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The dynamical generation of wormholes within an extension of General Relativity (GR) containing
(Planck’s scale-suppressed) Ricci-squared terms is considered. The theory is formulated assuming the
metric and connection to be independent (Palatini formalism) and is probed using a charged null fluid as a
matter source. This has the following effect: starting from Minkowski space, when the flux is active the
metric becomes a charged Vaidya-type one, and once the flux is switched off the metric settles down into a
static configuration such that far from the Planck scale the geometry is virtually indistinguishable from that
of the standard Reissner-Nordström solution of GR. However, the innermost region undergoes significant
changes, as the GR singularity is generically replaced by a wormhole structure. Such a structure becomes
completely regular for a certain charge-to-mass ratio. Moreover, the nontrivial topology of the wormhole
allows us to define a charge in terms of lines of force trapped in the topology such that the density of lines
flowing across the wormhole throat becomes a universal constant. In light of our results, we comment on
the physical significance of curvature divergences in this theory and the topology change issue, which
support the view that space-time could have a foamlike microstructure pervaded by wormholes generated
by quantum gravitational effects.
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I. INTRODUCTION

The Vaidya metric [1]

ds2 ¼ −
�
1 −

2mðvÞ
r

�
dv2 þ 2ϵdvdrþ r2dΩ2 ð1Þ

is a nonstatic spherically symmetric solution of the Einstein
equations generated by a null stream of radiation.
Depending on ϵ ¼ þ1ð−1Þ it corresponds to an ingoing
(outgoing) radial flow, and mðvÞ is a monotonically
increasing (decreasing) function in the advanced (retarded)
time coordinate −∞ < v < þ∞. Both the Vaidya solution
and its extension to the charged case, the Bonnor-Vaidya
solution [2], have been widely employed in a variety of
physical situations, including the spherically symmetric
collapse and the formation of singularities [3], the study of
Hawking radiation and black hole evaporation [4], the
gravitational collapse of charged fluids (plasma) [5] and as
a testing tool for various formulations of the cosmic
censorship conjecture. In addition to this, several theorems

on the existence of exact spherically symmetric dynamical
black hole solutions have been established [6]. In the
context of modified gravity, Vaidya-type solutions have
been found in metric fðRÞ gravity coupled to both Maxwell
and non-Abelian Yang-Mills fields [7] and in Lovelock
gravity [8].
The Vaidya metric has also been used to consider

whether a wormhole could be generated out of null fluids.
More specifically, in [9] a crossflow of a two-component
radiation was considered, and the resulting solution was
interpreted as a wormhole (this analysis extended the
results presented in [10]). It was indeed shown that a
black hole could be converted into a wormhole by
irradiating the black-hole horizon with pure phantom
radiation, which may cause a black hole with two horizons
to merge and consequently form a wormhole. Conversely,
switching off the radiation causes the wormhole to collapse
to a Schwarzschild black hole [11]. These results were
further extended in [12] showing that two opposite streams
of radiation may support a static traversable wormhole.
Furthermore, analytic solutions describing wormhole
enlargement were presented, where the amount of enlarge-
ment was shown to be controlled by the beaming in and the
timing of negative-energy and positive-energy impulses. It
was also argued that the wormhole enlargement is not a
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runaway inflation, but an apparently stable process. The
latter issue addressed the important point that though
wormholes were possible, and even expected at the
Planck scale, macroscopic wormholes were unlikely.
In fact, the generation or construction of wormholes has

also been extensively explored in the literature, in different
contexts. The late-time cosmic accelerated expansion
implies that its large-scale evolution involves a mysterious
cosmological dark energy, which may possibly lie in the
phantom regime; i.e., the dark energy parameter satisfies
w < −1 [13]. Now, phantom energy violates the null
energy condition, and as this is the fundamental ingredient
to sustain traversable wormholes [14], this cosmic fluid
presents us with a natural scenario for the existence of these
exotic geometries [15]. Indeed, due to the fact of the
accelerating Universe, one may argue that macroscopic
wormholes could naturally be grown from the submicro-
scopic constructions, which envisage transient wormholes
at the Planck scale that originally pervaded the quantum
foam [16], much in the spirit of the inflationary scenario
[17]. It is also interesting to note that self-inflating worm-
holes were also discovered numerically [18]. In the context
of dark energy, and in a rather speculative scenario, one
may also consider the existence of compact time-dependent
dark energy stars or spheres [19], with an evolving dark
energy parameter crossing the phantom divide [20]. Once
in the phantom regime, the null energy condition is
violated, which physically implies that the negative radial
pressure exceeds the energy density. Therefore, an enor-
mous negative pressure in the center may, in principle,
imply a topology change, consequently opening up a tunnel
and converting the dark energy star into a wormhole. The
criteria for this topology change were also discussed, in
particular, a Casimir energy approach involving quasilocal
energy difference calculations that may reflect or measure
the occurrence of a topology change.
As the Planck scale plays a fundamental importance in

quantum gravitational physics, an outstanding question is
whether large metric fluctuations may induce a change in
topology. Wheeler suggested that at distances below the
Planck length, the metric fluctuations become highly non-
linear and strongly interacting, and thus endow space-time
with a foamlike structure [16]. This behavior implies that the
geometry, and the topology, may be constantly fluctuating,
and thus space-time may take on all manners of nontrivial
topological structures, such as wormholes. However, paging
through the literature, one does encounter a certain amount
of criticism to Wheeler’s notion of space-time foam, for
instance, in that stability considerations may place con-
straints on the nature or even existence of Planck-scale
foamlike structures [21]. Indeed, the change in topology of
spacelike sections is an extremely problematic issue, and a
number of interesting theorems may be found in the
literature on the classical evolution of general relativistic
space-times [22], namely, citing Visser [23]: (i) In causally

well-behaved classical space-times the topology of space
does not change as a function of time, and (ii) in causally
ill-behaved classical space-times the topology of space can
sometimes change. Nevertheless, researchers in quantum
gravity have come to accept the notion of space-time foam,
in that this picture leads to topology-changing quantum
amplitudes and to interference effects between different
space-time topologies [23], although these possibilities have
met with some disagreement [24]. Despite the fact that
topology-changing processes, such as the creation of worm-
holes and baby universes, are tightly constrained [25], this
still allows very interesting geometrical (rather than topo-
logical) effects, such as the shrinking of certain regions of
space-time to umbilical cords of sufficiently small sizes to
effectively mimic a change in topology.
Recently, the possibility that quantum fluctuations

induce a topology change, was also explored in the context
of gravity’s rainbow [26]. A semiclassical approach was
adopted, where the graviton one-loop contribution to a
classical energy in a background space-time was computed
through a variational approach with Gaussian trial wave
functionals [27] (note that the latter approach is very close
to the gravitational geon considered by Anderson and Brill
[28], where the relevant difference lies in the averaging
procedure). The energy density of the graviton one-loop
contribution, or equivalently the background space-time,
was then let to evolve, and consequently the classical
energy was determined. More specifically, the background
metric was fixed to be Minkowskian in the equation
governing the quantum fluctuations, which behaves essen-
tially as a backreaction equation, and the quantum fluctua-
tions were let to evolve; the classical energy, which depends
on the evolved metric functions, is then evaluated.
Analyzing this procedure, a natural ultraviolet (UV) cutoff
was obtained, which forbids the presence of an interior
space-time region, and may result in a multiply-connected
space-time. Thus, in the context of gravity’s rainbow, this
process may be interpreted as a change in topology,
and in principle results in the presence of a Planckian
wormhole.
In this paper, we consider the dynamical generation of

wormholes in a quadratic gravity theory depending on the
invariants R ¼ gμνRμν and Q ¼ RμνRμν, which are Planck
scale—suppressed [see Eq. (43) below for details]. This
theory is formulated à la Palatini, which means that the
metric and connection are regarded as independent entities.
Though in the case of General Relativity (GR) this
formulation is equivalent to the standard metric approach
(where the connection is imposed a priori to be given by
the Christoffel symbols of the metric) this is not so for
modified gravity. Interestingly, the Palatini formulation
yields second-order field equations that in vacuum boil
down to those of GR and, consequently, are ghost-free, as
opposed to the usual shortcomings that plague the metric
formulation. To probe the dynamics of our theory, in a
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series of papers [29,30] we have studied spherically
symmetric black holes with electric charge. As a result
we have found electrovacuum solutions that macroscopi-
cally are in excellent qualitative agreement with the
standard Reissner-Nordström solution of GR, but undergo
important modifications in their innermost structure.
Indeed, the GR singularity is generically replaced by a
wormhole structure with a throat radius of order rc ∼ lP.
The behavior of the curvature invariants at rc shows that for
a particular charge-to-mass ratio the space-time is com-
pletely regular. The topologically nontrivial character of the
wormhole allows us to define the electric charge in terms of
lines of electric force trapped in the topology, such that the
density of lines of force is given by a universal quantity
(independent of the specific amounts of mass and charge).
These facts allow to consistently interpret these solutions as
geons in Wheeler’s sense [16] and raise the question on the
true meaning of curvature divergences in our theory since
their existence seems to pose no obstacle for the wormhole
extension. Let us note that these wormhole solutions
correspond to static solutions of the field equations.
Here we shall see that such solutions can be dynamically
generated by probing the Minkowski space with a charged
null fluid. In this way we obtain a charged Vaidya-
type metric such that when the flux is switched off, the
space-time settles down into a Reissner-Nordström-like
configuration containing a wormhole structure and thus a
multiply-connected topology in its interior. As we shall see,
these results have important consequences for the issue of
the foamlike structure of space-time. This work largely
extends the results and discussion of [31].
This paper is organized in the following manner: In

Sec. II, we present the Palatini formalism for Ricci-squared
theories that are used throughout the paper. In Sec. III, we
consider general electrovacuum scenarios with a charged
null fluid, and in Sec. IV we solve the gravitational field
equations. In Sec. V, we analyze the different contributions
to the metric and discuss some particular scenarios. A
discussion on the physical implications of these results
follows in Sec. VI, where we conclude with a brief
summary and some future perspectives.

II. PALATINI FORMALISM FOR
RICCI-SQUARED THEORIES

Our initial setup corresponds to that of a generic Palatini
Lagrangian coupled to matter, defined by the following
action,

S½g;Γ;ψm� ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;QÞ þ Sm½g;ψm�; ð2Þ

where LG ¼ fðR;QÞ=ð2κ2Þ represents the gravity
Lagrangian, κ2 is a constant with suitable dimensions (in
GR, κ2 ≡ 8πG), g is the determinant of the space-time
metric gμν, R ¼ gμνRμν, Q ¼ gμαgνβRμνRαβ, Rμν ¼ Rρ

μρν

and

Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ ð3Þ

is the Riemann tensor constructed by the connection
Γ≡ Γλ

μν. The term Sm½g;ψm� represents the matter action,
where ψm are the matter fields, to be specified later.
To obtain the field equations from the action (2), in the

Palatini approach one assumes that the connection Γλ
μν,

which defines the affine structure, is a priori independent
of the metric, which defines the chrono-geometric structure
(see [32] for a pedagogical discussion). This approach
reduces the number of assumptions on the structure of
space-time beyond GR, and has important consequences
for the dynamics of the theory, as we shall see later. The
variational principle thus leads to two sets of field equations
resulting from the variation of (2) with respect to metric and
connection as

fRRμν −
f
2
gμν þ 2fQRμαRα

ν ¼ κ2Tμν ð4Þ

∇Γ
β ½

ffiffiffiffiffiffi
−g

p ðfRgμν þ 2fQRμνÞ� ¼ 0; ð5Þ

respectively. In deriving these field equations, for simplic-
ity, we have set the torsion to zero, which implies R½μν� ¼ 0
and guarantees the existence of invariant volumes in our
theory [33]. The connection equation (5) can be solved by
means of algebraic manipulations, which are described in a
number of previous works [29,30,34]. One thus finds that
Eq. (5) can be written as

∇Γ
β ½

ffiffiffiffiffiffi
−h

p
hμν� ¼ 0; ð6Þ

with hμν defined as

hμν ¼ gμαΣα
νffiffiffiffiffiffiffiffiffiffi

det Σ̂
p ; hμν ¼ ð

ffiffiffiffiffiffiffiffiffiffi
det Σ̂

p
ÞΣ−1

μ
αgαν; ð7Þ

where

Σα
ν ¼ ðfRδνα þ 2fQPα

νÞ; ð8Þ

and Pμ
ν ≡ Rμαgαν. It is easy to verify from Eq. (6) that Γλ

μν

can be written as the Levi-Civita connection of the
(auxiliary) metric hμν. It can be shown that hμν is alge-
braically related to gμν and the stress-energy tensor of
matter. In fact, in terms of the object Pμ

ν, we can write
Eq. (4) as

fRPμ
ν −

f
2
δμ

ν þ 2fQPμ
αPα

ν ¼ κ2Tμ
ν; ð9Þ

or, in matrix form, as (here a hat denotes a matrix)

2fQP̂
2 þ fRP̂ −

f
2
Î ¼ κ2T̂; ð10Þ
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which represents a quadratic algebraic equation for Pμ
ν as a

function of Tμ
ν. This implies that R ¼ ½P̂�μμ, Q ¼ ½P̂2�μμ,

and Σα
ν are just functions of the matter sources.

Using the definition of Σμ
ν and the relations (7), we can

write Eq. (4) [or, alternatively, Eq. (9)] as

Pμ
αΣα

ν ¼ Rμαhαν
ffiffiffiffiffiffiffiffiffiffi
det Σ̂

p
¼ f

2
δνμ þ κ2Tμ

ν; ð11Þ

which allows us to express the metric field equations using
hμν as follows,

Rμ
νðhÞ ¼ κ2ffiffiffiffiffiffiffiffiffiffi

det Σ̂
p ðLGδ

ν
μ þ Tμ

νÞ: ð12Þ

This representation of the metric field equations puts
forward that hμν satisfies a set of GR-like second-order
field equations. Since hμν and gμν are algebraically related,
it follows that gμν also verifies second-order equations.
Additionally, we note that in vacuum, T̂ ¼ 0 implies that P̂
can be written as P̂ ¼ ΛðRvac; Qvac

S ÞÎ, where the explicit
form of ΛðRvac; Qvac

S Þ can be found straightforwardly from
Eq. (10). However, this is not essential for the current
discussion. We note that the relations Rvac ¼ Pμ

μ ¼
4ΛðRvac; QvacÞ, and Qvac ¼ ½P2�μμ ¼ 4Λ2ðRvac; QvacÞ
imply that the values of Rvac and Qvac that simultaneously
solve Eq. (10) are constant and are related by
Qvac ¼ ðRvacÞ2=4. In addition, P̂ ¼ ΛðRvac; QvacÞÎ also
implies that hμν and gμν are related by a constant conformal
factor [see Eqs. (7) and (8)]. As a result, Eq. (12) tells us
that RμνðhÞ ¼ Cvachμν↔RμνðgÞ ¼ ~Cvacgμν, with Cvac and
~Cvac constant (and identical in an appropriate system of
units). This shows that the vacuum field equations of
Palatini theories of the form (12) coincide with the vacuum
Einstein equations with a cosmological constant (whose
magnitude depends on the particular gravity Lagrangian
LG), which is a manifestation of the observed universality
of the Einstein equations in the Palatini formalism [35].
These theories, therefore, do not introduce any new
propagating degrees of freedom besides the standard
massless spin-two gravitons, and are free from the ghostlike
instabilities present in the (higher-derivative) metric for-
mulation of four-dimensional theories containing Ricci-
squared terms.

III. ELECTROVACUUM SCENARIOS WITH
A CHARGED NULL FLUID

In this section, we will consider the problem of a
spherically symmetric charged space-time perturbed by
an ingoing null flux of energy and charge. The electro-
magnetic field is described by the free Maxwell action plus
a coupling to an external current Jμ,

Sem ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν −

Z
d4x

ffiffiffiffiffiffi
−g

p
AμJμ;

ð13Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor of the
vector potential Aμ. The Maxwell stress-energy tensor is
obtained as

Tem
μν ¼ 1

4π

�
FμαFν

α −
1

4
FαβFαβgμν

�
: ð14Þ

On the other hand, the pressureless flux of ingoing charged
matter has a stress-energy tensor

Tflux
μν ¼ ρinkμkν; ð15Þ

where kμ is a null vector, satisfying kμkμ ¼ 0, and ρin is the
energy density of the flux.
In order to write the field equations (12) in combination

with the matter source given by Eqs. (14) and (15) in a form
amenable to calculations, we need first to obtain the explicit
expression of Q. To do this we note that Eq. (10) can also
be written as

2fQ

�
P̂þ fR

4fQ
Î

�
2

¼
�
f
2
þ f2R
8fQ

�
Î þ κ2T̂: ð16Þ

In order to obtain an explicit expression for Pμ
ν, we need to

compute the square root of the right-hand side of this
equation. To this effect, let us assume a line element of the
form

ds2 ¼ −Aðx; vÞe2ψðx;vÞdv2 � 2eψðx;vÞdvdxþ r2ðv; xÞdΩ2;

ð17Þ

where −∞ < v < þ∞ is an Eddington-Finkelstein-like
null ingoing coordinate (outgoing if the minus sign is
chosen) and x a radial coordinate. Note that r2 is not a
coordinate but a function, in general. For this line element
we find that a suitable null tetrad is given by

kμ ¼ ð−1; 0; 0; 0Þ; ð18Þ

lμ ¼
�
−
A
2
e2ψðx;vÞ;�eψðx;vÞ; 0; 0

�
; ð19Þ

mμ ¼
�
0; 0;

rffiffiffi
2

p ;
ir sin θffiffiffi

2
p

�
; ð20Þ

m̄μ ¼
�
0; 0;

rffiffiffi
2

p ;−
ir sin θffiffiffi

2
p

�
ð21Þ

and its dual yields
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kμ ¼ ð0;∓e−ψðx;vÞ; 0; 0Þ; ð22Þ

lμ ¼
�
1;�Aeψðx;vÞ

2
; 0; 0

�
; ð23Þ

mμ ¼
�
0; 0;

1

r
ffiffiffi
2

p ;
iffiffiffi

2
p

r sin θ

�
; ð24Þ

m̄μ ¼
�
0; 0;

1

r
ffiffiffi
2

p ;−
iffiffiffi

2
p

r sin θ

�
; ð25Þ

respectively. Thus, in this representation the only non-
vanishing products are kμlμ ¼ −1 and mμm̄μ ¼ 1.

A. The Matter Field Equations

With the above null tetrad, the stress-energy tensor (14)
for a spherically symmetric non-null electromagnetic field
can be expressed as [36]

Tem
μν ¼ χðmμm̄ν þmνm̄μ þ kμlν þ kνlμÞ; ð26Þ

where the form of χðvÞ can be obtained by solving
explicitly the field equations for the Maxwell field and
comparing with Eq. (14) written in matrix representation
[see Eq. (30) below].
From the action (13) and taking into account the

presence of the null fluid (15) the Maxwell equations read

∇μFμν ¼ 4πJν; ð27Þ

where Jν ≡ ΩðvÞkν is the current of the null ingoing flux,
withΩðvÞ a function to be determined. With this expression
and knowing that ∇μFμν ≡ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

FμνÞ, the only
nontrivial equations are

∂xð
ffiffiffiffiffiffi
−g

p
FxvÞ ¼ 0; ð28Þ

∂vð
ffiffiffiffiffiffi
−g

p
FvxÞ ¼ −4π

ffiffiffiffiffiffi
−g

p
e−ψðx;vÞΩ; ð29Þ

From Eq. (28) we find that r2eψðx;vÞFxv ¼ qðvÞ, where qðvÞ
is an integration function. Inserting this back in Eq. (29), it
follows that ΩðvÞ ¼ qv=4πr2. Note that the function qv ≡∂vqðvÞ is our input and, therefore, can be freely specified.
Having defined the current that gives consistency to the
Maxwell field equations, we can compute explicitly the
form of Tem

μν in Eq. (26) to obtain χ, which yields

χ ¼ q2ðvÞ
8πr4

: ð30Þ

B. Energy-momentum conservation

To verify that charge and momentum are conserved in
our model we consider the following equation,

∇μTμ
ν;em ¼ JαFνα þ

1

4π

�
Fμα∇μFνα −

1

2
Fαβ∇νFαβ

�
;

ð31Þ

where ∇μ is the derivative operator of the metric gαβ. Now
we use the Bianchi identities ∇½νFαβ� ¼ 0 to express

Fαβ∇νFαβ ¼ −Fαβð∇βFνα þ∇αFβνÞ ¼ 2Fβα∇βFνα:

ð32Þ

Inserting this result in Eq. (31) we find ∇μTμ
ν;em ¼ JαFνα.

On the other hand, the null fluid yields

∇μTμ
ν;flux ¼ kν∇μðρinkμÞ þ ρinkμ∇μkν: ð33Þ

One can see by direct calculation that kμ∇μkν ¼ 0,
which verifies that kμ is a geodesic vector. Since
∇μTμ

ν;Total ¼ ∇μTμ
ν;em þ∇μTμ

ν;flux ¼ 0, contracting with
lν we find

∂μð
ffiffiffiffiffiffi
−g

p
ρinkμÞ þ

ffiffiffiffiffiffi
−g

p
FμνlμJν ¼ 0; ð34Þ

which becomes

∂xðρinr2Þ ¼ eψðx;vÞ
qqv
4πr2

: ð35Þ

This condition should be satisfied by the solution of the
problem on consistency grounds. We note that an analo-
gous procedure for the derivation of these expressions can
be carried out when a magnetic field, and consequently, a
magnetic flux, is present. Thereby, the expressions in the
previous subsections can be trivially extended to those of
the magnetic case by just swapping the electric charge q
with a magnetic charge g.

C. The Σμ
ν matrix.

With the representation of the stress-energy tensor given
by Eq. (26), we can proceed to obtain the square root of
Eq. (16) for the ingoing flux of charged null matter
represented by the stress-energy tensor in Eq. (15). To
do this, we identify the right-hand side of Eq. (16) with the
squared matrix

Ma
cMc

b ¼ λδba þ κ2χðmam̄b þmbm̄a þ kalb þ kblaÞ
þ κ2ρinkakb; ð36Þ

where λ≡ f
2
þ f2R

8fQ
. We now propose the ansatz,

Ma
b ¼ αδba þ βðmam̄b þmbm̄aÞ þ γðkalb þ kblaÞ

þ δkakb þ ϵlalb; ð37Þ

where α; β; γ; δ; ϵ are functions to be determined by
matching the right-hand side of Eq. (36) with the square
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Ma
cMc

b using the ansatz (37). This leads to the set of
equations

α2 ¼ λ; βðβ þ 2αÞ ¼ κ2χ; γð2α − γÞ − δϵ ¼ κ2χ

2δðα − γÞ ¼ κ2ρin; 2ϵðα − γÞ ¼ 0; ð38Þ

whose unique consistent solution is

α ¼ λ1=2; β ¼ −λ1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ κ2χ

q
γ ¼ λ1=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − κ2χ

q
; δ ¼ κ2ρin

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − κ2χ

p ; ϵ ¼ 0:

ð39Þ

With these results, we can use the expression

M̂ ¼ ffiffiffiffiffiffiffiffi
2fQ

p �
P̂þ fR

4fQ
Î

�
; ð40Þ

to write the matrix Σμ
ν defined in Eq. (8) as

Σμ
ν ¼ fR

2
δμ

ν þ ffiffiffiffiffiffiffiffi
2fQ

p
Mμ

ν; ð41Þ

which finally becomes

Σμ
ν ¼

�
fR
2
þ ffiffiffiffiffiffiffiffi

2fQ
p

λ1=2
�
δνμ

þ ffiffiffiffiffiffiffiffi
2fQ

p ½βðmμm̄ν þmνm̄μÞ
þ γðkμlν þ kνlμÞ þ δkμkν�: ð42Þ

Note that this expression only depends on the electromag-
netic, χ, and fluid, ρin, parameters and on the Lagrangian
density fðR;QÞ.

D. The f ðR;QÞ Lagrangian
In what follows we shall only be concerned with the

quadratic Lagrangian

fðR;QÞ ¼ Rþ l2PðaR2 þ bQÞ; ð43Þ

where l2P ≡ ℏG=c3 represents Planck’s length squared; a
and b are dimensionless constants. The physical reason
underlying this model is the fact that quadratic corrections
of the form above arise in the quantization of fields in
curved space-time [37] and also in the low-energy limits of
string theories [38,39]. It has also been argued that this kind
of models are natural in an effective field theory approach
to quantum gravity [40]. Palatini Lagrangians with quad-
ratic and higher-order curvature corrections also arise in
effective descriptions [41] of the dynamics of loop quantum
cosmology [42], a scenario in which the big bang singu-
larity is replaced by a cosmic bounce. Alternatively, one
could use other models of Palatini gravity, such as the

proposal of Deser and Gibbons [43], dubbed Eddington-
inspired Born-Infeld gravity [44], which in the static
electrovacuum case is exactly equivalent (not only pertur-
batively) to the quadratic Lagrangian (43), as shown in
[45]. As a working hypothesis, we shall assume that neither
the quadratic Lagrangian (43), nor the perturbation induced
by the flux will spoil the geometrical nature of gravitation
as we approach the scale where the l2P effects in (43) begin
to play an important role.
Tracing in Eq. (4) with the metric gμν it follows that

R ¼ −k2T, where T is the trace of the stress-energy tensor.
For the electric field we are considering, one has T ¼ 0,
which implies R ¼ 0. As a result, the dependence of the
Lagrangian on the parameter a becomes irrelevant. Note,
however, that for nonlinear theories of electrodynamics (for
which T ≠ 0), the parameter a does play a role [46,47].
From now on we consider the case b > 0 and, for
simplicity, set b ¼ 1. To obtain the expression for Q we
take the trace of Ma

b and use the tetrad relations to write

1ffiffiffi
2

p
lP

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ κ2χ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − κ2χ

q
: ð44Þ

For our theory given by Eq. (43), we have f ¼ l2PQ,
fR ¼ 1; fQ ¼ l2P and then from Eq. (14) we obtain
λ ¼ 1

8l2P
ð1þ 4l2PQÞ. Inserting this in Eq. (44), we obtain

the solution

Q ¼ 4κ4χ2 ¼ ~κ4q4

r8
; ð45Þ

where ~κ2 ¼ κ2=ð4πÞ. We note that this expression remains
unchanged if the null fluid is absent [48].
To obtain the field equations (12) for the theory given by

Eq. (43) we need both the explicit expression of Σμ
ν and of

ðLGδ
ν
μ þ Tμ

νÞ appearing on the right-hand side of Eq. (12).
From the tetrad definitions (18)–(25) it is easily seen that

mμm̄ν þmνm̄μ ¼
�
0̂ 0̂

0̂ Î

�
; ð46Þ

kμlν þ lνkμ ¼
�
−Î 0̂

0̂ 0̂

�
; ð47Þ

where Î and 0̂ are the 2 × 2 identity and zero matrices,
respectively. In this formalism, we immediately recover the
usual expression for a spherically symmetric electromag-
netic field, namely, Tem

μν ¼ χdiagð−1;−1; 1; 1Þ. On the
other hand, for the null fluid contribution we have

kμkν ¼

0
BBB@

0 e−ψ 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð48Þ
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Taking into account all these elements, one readily finds
that

Σμ
ν ¼

0
BBB@

σ− σin 0 0

0 σ− 0 0

0 0 σþ 0

0 0 0 σþ

1
CCCA; ð49Þ

where

σ� ¼ 1� ~κ2l2Pq
2ðvÞ

r4
; ð50Þ

σin ¼
2κ2l2Pρin

1 − 2~κ2l2Pq
2ðvÞ=r4 : ð51Þ

With all these results, we can finally write the field
equations (12) for our problem as

Rμ
νðhÞ ¼

0
BBBBBBBB@

− ~κ2q2ðvÞ
2r4σþ

e−ψ κ2ρin
σþσ−

0 0

0 − ~κ2q2ðvÞ
2r4σþ

0 0

0 0
~κ2q2ðvÞ
2r4σ−

0

0 0 0
~κ2q2ðvÞ
2r4σ−

1
CCCCCCCCA
: ð52Þ

Note that in the limit lP → 0, we have σ� → 1 and σin → 0,
which entails hμν ¼ gμν and Eq. (52) recovers the equations
of GR.

IV. SOLVING THE FIELD EQUATIONS

Having obtained the field equations in the form of
Eq. (52), we now proceed to solve them as follows.
Firstly, we propose a spherically symmetric line element
associated to the metric hμν following the structure given in
Eq. (17), namely

d~s2 ¼ −Fðv; xÞe2ξðv;xÞdv2 þ 2eξðv;xÞdvdx

þ ~r2ðv; xÞdΩ2: ð53Þ

Direct comparison of gμν and hμν using Σ̂ implies that

gvv ¼
hvv
σþ

þ σinhvx
σþσ−

; ð54Þ

gvx ¼
hvx
σþ

; ð55Þ

which leads to eψ ¼ eξ
σþ

and ~r2 ¼ r2σ−. Note that given the
v dependence of qðvÞ and the ðx; vÞ dependence of σ� in
Eq. (50), it is reasonable to expect a priori some v
dependence on ~r [as we have assumed in Eq. (53)]. In
fact, from the relation ~r2 ¼ r2σ−, one finds

r2 ¼ ~r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r4 þ 4l2P ~κ

2q2ðvÞ
p

2
; ð56Þ

which establishes a nontrivial relation between r; ~r, and
qðvÞ. For this reason, we have not used ~r as a variable and
have kept the independent coordinate x in the nonspherical
sector of the line element (53). The explicit relation
between ~r; x and v must thus follow from the field
equations.
From the line element (53) we obtain, using the algebraic

manipulation package XACT [49],

Rx
v ≡ 2e−ξð~rxξx − ~rxxÞ

~r
¼ 0: ð57Þ

This implies that eξðx;vÞ ¼ CðvÞ~rx, and inserting the latter in
Eq. (53), yields

d~s2 ¼ −Fðv; xÞ~r2xdv2 þ 2~rxdvdxþ ~r2ðv; xÞdΩ2; ð58Þ

where the function CðvÞ has been reabsorbed into a
redefinition of v. Working now with the ansatz (58), we get

Rx
v ≡ −

2~rxx
~r

¼ 0; ð59Þ

which implies that

~r ¼ αðvÞxþ βðvÞ; ð60Þ

where αðvÞ and βðvÞ are, so far, two arbitrary functions.
Assuming that Fðx; vÞ ¼ 1 − 2Mðx; vÞ=~r, we obtain

Rvx ≡ 1

~r
½Mxx − 2αv� ¼ Rv

v ¼ Rx
x; ð61Þ

Rθ
θ ≡ 1

~r2
½1 − α2 − 2βαv − 2α½βv þ ð2xαv −MxÞ��; ð62Þ

Rvv≡−
1

~r2
½ð~r− 2MÞMxxþ 2~r~rvvþ 2~rvMx− 2αMv�: ð63Þ

From the first of these equations, we find

Mx ¼
~κ2q2

4αr2
þ 2αvx: ð64Þ

Inserting this result in Rθ
θ and performing some manip-

ulations, one obtains

1 − α2 ¼ ∂vðαβÞ: ð65Þ

A consistent solution of this equation is β ¼ 0, and α ¼ 1,
which implies that ~r ¼ x is independent of v. Assuming
this solution from now on, we find that
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Rv
x ≡ Rvv þ FRvx ¼

2Mv

~r2
: ð66Þ

Since Rv
x ¼ κ2ρin

σ−
, the above relation implies

Mv ¼
κ2ρinr2

2
: ð67Þ

With the above results, and using the relations

∂vðq2=r2Þjx ¼ 2qqv=r2σþ (at constant x) and drjv ¼
σ1=2−
σþ

dx (at constant v), one can show that the integrability

condition ∂vMx ¼ ∂xMv implies the conservation equa-
tion (35) (where the relation (56), which leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4l2P ~κ

2q2
p

¼ r2σþ, must be used).
From Eq. (64), with α ¼ 1, by direct integration we find

Mðx; vÞ ¼ ~κ2q2ðvÞ
4

Z
dx
r2

þ γðvÞ: ð68Þ

Computing Mv from this expression and comparing with
Eq. (67), we find (recall that ∂vðq2=r2Þjx ¼ 2qqv=r2σþ)

γv ¼
κ2

2

�
ρinr2 −

qqv
4π

Z
dx
r2σþ

�
: ð69Þ

Since γ ¼ γðvÞ, defining LðvÞ≡ γv as the luminosity
function, it follows that

ρinr2 ¼
2

κ2

�
LðvÞ þ κ2qqv

8π

Z
dx
r2σþ

�
; ð70Þ

which is fully consistent with the conservation equation (35)
because Eq. (55) and the subsequent manipulations imply
eψ ¼ 1=σþ. In summary, we conclude that

~rðx; vÞ ¼ x; ð71Þ

r2ðx; vÞ ¼ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4l2P ~κ

2q2ðvÞ
p

2
; ð72Þ

Fðx; vÞ ¼ 1 −
2Mðx; vÞ

x
; ð73Þ

Mðx; vÞ ¼ M0 þ γðvÞ þ ~κ2q2ðvÞ
4

Z
dx
r2

; ð74Þ

γðvÞ ¼
Z

dvLðvÞ; ð75Þ

ρin ¼
2

κ2r2

�
LðvÞ þ κ2qqv

8π

Z
dx
r2σþ

�
: ð76Þ

This set of equations provides a consistent solution to the
Palatini fðR;QÞ Lagrangian (43) with null and non-null
electromagnetic fields satisfying ∇μFμν ¼ qv

4πr2 k
ν, where

qv ≡ ∂vqðvÞ and γv ≡ LðvÞ are free functions. Their
dependence on v reflects the presence of the charged
stream of null particles.
Given the structure of the mass function in Eq. (74) and

to make contact with previous results on static configura-
tions, we find it useful to write it as

Mðx; vÞ ¼ M0 þ γðvÞ þ rqðvÞ2
4rcðvÞ

�Z
dzGz

�����
z¼r=rc

; ð77Þ

with rcðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rqðvÞlP

p
, zðx; vÞ ¼ rðx; vÞ=rcðvÞ and

Gz ¼
z4 þ 1

z4
ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p ; ð78Þ

where we have used the relation dr=dx ¼ σ1=2− =σþ (at
constant v). This can be expressed in a more compact form
as

Mðx; vÞ ¼ MðvÞ½1þ δ1ðvÞGðzÞ�jz¼ r
rc
; ð79Þ

where MðvÞ ¼ M0 þ γðvÞ≡ rSðvÞ=2 and

δ1ðvÞ ¼
1

2rSðvÞ

ffiffiffiffiffiffiffiffiffiffiffi
r3qðvÞ
lP

s
: ð80Þ

The function GðzÞ can be written as an infinite power
series and its form was given in [29]. Using these results,
we can write gvv in Eq. (54) as

gvv ¼ −
Fðx; vÞ
σþ

þ 2l2Pκ
2ρin

σ−ð1 − 2r4c
r4 Þ

; ð81Þ

where (recall that z ¼ rðx; vÞ=rcðvÞ)

Fðx; vÞ ¼ 1 −
1þ δ1ðvÞGðzÞ
δ2ðvÞzσ1=2−

; ð82Þ

and we have introduced the parameter

δ2ðvÞ ¼
rcðvÞ
rSðvÞ

: ð83Þ

Using the above results, the line element (17) becomes

ds2 ¼ −
�
1

σþ

�
1 −

1þ δ1ðvÞGðzÞ
δ2ðvÞzσ1=2−

�
−

2l2Pκ
2ρin

σ−ð1 − 2r4c
r4 Þ

�
dv2

þ 2

σþ
dvdxþ r2ðx; vÞdΩ2: ð84Þ

Equation (84) with the definitions given by Eqs. (50), (80)
and (83), and the function Gz in Eq. (78), which contains
the contribution of the non-null electromagnetic field,
constitutes the main result of this paper.
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V. PHYSICAL PROPERTIES

In the previous section, we found the exact analytical
solution to the problem of a spherically symmetric ingoing
null fluid carrying electric charge and energy in a space-
time whose dynamics is governed by the Palatini theory
given by Eq. (43). In this section, we discuss the different
contributions appearing in the line element (84) and their
properties.

A. The GR limit

Let us first note that when lP → 0 in the Lagrangian
density (43) we recover the GR limit, since it implies
σ� → 1 and allows us to perform the integration in
dx ¼ drσþ=σ1=2− ¼ dr, finding that

R
dx=r2 ¼ −1=r,

which leads to GðzÞ ¼ −1=z. With these elements the
metric component gvv in Eq. (81) boils down to

gvv ¼ −
�
1 −

rsðvÞ
r

þ rqðvÞ2
2r2

�
; ð85Þ

while the relation (70) becomes

ρinr2 ¼
2

κ2

�
LðvÞ − κ2qqv

8πr

�
: ð86Þ

Thus, these expressions reproduce the well known Bonnor-
Vaidya solution of GR [2].

B. Uncharged solutions with null fluid

This dynamical scenario was considered in [48], where
more details and examples can be found. Here we sum-
marize the main features of this case. When the electro-
vacuum field is not present (q ¼ 0, σ� → 1), the line
element (84) becomes [48]

ds2 ¼ −Bðv; rÞdv2 þ 2dvdrþ r2dΩ2; ð87Þ

with

Bðv; rÞ ¼ 1 −
2MðvÞ

r
−
Q2ðvÞ
r2

; ð88Þ

where MðvÞ≡ R
v
v0
Lðv0Þdv0 represents the mass term,

Q2ðvÞ≡ 4LðvÞ=ρP represents a chargelike term, and we
have defined ρP ¼ c2

l2PG
∼ 1096 kg=m3 as the Planck density.

The luminosity function LðvÞ ¼ κ2r2ρin=2 follows from
Eq. (67). The metric (87) is formally that of a (nonrotating)
Reissner-Nordström black hole but with the wrong sign in
front of the charge term. The single horizon of this solution
is located at rþðvÞ ¼ MðvÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ þQ2ðvÞ

p
and is

larger than in the dynamical Schwarzschild solution of
GR, rSðvÞ ¼ 2MðvÞ.

When the flux of radiation ceases, Q2ðvÞ vanishes and
rþ retracts to its GR value rS. The metric function (88) puts
forward that the null fluid is leaving its imprint on the
structure of the space-time not only through its integrated
luminosity (the mass term MðvÞ), but also directly through
the luminosity function LðvÞ (suppressed by the Planck
density), which contains full details about the distribution
of the incoming fluid. It should be noted that if a scalar field
is quantized in such a background, the field mode functions
will be sensitive to LðvÞ, thus having access to all the
information contained in the source that forms the black
hole. As a result, the emitted Hawking quanta will contain
crucial information not only about the integrated energy
profile MðvÞ, but also about the most minute details of its
time distribution LðvÞ.

C. Static charged configurations

When there is no incoming flux of charge and energy,
qðvÞ andMðvÞ remain constant. In this case, the metric gets
simplified in a number of ways. Firstly, the term ρin
disappears, and δ1ðvÞ, δ2ðvÞ, and rcðvÞ take the constant
values δð0Þ1 , δð0Þ2 , and rð0Þc , respectively, where the superindex
denotes the amounts of mass and charge, M ¼ M0 and
q ¼ q0, characterizing the solution. The line element (84)
can then be written as

ds2 ¼ −
ð1 − 1þδð0Þ

1
GðzÞ

δð0Þ
2
zσ1=2−

Þ
σþðxÞ

dv2 þ 2dvdx
σþðxÞ

þ r2ðxÞdΩ2; ð89Þ

where here r ¼ rð0Þc zðxÞ is just a function of x, i.e., there is
no time dependence on v. Accordingly, σ� ¼ σ�ðzÞ and
GðzÞ are v-independent functions. For jxj ≫ rð0Þc , one finds

that r2ðxÞ ≈ x2, σ� ≈ 1, and gvv ≈ −ð1 − rð0ÞS
r þ rð0Þq

2

2r2 Þ, which
turns (89) into the expected GR limit.
On the other hand, from the relation (72), it is easy to see

that rðxÞ reaches a minimum rmin ¼ rð0Þc at x ¼ 0. At that
point, one can verify [29] that curvature scalars generically

diverge except if the charge-to-mass ratio δð0Þ1 takes the value

δð0Þ1 ¼ δ�1
1, where δ�1 ≃ 0.572 is a constant that appears in the

series expansion of GðzÞ ¼ −1=δ�1 þ 2
ffiffiffiffiffiffiffiffiffiffi
z − 1

p þ… as

z → 1. The smoothness of the geometry when δð0Þ1 ¼ δ�1
together with the fact that rðxÞ reaches a minimum at x ¼ 0
allow to naturally extend the coordinate x to the negative real
axis, thus showing that the radial function r2ðxÞ bounces off
to infinity as x → −∞ (see Fig. 1). This implies the existence

of a wormhole structure with its throat located at r ¼ rð0Þc ,

1In terms of horizons, configurations with δ1 > δ�1 are similar
to the standard Reissner-Norström solution of GR, having two
horizons, a single (extreme) one or none, while those with δ1 < δ�1
have always a single (nondegenerate) horizon, resembling the
Schwarzschild solution. For more details see the first of
Refs. [29].
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wheredr=dx ¼ 0. This interpretation is further supportedby
the existence of an electric flux coming out from the
wormhole mouth and responsible for the spherically sym-
metric electric field. An electric field of this kind does not
require the existence of pointlike sources for its generation,
as first shown byWheeler andMisner in [50]. The nontrivial
wormhole topology implies that the flux Φ ¼ R

S �F, where
�F is the two-form dual to the Faraday tensor, through any
closed two-surface S enclosing one of thewormholemouths
is nonzero and can be used to define a charge Φ ¼ 4πq. On
practical grounds, there is no difference between this kind of
charge, arising from a pure electric field trapped in the
topology (going through a wormhole), and a standard
pointlike charge. Remarkably, one can easily verify [29]
that this flux is independent of the particular value of δ�1,
which entails that the wormhole structure exists even when

the curvature scalars diverge at r ¼ rð0Þc . This result gives
consistency2 to the field equations of the static problem, in
which the electric field is assumed sourceless, and demands
a debate on the physical meaning and implications of
curvature divergences since, as we have shown, they pose
no obstacle to the existence of a well-defined (topological)
electric flux through them.
Since the line element (89) recovers the Reissner-

Nordström geometry when jxj ≫ rð0Þc , one can verify that
for δ1 ¼ δ�1 an external horizon exists in general. One thus
expects that the existence of the horizon forces the regular
configurations to decay into those with δ1 ≠ δ�1 via
Hawking radiation. However, as shown in [29,30], when
the number of charges Nq ≡ q=jej drops below the critical
value Nc

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=αem

p
≈ 16.55 (where αem is the fine struc-

ture constant) the event horizon disappears, yielding an

object which is stable against Hawking decay and whose
charge is conserved and protected on topological grounds.
Such everywhere regular and horizonless objects can be
connected with black hole states, which posses an event
horizon, in a continuous way, thus suggesting that they can
be interpreted as black hole remnants.
As a final remark, we point out that for arbitrary δ1 the

spatial integration of the action, representing the addition of
electromagnetic plus gravitational energies, yields a finite
result, which implies that the total energy is finite regard-
less of the existence or not of curvature divergences at the
wormhole throat. In the particular case of the regular
solutions δ1 ¼ δ�1, the action defined by Eqs. (2) and
(43) evaluated on the solutions coincides with the action
of a pointlike massive particle at rest. Additionally, the
surface r ¼ rð0Þc becomes timelike when Nq < Nc

q, which
further supports the idea that such regular solutions possess
particlelike properties [29,30], representing a specific
realization of Wheeler’s geon [16].

D. Dynamical charged configurations

When the incoming null flux of radiation carries electric
charge, the geometry changes in a highly nontrivial way.
This setup should provide a good description of highly
relativistic charged particles collapsing in a spherically
symmetric way. To illustrate this complexity, consider first
that the initial state is flat Minkowski space. Assume that a
charged perturbation of compact support propagates within
the interval ½vi; vf�. Given the relation (72), which for
future reference we write as

r2ðx; vÞ ¼ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4r4cðvÞ

p
2

; ð90Þ

where r4cðvÞ≡ l2P ~κ
2q2ðvÞ, it follows that for v < vi the

radial function r2ðx; vÞ ¼ x2 extends from zero to infinity
[31]. As we get into the v ≥ vi region, this radial function,
which measures the area of the 2-spheres of constant x and
v, never becomes smaller than r2cðvÞ. In the region v > vf,
in which the ingoing flux of charge and radiation is again
zero, the result is a static geometry identical to that
described above in Sec. V C. This change in the geometry
can be interpreted as the formation of a wormhole whose
throat has an area AWH ¼ 4πr2cðvfÞ.
Depending on the total amounts of charge and energy

conveyed by the incoming flux, the space-time may have
developed event horizons (see Sec. V C, and [29] for full
details on the different configurations). The existence or not
of curvature divergences at r ¼ rcðvfÞ depends on the
(integrated) charge-to-mass ratio of the flux. For simplicity,
one can assume situations where δ1ðvfÞ ¼ δ�1, for which the
final configuration has no curvature divergences, and
δ2ðvfÞ > δ�1, for which there are no event horizons.
Related to this, we emphasize that, as shown in Sec. V
C, the electric fluxΦ through any two-surface enclosing the

z z x

dG

dx

dz

dxxx

4 2 2 4
x

1

1

2

3

4

5

FIG. 1 (color online). The minimum of the radial function zðxÞ
implies the existence of a wormhole extension of the geometry,
with x covering the whole real axis −∞ < x < þ∞. Note the
smoothness of the function dG=dx and the bounce of zðxÞ at
x ¼ 0. In this plot, rc ¼ 1.

2Note, in this sense, that the Reissner-Nordström solution of
GR represents an incomplete problem because the source term is
generally not considered, restricting the discussion to the region
external to the sources [39].
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region r ¼ rcðvÞ is always well-defined regardless of the
value of δ1ðvfÞ.
In a first approximation, this process of wormhole

formation could be visualized as depicted in Fig. 2. This
diagram suggests that the ingoing charged flux of radiation
generates a whole new region of space-time as it prop-
agates. This view would imply a change in the global
properties of space-time and, therefore, in its topology. A
more careful examination of this process is necessary to
understand how the other side of the wormhole arises and
how this affects the topology of the problem. In fact, from a
mathematical point of view, the exactly Minkowskian case
q ¼ 0 can be seen as an exceptional situation in which the
derivative of r2 ¼ x2 takes the values �1 and has a
discontinuity at x ¼ 0. However, in a physical context
with continuous virtual pair creation/annihilation out of the
quantum vacuum, it seems reasonable to expect that the
exact case q ¼ 0 is never physically realized and that only
the limiting case q → 0makes sense.3 One can thus assume

that in the physical branch of the theory, q can be arbitrarily
small but nonzero, with the limit q → 0 leading to vanish-
ing derivative dr=dx at x ¼ 0 and quickly converging to�1
away from x ¼ 0. In this scenario, the initial q → 0
configuration could be seen as consisting of two identical
pieces of Minkowski space-time connected along the line
x ¼ 0 (see Fig. 3) through a wormhole of area
AWH ∝ q → 0, which can be as small as one wishes but
never zero due to the vacuum fluctuations.
We can now consider again the collapse of a spherical

shell of charged radiation. As shown in Fig. 3, the geometry
inside the collapsing shell is essentially Minkowskian, up
to the existence of infinitesimally small wormholes gen-
erated by quantum fluctuations (which realize the idea of a
space-time foam). Though the details of the transient are
complex and require a case-by-case numerical analysis
because of the ρin term appearing in the line element
(84), the result of the collapse is the stretching of an initially
infinitesimal wormhole to yield a finite size hole of area
AWHðvÞ ¼ 4πr2cðvÞ. This occurs in such a way that the
density of lines of force at the wormhole throat is kept
constant, ΦðvÞ=AWHðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c7=ð2ℏG2Þ

p
. Note that this

constraint between the flux and the area of the wormhole
is valid for arbitrary charge and, in particular, in the limit
q → 0. Only if q ¼ 0 exactly, this ratio becomes indefinite.
In GR, where an electric flux is assumed to be generated by
a pointlike particle (of zero area), one finds a divergent
result. This divergence corresponds to taking the limit ℏ → 0
in the above ratio and indicates that the wormhole closes
in the limit in which classical GR is recovered, which is

FIG. 3. Penrose diagram for the formation of a wormhole (with
δ1 ¼ δ�1 andNq < Nc

q) out of Minkowski space resulting from the
perturbation of a charged null fluid of integrated charge þq, and
its subsequent removal due to a second flux of integrated charge
−q. Note that we have chosen positive energy fluxes in both
cases, which implies that the final state is a Schwarzschild black
hole instead of Minkowski space.

FIG. 2. Penrose diagram for the nonsingular case δ1 ¼ δ�1
without event horizon, Nq < Nc

q. Consider first that the initial
state is flat Minkowski space. Next, assume that a charged
perturbation of compact support propagates within the interval
½vi; vf�. We verify that the area of the two-spheres of constant x
and v increases and never becomes smaller than r2cðvÞ. If we
consider now the region v > vf, where the ingoing flux of charge
and radiation is switched off, the result is a static geometry
identical to that described in Sec. V C. This change in the
geometry can be interpreted as the formation of a wormhole
whose throat has an area AWH ¼ 4πr2cðvfÞ. See the text for more
details.

3In such a scenario, the vanishing of (the quantum average) hqi
in a given region can still be compatible with hq2i ≠ 0. In
this sense, we understand that it is hq2i which should enter in the
definition of r4qðvÞ ¼ l2P ~κ

2hq2ðvÞi.
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fully consistent with the fact that wormholes supported by
electromagnetic fields do not exist in the case of GR [51].
The sudden generation of a new space-time region

depicted in Fig. (2) can thus be avoided by assuming from
the very beginning that the space-time admits a foamlike
microstructure in which electric field lines may sustain
wormholes that connect two different regions (the two sides
of each wormhole). The spontaneous generation of virtual
pairs of electrically charged particles could be seen as the
spontaneous formation of two nearby wormholes with
identical but opposite charges [52]. The energy deficit
resulting from the generation of this pair would be released
when the pair meets and the wormholes disappear. In this
picture, the universe that we perceive would thus be a copy
of another universe containing the same particles but with
opposite charges (due to the different orientation of the
fluxes on each side of the wormholes).
If a second flux of charged radiation is considered, the

wormhole can be reduced again to an infinitesimal structure
(associated to quantum fluctuations) if at v ≥ vf2 we have
q → 0 (see Fig. 3). The geometry then becomes essentially
identical to that of a Schwarzschild black hole on both
sides, with curvature scalars diverging at x ¼ 0. If a new
flux of charged matter reaches x ¼ 0, then the wormhole
throat should grow again to give consistency to the
electromagnetic field equations and conservation laws.

VI. SUMMARY AND DISCUSSION

We have worked out a simplified scenario of gravita-
tional collapse in which new gravitational physics at high
energies is introduced by means of quadratic curvature
corrections in the gravitational Lagrangian. We have made
use of two elements that simplify the mathematical analy-
sis, namely, (1) spherical symmetry and (2) a pressureless
fluid. These simplifications have been traditionally used in
theoretical discussions about gravitational collapse and the
study of the properties of singularities. Obviously, neither
(1) nor (2) can be exactly realized in nature but, nonethe-
less, they are very useful for theoretical analyses of the type
considered here. Note, in this sense, that already in the
first models of gravitational collapse worked out by
Oppenheimer and Snyder [53], the internal pressures of
the collapsing fluids were neglected as it was understood
that, above a certain threshold, rather than helping to
prevent the collapse they contribute to increase the energy
density, which further accelerates the process. Similarly, in
the case of electrically charged black holes (the well-known
Reissner-Nordström solution), for instance, the repulsive
electric force of the collapsed matter does not help to
alleviate the strength of the central singularity. Rather, the
squared of the Riemann tensor increases its degree of
divergence, going from Rα

βμνRα
βμν ∼ 1=r4 in the

Schwarzschild case to Rα
βμνRα

βμν ∼ 1=r8 in the charged
case. The energy of the electric field, therefore, worsens the
degree of divergence of the curvature scalars.

In our model, we have considered a radiation fluid
carrying a certain amount of energy and also electric
charge. The repulsive forces or pressures that the particles
making up the fluid could feel have been neglected as they
are not essential for the study of the end state of the
collapse. As a result, the fluid follows geodesics of the
metric, which have been determined dynamically by taking
into account the energy and charge conveyed by the fluid.
The fluid motion, therefore, is not given a priori, but
follows from the consistent resolution of the coupled
system of radiation, electric field, and gravity.
The key point of this paper has been the study of the end

state of the collapse of this idealized system. In general
relativity, this configuration unavoidably leads to the
formation of a pointlike singularity. In our model, however,
the geometry and the topology undergo important changes.
When the energy density of the collapsing fluid reaches a
certain scale (of order the Planck scale), gravity is no longer
attractive and becomes repulsive. This has a dramatic effect
on the geodesics followed by the fluid which, rather than
focusing into a pointlike singularity, expand into a growing
sphere. The wormhole is thus somehow produced by the
repulsive character of gravitation at high energy-densities
and the need to conserve the electric flux.
In principle, in our model wormholes of arbitrary charge

and mass can be formed. However, this cannot be com-
pletely true since our results are valid as long as the
approximations involved hold with sufficient accuracy.
Therefore, one should note that in low-energy scenarios
pressure and other dispersion effects should act so as to
prevent the effective concentration of charge and energy
way before it can concentrate at Planckian scales, thus
suppressing wormhole production. However, for adequate
concentrations of charge and energy, gravitational collapse
cannot be halted and our analysis should be regarded as a
good approximation. In this sense, we note that Hawking
already analyzed the process of classical collapse in the
early universe, finding that (primordial) black holes with a
Planck mass or higher and up to 30 units of charge could be
formed out of a charged plasma [54]. Stellar collapse offers
another robust mechanism to generate the conditions under
which our approximations are valid. In fact, in order to
build a completely regular configuration with a solar mass,
about ∼1057 protons, one needs ∼2.91 × 1026 electrons
[29], which is a tiny fraction of the total available charge
(10−31) and mass. Therefore, the generation of wormholes
under realistic situations is possible.
The dynamical generation of wormholes outlined above,

in the context of charged fluids in quadratic Palatini gravity,
differs radically in nature to the construction of general
relativistic traversable wormholes, with the idealization of
impulsive phantom radiation considered extensively in the
literature [9–12,55–58]. In the latter, it was shown that two
opposing streams of phantom radiation, which form an
infinitely thin null shell, may support a static traversable
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wormhole [9]. Essentially, one begins with a Schwarzschild
black hole region, and triggers off beams of impulsive
phantom radiation, with constant energy density profiles,
from both sides symmetrically, consequently forming
Vaidya regions. Now, in principle, if the energies and
the emission timing are adequately synchronized, the
regions left behind the receding impulses after the collision
results in a static traversable wormhole geometry.
Furthermore, it is interesting to note that it was shown
that with a manipulation of the impulsive beams, it is
possible to enlarge the traversable wormhole (see [12] for
more details). These solutions differ radically from the self-
inflating wormholes discovered numerically [57] and the
possibility that inflation might provide a natural mechanism
for the enlargement of Planck-size wormholes to macro-
scopic size [17]. The difference lies in the fact that the
amount of enlargement can be controlled by the amount of
energy or the timing of the impulses, so that a reduction of
the wormhole size is also possible by reversing the process
of positive-energy and negative-energy impulses outlined
in [12].
The theory presented here allows us to generate static

wormholes by means of a finite pulse of charged radiation,
without the need to keep two energy streams active
continuously or to synchronize them in any way across
the wormhole. Regarding the size of the wormholes, we
note that if instead of using l2P to characterize the curvature
corrections one considers a different length scale, say l2ϵ,

then their area would be given by AWH ¼ ðlϵlPÞ
2Nq

Nc
q
AP, where

AP ¼ 4πl2P, Nq ¼ jq=ej is the number of charges, and
Nc

q ≈ 16.55. Though this could allow us to reach sizes
orders of magnitude larger than the Planck scale, it does not
seem very likely that macroscopic wormholes could arise
from any viable theory of this form, though the role that
other matter or energy sources could produce might be
nontrivial.
Relative to the issue of classical singularities, the mean-

ing and implications of the latter has been a subject of
intense debate in the literature for years. Their existence in
GR is generally interpreted as a signal of the limits of the
theory, where quantum effects should become relevant and
an improved theory would be necessary. This is, in fact, the
reason that motivates our heuristic study of quadratic
corrections beyond GR. As pointed out above and shown
in detail in [29], the curvature divergences for the static
wormhole solutions arising in quadratic Palatini gravity
with electrovacuum fields (and also in the Palatini version
of the Eddington-inspired Born-Infeld theory of gravity, see
[45]) are much weaker than their counterparts in GR (from
∼1=r8 in GR to ∼1=ðr − rcÞ3 in our model). Additionally,
the existence of a wormhole structure that prevents the
function r2 from dropping below the scale r2c implies that
the total energy stored in the electric field is finite (see
[30,45] for details), which clearly contrasts with the infinite

result that GR yields. Therefore, even though curvature
scalars may diverge, physical magnitudes such as total
mass-energy, electric charge, and density of lines of force
are insensitive to those divergences, which demands for an
in-depth analysis of their meaning and implications. In this
sense, we note that topology is a more primitive concept
than geometry, in the sense that the former can exist without
the latter. Comparison between a sphere and a cube is thus
pertinent and enlightening in this context to better under-
stand the physical significance of curvature divergences. It
turns out that a cube and a sphere are topological equiv-
alent. However, the geometry of the former is ill defined
along its edges and vertices. The divergent behavior of
curvature scalars for certain values of δ1, therefore, simply
indicates that for those cases the geometry is not smooth
enough at the wormhole throat, but that does not have any
impact on the physical existence of the wormhole.
Regarding the existence of curvature divergences at

x ¼ 0 in the Schwarzschild case (q → 0), our view is that
there exist reasons to believe that such divergences could be
an artifact of the approximations and symmetries involved
in our analysis. These suspects are supported by the fact
that radiation fluids (with equation of state P=ρ ¼ 1=3) in
cosmological scenarios governed by the dynamics of the
theory under study are able to avoid the big bang singu-
larity, which is replaced by a cosmic bounce [34]. For
the radiation fluid, the cosmic bounce occurs in both
isotropic and anisotropic homogeneous scenarios when
the energy density approaches the Planck scale. One would
thus expect that a process of collapse mimicking the
Oppenheimer-Snyder model with a radiation fluid should
avoid the development of curvature divergences. This, in
fact, occurs in Eddington-inspired Born-Infeld gravity [45],
studied recently in [59]. The generic existence of curvature
divergences in the uncharged case involving a Vaidya-type
scenario with null fluids is thus likely to be due to the
impossibility of normalizing the null fluid, which is there-
fore insensitive to the existence of a limiting density scale.
The consideration of more realistic non-null charged fluids
could thus help to improve the current picture and avoid the
shortcomings of the uncharged (q → 0) Schwarzschild
configurations.
As a final comment, we note that since in our theory the

field equations outside the matter sources recover those of
vacuum GR, Birkhoff’s theorem must hold in those
regions. This means that for v < vi we have Minkowski
space, whereas for v > vf we have a Reissner-Nordström-
like geometry of the form (89). The departure from
Reissner-Nordström is due to the Planck scale corrections
of the Lagrangian, which are excited by the presence of an
electric field, and only affect the microscopic structure,
which is of order∼rcðvÞ (see Sec. V C and [29]). Due to the
spherical symmetry and the second-order character of the
field equations, Birkhoff’s theorem guarantees the staticity
of the solutions for v > vf.
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To conclude, in this paper an exact analytical solution for
the dynamical process of collapse of a null fluid carrying
energy and electric charge has been found in a quadratic
extension of GR formulated à la Palatini. This scenario
extends the well-known Vaidya-Bonnor solution of GR [2],
thus allowing to explore in detail new physics at the Planck
scale. In the context of the static configurations, we have
shown that wormholes can be formed out of Minkowski
space by means of a pulse of charged radiation, which
contrasts with previous approaches in the literature requir-
ing artificial configurations and synchronization of two
streams of phantom energy. Our results support the view
that space-time could have a foamlike microstructure with
wormholes generated by quantum fluctuations. Though
such geometric structures develop, in general, curvature
divergences, they are characterized by well-defined and
finite electric charge and total energy. The physical role that
such divergences could have is thus uncertain and requires
an in-depth analysis, though from a topological perspective
they seem not to play a relevant role. To fully understand
these issues our model should be improved to address
several important aspects including, for instance, the
presence of gauge field degrees of freedom, to take into

account the dynamics of counter-streaming effects due to
the presence of simultaneous ingoing and outgoing fluxes,
or to consider other theories of gravity beyond the quadratic
Lagrangian (43). These and related research issues are
currently underway.
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