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We treat a model based upon nonlinear optics for the semiclassical gravitational effects of quantum fields
upon light propagation. Our model uses a nonlinear material with a nonzero third order polarizability. Here
a probe light pulse satisfies a wave equation containing the expectation value of the squared electric field.
This expectation value depends upon the presence of lower frequency quanta, the background field, and
modifies the effective index of refraction, and hence the speed of the probe pulse. If the mean squared
electric field is positive, then the pulse is slowed, which is analogous to the gravitational effects of ordinary
matter. Such matter satisfies the null energy condition and produces gravitational lensing and time delay. If
the mean squared field is negative, then the pulse has a higher speed than in the absence of the background
field. This is analogous to the gravitational effects of exotic matter, such as stress tensor expectation values
with locally negative energy densities, which lead to repulsive gravitational effects, such as defocusing and
time advance. We give some estimates of the magnitude of the effects in our model and find that they may
be large enough to be observable. We also briefly discuss the possibility that the mean squared electric field
could be produced by the Casimir vacuum near a reflecting boundary.

DOI: 10.1103/PhysRevD.90.024036 PACS numbers: 04.62.+v, 04.60.Bc, 42.65.An

I. INTRODUCTION

Semiclassical gravity, in which the renormalized expect-
ation value of a matter stress tensor operator is the source of
a classical gravitational field, reproduces all of the phe-
nomena of classical general relativity. The effects of
classical gravitational fields upon the propagation of light
rays include gravitational lensing and the Shapiro time
delay [1]. More precisely, these are the effects of gravita-
tional fields produced by matter which satisfies classical
energy conditions, such as the null energy condition,
Tμνkμkν ≥ 0 for all null vectors kμ. However, semiclassical
gravity also describes the gravitational effects of matter
which violates this condition, as may occur when negative
energy density is present. If the classical conditions are
violated, then defocusing and time advance effects are
possible. The simplest example would be a negative mass
Schwarzschild geometry, which would act as a diverging
lens and exhibit a Shapiro time advance. The connection
between exotic matter and superluminal propagation has
been discussed by several authors [2–4], who show that
violation of the null energy condition is required to have a
time advance, a light ray traveling faster than it would in
flat spacetime. Quantum field theory does allow local
negative energy densities, as in the Casimir effect or in
squeezed states, but these effects are very restricted in either
space or time. In the case of the Casimir effect with parallel

perfect plane mirrors at a separation of l, there is a uniform
static negative energy density between the mirrors of
−ℏc=ð720π2l4Þ. In the case of more realistic mirrors, it
is possible still to have a reduced negative energy density
[5,6]. In the case of nonclassical quantum states, such as
squeezed vacua, the negative energy is limited in its
temporal duration by quantum inequalities [7–14]. These
inequalities give an inverse relation between the magnitude
and duration of negative energy in the frame of any inertial
observer, and greatly limit the gravitational effects of
negative energy density.
However, the quantum inequalities do not mean that

negative energy density, or related subvacuum effects, are
unobservable. Subvacuum effects can produce changes in
the magnetization of a spin system [15] and the rate of
atomic decays [16]. In the present paper, we will discuss
another possibility, the effects of negative mean squared
electric field upon the propagation of light in a nonlinear
material. The basic idea is that in a material with nonzero
third order susceptibility, the speed of propagation of a
probe pulse can depend upon the squared electric field,
which can be produced by a background field, which is the
Kerr effect. This effect is an analog model for the effects of
gravity on light propagation. If the mean squared electric
field is positive, hE2i > 0, then there is an increase in
the index of refraction and hence a decrease in the speed of
the probe pulse. This is analogous to the effect of the
gravitational field of normal matter on light rays. However,
hE2i is defined as a difference between values in a given
state and in the vacuum, and hence need not be positive. If
hE2i < 0, we have a subvacuum effect, and there is an
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increase in the speed of the probe pulse. This is analogous
to the gravitational effects of exotic matter. The subvacuum
effect can be created by a background field in a squeezed
state. A similar model was used in Ref. [17] to model light
cone fluctuations. However, that model used materials with
nonzero second order susceptibility and described fluctua-
tions in propagation speed around an average value which
was independent of the background field. In the present
paper, we are concerned with changes in the mean speed of
light, analogous to effects which occur in the semiclassical
theory of gravity.
In Sec. II, some basic information on nonlinear optics

will be reviewed, and used to formulate our model, and to
derive expressions for the effective index of refraction in
terms of the expectation value of a squared electric field.
These expressions will be evaluated in a multimode
squeezed vacuum state in Sec. III. The results will be
used to give some numerical estimates for the possible
magnitude of the change in refraction angle due to sub-
vacuum effects. The change in refractive index due to the
Casimir vacuum near a reflecting plate will be discussed in
Sec. IV. Our results are summarized and discussed
in Sec. V.

II. NONLINEAR OPTICS AND LIGHT
PROPAGATION

In this section, we review some aspects of electrody-
namics in a nonlinear medium and define some notation
to be used in the following sections. In the absence of
charges and currents Maxwell’s equations can be written in
SI units as

∇ ·B ¼ 0; ∇ ×E ¼ −
∂B
∂t ; ð1Þ

∇ ·D ¼ 0; ∇ ×H ¼ ∂D
∂t ; ð2Þ

where the induced electric D and magnetic B fields are
related to the respective intensities E and H by means of
the constitutive relations: B ¼ μ0H and D ¼ ϵ0Eþ P. The
quantity P is the polarization, which can be expanded in
terms of the components of the susceptibility tensors χ ðaÞ
(a ¼ 1; 2; 3;…) as (see, for example, Ref. [18])

Pi ¼ ϵ0ðχð1Þij Ej þ χð2ÞijkEjEk þ χð3ÞijklEjEkEl þ � � �Þ: ð3Þ

Here repeated indices are summed over. We will consider
the case in which P and E are parallel. Then the electric
field is divergenceless and its evolution is governed by the
wave equation,

�
∇2 −

1

c2
∂2

∂t2
�
E ¼ 1

ϵ0c2
∂2

∂t2 P: ð4Þ

We will further consider only the case where the second
order susceptibility vanishes, so χð2Þijk ¼ 0, as will hold for
any material whose crystal lattice possesses spatial inver-
sion symmetry. If we stop the expansion in Eq. (3) at third
order, then Eq. (4) contains linear and cubic terms in the
electric field.
A key ingredient in our model is to assume that the total

electric field may be written as the sum of a background
field E0 and a probe field E1,

E ¼ E0 þ E1; ð5Þ

where jE1j ≪ jE0j and j∇ lnðjE1jÞj ≫ j∇ lnðjE0jÞj. That
is, the probe field is a small, but rapidly varying, perturba-
tion of the background field. We can greatly simplify our
model by taking both fields to be linearly polarized in the z
direction, so E0 ¼ E0ðt; x; yÞẑ and E1 ¼ E1ðt; x; yÞẑ. In
this case, the only coefficients of the susceptibility tensors

that contribute to the wave propagation are χð1Þzz and χð3Þzzzz,
which we will denote as χð1Þ and χð3Þ, respectively. We may
work to linear order in the probe field and write its wave
equation as

∂2E1

∂x2 þ ∂2E1

∂y2 −
1

v2
ð1þ 3ϵ2Þ

∂2E1

∂t2 ¼ 0: ð6Þ

Here v is the effective speed of light in the medium when
only linear effects take place (i.e., when χð3Þ ¼ 0),

v ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χð1Þ

p ; ð7Þ

and

ϵ2 ¼
χð3Þ

1þ χð1Þ
E2
0ðt; x; yÞ: ð8Þ

We assume that χð3Þ > 0, which is the case for most

nonlinear materials, especially those with χð2Þijk ¼ 0.
The effect of the background field is to cause the probe

field to experience an effective index of refraction which
depends upon space and time. This effect upon the
propagation of probe pulses is analogous to the effects
of a gravitational field upon light propagation. Because the
wavelength of the probe field is short compared to the scale
of variation of ϵ2, we may use a geometric optics treatment
with a local refractive index defined as n ¼ c=vph, where
vph is the velocity of the probe field and can be obtained
directly from Eq. (6) as

vph ¼
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3ϵ2
p : ð9Þ

If ϵ2 ≪ 1, the refractive index can be expanded as
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n ≈ n0

�
1þ 3

2
ϵ2

�
; ð10Þ

where n0 ¼ c=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χð1Þ

p
is the refractive index of the

medium when only linear effects are included.
An important limitation of our model is the presence of

dispersion in realistic materials, while gravity is dispersion-
less. However, many materials including nonlinear ones
have optical parameters which are relatively independent of
frequency over a broad range. This typically occurs at
frequencies below that of any resonances, that is, in the
infrared part of the spectrum. This will be discussed in
more detail in Sec. III B.
So far our discussion has been at the classical level. Now

we wish to regard the background field as a quantized field
operator E0ðt;xÞ and to replace E2

0 in the above expres-
sions by an expectation value of the normal ordered square
of this operator,

E2
0 → h∶E0

2∶i: ð11Þ

The effective refractive index becomes an expectation value
of Eq. (10),

hni ¼ n0

�
1þ 3

2
hϵ2i

�
¼ n0 þ

3χð3Þ

2n0
h∶E0

2∶i: ð12Þ

Normal ordering is the correct prescription for defining
expectation values ofE0

2 here, because we are interested in
a change in the expectation value due to a change in the
quantum state. In the case that the field is in its vacuum
state, we set hni ¼ n0. In the present paper, we are
concerned only with expectation values, and not with
fluctuations around the mean value.
In quantum states, such as coherent states, for which

h∶E0
2∶i > 0 everywhere, we find hni > n0. This is the

classical behavior in which the effect of the background
field is to slow the speed of probe pulses, and it is
analogous to the gravitational effects of positive energy
density. However, in nonclassical states, such as squeezed
vacua, it is possible to have h∶E0

2∶i < 0 in finite regions.
In this case, hni < n0, so the effect is to increase the speed
of pulses. This is analogous to the gravitational effects of
exotic matter leading to superluminal propagation.

III. SUBVACUUM EFFECTS
FROM SQUEEZED STATES

A. Mean squared electric field
in a multimode squeezed vacuum

Here we turn to the explicit construction of h∶E0
2∶i for

the case of plane wave modes in a squeezed vacuum state.
The quantum field E0ðt;xÞ can be expanded as

E0ðt;xÞ ¼
X
kλ

½akλêkλgkðt;xÞ þ a†kλê
�
kλg

�
kðt;xÞ�: ð13Þ

Here êkλ is the polarization vector, and a†kλ and akλ are
photon creation and annihilation operators, obeying the
commutation relation ½akλ; a†k0λ0 � ¼ δk;k0δλ;λ0 . We take the
mode function to be

gkðt;xÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏω
2ϵ0V

s
eiðk·x−ωtÞ; ð14Þ

where V is the quantization volume and ω ¼ v=jkj. This
function is a solution of the Maxwell equations for a
medium with index of refraction n0.
We will assume that all of the excited modes are linearly

polarized in the z direction, so êkλ ¼ ẑ for these modes. We
further assume that the quantum state is a multimode
squeezed vacuum state, which may be constructed as

jψi ¼
Y
k

S½ζk�j0i; ð15Þ

with the product taken over all excited modes. Here S½ζk�
represents the squeeze operator for mode k, defined by

S½ζk� ¼ exp

�
1

2
ðζ�ka2k − ζka

†2
k Þ

�
; ð16Þ

where ζk ¼ qkeiηk denotes the complex squeeze parameter.
In this state, we find (see, for example, Ref. [19])

ha†kak0 i ¼ δk;k0sinh2qk; ð17Þ

and

hakak0 i ¼ ha†ka†k0 i� ¼ −δk;k0eiηk cosh qk sinh qk; ð18Þ

where the polarization label λ is now suppressed.
Using the above results, we find that the expectation

value of the electric field is equal to zero, hE0ðt;xÞi ¼ 0.
However, the expectation value of the squared electric field
operator becomes

h∶E2
0ðt;xÞ∶i ¼

ℏ
ϵ0V

X
k

ω sinh qk½sinhqk þ coshqk

×cos ð2ωt − 2k · x − ηkÞ�: ð19Þ

In the limit of large quantization volume V, we may use

1

V

X
k

→
1

ð2πÞ3
Z

d3k: ð20Þ

Wewish to consider the case where all of the excited modes
are peaked in angular frequency about ω ¼ Ω and in wave
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vector aboutk ¼ ðk; 0; 0Þwith a small but finite bandwidth.
This describes a nearly monochromatic beam of squeezed
light propagating approximately in the x direction. In this
case, we have

h∶E2
0ðt;xÞ∶i ¼

ℏ
4π2ϵ0

k2ΔkΔθΩ sinh q½sinh q

þ cosh q cosð2Ωt − 2k · x − ηÞ�; ð21Þ

where Δk denotes the bandwidth in wave number, and Δθ
denotes the angular spread around the x direction, with
Δk=k ≪ 1 and Δθ ≪ 1. Here we have assumed that the
squeezed state parameters q and η are approximately con-
stantwithin the bandwidth of the excitedmodes. If we define

α ¼ 3ℏ
16π2ϵ0

�
χð3Þ

1þ χð1Þ

�
Ωk2ΔkΔθ; ð22Þ

then the fractional change in the index of refraction becomes

hni − n0
n0

¼ 2α½sinh2qþ sinh q cosh q

× cosð2Ωt − 2k · x − ηÞ�: ð23Þ

It is possible for this fractional change to be negative, a
subvacuum effect. For small squeeze parameter q ≪ 1,
Eq. (23) reads

hni − n0
n0

≈ 2αq cosð2Ωt − 2k · x − ηÞ: ð24Þ

In this limit, hni − n0 < 0 for half of the time, but its
magnitude is small, being of first order in q. In the opposite
limit of large squeeze parameter q ≫ 1, we have

hni− n0
n0

≈
1

2
αfe2q½1− cosð2Ωt− 2k · x− ηÞ�− 2g: ð25Þ

In this limit hni − n0 < 0 only for a short interval of time
when cosð2Ωt − 2k · x − ηÞ ≈ 1, but it can be arbitrarily
negative for large q. This inverse relation between the
magnitude and duration of a subvacuum effect is an
illustration of the quantum inequalities. The sign of hni −
n0 is determined by the sign of

Δ ¼ sinh q½sinh qþ coshq cosð2Ωt − 2k · x − ηÞ�
¼ sinh q coshq½tanh qþ cosð2Ωt − 2k · x − ηÞ�: ð26Þ

Then Δ < 0 during a time interval of duration

τ− ¼ π

Ω
−

1

Ω
arccosð− tanh qÞ; ð27Þ

and Δ > 0 during an interval of

τþ ¼ 1

Ω
arccosð− tanh qÞ: ð28Þ

These intervals are illustrated in Fig. 1.
We define hniþ as the largest value that hni can take

hniþ ¼ n0ð1þ 2αeq sinh qÞ: ð29Þ
Likewise, we define hni− as its smallest value

hni− ¼ n0½1 − αð1 − e−2qÞ�: ð30Þ
These correspond to the maxima and minima of Δ,
respectively, which are illustrated in Fig. 1.

B. Refraction: A magnitude estimate

Now consider refraction at an interface. Suppose that a
ray is incident at an angle of θi from a material with index
of refraction nc into the nonlinear medium with mean index
of refraction hni, as shown in Fig. 2. When hni ¼ n0, the
angle of refraction is θ0, given by Snell’s law to be

n0 sin θ0 ¼ nc sin θi: ð31Þ
In general, hnðx; tÞi is a function of both position and time.
This will cause the trajectories of the refracted rays in the
nonlinear material to be curved. However, the scale for this
curvature is of the order of the wavelength associated with
the background field, which is assumed long compared to
the wavelength of the probe field. Thus there is a scale
longer than the probe field wavelength on which the
refracted rays are approximately straight, as depicted in
Fig. 2. Let θþ be the angle of refraction when hni takes its
maximum value, hni ≈ hniþ. Similarly, let θ− be the angle
of refraction at the minimum value, hni ≈ hni−. These two
cases correspond to the maximum and minimum speeds of
light in the material, respectively. In particular, θ− is the
angle of the “superluminal” ray which travels faster than
the normal speed of light in the material.

2 4 6
t

0.5

0.5

1.

FIG. 1 (color online). Behavior of the quantity Δ as a function
of time. Notice that subvacuum effects (Δ < 0) occur periodically
in time intervals of duration τ−. In this plot we have set q ¼ 0.5.
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Here we wish to find a numerical estimate for

δθ− ¼ θ− − θ0; ð32Þ

which is a dimensionless measure of the magnitude of the
subvacuum effect. Snell’s law gives

n0 sin θ0 ¼ n− sin θ−: ð33Þ

If we expand to first order in α, we have

δθ− ¼ nc
n20

sin θi
δn−

cos θ0
; ð34Þ

where

δn− ¼ hni− − n0 ¼ −n0αð1 − e−2qÞ: ð35Þ

This result may be expressed as

δθ− ¼ αð1 − e−2qÞ tan θ0; ð36Þ

or as

δn− ≈ α tan θ0; ð37Þ

for q ≳ 1. The latter form reflects the state independent
quantum inequality lower bound on hni. Squeezed states
with a squeezing level of 10 db have been created
experimentally [20]. This corresponds to about 5 photons
per mode, or sinh q ≈ 5 and q ≈ 1.5, leading to

1 − e−2q ≈ 0.95: ð38Þ

Because we can arrange to have tan θ0 of order unity, the
magnitude of δn− is determined by α. We may rewrite
Eq. (22) as

α ¼ 1.06 × 10−7n0

�
χð3Þ

10−18 m2=V2

��
1 μm
λ

�
4Δk
k

Δθ;

ð39Þ

where λ ¼ c=Ω is the vacuum wavelength of the back-
ground field.
Third order susceptibilities with χð3Þ ≳ 10−18 m2=V2 in

the infrared region can be obtained in materials such as
silicon and germanium [21]. Furthermore, χð1Þ and χð3Þ for
these materials are relatively independent of the wavelength
for λ≳ 1 μm, so the material becomes approximately
dispersionless. In general [18], χð3Þ ∝ ½χð1Þ�4, so the lack
of dispersion in χð1Þ implies the same for χð3Þ. For silicon,
the index of refraction n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χð1Þ

p
at room temper-

ature varies from n0 ≈ 3.51 at λ ¼ 1.2 μm to n0 ≈ 3.41 at
λ ¼ 10 μm, and then is essentially unchanged at least to
λ ¼ 600 μm [22]. Because of our assumption that the probe
field has a shorter wavelength than the background field,
the most optimistic estimates seem to require that the
background field wavelength be at least a few times larger
than λ ¼ 1 μm. Although the fractional changes in speed or
deflection angle are small, it is conceivable that they could
be observed.

C. Lower bounds on the time averaged
mean squared electric field

It is natural to ask whether the multimode squeezed
vacuum state used in writing Eq. (21) gives the best
possible decrease in the refractive index, or if there exist
quantum states which can do much better. Here we address
the related question of the lower bound on hE2i averaged
with a Lorentzian sampling function in time. Let gðt; τÞ be a
Lorentzian in t with width τ,

gðt; τÞ ¼ τ

πðt2 þ τ2Þ ; ð40Þ

so
R
∞
−∞ gðt; τÞdt ¼ 1 for all τ. The Lorentzian average of

Eq. (21) at x ¼ 0 becomes

Z
∞

−∞
gðt; τÞh∶E2

0ðt; 0Þ∶idt

¼ ℏ
4π2ϵ0

k2ΔkΔθΩ sinh q

× cosh qðtanh qþ cos η e−2ΩτÞ: ð41Þ

It is clear that the right hand side of this expression attains
its minimum value when cos η ¼ −1, so we can write

N

Θ�

Θ�

Θ0

Θi

�n�

n c

FIG. 2 (color online). The refraction of the probe ray in the
nonlinear medium is illustrated. In the absence of the background
field, the angle of refraction is θ0. When the index of refraction
attains its maximum value, the angle becomes θþ, and at its
minimum value, the angle becomes θ−. The former case models
the gravitational effect of positive energy, and the latter that of
negative energy.
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Z
∞

−∞
gðt; τÞh∶E2

0ðt; 0Þ∶idt ≥
ℏ

4π2ϵ0c3τ4
Δu
u

Δθfðq; uÞ;

ð42Þ

where we have set k ¼ Ω=c for an empty space, and we
define u ¼ Ωτ and

fðq; uÞ ¼ u4 sinh q cosh qðtanh q − e−2uÞ: ð43Þ

Plots of the function fðq; uÞ reveal that it attains its
minimum value of f ≈ −0.0047 at u ≈ 1.0 and q ≈ 0.07.
This leads to a lower bound on the Lorentzian average in
our choice of squeezed state of

Z
∞

−∞
gðt; τÞh∶E2

0ðt; 0Þ∶idt ≥ B ¼ −
1.2 × 10−4ℏ

ϵ0c3τ4
Δu
u

Δθ:

ð44Þ

Compare this with the estimated optimum bound for all
quantum states, obtained in Eq. (73) of Ref. [23], which
may be expressed as

Bopt ¼ −
3.0 × 10−4ℏ

ϵ0c3τ4
: ð45Þ

Although we previously assumed that Δθ ≪ 1 and
Δk=k ¼ Δu=u ≪ 1, for the present purpose, we could
relax these restrictions. If we allow integration over a
sufficiently wide range of frequencies and directions, then
we might have Δθ ≈ π and Δu=u of order unity, so
B ≈ Bopt. In this case, the Lorentzian average in our choice
of squeezed state is close to the allowed bound for any state.
Note that the value of q ≈ 0.07 which leads to Eq. (44) is
smaller than the value used in writing Eq. (38). This implies
that extremizing a Lorentzian average and extremizing δθ−

are not quite the same. Nonetheless, the fact that the
multimode squeezed state does a good job with the former
may suggest that one cannot significantly improve the
estimate in Eq. (39) by changing the quantum state.

IV. CASIMIR TYPE EFFECTS

In this section, we wish briefly to discuss the possibility
of effects which arise from boundary conditions imposed
upon the quantized electromagnetic field. The simplest
example of this type of effect is that of a single plane mirror
with perfect reflectivity. In this case, the mean squared
electric field is positive,

hE2i ¼ 3ℏc
16π2ϵ0z4

; ð46Þ

where z is the distance to the mirror, and hE2i is understood
as the shift relative to the empty space vacuum state.
However, the mean squared magnetic field is negative,

hB2i ¼ −
3ℏ

16π2cϵ0z4
: ð47Þ

Note that here the expectation value is defined as a
difference of the formal expectation value with the plate
and that without the plate. This means that the squared
operators in Eqs. (46) and (47) are normal ordered with
respect to the Minkowski vacuum state, just as in
Eq. (12), and the expectation value is taken in a Casimir
vacuum state.
Despite the presence of the mirror, the squares of the

individual field components exhibit isotropy (these results
may be obtained from formulas in Sec. 3 of Ref. [24]),

hE2
xi ¼ hE2

yi ¼ hE2
zi ¼

1

3
hE2i; ð48Þ

and

hB2
xi ¼ hB2

yi ¼ hB2
zi ¼

1

3
hB2i: ð49Þ

(This unexpected result is analogous to the spatial isotropy
of the Schwarzschild geometry, which is evident when the
Schwarzschild metric is written in isotropic coordinates.)
For metal mirrors, the above forms are good approxima-
tions when z is large compared to the plasma wavelength,
but are modified at shorter distances [5,6].
To produce an increase in the speed of light due to third

order nonlinear effects near this mirror, one would need a
material with a nonzero magnetic χð3Þ. However, materials
with a nonzero electric χð3Þ will exhibit a reduction in light
propagation speed near a mirror. This is analogous to the
gravitational effect of a vacuum energy which satisfies the
null energy condition. We can estimate the magnitude of
this reduction for modes polarized in the x direction by
combining Eq. (12) with Eqs. (46) and (48) to write the
fractional change in refractive index as

hni− n0
n0

¼ 3χð3Þ

2n0
hE2

xi ¼
3ℏcχð3Þ

32π2ϵ0n20z
4

¼ 3.4× 10−11

n20

�
χð3Þ

10−18 m2=V2

��
1 μm
z

�
4

: ð50Þ

This reduction in light speed is an analog of the Shapiro
time delay [1], but produced by quantum vacuum effects.
Simple geometries such as the plane mirror seem to result
in hE2i > 0. However, it would be of interest to find
geometries where hE2i < 0, leading to an increase in
light speed.

V. SUMMARY AND DISCUSSION

We have presented an analog model, using nonlinear
optics, for the gravitational effects of the expectation value
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of a quantum stress tensor upon light propagation. The key
ingredient in our model is a material with positive nonzero
third order polarizability and with a nonzero expectation
value of the squared electric field operator. This expectation
value in our model plays the role of the expectation value of
the quantum stress tensor in semiclassical gravity. The
origin of hE2i is a background field in a squeezed vacuum
state, or a Casimir vacuum state. This quantity alters the
propagation speed of a probe pulse. When hE2i > 0, the
speed is reduced, in analogy to the gravitational effects of
ordinary matter. When hE2i < 0, the speed is increased, in
analogy to the gravitational effects of exotic matter which
violates the null energy condition. The estimates of the
magnitude of the effect given in Sec. III indicate that
changes in speed or deflection angle up to 10−7 might be
achievable in realistic experiments and hence possibly
detectable. Such a detection would be of interest in its
own right as an effect in quantum optics, as well as a way to
study the otherwise very small quantum effects in gravity.
If the third order susceptibility were to be negative,

χð3Þ < 0, then the behavior described above would be
reversed: hE2i > 0 results in an increased speed, and

hE2i < 0 in a decreased speed. To our knowledge, χð3Þ <
0 only occurs in a few materials, such as cadmium sulfide,
where χð2Þ is also nonzero. In any case, χð3Þ > 0 is both the
usual case for most materials and the case which provides
the better analog model for semiclassical gravity.
In this paper, we have only been concerned with the

expectation value, hE2i. However, the squared electric field
operator undergoes subtle fluctuations both in the vacuum
[23] and in other quantum states. In a nonlinear material,
these will lead to fluctuations of the path of light rays which
will model passive quantum fluctuations of gravity, those
due to quantum stress tensor fluctuations. These effects will
be studied in a future paper.
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