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General Wahlquist metrics in all dimensions
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It is shown that the Wahlquist metric, which is a stationary, axially symmetric perfect fluid solution with
p + 3p = const, admits a rank-2 generalized closed conformal Killing-Yano tensor with a skew-symmetric
torsion. Taking advantage of the presence of such a tensor, we obtain a higher-dimensional generalization
of the Wahlquist metric in arbitrary dimensions, including a family of vacuum black hole solutions with
spherical horizon topology such as Schwarzschild-Tangherlini, Myers-Perry and higher-dimensional
Kerr-NUT-(A)dS metrics and a family of static, spherically symmetric perfect fluid solutions in higher

dimensions.
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I. INTRODUCTION

Since the discovery of the Kerr metric which describes
rotating black holes in a vacuum, its geometry has been
investigated from the viewpoint of classifying spacetimes
to understand what are the most fundamental properties
of the Kerr spacetime. A number of studies for the purpose
have been conducted in various systematical frameworks
(e.g., see [1]), and we have obtained a common under-
standing as to the Kerr spacetime to date: stationary, axially
symmetric, asymptotically flat, Petrov type D vacuum
solution of the vanishing of the Simon tensor, admitting
a rank-2 Killing-Stickel (KS) tensor of Segre type [(11)
(11)] constructed from a (nondegenerate) rank-2 Killing-
Yano (KY) tensor.

The Wahlquist metric [2-6] investigated in this paper
was found in the study of stationary, axially symmetric
perfect fluid spacetimes. As we succeeded in obtaining
interior solutions of static, spherically symmetric stars
joined to the Schwarzschild vacuum spacetime, it has been
thought that the interior of rotating bodies can be described
by stationary, axially symmetric perfect fluid solutions.
Although it was shown that the Wahlquist metric cannot be
smoothly matched to an asymptotically flat vacuum space-
time [7], the metric is still of great interest because it
allows some interesting geometric characterizations. It was
pointed out [3] that the Wahlquist metric is the general
solution of stationary, rigidly rotating perfect fluids with
the vanishing Simon tensor. It was also demonstrated [4]
that the metric is the general solution of Petrov type D,
stationary, axially symmetric and rigidly rotating perfect
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fluids with p + 3p = const. Furthermore, the Wahlquist
metric is known to be included in the class of metrics
admitting a rank-2 KS tensor of Segre type [(11) (11)]
which possesses two double nonconstant eigenvalues [8,9].

The Wahlquist spacetime inherits some geometric prop-
erties of the Kerr spacetime. This seems to be reasonable
because the Kerr metric is obtained as the limiting case
of the Wahlquist metric [2,6]. In the Kerr spacetime, two
Killing vectors and KS tensor are constructed from a single
rank-2 KY tensor. It is also shown that the Kerr metric is the
only asymptotically flat vacuum solution admitting a rank-
2 KY tensor [10]. This implies that the presence of the
KY tensor is essential to characterize the Kerr spacetime.
Nevertheless, Killing-Yano symmetry of the Wahlquist
spacetime has never been investigated. In this paper,
therefore, we first ask whether the Wahlquist metric admits
Killing-Yano symmetry. Actually, as we will see in Sec. II,
we find a rank-2 generalized closed conformal Killing-
Yano (GCCKY) tensor with torsion [11] for the Wahlquist
metric.

In recent years, it has been unveiled that Killing-Yano
symmetry plays an important role in higher-dimensional
rotating black hole spacetimes. A family of vacuum sol-
utions describing rotating black holes with spherical horizon
topology [12—15] admits a rank-2 closed conformal Killing-
Yano (CCKY) tensor [16-18]. Recently, local metrics
admitting a rank-2 GCCKY tensor were classified into
three types (called type A, B and C) in arbitrary dimensions
[19]. Some supergravity black hole solutions in higher
dimensions are included in type A of the classification
[11,20]. In this paper, by employing the classification, we
attempt to obtain a new family of rotating perfect fluid
solutions which generalizes the Wahlquist solution to
higher dimensions. On the other hand, there have been
static, spherically symmetric perfect fluid solutions in
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higher dimensions [21-24]. The solutions obtained in this
paper cover, in the static limit, the static, spherically
symmetric perfect fluid solutions with p 4+ 3p = const.

The paper is organized as follows. In Sec. II, after
we briefly review the Wahlquist solution, we demonstrate
that the Wahlquist metric admits a rank-2 GCCKY tensor
with a skew-symmetric torsion. With respect to such a
tensor, in Sec. III, we generalize the Wahlquist solution in
four dimensions to higher-dimensional ones by solving the
Einstein equations for perfect fluids in all even and odd
dimensions, respectively. We see that the equations of
state for the higher-dimensional Wahlquist solutions are
given by p 4+ 3p = const in all dimensions. In Sec. IV, we
investigate the separability of the Hamilton-Jacobi for
geodesics, Klein-Gordon and Dirac equations in all dimen-
sions. Finally, Sec. V is devoted to summary and discus-
sion. After we review the geometry of the four-dimensional
Wahlquist spacetime in Appendix A, we discuss the
five-dimensional Wahlquist metric in Appendix B. In
Appendix C, we have collected the curvature quantities
of the higher-dimensional Wahlquist metrics. As a result, it
is shown that the metrics are of type D in the higher-
dimensional Petrov classification [25].

II. KILLING-YANO SYMMETRY OF THE
WAHLQUIST SPACETIME

To investigate Killing-Yano symmetry of the Wahlquist
metric in four dimensions [2-6], we begin with the metric
form that appeared in [6], which is written in a local
coordinate system (z,w,7,0) as

dz2  dw? U
< i ) + (dt + v,do)?

dSz = (U] + Uz) <—+—

U \% v+ Uy
Tt (dr — vido)?, (1)
where
inh(2 h(2pz) — 1
U=0y+a — z(ﬂﬂZ) -1 = (255)
Mo {cosh(Zﬁz) -1 z sinh(2/)’z)}
rFlL 2 26 I
in(2 1- 2
V00t ar sm(2 /fw) " c;;g pw)
Uo [1 —cos(2pw)  wsin(2pw)
I <2)
and
_ cosh(2pz) — 1 1 —cos(2pw)
U1 = 2/)72 ’ - 2/}2 (3)

The metric contains six real constants Qg, a;, ds, g, Ho
and f. Since one of them can be eliminated by coordinate
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transformation, only five of the constants are independent.
As was shown in [2,6], one can take the limit f# — 0, in
which the metric reduces to the Kerr-NUT-(A)dS metric
[26] (see Appendix A for details).

The Wahlquist metric provides the stress-energy tensor
for perfect fluids of the energy density p, pressure p and
4-velocity u with u,u* = —1, which is written as

™ = (p + p)u'u” + pg". 4)

The 4-velocity is given by

w1 9
ox* /=g, 0t

where g,, = (U—V)/(v, + v,). When we consider sta-
tionary, axially symmetric spacetimes, we have two Killing
vector fields 9, and 0. If u lies on the 2-plane spanned
by the two Killing vector fields, then u can be written as
u = N(9, + Q0,) where N and Q are functions in general.
In particular, when € is constant, the perfect fluid is said to
be rigidly rotating. Namely, the Wahlquist solution repre-
sents rigidly rotating perfect fluids. The energy density and
pressure are given by

(5)

P = Ho +ﬂzg’[‘[‘ (6)

Thus, the equation of state is p + 3p = 2u,. Since we have
p+ p =0and p = g in the limit f# — 0, the constant g is
the cosmological constant.

P = —Ho— 31629111

A. Generalized Killing-Yano symmetry

It is known that the Kerr metric admits separation of
variables in the Hamilton-Jacobi for geodesics, Klein-
Gordon and Dirac equations. The separability is due to
the presence of a rank-2 KY tensor. In four dimensions,
the Hodge dual of the KY tensor is a rank-2 CCKY tensor
h [27] satisfying

vahbc = gabgc - gac§b7 (7)

where V is the Levi-Civita connection. From (7), the
associated vector € is obtained as

1
ga = gvbhba- (8)

Namely, the Kerr metric admits a rank-2 CCKY tensor.

The Wahlquist metric partially shares the separability
of the Kerr metric: the Hamilton-Jaocbi for geodesics and
Klein-Gordon equations separate, but the Dirac equation
does not. Since the Kerr metric is obtained as a particular
limit of the Wahlquist metric [2,6], it is natural to ask the
Wahlquist metric to admit a rank-2 CCKY tensor. However,
it is shown that such a tensor does not exist in the Wahlquist
spacetime. Instead, we find a rank-2 GCCKY tensor & [11],
with a skew-symmetric torsion T satisfying
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vz;hbc = gabgc - gac&bv (9)

where V7 is the connection with the skew-symmetric
torsion defined by

1 1
vzhbc = vahbc + 5 Tabdhcd - E Tacdhbd' (10)
The associated vector € is given by
Lom
é:a - —V hlm- (1 1)

3

If a rank-2 GCCKY tensor is obtained, we may expect that
a modified Dirac equation with 1/3 torsion separates [28].
In fact, the modified Dirac equation of the Wahlquist metric
does. Thus, the GCCKY tensor underpins the separability
on the Hamilton-Jacobi for geodesics, Klein-Gordon
and modified Dirac equations of the Wahlquist metric
(see Sec. IV for details).

Going through the following steps, we demonstrate that
the Wahlquist metric (1) admits a rank-2 GCCKY tensor.
To see it, we first introduce the coordinates x and y defined
by

x> =, v = vy, (12)
and hence
dx? dy?*
P 2o Y (13)
pox -+ 1 1-p%y

The metric is then written as

24y 24y
ds* = dx? + dy?
U(l +p°x?) V(1=
4 272 4 2.7 )2
+m(dr+y do) R (dr — x*do)

with the functions

U= Qo+ ax\/1+ p*x*—pyx*

_Ho [xz xArcsinh(fx)4/1 + ﬂzxz]
P b ’

V =00+ ayy\/1 - Ay 4+ 1p)?

po [ o yAresin(By)y/1 - f%y?
p p

Furthermore, taking the Wick rotation y — +/—1y (with
a, - —V—la, to keep the metric function V real) and
changing the sign ¢ - —o, we obtain the Euclidean

expression, in which the metric takes a symmetric form
with respect to the coordinates (x,y) as

+
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22 )
ds%—fl(x_ y )dx2+f2(y_ X )dyz
=1 =2
+%(dr+y2d0')2 + 2:2 5 (dr 4 x*do)?,
x2—y y:—x
(16)
where
R fr=——
VA LV
E = Qo + ajxy/1 + fx* — ypx?
o [, xArcsinh(Bx)y/1 + 757
2N 5 ’
= Qo+ axyy/1 + A2y — npy?
o [ o yArcsinh(By) /1 + %y°]

The form of the metric (16) precisely fits into type A of
the classification in [19]; that is, the Wahlquist spacetime
admits a rank-2 GCCKY tensor. In fact, if we introduce an
orthonormal frame

2 _ 2 2 _ .2
e =1, x:ydx, =1 y:xdy,
=1 =
el = x2i1 s(dt + y*do),
y
¢’ =[5 ——(dr + x*do), (18)
y X

the rank-2 GCCKY tensor is given by
h = xe' el + ye2ne? (19)

with the skew-symmetric torsion

2x(f1 = f) =

_ Aol a2
A e A
2y(f2 = f1) =h 2 02 0,0
+f1f2(y2 —x%) | ¥? _yze nene (20)

The torsion vanishes when we take the limit § — 0. This
suggests that the torsion is related to the perfect fluid,
although the physical meaning of the torsion is unclear.
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III. GENERAL WAHLQUIST METRICS IN
HIGHER DIMENSIONS

We have seen that the Wahlquist metric (1) admits a
rank-2 GCCKY tensor and its Euclidean form precisely fits
into type A of the classification [19]. Hence, it seems to be
reasonable to consider a higher-dimensional generalization
of the Wahlquist metric. In this section, we attempt to solve
the Einstein equations for perfect fluids in higher dimen-
sions by employing, as an ansatz, type A metrics in [19].

We slightly change our notation to deal with higher-
dimensional metrics in both even and odd dimensions
simultaneously. We introduce € where ¢ = 0 for even and
e =1 for odd dimensions. The dimension number is
denoted by D =2n+ ¢ The Latin indices a,b, ... run
from 1 to D, and the Greece indices g, v, ... run from 1 to n.

The form of type A metrics in D dimensions which we
deal with as an ansatz is given by

n

2 n n—1 2
k
g = :P_"dxg+ > P,,<§ A,§>dwk>
H k=0

p=l u=l

n 2
+ &S (Z A(k)dy/k> , (21)

k=0
where
Pﬂ:%’ ll:H<x/24_x1%)’
" v
52 1
=gl fim—— @)

1+ 57x;
The functions A (k=0,....,n— 1) and AV (k=0,....n)

are kth order elementary symmetric functions in
{x3,x3, ..., x%} defined by

APt =TT0 +2).

k=0 vEu
ARE =TT+ ). (23)
k=0 v=1

The metric contains unknown functions Z,(x,) depending
only on single valuable x,, and in odd dimensions a
constant sq. The form of the metric (21) is not the most
general form of type A metrics, but it is enough to construct
a perfect fluid solution for the current purpose. Of course, it
leaves a question whether there exist more general solutions
of type A.

A. Tower of generalized Killing-Yano tensors

If a rank-2 GCCKY tensor is obtained in D = 2n + ¢
dimensions, we can construct [D/2] =n conserved
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quantities for geodesic motion [20]. In addition, the
complete integrability of the Hamilton-Jacobi equation
for geodesics can be guaranteed if the metric admits a
high enough number of commuting Killing vectors [29].

For the metric (21), we introduce an orthonormal frame
as

n—1
et = f—”dxl" eﬁ — /P” ZAA(,[k)dev
VP k=0
e =S> AWady,. (24)
k=0
Then, the rank-2 GCCKY tensor is given by

h = Zxﬂe”/\ef‘ (25)
p=1

with the torsion

T_szu\/P_u(fﬂ_fu)

B H#U fﬂfl/(x/% _xlzz)

a5

e’ nef neP

+8/;7

1 N
A— —) e"Nef ned, (26)
u

where 1 is an arbitrary nonzero function which appears only
in odd dimensions. The ambiguity of A cannot be excluded
by the GCCKY equation (9); e.g., see [19]. It also has
nothing to do with Einstein equations. Even if we impose
an Einstein equation, it determines the functions =, and f,,
but A is still arbitrary.

From the property that the wedge product of GCCKY
tensors is a GCCKY tensor, hY) = hAh--- AR is a rank-2j

GCCKY tensor. The Hodge dual f) = «h() is a rank-

(D —2j) generalized KY tensor, and its square, Ké’; =

cjf(j)acl...chsz(j)bcl"'CD-ZJ’-' becomes a rank-2 KS tensor
satisfying V(,K;.) =0, where c; is constant. For an
appropriate choice for c;, the KS tensors are written in
the form

KU) = ZA,gj)(e” ® e + e @ ef)
pu=1
+eAVe? ® €Y, (27)

where j =0, 1,...,n — 1. In particular, K(©) = g(®), Thus,
contracting with the tangent p =y to geodesics y, we
obtain n = [D/2] conserved quantities x/) = KU p_p,
for j =0,...,n — 1, including the Hamiltonian 0 =H.
In addition, since 5 = 9, for k=0,...n—1+¢ are
Killing vector fields, we have n + ¢ conserved quantities
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k) = »kap . The all conserved quantities {x/),x¥)} are

in involution.

B. Even dimensions

In this section, we determine the unknown functions
Z,(x,) using the Einstein equations for perfect fluids in
even dimensions. The metric ansatz in 2n dimensions is
given by

n 2 n n—1 2
n k
>:§1:P—de,%+ > 1 P,,(? OjAﬁ,)dwk> . (28)
H= H= —|

For the metric, we calculate the Ricci curvature (see
Appendix B for details). The off-diagonal components of
the Ricci curvature are

Ry = BA(D =2)\/P,\/P,. (29)

The diagonal components are

R, =1 (PT)+ﬂ2[ (P ))+3x8PT+PT]
Rip =R, + P (D-2)P, (30)

where

n ) n
Pr=Y"pP,. PP=3 2P, (31)
pu=1 u=1

and [, are differential operators given by

1 6% 1 0 0
=L T (L ) 2
s 20x +x,% - x2 (x” Ox, v ny) (32)

It should be emphasized that our metric ansatz is now
expressed with a Euclidean signature, so that we have to
consider the Euclideanized Finstein equation for perfect
fluids,

1
Rah - _Rgah =

> —(p + p)uguy + PYap, (33)

where u“u, = 1. Eliminating the scalar curvature, we
obtain the Einstein equation in a convenient form,

pP— P
Ry = =(p + p)uguy +———

D_2Y (34)

Moreover, to solve the equation, we assume that perfect
fluids are rigidly rotating; that is, the velocity u is written as
u = N9, where N is the normalization function. Since we
have N = 1//P; from u“u, = 1, the velocity is given in
the canonical frame as

PHYSICAL REVIEW D 90, 024037 (2014)
1 n

u=—-S /e, (35)
/PT; TR

Under the assumption, together with (29) and (30), the
Einstein equation to solve reduces to

p—p
m:R11:R22:“':Rnn’ (36)
p+p 0
= —fpP.. 37
1P g, @)

To solve Eq. (36), we notice that the pu components of

the Ricci curvature, R,,, can be written in a simple form.

Calculating R, in terms of the functions =, and their
derivatives =), and =), we obtain
1 (G 2 F, F
Ry =—5— _ﬂ_z 2x”2 ot 2P
2x, | U, T~ Xy v, U,
(38)
where
G, = x,(1+ " x2)Z) + x5, — 4 x,5,.  (39)
F,=x,(1 +ﬁ2xﬁ)EL - (142 2xﬁ)Eﬂ. (40)

Noticing that G, = F), and that

OF F’ 2x, |F, F
X, Uﬂ X =X v, U,

where

—p 42
=37 g
we obtain the following expressions for R,

1 OF,
=TT _opp,. 43
i 2x, Ox, PP (43)

Using the expression, R,

{li—ia]m:o. (44)

x,0x, x,0x

R,, = 0 implies that

This can be solved by F; = FT(.):) where Fr(£) is an
arbitrary function of £=) /_ lxﬁ Substituting it into
(42) and differentiating by 0,,0,,---d, both sides of

the equation multiplied by the factor HH#( —x2), we

arrive at the condition F (T )(5) = 0, which implies that
Fr (&) is an (n — 1)th order polynomial in &. Furthermore,
going back to (42) again and comparing the coefficients of
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the equation, we find that ' must be a linear function.
Namely, to be consistent with (42), the function must be
chosen as Fr (&) = Cé+ C, where C; and C, are con-
stants. Then, using the identities

n x2j
-0 (j=0,...n-2), (45)

— U

u=1 " H

O LR
Z U = 1, ZF = Z:x ’ (46)
=1 p=l TH =l
we obtain
F/l = Z Czk.xzk (47)
k=0

where ¢y, (k =0, 1, ..., n) are constants with C; = ¢,,, and
Cy = ¢(u—1)- In the end, using (40) and (47), the problem
of solving the Einstein equation (33) has been reduced to
that of solving first-order ordinary differential equations
for &,

- 1+24%x2 - Sor g eopxik
oL+ )T X (1 )

= 0. (48)
The general solution is

EM = Z c2k¢2k(xﬂ) + aﬂxﬂ\/ 1 +ﬁ2x2, (49)
k=0

where a, are integral constants, ¢y(x) =—1 and ¢y (x)
(k=1,2,...) are given by

P (x) = xy/ 1 + px 2/ +ﬂ2t2 3/2 (50)

Note that, for instance, we have

$a(x) = 2%,

x Arcsmh(ﬂx W1+ px?
Pa(x) = —ﬁ ( )

2 2.2

Bolx) = o (x +ﬂ _ Arcsinh(f \/1 + fx >

15 p o 2B
Ps(x) = - Sﬁg( +_ _Ex

_ Arcsinh(fx) /1 + ﬂ2x2> (51)
5 Y

The solution contains parameters ¢y (k=0,...,n), a,
(mw=1,...,n) and p.
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In four dimensions, for u = 1,2, we obtain

5, =—¢+ czxf, +a,x,/1+ ﬁzx,%
C4x Arcsinh(fx,)\/ 1+ f*x;
- —ﬂz" (xﬂ - 5 > (52)

The form coincides with the Wahlquist solution.
In the limit # — 0, we have ¢, — x*/(2k —1). The
functions =, take the form

= Z Cka k4 a,x,, (53)

where ¢, = ¢y/(2k — 1). This is the same form as Kerr-
NUT-(A)dS metrics in 2n dimensions found by Chen-Lii-
Pope [15].

Finally, let us comment about the equation of state.
From (36), (37), (43) and (47), we have

2p
D_o Con + PP, (54)

2p

D—2 = —Cyp — 3ﬂ2PT9

Hence, the equation of state is p + 3p = (D —2)c»,.

C. Odd dimensions

Let us consider odd dimensions D = 2n + 1. The metric
ansatz in 2n 4 1 dimensions is given by

n_ £2 n n—1 2
e =3 T a4y (Y alan )
H u=1

y=1 k=0

+S (Z A(")dl//k> ’ (55)

k=0

with unknown functions =,. The off-diagonal components
of the Ricci curvature are given by

Rﬂy == Rﬂﬁ - R,uﬁ - R;t() - O,
RIA“A/ :ﬂz(D—2)\/P’u\/Pb,
~2)/P, V5. (56)

The diagonal components are

024037-6
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Ry = 1,(Br) + 2| L,(PY) + 2 x,0,Py + P
Hp /4( T)+ﬂ u( T)+§xﬂﬂ r+Pr

1 0 -~ ~ (2
_ P 2P()
2xﬂ8xﬂ( r PP,

Rpp = Ry, +ﬁ2(D - 2)Pﬂ

"1 90 - - -
Roo:—z—a (Pr + PPPY)) + PPPrfA(D - 2)8,
= X, 0x,,
(57)
where
Pr=N P, =Pr+5, B} fzyﬂp S
u=1
(58)
and
= 2
~ i =~ — nso
ﬂ:#, E,=5,—-(-1) 2 (39)

We assume that the velocity u lies in the plane of the
Killing vectors

_ \/% (,2 VP.e;+ \/§eo). (60)

The equation reduces to

pP—Dp

m:RH:RZZ:"':an (61)
ptp 27
—— = —f"Pr, 62
2L b, (62
and for all u,
Roo = Ry, + (D -2)S. (63)

Similar to even dimensions, we find from the direct
calculation that the yp and 00 components of the Ricci
curvature can be written in the simple form

1 6FT ~
=——— 1 _2p8p 4
P 2X 8)( ﬁ T (6)
- Fﬂ 2 7 2
Ry =— 5 —2p°Pr+ p*(D-2)S, (65)
— xoU
pu=1"H"H
where
Fo = K 66
=Xy (66)
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and

- 22, (67)

F —x”(l—l—ﬂz 2): 7=
As was discussed in even dimensions [cf. (47)], Eq. (61)
requires that F, take the form

Fﬂ = Z Ckalzlk. (68)
k=0

Indeed, by virtue of (64) and (65), we easily see that
(68) together with ¢y = 0 solves (61) and (63). From the
equality of (67) and (68), we obtain the first-order ordinary
differential equations

o Pr o= Yiioan T 0 (69)
= 2,27 212 o
ol gt 1+ p°x;

The general solution is

§ = Z () +
k=1

[1]2

an\/1+ px, (70)

where a, are integral constants and &52,{ (k=1,2,...) are
given by
tzk ld[
/ 2,2
¢2k 1 +ﬂ / +ﬂ2[2 1 L p242)\3/2° (71)

Note that, for instance, we have

552(3‘) = —% <1 - M)
ba(x) :ﬁ4 <1 '%Zx — m>
Bolx) = - M&mﬁz L)

y B, ﬂ4 £ s
¢8()C) Sﬂg <1 +_ —gx +R

—4/1 +ﬂ2x2), (72)

Thus, we obtain

_ L ~ / —1)"s2
‘:‘/4 = kz; 02k¢2k(x”) + a/t 1+ ﬁlezl + (x# . (73)

"

The solution contains parameters ¢, (k= 1,...,n), a

(w=1,....,n), k and B.

u
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In five dimensions, for 4 = 1,2, we have
= 2 2.2 22, 5
== 1=\1+6x ) ta,/1+px+—5
p Xy
2¢ [iQ
+ﬂ—4“<1 S5 —\/1+ﬂ2x2>. (74)

In the limit # — 0, we have ¢,;, — x**/2k. The functions
£, take the form

= o (=1)"s5
:ﬂ:kz;Ckaﬂ +a, + x,% , (75)

where ¢, = ¢y /2k. The form reproduces Kerr-NUT-(A)
dS metrics in 2n + 1 dimensions [15].
Since we have

2p ~ 2p

Do Cam~ 3*Pr, D_o  C» + 2Py, (76)

(D —2)c,, like the even

the equation of state is p + 3p =
dimensional case.

IV. SEPARABILITY

We investigate the separability of the Hamilton-Jacobi
for geodesics, Klein-Gordon and Dirac equations for the
higher-dimensional Wahlquist metrics (21), where we do
not specify the functions =, to deal with more general
cases. If we choose a particular form of the functions
as (49) in even dimensions and (73) in odd dimensions, the
results can be applied to those of the Wahlquist metrics. In
this section, we will see that the Hamilton-Jacobi for
geodesics and Klein-Gordon equations can be solved by
separation of variables, but we will not see the separation of
variables in the Dirac equation in any dimension. It is also
shown that in even dimensions, a modified Dirac equation
with 1/3 torsion [28] can be solved by separation of
variables, while it cannot in odd dimensions.

A. Separation of variables in the Hamilton-Jacobi
equation for geodesics

The separation of variables in Hamilton-Jacobi equations
for geodesics occurs if and only if the metric admits
the separability structure established in [29], in which
the corresponding Killing tensors can be written in the
Stickel form

Klm ¢/4

- 2 S (77)
=

where (;5’(’1,) is the inverse matrix of the Stickel matrix and

C’({}Z are functions depending only on one variable x,,.
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The Killing tensors K/ (j=0,1,...,n—1) obtained
in (27) are written in the coordinate basis as

n—1+e
ZK””G ®d,+ > K49, ®9,

= k=0

3 ®9, + e 1)n+18 ® 9
f2 x}l Xﬂ Ox/,t Y Yn
n—l+e k+¢.22n=2—k=2)
-1 X
+ =) =

k=0 H

6V/k ® al//f:| :

The Stickel matrix and the functions ¢ ]((/Z are given by

B 1 jxi(”—j—l)fﬁ

¢l =
—u
n—2—k—2)
(_1)k+ff2x2(2 2—k— e(— )n+1f2
C](f) = ﬂ:; + P ﬂ‘skfékn (78)
= 0

In practice, the Hamiltonian-Jacobi equation for geodesics,

S 595 9
1 "9 Oxd ot

=0, (79)

allows an additive separation of variables

S = —K0/1+ZSﬂ(x )+
pu=1

n—l+e

Z W (80)
k=0

where k, and n; are constants.
(u=1,...,n) are given by

o (G

The functions S,

1/2
>nkng) dx,. (81)

In the limit p — 0, this recovers the result for the
Kerr-NUT-(A)dS metrics [30,31].

B. Separation of variables in the Klein-Gordon equation

The massive scalar field ¢ is described by the Klein-
Gordon equation

\/_8)6 \/§gab P = m*®. (82)

This equation allows a multiplicative separation of
variables

n—l+e

o= [Ime) T[ e )

p=
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where the functions R,(x,) (u=1,...,n) satisfy the
ordinary second order differential equations

=/ !
R" + (:_ JH + ) R
H ‘:M f/l H
n—1 G) n—1+e
+ (Z b= > C%"k”f)Ry =0 (84)
j=0 k=0
with x, = —m?. In the limit # — 0, this recovers the result
for the Kerr-NUT-(A)dS metrics [30,31].

C. Separation of variables in the Dirac equation

The existence of a GCCKY 2-form does not imply the
separability of the Dirac equation. However, we may expect
the separability of a modified Dirac equation which appears
in the spacetimes admitting the GCCKY,

(¥*DE + m)w =0, (85)

where the Dirac operator has a 1/3 torsion, 7/3, of the
GCCKY 2-form,

1 1
3
DIP =e, + 1 oc(ed) =5 1" Tape. (86)

The frame vector fields dual to (24) are given by

VP 0 V50
= fﬂ 8x s oy,
n—l+e (_l)kXZ(n—H-k) )

R v 87
o ; VP.U, Oy (87)

By using (C1) and (26), the Dirac operator y“DZ/ 3 s
explicitly written as

S et e )

w TEn Xy

vt TH
- 2(n—1+k) 5
+y (nig(_—l)k e 0, Zix"zyyyyz )]
— E, Oy, i 2(x; — xy)

n

1 0 1 A 1 "
+e/°VS [— - (— + )y"y"] . 88
s(z) oy, 4 ; X, fux, (88)

The expression leads to the separation of variables in even
dimensions. The calculation is completely parallel to that
of [32]. We write the 2" components of the spinor field
as W, ... (¢, = £1). Putting the separation solution

slez &, ( H ) £18r 8y
I<pu<v<n 'V X + 8 &X

(89)
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where
n—1+e
8182 £, T <HZ€,, )exp( Z nka>’ (90)
k=0

the modified Dirac equation becomes

>
=1 [Tz (0, — €0x,)

iek n, 1< A 1
G k)
[15=1 &%, 55 4; EXu  EuXufy

where

Note that Pg’f ) depends only on the one variable x,,.

In even dimensions (¢ = 0), Eq. (91) reduces to

n P(ﬂ)
Z +m=0. (94)
u=1 Hu#ﬂ (Sﬂx/l - guxu)

The equation separates when

PY =" gi(en). (95)

where ¢; (j=0,...,n—2) are arbitrary constants and
q,—1 = —m. Indeed, combining (92) with (95), we have
the following coupled ordinary differential equations:

d u (u)
c Y )
<dx +4_,,+2 e >Z z

+ (_ )# (8;4) _”f/l E;'Z:O qj(gﬂ‘x/l)j
(_1)”_1514

In odd dimensions, we cannot separate (91) because of
the last terms including the function A. For the Kerr-NUT-
(A)dS metrics in odd dimensions, since we have f, = 1 for
all u, we are able to take A = 1 and then Eq. (91) can be
solved by separation of variables [32].
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V. SUMMARY AND DISCUSSION

In Sec. II, we have discovered a rank-2 GCCKY tensor
with a skew-symmetric torsion for the Wahlquist metric (1)
which is a stationary, axially symmetric perfect fluid solution
of the Einstein equation in four dimensions with p 4+ 3p =
const. In Sec. III, we have obtained stationary, axially
symmetric perfect fluid solutions in higher dimensions, where
we have made use of canonical forms of metrics admitting a
rank-2 GCCKY tensor and have directly solved the higher-
dimensional Einstein equations in higher dimensions. The
exact solutions obtained generalize the Wahlquist metric in
four dimensions to all even dimensions (28) and odd ones (55),
for which the equations of state are always given by
p + 3p = const. As far as we know, they are the first examples
of rotating perfect fluid solutions in higher dimensions.

We could solve the Einstein equations for perfect fluids due
to the presence of a rank-2 GCCKY tensor. In this sense, if we
find another solution admitting a rank-2 GCCKY tensor in
four dimensions, it might be possible to generalize it to higher
dimensions. When we solved the Einstein equations, as an
ansatz, we have focused on type A metrics admitting a rank-2
GCCKY tensor, but it would be of great interest to investigate
the other types of metrics (called type B and type C [19]).
Since we have assumed a particular case of type A metrics, it
might be possible to find other perfect fluid solutions of type
A even in four dimensions. Another thing we assumed is that
perfect fluids are rigidly rotating, so it would be worth asking
whether the assumption can be relaxed.

In Sec. IV, we have investigated the separability of the
Hamilton-Jacobi for geodesics, Klein-Gordon and (both
standard and modified) Dirac equations for the obtained
higher-dimensional perfect fluid solutions. In four dimen-
sions, the Wahlquist metric shares the similar separability
to the Kerr metric. The Hamilton-Jacobi for geodesics,
Klein-Gordon and modified Dirac equation with 1/3
torsion equations can be solved by separation of variables.
We have seen that the Hamilton-Jacobi for geodesics and
Klein-Gordon equations separate also in higher dimen-
sions, which is responsible for the rank-2 GCCKY tensor.
Although the Dirac equation does not separate in arbitrary
dimensions, the modified Dirac with a 1/3 torsion equation
does only in even dimensions. In odd dimensions, there is
an obstruction. Even for any choice of the function 4 in
(26), the modified Dirac equation does not separate.

Since the equations of state are given by p 4+ 3p = const,
the present situation seems to be unrealistic for compress-
ible fluids. Even so, it would be interesting to consider
whether the obtained solutions describe the interiors of
rotating stars and (not necessarily smoothly) connect to
vacuum spacetimes. For instance, when we take the static limit
of the Wahlquist solution, we obtain a static, spherically
symmetric perfect fluid solution (A8). Then, it is possible
to match the metric to the Schwarzschild metric, as was
discussed in [2,33]. In higher dimensions, for static, spheri-
cally symmetric perfect fluid solutions with p = const. [21,23]

PHYSICAL REVIEW D 90, 024037 (2014)

and p = —p [24], the similar matching conditions were
discussed, where the metrics are joined to the
Schwarzschild-Tangherlini metrics in arbitrary dimensions.

ACKNOWLEDGMENTS

We would like to thank Hideki Maeda for introducing us
to this project. We would also like to thank David Kubiznak
for reading the draft carefully and giving us useful com-
ments. We are grateful to Masashi Kimura, Shunichiro
Kinoshita and Masato Nozawa for the helpful discussion,
and also grateful to Gary W. Gibbons for reading the draft.
T. H. was supported by Research Center for Measurement
in Advanced Science (RCMAS), Rikkyo University. Y. Y.
was supported by the Grant-in-Aid for Scientific Research
No. 23540317.

APPENDIX A: PARTICULAR LIMITS OF
THE WAHLQUIST SPACETIME
IN FOUR DIMENSIONS

It is known that as the particular limits, many known
solutions can be included in the Wahlquist metric in four
dimensions [2-6]. We review the relationship here, again. A
detailed explanation can be found also in [34]. The metric
(14) is written in a local coordinate system (r, p,7,0) as

Q
ds*> = s (dr + p*do)* + 21 (dz — r*do)?
r2 +p2 r2 +p2
t s dr? + ———5 = dp? (Al
oi-pA " TP ) ’

with the functions

Q= Q+ayr\/1—=pr +uyyr’

:LB{_(Z) [rz _ rArcsin(ﬁr;\/ 1 - ﬁzrz} (a2

P = Qo+aipy\/1+pp*—vp?

Ho [ » _ pArcsinh(fp)/1 +ﬂ2p2}
—_— _2 p —_— .
p p

The parameters are Qy, vy, ay, a», Hy and B. Of them, only
five parameters are independent, which correspond to mass,

rotation, NUT, cosmological constant, the perfect fuild’s
parameters.

+

(A3)

1. Kerr-NUT-(A)dS limit

Let us consider the metric (A1) with # = 0. In the limit
p — 0, we have

3.3
1_ﬂ22:ﬂr_ﬂTr+...,

3.3
Arcsinh(Bp)\/1 + p*p* = Bp +ﬂTp+...‘

Arcsin(fr)
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Hence, the metric becomes

ds* = 232 (dr + p*do)* + o (dr — r*do)?
LQPZM —1—#@72, (A4)
where
QZQ0+02F+VOF2—%”47 (A5)
P = Qo+a1P—V0P2—@P4‘ (A6)

3

The form was investigated first by Carter [26], which is
called the Kerr-NUT-(A)dS metric. This is also a particular
case of Plebanski [35] and Plebanski-Demianski [36] met-
rics. Recently, the geometric characterization was investi-
gated in [37]. For the physical meaning of the parameters,
e.g., see [38].

2. Static limit

It is possible to take the static limit of the Wahlquist
metric (Al), as was pointed out in [2,6]. If we perform
the coordinate transformation p = acos®, ¢ =t — a¢ and
6=¢/a and then send a — 0 (with Q, = a*Q, and
a; = aa,), the metric becomes

dr?
(1=p°r)f(r)

where dQ? is a two-dimensional metric with the constant
curvature v and

ds* = —f(r)dt* + +r?dQ?, (A7)

1-— 2 .2
f(r):v0+az—\’rﬁr

#o Arcsin(Br)\/1 — pr
p? pr '
If we take vy > 0, it is the Whittaker metric [33] which is a

static, spherically symmetric perfect fluid solution describ-
ing an interior of Schwarzschild spacetime.

+ (A8)

APPENDIX B: SPECIAL CASES OF THE
WAHLQUIST METRIC IN FIVE DIMENSIONS

In this appendix, we would like to discuss special cases of
the higher-dimensional Wahlquist metrics obtained in Sec. I1I,
especially in five dimensions. Before doing so, for the metric
(55) with the functions (74) in five dimensions, we perform
the Wick rotation x = ir. Then, the metric is written as

2 2 2 2
dst =" +y 2+ r+y 2
Y (1=pr)E (14 5%)E,
‘El 2 Ez 2 S% 2
_r2+y2 1 r2+y2w2_r2y2w3’ (B1)
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where

wy = dyy + yrdy, wy = dyo — rPdy,,

w3 = dyo + (2 = r*)dy, — r’y*dy,. (B2)
The functions =, are given by
== % (1 ﬁ2 -y 1 -p 2) f
2 r?
—~1= ﬁ2 2> 1 _ﬂ2 2
ﬂ( “
_ 2 o, 52
1+ 1 2 2]+
B < 7 e > Ty
<
§<1 14 2y 2) + ay\/1+ 22 (B3)

1. Kerr-(A)dS metric

Taking = 0 leads to the vacuum solution, in which the
energy density and pressure of the perfect fluid vanish and
the metric takes the form obtained by Chen-Lii-Pope [15],
which was previously obtained in [13,14].

2. Rotating perfect fluids with equal
angular momenta

It is shown [14] that when all angular momenta are set to
equal in odd dimensions D = 2n + 1, Myers-Perry-(A)dS
metrics can be recast in a simpler form, in which the Hopf
fibrations over CP"~! appear in the metrics. For instance,
the Hopf fibration over CP! = S appears in five dimen-
sions. It is realized from the viewpoint of Killing-Yano
symmetry that the eigenvalues of Killing-Yano tensors
change from functions to constants (from nondegenerate
to degenerate). Actually, if we start with a metric ansatz
admitting a degenerate CCKY 2-form, we obtain a vacuum
solution including the Myers-Perry-(A)dS metrics with
equal angular momenta [31,39]. In analogy with it, it is
possible to consider a metric ansatz admitting a degenerate
GCCKY 2-form and then, as is expected, we obtain a
stationary, axially symmetric perfect fluid solution. The
metric in five dimensions is written in a local coordinate
system (t, 7,0, ¢,y) as

2 1 2 2
dsg = —f(r) <dt+%03) +%d72

k2 r2 +a2 2 r2 +a
- dt -
7 (“ T ”3) W

where sz is the standard metric on the two-dimensional
unit sphere §2, and o5 is the 1-form such that do is the
Kihler form of ngz. The function f(r) is given by

0%,  (B4)
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) = [k2 2("—2 3) — oM/ 1 - 2P
2k2 + cza ( ﬁ2r2>
+%(1—%r2 1—ﬁ2r2>], (B5)
where
L _4+3pP) — o (B6)

4(1 + p*a?)

The metric contains five parameters M, a, c,, k and 5. The
velocity of the perfect fluid is u = 1/,/=¢,;0,. The energy
density and pressure are

_30Pgut ) _3(Pgut )

, = , B7
21 + o) P=20+pa) BY
where g, = —f(r) + k*a®/r>. The equation of state is
given by
3C2
3p=——~= . B8
P3P = (B8)

3. Static limit

The static limit of the metric (B4) is given by a = 0.
Then, since we have k2 = A, the metric is written as

dr?

(1=p2r)f(r)

where dQ3 is the standard metric on the unit sphere S and
the function f(r) is given by

g0 2MA\/1 - 272
<r) ﬂ22< ﬁZ 2)_%
+£<l—%2r2— l_ﬁzrz)‘

As a consequence, the static metric becomes spherically
symmetric.

2
ds? = —f(r)di* + + %dﬁ?, (B9)

(B10)

APPENDIX C: CURVATURE QUANTITIES
OF THE HIGHER-DIMENSIONAL
WAHLQUIST METRICS

By using the tetrad method, this appendix calculates
the curvature quantities for the tetrad (24) of the higher-
dimensional metrics (21). In what follows, the indices ¢ and
v are different and no sum.

From the first structure equation de” 4+ w?,Ae” =0
and w,, = —w,,, the connection 1-forms are calculated
as follows:

PHYSICAL REVIEW D 90, 024037 (2014)

o = — xu\/ITI/ el — l‘\/——
Y fg-x) fulg —)° -
AP, P e,
v, ;mx =2 TR
', = xﬂ\/P—D el — ”\/———
fﬂ(x/%_xzzz) fu(x _x2)
o — — xV/P, e — x\/P,
Y fubgi=x) ful —xy)
VS i VP
po— V2 i
T
. S
'y = —f\ﬂ/;le”. (C1)

From the second structure equation R¢, = dw®,+
‘. A€y, the curvature 2-forms are calculated as follows:

R” = R”U ye”/\e” + R”yﬁl;e”/\e”

R, = RY,, e”/\e” + ZR”Wﬁe”/\e
%0

—+ ﬂzz VP, /P e’ ne

P
+ef? \/P_ﬂ VSet ne®,

R'; = R*y.e" Ne + RV, e¥ neP
+ *\/P,\/P " ne
+ Z \/PT \/PT,e” ne?

PFEULY
+ ef*\/P,\/Set Ne,
Rﬂﬁ = R”,;,we”/\e” + R”;,ﬁ,;e”/\e”

Y VP,

pFUY

N N

pFUY
+ e2\/P,V/Set ne®
—ef? \/P_M V/SeP ne,
R”O = Rﬂoﬂoe’u/\eo +ﬁ2 \/I'T,\/Ee"/\eﬁ

+ ﬂzz /P, VSe'neé?,

P e ne’

v#U
Ry = R0 e + ﬂzz /P, \/Se" ne
v#p
+B2> /P /PN, (C2)
v#U

The components of the curvature 2-forms are given by
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1 - -
Rﬂu/w = —m(x”a”PT - xl,a,,PT),
" v
s 5(2) =(2)
_m(xﬂaﬂpT —xya,/PT ),
U v
1 ~ -
R+ (xl,aﬂPT - .x’uaDPT>,

2 f (g = x)
—_12p B 2p? | 3 3 2
Rﬂﬁﬂﬁ——iaﬂpT—7aﬂPT +TxﬂaﬂPT+ﬁ Pﬂa

1 ~ ~0
RﬂOﬂO = —g (3MPT +ﬂ28ﬂP<T)) +ﬁ25 (C3)
u
and
Rpvpw = Ryuyw + ﬁzpﬂ’
Ryspo = Ry + (P, + P,),
Rupwi = 2Rujss Rupvp = Ruvpos
Ri010 = Ruouo + PP, (C4)
The functions Py and P<Tz ) are defined by
- n - 2 n
Pr=Y"P,+es. PP =>"x2P. (C5)
pu=1 p=1

In [40], it was shown that the higher-dimensional Kerr-
NUT-(A)dS metrics are of type D in all dimensions. This
motivates us to ask if the higher-dimensional Wahlquist
metrics obtained in Sec. III are also of type D, because the
Kerr-NUT-(A)dS metrics are obtained as the limit of the

PHYSICAL REVIEW D 90, 024037 (2014)

Wahlquist metrics. To see it, since we need to prepare a null
orthonormal frame {k,l,e,} such that k is a Weyl aligned
null direction, we define it for the higher-dimensional
Wahlquist metrics in the way similar to higher-dimensional
Kerr-NUT-(A)dS metrics. Using the orthonormal frame
(87), for a fixed number u, we define

1
k = \/ZT);(G”—F v—leﬁ),

(Co)

1= \/\/?(eﬂ - \/——leﬁ).

By definition, this frame yields (a # )

(C7)

(kk) = (I1) =0, (k.1) = 1,

(k7 ea) - (17 ea) = (eaveﬂ) =0. (CS)

We also have Vi k = 0, which means that the integral curve
of k is a geodesic. It is easy to see that the Weyl curvature
yields the type D condition [25]

W(k’ ea’eﬂ’e}’) = W(l’ ea’eﬂ’e}’) = 0’
Wk, e, k,e,) =W(l eyl e,) =0,
Wk.lk.e,) =W(klle,) =0.

(€9)

We thus find that the higher-dimensional Wahlquist metrics
are of type D in all dimensions.
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