures on step 2 nilmanifolds in
Ref. [49]. The task would be to study the quantization of
these structures as well. The third direction is to consider
the quantization in the presence of sources. Although this
is known for planes and tori, it is less obvious how
straightforward it will be to implement sources for the
nilmanifolds in the quantum case. A final possibility
would be to go beyond nilmanifolds and examine what
other spaces could be handled with the techniques of the
present work. For example an obvious challenge is to
examine symplectic solvmanifolds, which are more
complicated that nilmanifolds.
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APPENDIX: ADDITIONAL DATA FOR
SYMPLECTIC NILMANIFOLDS

In this appendix we collect all the necessary additional
data for the construction of the noncommutative phase
space of symplectic nilmanifolds. We recall that this is
given as

½x̂a; x̂b� ¼ iθab;

½x̂a; p̂i� ¼ iℏeai ;

½p̂i; p̂j� ¼ Mij þ Nk
ijp̂k þ Pkl

ij p̂kp̂l: ðA1Þ

The parameters θab can be read off from Tables I–V
in the main text. They are antisymmetric and their
value is �1 along the directions of the symplectic
structure. The parameters eai can be read off from
Tables VI–X that we present in this appendix, in the
column titled “Frame: ei − δiadxa.” The frame is written
as a d-tuple ðδe1aðxÞdxa;δe2aðxÞdxa;…;δedaðxÞdxaÞ, where
δeia¼eia−δia. The parameters Mij are always vanishing,
so they are not presented. Moreover, we have checked
that the parameters that determine the linear term in the
momentum commutator are generically given as

Nk
ij ¼ −iℏfkij: ðA2Þ

TABLE VI. Data for symplectic nilmanifolds in four
dimensions.

Class Step Frame: ei − δiadxa Pkl
ij

(0,0,0,12) 2 ð0; 0; 0; x2dx1Þ 0
(0,0,42,12) 3 ð0; 0;−ðx4 þ x1x2Þdx2; x2dx1Þ 0

TABLE V. Step 5 symplectic nilmanifolds in six dimensions.

Class Symplectic form

(0,0,12,13,14,15) e16 þ e34 − e25

ð0; 0; 12; 13; 14; 15þ 23Þ e16 þ e34 þ e24 − e25

ð0; 0; 12; 13; 14þ 23; 15þ 24Þ e16 þ 2e34 − e25

TABLE IV. Step 4 symplectic nilmanifolds in six dimensions.

Class Symplectic form

ð0; 0; 0; 12; 14 − 23; 15þ 34Þ e16 þ e35 þ e24

(0,0,0,12,14,15) e13 þ e26 − e45

ð0; 0; 0; 12; 14; 15þ 24Þ e13 þ e26 − e45

ð0; 0; 0; 12; 14; 15þ 23þ 24Þ e13 þ e26 − e45

ð0; 0; 0; 12; 14; 23þ 15Þ e13 þ e26 − e45

(0,0,12,13,23,14) e15 þ e24 þ e34 − e26

ð0; 0; 12; 13; 23; 14 − 25Þ e15 þ e24 − e35 þ e16

ð0; 0; 12; 13; 23; 14þ 25Þ e15 þ e24 þ e35 þ e16

TABLE III. Step 3 symplectic nilmanifolds in six dimensions.

Class Symplectic form

ð0; 0; 0; 0; 12; 14þ 25Þ e13 þ e26 þ e45

(0,0,0,0,12,15) e16 þ e25 þ e34

ð0; 0; 0; 12; 14þ 23; 13þ 42Þ e15 þ 2e26 þ e34

ð0; 0; 0; 12; 14; 13þ 42Þ e15 þ e26 þ e34

ð0; 0; 0; 12; 14; 23þ 24Þ e16 − e34 þ e25

(0,0,0,12,13,14) e16 þ e24 þ e35

(0,0,0,12,13,24) e26 þ e14 þ e35

ð0; 0; 0; 12; 13; 14þ 23Þ e16 − 2e34 − e25

TABLE II. Step 2 symplectic nilmanifolds in six dimensions.

Class Symplectic form

(0,0,0,0,0,12) e16 þ e23 þ e45

ð0; 0; 0; 0; 13þ 42; 14þ 23Þ e16 þ e25 þ e34

(0,0,0,0,12,13) e16 þ e25 þ e34

(0,0,0,0,12,34) e15 þ e36 þ e24

ð0; 0; 0; 0; 12; 14þ 23Þ e13 þ e26 þ e45

(0,0,0,12,13,23) e15 þ e24 þ e36

TABLE I. Nontrivial symplectic nilmanifolds in four
dimensions.

Class Step Symplectic form

(0,0,0,12) 2 e14 þ e23

(0,0,42,12) 3 e14 þ e23
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TABLE X. Data for step 5 symplectic nilmanifolds in six dimensions.

Class Frame: ei − δiadxa Pkl
ij

(0,0,12,13,14,15) ð0; 0;−x1dx2;−x1dx3 þ 1
2
ðx1Þ2dx2;

−x1dx4 þ 1
2
ðx1Þ2dx3 − 1

6
ðx1Þ3dx2;

ðx5 − x1x4 þ 1
2
ðx1Þ2x3 − 1

6
ðx1Þ3x2Þdx1Þ

0

ð0; 0; 12; 13; 14; 15þ 23Þ not applicable
ð0; 0; 12; 13; 14þ 23; 15þ 24Þ ð0; 0; x2dx1;−x1dx3;

ðx4 − x1x3Þdx1 þ ðx3 þ x1x2Þdx2;
ðx5 þ 2x2x3 þ 1

2
x1ðx2Þ2Þdx1

−ðx4 − x1x3Þdx2
þ2x1x2dx3 − 2x2dx4Þ

P55
12 ¼ i

2

P66
14 ¼ 2i

P66
12 ¼ ix̂2R

P56
12 ¼ − i

2
x̂1R

TABLE IX. Data for step 4 symplectic nilmanifolds in six dimensions.

Class Frame: ei − δiadxa Pkl
ij

ð0; 0; 0; 12; 14 − 23; 15þ 34Þ ð0; 0; 0;−x1dx2; ðx4 − x1x2Þdx1 þ x2dx3; x5dx1 þ ðx4 − x1x2Þdx3Þ P55
13 ¼ i

(0,0,0,12,14,15) ð0; 0; 0;−x1dx2; 1
2
ðx1Þ2dx2 − x1dx4; − x1dx5 þ 1

2
ðx1Þ2dx4 − 1

6
ðx1Þ3dx2Þ 0

ð0; 0; 0; 12; 14; 15þ 24Þ ð0; 0; 0;−x1dx2; 1
2
ðx1Þ2dx2 − x1dx4; x4dx2 − x1dx5 þ 1

2
ðx1Þ2dx4 − 1

6
ðx1Þ3dx2Þ 0

ð0; 0; 0; 12; 14; 15þ 23þ 24Þ ð0; 0; 0;−x1dx2; 1
2
ðx1Þ2dx2 − x1dx4;

ðx3 þ x4Þdx2 − x1dx5 þ 1
2
ðx1Þ2dx4 − 1

6
ðx1Þ3dx2Þ

P56
24 ¼ − i

2

P66
25 ¼ −i

ð0; 0; 0; 12; 14; 23þ 15Þ ð0; 0; 0;−x1dx2; 1
2
ðx1Þ2dx2 − x1dx4;

x3dx2 − x1dx5 þ 1
2
ðx1Þ2dx4 − 1

6
ðx1Þ3dx2Þ

P56
24 ¼ − i

2

P66
25 ¼ −i

(0,0,12,13,23,14) not applicable
ð0; 0; 12; 13; 23; 14 − 25Þ not applicable
ð0; 0; 12; 13; 23; 14þ 25Þ not applicable

TABLE VIII. Data for step 3 symplectic nilmanifolds in six dimensions.

Class Frame: ei − δiadxa Pkl
ij

ð0; 0; 0; 0; 12; 14þ 25Þ ð0; 0; 0; 0;−x1dx2; x5dx2 − x1dx4Þ 0
(0,0,0,0,12,15) ð0; 0; 0; 0;−x1dx2; ðx5 − x1x2Þdx1Þ 0
ð0; 0; 0; 12; 14þ 23; 13þ 42Þ ð0; 0; 0;−x1dx2; ðx4 − x1x2Þdx1 þ x3dx2; 1

2
x3dx1 − x4dx2 − 1

2
x1dx3Þ P66

12 ¼ i
2

ð0; 0; 0; 12; 14; 13þ 42Þ ð0; 0; 0;−x1dx2; ðx4 − x1x2Þdx1;−x4dx2 − x1dx3Þ 0
ð0; 0; 0; 12; 14; 23þ 24Þ ð0; 0; 0; x2dx1; x4dx1;− 1

2
ðx2Þ2dx1 þ x4dx2 − x2dx3Þ 0

(0,0,0,12,13,14) ð0; 0; 0;−x1dx2;−x1dx3; ðx4 − x1x2Þdx1Þ 0
(0,0,0,12,13,24) ð0; 0; 0; x2dx1;−x1dx3; ðx4 þ x1x2Þdx2Þ P56

23 ¼ − i
2

ð0; 0; 0; 12; 13; 14þ 23Þ ð0; 0; 0; 1
2
x2dx1 − 1

2
x1dx2;−x1dx3; ðx4 − 1

2
x1x2Þdx1 − x2dx3Þ 0

TABLE VII. Data for step 2 symplectic nilmanifolds in six dimensions.

Class Frame: ei − δiadxa Pkl
ij

(0,0,0,0,0,12) ð0; 0; 0; 0; 0; x2dx1Þ 0
ð0; 0; 0; 0; 13þ 42; 14þ 23Þ ð0; 0; 0; 0; x3dx1 − x4dx2; x4dx1 þ x3dx2Þ P55

12 ¼ P66
12 ¼ i

(0,0,0,0,12,13) ð0; 0; 0; 0;−x1dx2; x3dx1Þ 0
(0,0,0,0,12,34) ð0; 0; 0; 0; x2dx1; x4dx3Þ P56

13 ¼ −i=2
ð0; 0; 0; 0; 12; 14þ 23Þ ð0; 0; 0; 0;−x1dx2; x3dx2 − x1dx4Þ P66

24 ¼ −i
(0,0,0,12,13,23) ð0; 0; 0;−x1dx2; x3dx1;−x2dx3Þ 0
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This was proven analytically for step 2 nilmanifolds in
Sec. IV B, but it turns out that it holds for any step. Therefore
it is unnecessary to present these parameters in the tables.
Finally, we present the quadratic parameters Pkl

ij and we

remind the reader that they are antisymmetric in the lower
indices and symmetric in the upper ones.Note that the entries
that do not satisfy the proposition of Sec. IV B are not
examined and they are marked as “not applicable.”
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