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We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-
dependent gravitational fields. Previous studies of the motion of free test particles have focused on the
collapse scenario, according to which a double-jet pattern with Lorentz factor γ → ∞ develops
asymptotically along the direction of complete gravitational collapse. In the present work, we identify
a second wave scenario, in which a single-jet pattern with Lorentz factor γ → ∞ develops asymptotically
along the direction of wave propagation. The possibility of a connection between the two scenarios for the
formation of cosmic jets is critically examined.
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I. INTRODUCTION

In stationary gravitational fields, a timelike Killing
vector field exists such that the projection of the 4-velocity
of a free test particle on the Killing vector is a constant of
the motion along the particle world line [1]. This circum-
stance can be interpreted to mean that there is no net
exchange of energy between the particle and the gravita-
tional field. It is therefore a problem of basic interest
whether free test particles can gain or lose energy in
dynamic, i.e. time-dependent, gravitational fields. We note
that the exchange of energy between charges and the
electromagnetic field is a fundamental feature of electro-
dynamics and leads to Joule’s law [2].
To determine the energy of a test particle in the context of

general relativity theory, it is necessary to refer the motion
of free test particles to a set of reference observers. We take
these fiducial observers to be the fundamental observers in
spacetime, namely, those that are at rest in space. We are
thus interested in the peculiar velocities of free test particles
relative to the class of comoving observers.
The issue of energy exchange and the nature of peculiar

velocities has thus far been investigatedmainly in a physical
context that essentially corresponds to themodernversion of
theKant-Laplace nebular hypothesis, inwhich the formation
of elementary structure in the Universe is due to the collapse
of a spinning cloud of gas and dust. In these studies one
considers exact solutions of general relativity involving
certain physically significant spacetimes inwhich the proper
distance along one spatial axis—henceforth designated as
the z axis—decreases to zero as t → ∞, while the proper
distances along the corresponding x and y axes tend
asymptotically to infinity. It has been demonstrated that in
such spacetimes, the timelike geodesics have a universal
behavior: relative to the reference observers, free test

particles asymptotically (i.e. as t → ∞) form a double-jet
structure along the axis of collapse and the speeds of
such bulk flows tend asymptotically to the speed of light
[3–6].
These cosmic jets are idealized mathematical constructs

and must be clearly distinguished from astrophysical jets
that are persistent high-energy magnetohydrodynamic
(MHD) bipolar outflows that are generally associated with
configurations that have already undergone gravitational
collapse. One may hypothesize that the collapse process is
accompanied by a rather mild form of the cosmic double-jet
pattern, a part of which is then confined and sustained over
time by various MHD mechanisms characteristic of the
particular astrophysical environment.
To summarize the results of previous investigations

[3–6], one may say that in a dynamic spacetime region
in which asymmetric collapse/expansion is taking place,
free test particles are accelerated relative to comoving
observers along the collapsing direction, while they are
decelerated along the expanding direction. This is in
agreement with the behavior of peculiar velocities in the
standard cosmological models.
It might appear that the general behavior described

above is the only one that is possible in general relativity.
The purpose of the present work is to show that the
behavior described above is not unique. We elucidate a
different type of dynamic behavior involving a single-jet
structure that is characteristic of certain propagating plane-
wave spacetimes.
The plan of this paper is as follows. In Sec. II, we

illustrate the nature of cosmic jets via a certain “white-hole”
interpretation of the interior Schwarzschild-Droste black
hole. Sections III and IV discuss the general behavior of
timelike geodesics in different plane-wave spacetimes.
Section V contains a discussion of our results and the
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possibility of a connection between these exact solutions of
the gravitational field equations.

II. GEODESICS OF AN AXIALLY COLLAPSING
CYLINDRICAL SPACETIME

Consider the standard formof the exterior Schwarzschild-
Droste solution

ds2 ¼ −c2
�
1 − 2

GM
c2R

�
dT 2 þ dR2

ð1 − 2 GM
c2RÞ

þR2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where M is the mass of the source. We assume that the
spacetime metric has signature þ2 and henceforth we set
c ¼ 1. The timelike Killing vector ∂T becomes null at
R ¼ 2GM and spacelike forR < 2GM. In this latter region
of spacetime, let us introduce a new coordinate system
ðt; r; θ;ϕÞ, where t ¼ R and r ¼ T ; moreover,we introduce
a constant T ¼ 2GM > 0. Then, metric (1) inside the
horizon takes the form

ds2 ¼ −
t

T − t
dt2 þ T − t

t
dr2 þ t2ðdθ2 þ sin2θdϕ2Þ;

ð2Þ

which is usually ignored in favor of the complete analytic
extension of the Schwarzschild solution [7]. Next, we
introduce cylindrical coordinates ðρ;ϕ; zÞ such that

ρ ¼ L sin θ; z ¼ r; ð3Þ

and ϕ is the azimuthal angular coordinate as before. Here
L > 0 is a constant length. Thus we express metric (2) as

ds2 ¼ −
t

T − t
dt2 þ t2

L2

�
dρ2

1 − ρ2=L2
þ ρ2dϕ2

�

þ T − t
t

dz2: ð4Þ

This is an axially collapsing cylindrical solution of the
vacuum gravitational field equations. The cylindrical axis is
elementary flat and the spacetime coordinates are admissible
for 0 < t < T and 0 < ρ < L [8]. This solution admits two
spacelike commuting Killing vector fields (η ¼ ∂ϕ, ζ ¼ ∂z)
that are hypersurface orthogonal. There are in general four
algebraic invariants of the curvature tensor for this type of
Ricci-flat spacetime. In the case under study here, the only
nonzero invariant is given by the Kretschmann scalar

K ¼ RαβγδRαβγδ ¼ 12
T2

t6
: ð5Þ

Thus t ¼ 0 is a curvature singularity and the solution is
clearly related to the Schwarzschild-Droste white hole [7].

To study the geodesics of the cylindrical spacetime under
consideration here, it proves useful to introduce standard
Cartesian coordinates ðx; y; zÞ, where x ¼ ρ cosϕ and
y ¼ ρ sinϕ. Thus we work with the following metric:

ds2 ¼ −
t

T − t
dt2 þ t2

D
½ðL2 − y2Þdx2 þ 2xydxdy

þ ðL2 − x2Þdy2� þ T − t
t

dz2; ð6Þ

where the coordinates are denoted by xα ¼ ðt; x; y; zÞ, T
and L are two arbitrary constant parameters and

D ¼ L2½L2 − ðx2 þ y2Þ�: ð7Þ

In this case,
ffiffiffiffiffiffi−gp ¼ t2=D and the coordinates are admis-

sible for 0 < t < T, jxj < L, jyj < L and x2 þ y2 < L2. Let
us note here that the ðx; yÞ part of the metric in Eq. (6) can
be written as ðt=LÞ2dl2, where dl2 is the flat Euclidean 3D
metric restricted to the surface of a sphere of radius L; see
the Appendix. Moreover, metric (6) is related to the
Schwarzschild-Droste white hole and admits two Killing
vectors

η ¼ −y∂x þ x∂y; ζ ¼ ∂z; ð8Þ

associated with its cylindrical symmetry.
We fix our set of fiducial observers to be at rest with

respect to the spatial coordinates ðx; y; zÞ. Thus these
observers have 4-velocity

e0̂ ¼
1ffiffiffiffiffiffiffiffi−gtt

p ∂t ¼
ffiffiffiffiffiffiffiffiffiffi
T − t
t

r
∂t: ð9Þ

The following three spatial vectors form the spatial frame of
the orthonormal tetrad eα̂ of our reference observers

e1̂ ¼
L
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − x2 − y2

L2 − y2

s
∂x;

e2̂ ¼ −
xy

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − y2

p ∂x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − y2

p
t

∂y;

e3̂ ¼
ffiffiffiffiffiffiffiffiffiffi
t

T − t

r
∂z: ð10Þ

Let us study the timelike geodesics of this metric, i.e. the
curves with parametric equations xα ¼ xαðτÞ and with unit
(timelike) tangent vectorUα ¼ dxα=dτ ≔ _xα, where τ is the
proper time parameter. Decomposing U ¼ Uα∂α on the
tetrad frame eα̂, i.e.U ¼ Uα̂eα̂, leads to the identification of
the (spatial) relative velocity vector, vâ, a ¼ 1; 2; 3, and the
associated Lorentz γ factor

U ¼ γðe0̂ þ vâeâÞ: ð11Þ
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Moreover, the relation between the coordinate and frame
components of U are

U0̂ ¼ γ ¼
ffiffiffiffiffiffiffiffiffiffi
t

T − t

r
_t;

U1̂ ¼ γv1̂ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðL2 − y2Þ

p ½ðL2 − y2Þ_xþ xy_y�;

U2̂ ¼ γv2̂ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − y2

p _y;

U3̂ ¼ γv3̂ ¼
ffiffiffiffiffiffiffiffiffiffi
T − t
t

r
_z: ð12Þ

The Killing vectors η and ζ ensure that −yUx þ xUy and
Uz are constants of the motion, namely,

t2

L2
ð−y_xþ x_yÞ ¼ Cη;

T − t
t

_z ¼ Cζ: ð13Þ

Therefore, one easily finds

zðτÞ ¼ z0 þ Cζ

Z
τ

0

tðσÞ
T − tðσÞ dσ; ð14Þ

and the remaining equations for geodesic motion,
Uα

;μUμ ¼ 0, read

̈t ¼ T
2tðt − TÞ ð_t

2 − C2
ζÞ

þ t − T
D

½ðL2 − y2Þ_x2 þ 2xy_x _yþðL2 − x2Þ_y2�;

ẍ ¼ −
ðL2 − y2Þx_x2 þ ðL2 − x2Þx_y2

D
−
2

t
ðD_tþ tx2y_yÞ_x

D
;

ÿ ¼ −
ðL2 − x2Þy_y2 þ ðL2 − y2Þy_x2

D
−
2

t
ðD_tþ txy2 _xÞ_y

D
:

ð15Þ

From UαUα ¼ −1 and Eq. (14), we get

̈t ¼ 3T − 2t
2tðT − tÞ ðC

2
ζ − _t2Þ þ T − t

t2
; ð16Þ

which implies that

_t2 ¼ ðt2 þ C0ÞðT − tÞ
t3

þ C2
ζ ; ð17Þ

where C0 is an integration constant.
These equations imply that our fiducial observers, for

example, are geodesic observers; in fact, x ¼ x0, y ¼ y0
and z ¼ z0 with Cη ¼ Cζ ¼ 0 are simple solutions of
Eqs. (14) and (15). The corresponding equation for t,
which simply follows from the normalization condition,
can be explicitly integrated; that is, for the geodesic
reference observers at rest, C0 ¼ 0 and

_t ¼
ffiffiffiffiffiffiffiffiffiffi
T − t
t

r
: ð18Þ

Hence,

τ ¼ π

2
T −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðT − tÞ

p
− Tsin−1

�
1 −

t
T

�
; ð19Þ

so that for t ¼ 0, τ ¼ 0, and as t → T, τ → π
2
T. Moreover,

the spatial frame of the fiducial observers given by Eq. (10)
is parallel propagated along their geodesic world lines.
We now integrate Eqs. (15) and (16) numerically from

t ¼ ϵT, where ϵ, 0 < ϵ ≪ 1, is a constant, to t approaching
T. As time t approaches T, the proper distance along the z
axis decreases to zero, while the proper distance in the
ðx; yÞ plane increases in accordance with our spacetime
metric (6). Our numerical experiments support the general
result that a double-jet structure invariably emerges along
the z axis with the corresponding Lorentz γ factor
approaching infinity. That is, ðv1̂; v2̂; v3̂Þ → ð0; 0;�1Þ as
t → T. The numerical results in a typical case are illustrated
in Fig. 1.
The mathematical properties of these cosmic jets that are

characteristic of the scenario for the formation of elemen-
tary astrophysical structure through gravitational collapse
have been illustrated here by means of a Ricci-flat solution
of general relativity that is related to the Schwarzschild-
Droste white hole. It is known that the white hole region of
the extended Schwarzschild-Droste spacetime is locally
isometric to colliding plane gravitational waves [9,10]. This
circumstance provides the motivation to investigate pecu-
liar velocities and cosmic jets in plane-wave spacetimes.

III. GRAVITATIONAL PLANE WAVES

Consider an exact plane wave propagating along the
positive z direction. Introducing retarded and advanced null
coordinates u and v, respectively, by

u ¼ 1ffiffiffi
2

p ðt − zÞ; v ¼ 1ffiffiffi
2

p ðtþ zÞ; ð20Þ

the spacetime metric can be expressed as

ds2 ¼ −2dudvþW2ðe2hdx2 þ e−2hdy2Þ; ð21Þ

where dt2 − dz2 ¼ 2dudv. Henceforth, we use the
ðt; x; y; zÞ coordinate system in our discussion of plane
waves. Here WðuÞ and hðuÞ are functions of the retarded
time t − z ¼ ffiffiffi

2
p

u. Einstein’s field equations in vacuum
(Rμν ¼ 0) are satisfied provided

W ;uu þ h2;uW ¼ 0; ð22Þ

where W ;u ¼ dW=du, etc. This is a Petrov type N
gravitational field representing a linearly polarized (“⊕”)
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plane wave [11]. For jhj ≪ 1 and W ¼ 1, Eq. (22) is
satisfied to linear order in h and we recover linearized
gravitational plane waves with ⊕ polarization in the
transverse-traceless (TT) gauge.
We are interested in the peculiar velocities of timelike

geodesics with respect to the class of comoving observers.
It turns out that observers at rest follow timelike geodesic
world lines and their natural tetrad frames, namely,

e0̂ ¼ ∂t; e1̂ ¼ ðWehÞ−1∂x;

e2̂ ¼ ðWe−hÞ−1∂y; e3̂ ¼ ∂z; ð23Þ

are parallel propagated along their world lines.
The Riemann curvature tensor as measured by the

reference observers can be expressed in any Ricci-flat
spacetime in terms of 3 × 3 symmetric and traceless
matrices E and B in the standard manner as

R ¼
�
E B

B −E

�
; ð24Þ

where E and B are the “electric” and “magnetic” compo-
nents of the Weyl tensor. More specifically, we consider
Rα̂ β̂ γ̂ δ̂ and the mapping ðRα̂ β̂ γ̂ δ̂Þ ↦ ðRIJÞ, where I and J
range over the set f01; 02; 03; 23; 31; 12g. In the case under
consideration here, we find

E ¼KðuÞ

2
64
0 0 0

0 −1 0

0 0 1

3
75; B ¼KðuÞ

2
64
0 0 0

0 0 1

0 1 0

3
75; ð25Þ

where [12]

KðuÞ ¼ h;uu þ 2h;u
W ;u

W
: ð26Þ

This plane-wave spacetime admits a null Killing vector
∂v ¼ ð∂t þ ∂zÞ=

ffiffiffi
2

p
characteristic of the wave propagation

in the z direction at the speed of light and two spacelike
Killing vectors ∂x and ∂y characteristic of the planar
symmetry of the wave front. These Killing vectors are
generators of an Abelian group G3, which acts in null
hypersurfaces that are wave fronts given by u ¼ constant.
Moreover, the plane waves under consideration here admit
two additional Killing vectors given by

x∂v þ f̂ðuÞ∂x; y∂v þ ĝðuÞ∂y; ð27Þ

where

f̂ðuÞ ¼
Z

u du0

F 2ðu0Þ ; ĝðuÞ ¼
Z

u du0

G2ðu0Þ ; ð28Þ

where F ¼ W expðhÞ and G ¼ W expð−hÞ. The five
Killing vectors are generators of a group G5, which has
as its subgroup the Abelian group G3; see the discussion of
pp waves in Section 24.5 of Ref. [1]. It follows that the
projections of the 4-velocity of free test particles Uα ¼
dxα=dτ on these Killing vectors are constants of the
motion. Hence, we can write

dt
dτ

−
dz
dτ

¼ Cv; ð29Þ

FIG. 1 (color online). The collapse scenario. Left panel: Plots of the components of the spatial velocity vâ relative to comoving
observers, given in Eq. (12), versus proper time τ for the choice of metric parameters L ¼ T ¼ 1. Initial conditions at τ ¼ 0 are
xð0Þ ¼ yð0Þ ¼ 0.5, zð0Þ ¼ 0.3, _xð0Þ ¼ −_yð0Þ ¼ 1, _z�ð0Þ ¼ �0.01 and _tð0Þ ¼ 3. The value of tð0Þ is obtained from the normalization
condition and is given by tð0Þ ¼ 0.1019457965. Right panel: The initial segments of geodesic curves x ¼ xðτÞ, y ¼ yðτÞ and z ¼ z�ðτÞ
are plotted for the same choice of initial conditions as in the left panel.
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F 2
dx
dτ

¼ Cx; G2
dy
dτ

¼ Cy; ð30Þ

where Cv, Cx and Cy are constants. Moreover, UαUα ¼ −1
implies that Cv ≠ 0 and

dt
dτ

¼ 1þ C2
v

2Cv
þ 1

2Cv

�
C2
x

F 2
þ C2

y

G2

�
;

dx
dτ

¼ Cx

F 2
;

dy
dτ

¼ Cy

G2
; ð31Þ

dz
dτ

¼ 1 − C2
v

2Cv
þ 1

2Cv

�
C2
x

F 2
þ C2

y

G2

�
: ð32Þ

Here u is a linear function of τ; that is,ffiffiffi
2

p
u ¼ Cvτ þ constant. For the comoving observers

Cv ¼ 1, Cx ¼ Cy ¼ 0. The projection of Uα on the tetrad
frame of the fiducial observers (23) results in

U0̂ ¼ γ ¼ dt
dτ

; U1̂ ¼ γv1̂ ¼ Cx

F
;

U2̂ ¼ γv2̂ ¼ Cy

G
; U3̂ ¼ γv3̂ ¼ dz

dτ
: ð33Þ

To proceed further, we need an explicit solution of
Eq. (22). To this end, let us consider [13]

W ¼ ½cosðβuÞ coshðβuÞ�1=2; eh ¼
�
cosðβuÞ
coshðβuÞ

�
1=2

;

ð34Þ

for which Eq. (22) is satisfied. Positive square roots are
assumed throughout in our convention. Here, β is a
constant parameter that can be chosen to be positive,
β > 0, with no loss in generality, and β is related to the
frequency of the gravitational wave. Moreover, Eq. (34) is
meaningful provided cosðβuÞ > 0. The curvature as mea-
sured by the reference observers is given by Eqs. (25) and
(26), whereK ¼ −β2 in this case. We note that in ðt; x; y; zÞ
coordinates,

ffiffiffiffiffiffi−gp ¼ W2 ¼ cosðβuÞ coshðβuÞ. For the sake
of definiteness, we assume βu ∈ ð−π=2; π=2Þ. Let us note
that as u increases from, say, u ¼ 0 and approaches π=ð2βÞ,
the proper spatial distance along the x direction decreases to
zero, while the corresponding distance along the y direction
increases and

ffiffiffiffiffiffi−gp
→ 0, since in this case

F ðuÞ ¼ cosðβuÞ; GðuÞ ¼ coshðβuÞ: ð35Þ

It is then interesting to investigate the behavior of free test
particles with Cx ≠ 0 with respect to the fiducial observers.
As u → π=ð2βÞ, the asymptotic expressions for γ and vâ are

γ ∼
C2
x

2Cv

1

cos2ðβuÞ ; v1̂ ∼
2Cv

Cx
cosðβuÞ;

v2̂ ∼
2CvCy

C2
x

cos2ðβuÞ
coshðβuÞ ; v3̂ ∼ 1: ð36Þ

Thus the free test particles with Cx ≠ 0 in this spacetime
line up asymptotically with γ → ∞ along the direction of
propagation of the wave; that is, we have a single-jet pattern
with ðv1̂; v2̂; v3̂Þ → ð0; 0; 1Þ as u → π=ð2βÞ. It is important
to remark here that the null hypersurface u ¼ π=ð2βÞ is
simply a coordinate singularity, as it occurs at the limit of
admissibility of the ðt; x; y; zÞ coordinate system; never-
theless, the asymptotic jet structure has been invariantly
characterized and it is therefore physically meaningful.
In a gravitational plane-wave spacetime, if the proper

spatial distance tends to zero in a direction transverse to the
direction of propagation of the wave, most of the free test
particles in this gravitational field form a single-jet structure
parallel to the direction of propagation such that the speed
of the jet asymptotically approaches the speed of light. This
plane-wave scenario for cosmic jet formation is entirely
different from the collapse scenario. We will explore this
scenario further in the next section.

IV. ELECTROMAGNETIC PLANE-WAVE
SPACETIMES

Let us next consider the metric [14,15]

ds2 ¼ −dt2 þΨ2ðuÞðdx2 þ dy2Þ þ dz2; ð37Þ
which satisfies the gravitational field equations,
Gμν ¼ 8πGTμν, with

Tμν ¼ Φ2ðuÞkμkν; k ¼ ∂v; ð38Þ

where ΦðuÞ represents the flux of the electromagnetic
radiation field and is related to ΨðuÞ via

Ψ;uu þ 4πGΦ2ðuÞΨ ¼ 0: ð39Þ

We note that the spacetime metric here is of the same
general form as the metric of the plane wave of the previous
section with F 2 ¼ G2 ¼ Ψ2; therefore, in addition to the
isometries of the previous section, metric (37) is also
invariant under Euclidean rotations in the ðx; yÞ plane.
The traceless energy-momentum tensor (38) can be inter-
preted as representing either null dust moving along the z
direction or a pure electromagnetic radiation field with a
wave vector parallel to k. Adopting the latter interpretation,
we assume that the potential 1-form A♭ of the null
electromagnetic field is aligned with a transverse spatial
direction, say the x axis, so that

A♭ ¼ ψðuÞdx: ð40Þ
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Hence, the transverse gauge condition, ∂μð ffiffiffiffiffiffi−gp
AμÞ ¼ 0, is

satisfied and the Faraday 2-form F♭ ¼ dA♭ is given by

F ¼ ψ ;uðuÞdu ∧ dx: ð41Þ

Maxwell’s equations are satisfied in this case and we have

Φ ¼ 1ffiffiffiffiffiffi
4π

p ψ ;u

Ψ
: ð42Þ

Thus the source of the gravitational field under consid-
eration is a linearly polarized plane electromagnetic null
field ðFμνFμν ¼ 0Þ propagating along the z direction with
its electric field along the x direction and its magnetic field
along the y direction.
As before, it is useful to introduce a family of fiducial

observers that are all at rest in space with 4-velocity vector
e0̂ ¼ ∂t. It turns out that the congruence of these fiducial
observer world lines is geodesic and vorticity free, but has
nonzero expansion. Moreover, the natural orthonormal
spatial triad adapted to such an observer is given by

e1̂ ¼
1

Ψ
∂x; e2̂ ¼

1

Ψ
∂y; e3̂ ¼ ∂z: ð43Þ

This spatial frame is parallel propagated along the world
line of the reference observer.
The electromagnetic field, as measured by these fiducial

observers, is given by the projection of the Faraday tensor
onto the observers’ orthonormal tetrads, namely,

Fα̂ β̂ ¼
1ffiffiffi
2

p ψ ;u

Ψ

2
6664

0 1 0 0

−1 0 0 1

0 0 0 0

0 −1 0 0

3
7775; ð44Þ

so that the measured electric and magnetic fields are each
given by −

ffiffiffiffiffiffi
2π

p
Φ along the x and y axes, respectively.

Turning now to the measurement of the gravitational
field, it is clear from Eqs. (25) and (26) that the Weyl
curvature tensor vanishes identically in this case and the
Riemann curvature tensor is then given by

Rμνρσ ¼
1

2
ðRμρgνσ þ Rνσgμρ − Rμσgνρ − RνρgμσÞ; ð45Þ

since the scalar curvature vanishes as well (R ¼ 0). In
general, the measured components of the Riemann tensor
can be represented as a 6 × 6 matrix

R ¼
�
E B

B† S

�
; ð46Þ

where E and S are symmetric 3 × 3 matrices and B is
traceless. In the present case, we find that the electric and
magnetic components are given by

E ¼ κðuÞ

2
64
1 0 0

0 1 0

0 0 0

3
75; B ¼ κðuÞ

2
64
0 −1 0

1 0 0

0 0 0

3
75; ð47Þ

while the spatial components are given by S ¼ E. Here,

κðuÞ ¼ 2πGΦ2ðuÞ: ð48Þ
This gravitational field is algebraically special and of
Petrov type O. Furthermore, as mentioned before, the
Weyl tensor vanishes in this case and the metric is thus
conformally flat, as can be simply verified via the trans-
formation of the null coordinate u, u ↦ u0, where u0 ¼
f̂ðuÞ ¼ ĝðuÞ with f̂ and ĝ that were defined in Eq. (28).
To study the general behavior of test particles in this

solution of the Einstein-Maxwell equations, we need an
explicit solution of Eq. (39). To this end, we consider in the
rest of this section [15]

Ψ ¼
ffiffiffiffi
G

p
cos ðbuÞ; Φ ¼ bffiffiffiffiffiffiffiffiffi

4πG
p ; ψ ¼ sin ðbuÞ;

ð49Þ

where b > 0 is a constant parameter. In this case, the
measured electric and magnetic fields are each of constant
magnitude b=

ffiffiffiffiffiffi
2G

p
and the measured spacetime curvature

is constant as well, since κ ¼ b2=2. To simplify matters, we
assume henceforth that G ¼ 1.
The spacetime under consideration admits the following

Killing vectors:

ξð1Þ ¼ ∂v; ξð2Þ ¼ ∂x; ξð3Þ ¼ ∂y;

ξð4Þ ¼ −y∂x þ x∂y; ξð5Þ ¼ x∂v þ
tan ðbuÞ

b
∂x;

ξð6Þ ¼ y∂v þ
tan ðbuÞ

b
∂y; ð50Þ

since f̂ ¼ ĝ ¼ b−1 tan ðbuÞ in this case. The solution of the
geodesic equations of motion is essentially the same as that
given in the previous section and, repeating the same
analysis as before, we recover the asymptotic single-jet
pattern characteristic of the wave scenario.
It is interesting to examine the motion of charged

particles in this Einstein-Maxwell field. Consider a test
particle of inertial mass m and electric charge q moving in
this field in accordance with the Lorentz force law

Uα
;μUμ ¼ q̂Fα

νUν; ð51Þ

where q̂ ≔ q=m. In components, the equations of motion
are given by

dU0

dτ
−

b

2
ffiffiffi
2

p sin ð2buÞΣ ¼ −
q̂bffiffiffi
2

p cos ðbuÞU1; ð52Þ
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dU1

dτ
− 2b tan ðbuÞ du

dτ
U1 ¼ −

q̂b
cos ðbuÞ

du
dτ

; ð53Þ

dU2

dτ
− 2b tan ðbuÞ du

dτ
U2 ¼ 0; ð54Þ

dU3

dτ
−

b

2
ffiffiffi
2

p sin ð2buÞΣ ¼ −
q̂bffiffiffi
2

p cos ðbuÞU1; ð55Þ

where Σ ≔ ðU1Þ2 þ ðU2Þ2. It follows from Eqs. (52) and
(55) that the quantity

ffiffiffi
2

p du
dτ

¼ U0 − U3 ð56Þ

is a constant of the motion Cv. Hence, as before, we haveffiffiffi
2

p
u ¼ Cvτ þ constant; moreover, it follows fromUαUα ¼

−1 that Cv ≠ 0. The above system of equations can then be
easily solved and the result is

dt
dτ

¼ 1þ C2
v

2Cv
þ 1

2Cv

½Cx − q̂ sin ðbuÞ�2 þ C2
y

cos2ðbuÞ ð57Þ

dx
dτ

¼ Cx − q̂ sin ðbuÞ
cos2ðbuÞ ;

dy
dτ

¼ Cy

cos2ðbuÞ ; ð58Þ

dz
dτ

¼ 1 − C2
v

2Cv
þ 1

2Cv

½Cx − q̂ sin ðbuÞ�2 þ C2
y

cos2ðbuÞ : ð59Þ

Thus when q̂ ¼ 0, we recover the geodesic equations of
motion as would be expected from the analysis of the
previous section. It is interesting to mention here that
certain other physical aspects of this Einstein-Maxwell
field, such as the motion of spinning test particles, have
recently received attention [16–18].
To describe the motion of charged test particles relative

to the comoving reference observers, we consider the
projection of the 4-velocity Uμ on the tetrad frame eα̂
and find

γ ¼ dt
dτ

; v1̂ ¼ Ψ
dx
dt

; v2̂ ¼ Ψ
dy
dt

; v3̂ ¼ dz
dt

:

ð60Þ

Let us assume that bu ∈ ð−π=2; π=2Þ and note that
as u → π=ð2bÞ, all proper lengths in the transverse
direction—i.e. in the ðx; yÞ plane—tend to zero, andffiffiffiffiffiffi−gp ¼ cos2 ðbuÞ tends to zero as well. It follows from
the inspection of Eqs. (57)–(60) that all charged or
uncharged test particles with either Cx ≠ q̂ or Cy ≠ 0

asymptotically form a single-jet structure with
ðv1̂; v2̂; v3̂Þ → ð0; 0; 1Þ as u → π=ð2bÞ. On the other hand,
if Cx ¼ q̂ and Cy ¼ 0, then in this special case as u →

π=ð2bÞ, we have v1̂¼v2̂¼0 and v3̂¼ð1−C2
vÞ=ð1þC2

vÞ,

so that 0 < v3̂ < 1. We conclude that in this wave scenario,
test particles generally line up asymptotically along the
direction of wave propagation and form a single-jet pattern
with Lorentz factor γ → ∞.

V. CONCLUDING REMARKS

A cosmic jet is a significant asymptotic pattern of test-
particle motion in time-dependent gravitational fields such
that the associated peculiar velocities generally line up in a
flow with asymptotic Lorentz factor γ → ∞.
It has been shown that cosmic double-jet patterns occur

in certain exact solutions of general relativity involving
gravitational collapse [3–6]. The precise relationship
between these mathematical structures and the bipolar flow
patterns of astrophysical jets is unknown, though in this
connection certain apparently reasonable conjectures have
been formulated [4–6].
The main purpose of this paper has been to demonstrate

the existence of a second independent scenario for cosmic
jet formation. That is, in addition to the collapse scenario for
the formation of double-jet patterns [3–6], we have pre-
sented, in the previous two sections of this paper, instances
of thewave scenario that clearly demonstrate the generation
of single-jet patterns in plane-wave spacetimes.
Is there a connection between the two scenarios for

cosmic jet formation? Intuitively, it is tempting to think of a
time-dependent gravitational field in the collapse scenario
as representing the collision of two nonlinear gravitational
wave packets moving in opposite directions. However, as
discussed in the Appendix, there are severe difficulties with
such a heuristic interpretation. This issue and the question
of the possibility of existence of other scenarios for jet
formation require further investigation.

APPENDIX: COLLIDING WAVES

The illustration of the collapse scenario in Sec. II
involved a special Ricci-flat solution that is related to
the Schwarzschild-Droste spacetime inside the black hole.
It has been shown in detail by Ferrari and Ibañez [9] that the
corresponding spacetime region is locally isometric to a
colliding plane-wave spacetime; however, the plane waves
in this case propagate parallel and antiparallel to a direction
that is not related to our collapse direction, which is the
z axis.
In an attempt to ameliorate this situation, let us consider

metric (6) in Sec. II and write it in the form

ds2 ¼ −
t

T − t
dt2 þ T − t

t
dz2 þ t2

L2
dl2; ðA1Þ

where

dl2 ¼ L2

D
½ðL2 − y2Þdx2 þ 2xydxdyþ ðL2 − x2Þdy2�:

ðA2Þ
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We note that dl2 ¼ dx2 þ dy2 þ dw2, where w2 ¼ L2−
x2 − y2; that is, dl2 is in fact the flat Euclidean 3D metric
that has been restricted to the surface of a sphere of
radius L. Next, we define a new temporal coordinate Θ
such that

dt
dΘ

¼ T − t
t

: ðA3Þ

It follows that there is a one-to-one correspondence
between t and Θ; that is,

Θ ¼ −tþ T ln

�
T

T − t

�
; t ¼ T þ TWð−e−1−Θ=TÞ;

ðA4Þ
where we have used the principal branch of Lambert’s W
function, which is the inverse of the function x ↦ xex.
Moreover, as t∶0 → T, we find that Θ∶0 → ∞. Let us
note that Θ is the temporal analog of the radial “tortoise
coordinate” in the exterior Schwarzschild-Droste space-
time. Thus in terms of Θ, metric (6) takes the form

ds2 ¼ T − tðΘÞ
tðΘÞ ð−dΘ2 þ dz2Þ þ t2ðΘÞ

L2
dl2: ðA5Þ

Introducing the new null coordinates

~u ¼ 1ffiffiffi
2

p ðΘ − zÞ; ~v ¼ 1ffiffiffi
2

p ðΘþ zÞ; ðA6Þ

we can write the metric in the form

ds2 ¼ −2χ2d ~ud~vþ Δ2dl2; ðA7Þ
where

½ðT − tðΘÞÞ=tðΘÞ�1=2 ≔ χð ~uþ ~vÞ;
L−1tðΘÞ ≔ Δð ~uþ ~vÞ:

ðA8Þ

Assuming that metric (A7) can represent the collision of
two nonplanar gravitational waves propagating parallel
and antiparallel to the z direction, it is not clear how two
distinct nonlinear waves can be identified and separated
out such that the wave scenario can be verified in each
case [19,20].
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