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We construct models of slowly rotating, perfect-fluid neutron stars by extending the classical
Hartle—Thorne formalism to generic scalar-tensor theories of gravity. Working at second order in the
dimensionless angular momentum, we compute the massM, radius R, scalar charge q, moment of inertia I,
and spin-induced quadrupole moment Q, as well as the tidal and rotational Love numbers. Our formalism
applies to generic scalar-tensor theories, but we focus in particular on theories that allow for spontaneous
scalarization. It was recently discovered that the moment of inertia, quadrupole moment, and Love numbers
are connected by approximately universal (i.e., equation-of-state independent) “I-Love-Q” relations.
We find that similar relations hold also for spontaneously scalarized stars. More interestingly, the I-Love-Q
relations in scalar-tensor theories coincide with the general relativistic ones within less than a few percent,
even for spontaneously scalarized stars with the largest couplings allowed by current binary-pulsar
constraints. This implies that astrophysical measurements of these parameters cannot be used to
discriminate between general relativity and scalar-tensor theories, even if spontaneous scalarization
occurs in nature. Because of the well-known equivalence between fðRÞ theories and scalar-tensor theories,
the theoretical framework developed in this paper can be used to construct rotating compact stellar models
in fðRÞ gravity. Our slow-rotation expansion can also be used as a benchmark for numerical calculations
of rapidly spinning neutron stars in generic scalar-tensor theories.
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I. INTRODUCTION

Compact objects such as black holes and neutron stars
(NSs) are ideal astrophysical laboratories to test the strong-
field regime of general relativity (GR) [1–3].
The no-hair and uniqueness theorems [4] guarantee that

astrophysical black holes in GR are the simplest macro-
scopic objects in nature, with structure and dynamics that
are determined only by their mass and spin (but see Ref. [5]
for a recent interesting counterexample). Therefore, it is
relatively easy (at least conceptually, if not in practice) to
detect smoking guns of new gravitational physics by
mapping the multipolar structure of a black-hole spacetime
(see, e.g., Refs. [6–8]) or by measuring the oscillation
frequencies of black holes produced as a result of a compact
binary merger [9,10].
For NSs the situation is qualitatively different because of

our poor understanding of the equation of state (EOS) of
high-density nuclear matter. Different EOSs give rise to
very different macroscopic NS properties, such as masses
and radii. The growing wealth of NS observations holds
great promise to constrain the EOS (cf. Refs. [11–14] and
Ref. [15] for a recent review), but the degeneracy between
different EOS models and strong-field gravitational physics
limits our ability to carry out tests of strong-field gravity.

The reason is that uncertainties in our knowledge of the
EOS are typically much larger than putative corrections
from extensions of GR that are theoretically viable and pass
weak-field tests.
This state of affairs has changed since the discovery by

Yagi and Yunes (Refs. [16,17]; see also Ref. [18]) that
suitable dimensionless combinations of the moment of
inertia I, the tidal Love number λ, and the spin-induced
quadrupole moment Q of slowly rotating NSs satisfy
largely universal relations, where by “universal” we mean
that these relations do not depend on the NS EOS within
an accuracy of a few percent [19]. The universality is
remarkably robust: various investigations showed that
universal relations apply in GR also when the star rotates
rapidly [20–23], for moderately strong magnetic fields [24],
and for stars for which the parameters evolve dynamically
due to interactions with a companion [25]. Various other
nearly universal relations involving NSs have been dis-
cussed in the literature, and our understanding of the
nature of these relations is steadily improving [26–31].
The I-Love-Q relations are interesting for astrophysics
because, if we assume that GR provides an accurate
description of the strong-curvature regime, current and
future observational facilities (e.g., ATHENAþ [32],
LOFT [33], NICER [34], and the SKA [35] in the
electromagnetic spectrum, as well as Advanced LIGO
[36], Advanced Virgo [37], KAGRA [38], and the
Einstein Telescope [39] in the gravitational-wave spectrum)
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may allow us to infer all three I-Love-Q quantities from
the measurement of a single element of the triad (either
I, Q or λ).
The existence of EOS-independent relations between the

macroscopic parameters of compact stars in GR allows us,
at least in principle, to circumvent the EOS-degeneracy
problem mentioned above in the context of tests of strong-
field gravity. Yagi and Yunes proposed the interesting
possibility to constrain the underlying theory of gravity
from measurements of the “no-hair-like” I-Love-Q rela-
tions [16,17]: if these relations are different in alternative
theories of gravity (yet EOS-independent within each
theory), then precision measurements of two of these
quantities may allow us to discriminate between GR and
possible extensions of the theory.
This is one of the most interesting applications of the

I-Love-Q relations, but so far it has been explored only for
two proposed alternatives to GR: dynamical Chern—
Simons (DCS) gravity [40] and Eddington-inspired
Born—Infeld (EiBI) gravity [41–43]. For DCS gravity, it
has been shown that tests based on the I-Love-Q relations
can potentially constrain the theory better than current
experimental bounds, basically because binary pulsar
bounds on the theory are not very stringent [17]. On the
other hand, the I-Love-Q relations in EiBI gravity were
shown to be degenerate with their GR counterparts [44].
This degeneracy is interesting, but not surprising. EiBI
gravity does not contain any extra degree of freedom with
respect to GR. Solutions of the stellar structure equations in
GR can be mapped to solutions in EiBI theory with an
effective EOS [45] that is only slightly different from the
corresponding GR EOS, given current experimental con-
straints on EiBI theory. For this reason, the indistinguish-
ability of GR and EiBI theory is conceptually almost trivial.
Furthermore there are issues with EiBI gravity, because the
theory shares several of the pathologies that affect Palatini
fðRÞ theories [46], including curvature singularities at the
surface of polytropic stars and a problematic Newtonian
limit [47].
In this work we investigate one of the most natural

(and certainly the best studied) among extensions of GR,
namely, scalar-tensor gravity [1,48]. This is a fundamental
theory with a well-defined initial value problem [49] where
gravity is mediated by the usual massless graviton and by a
fundamental scalar field. The historical development of
scalar-tensor theories was driven by a desire to investigate
the role of Mach’s principle in gravity, but scalar degrees
of freedom are ubiquitous in high-energy extensions of
Einstein’s theory [50], in models that try to explain
cosmological observations via modified gravity [51],
and in inflation scenarios [52]. Certain classes of scalar-
tensor theories are equivalent to fðRÞ gravity [53,54].
Furthermore, scalar-tensor gravity can be considered
as a simple phenomenological proxy for more complex
strong-field extensions of GR.

In the context of NS physics, the interest in scalar-tensor
gravity was revived after certain scalar-tensor theories were
shown to produce “spontaneous scalarization” [55,56]. In a
nutshell, these theories allow for the same NS solutions as
in GR, but the GR solutions become unstable beyond a
critical central pressure and—in a phase transition akin to
ferromagnetism—other solutions with a nonzero scalar
charge appear. These spontaneously scalarized solutions
are stable and can display relatively large deviations from
their GR counterparts, even if the theory passes all weak-
field tests [56]. This interesting phenomenon has been
recently shown to be strengthened in dynamical situations,
such as the final stages of a binary NS merger [57–59], and
it has been shown to occur also for black holes surrounded
by matter [60,61].
Doneva et al. [62] recently studied scalarized configu-

rations for rapidly rotating stars, showing that rotation
enhances the effects of scalarization. The present paper is
complementary to their work: we adopt the slow-rotation
approximation (rather than solving the Einstein equations
numerically for arbitrary rotation), but we extend the work
of Ref. [62] by extracting all relevant physical quantities,
including the quadrupole moment and the Love numbers, at
second order in the slow-rotation expansion.
Our main result is that experimentally viable, sponta-

neously scalarized NS solutions have the same I-Love-Q
relations as GR solutions within a few percent; i.e., the
modified-gravity corrections are degenerate with the (small)
deviations from universality within GR. Therefore, exper-
imental measurements of the I-Love-Q relations cannot be
used to distinguish GR from scalar-tensor theories nor to put
constraints on the latter that are more stringent than those
currently in place [63].
These results, together with those for the very special

case of EiBI gravity [44], suggest that—for most theories
that are well constrained by weak-field tests—the modified
I-Love-Q relations might be indistinguishable from their
GR counterpart. On the other hand, our study proves that
the I-Love-Q universality is remarkably robust even against
beyond-GR corrections: as long as the modifications to GR
affect both the strong- and weak-field regimes (and can
therefore be strongly constrained by weak-field experi-
ments), a measurement of one element of the triad can be
used to infer the remaining two quantities within a few
percent.
The paper is organized as follows. In Sec. II we present

the main ingredients of our formalism to construct slowly
rotating NS configurations to second order in rotation in
generic scalar-tensor theories of gravity. In Sec. III we
focus on a theory that allows for spontaneous scalarization,
and we present our numerical results, showing that the
universal I-Love-Q relations are very close to their GR
counterparts for theories that are compatible with binary
pulsar experiments. In Sec. IV we summarize the impli-
cations and possible extensions of our work. In Appendix A
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we present the field equations in the Einstein frame, and in
Appendix B we discuss how to relate physical quantities
in the Jordan frame to quantities computed in the Einstein
frame.

II. FRAMEWORK

A generic class of scalar-tensor theories in the Jordan
frame is described by the action [48]

~S ¼
Z

d4x

ffiffiffiffiffiffi
−~g

p
16πG

ðFð ~ϕÞ ~R − Zð ~ϕÞ~gμν∂μ
~ϕ∂ν

~ϕ − Uð ~ϕÞÞ

þ SmðΨm; ~gμνÞ; ð1Þ

where ~R is the Ricci scalar constructed out of the spacetime
metric ~gμν, ~ϕ is a scalar field, and Ψm collectively denotes
the matter fields (which are minimally coupled to ~gμν). The
constant G is related to the physical gravitational constant
(as measured in a Cavendish-type experiment), and from
now on we will set it to unity together with the speed of
light (see Appendix B for more details). Here and below we
denote by a tilde quantities defined in the Jordan frame.
Choosing the functions F, Z, and U determines a specific
theory within the class, up to a degeneracy due to the
freedom to redefine the scalar [64].
By performing the transformations

gμν ¼ Fð ~ϕÞ~gμν; AðΦÞ ¼ F−1=2ð ~ϕÞ;

VðΦÞ ¼ Uð ~ϕÞ
F2ð ~ϕÞ ; Φð ~ϕÞ ¼

Z
d ~ϕffiffiffiffiffiffi
4π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

F0ð ~ϕÞ2
Fð ~ϕÞ2 þ 1

2

Zð ~ϕÞ
Fð ~ϕÞ

s
;

ð2Þ

the theory can be recast in the so-called Einstein frame,
where the action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
gμν∂μΦ∂νΦ −

VðΦÞ
16π

�

þ SðΨm;AðΦÞ2gμνÞ: ð3Þ

In the Einstein frame, the scalar field is minimally coupled
to gravity, but the matter fields Ψm are minimally coupled
to the metric ~gμν ≡ AðΦÞ2gμν and nonminimally coupled to
the conformal Einstein metric gμν. The field equations in
the Einstein frame read

Gμν ¼ 8πTμν þ 8π

�
∂μΦ∂νΦ −

gμν
2

∂σΦ∂σΦ

�

−
gμν
2

VðΦÞ; ð4Þ

□Φ ¼ −
A0ðΦÞ
AðΦÞ T þ V 0ðΦÞ

16π
; ð5Þ

where the Einstein-frame stress-energy tensor is related to
the physical (Jordan-frame) stress-energy tensor by

Tμ
ν ¼ A4ðΦÞ ~Tμ

ν ; Tμν ¼ A2ðΦÞ ~Tμν; T ¼ A4ðΦÞ ~T;

and the Jordan-frame stress-energy tensor for a perfect-
fluid reads

~Tμν ¼ ðρþ PÞ ~uμ ~uν þ ~gμνP: ð6Þ

We omit a tilde on the Jordan-frame pressure P, density ρ,
and fluid angular velocity Ω, but since we only consider
these quantities in the Jordan frame, the notation should not
be ambiguous. To second order in Ω, the fluid 4-velocity
reads ~uμ ¼ ð ~u0; 0; 0; ϵΩ ~u0Þ, where

~u0 ¼ ½−ð~gtt þ 2ϵΩ~gtφ þ ϵ2Ω2 ~gφφÞ�−1=2 ð7Þ

and ϵ is a bookkeeping slow-rotation parameter. In this
paper all physical quantities characterizing the structure of
a compact star will be expanded to Oðϵ2Þ. Note that

Tμν ¼ A4ðΦÞgμσgντ½ðρþ PÞuσuτ þ gστP�; ð8Þ

where, in the Einstein frame, uμ ¼ ðu0; 0; 0; ϵΩu0Þ with

u0 ¼ ½−ðgtt þ 2ϵΩgtφ þ ϵ2Ω2gφφÞ�−1=2; ð9Þ

so that uμ ¼ AðΦÞ ~uμ. Because of the transformation of uμ,
the fluid angular velocity Ω is the same in both
frames: Ω≡ uφ=ut ¼ ðAðΦÞ ~uφÞ=ðAðΦÞ ~utÞ.
Following Hartle and Thorne [65,66], the most general

stationary axisymmetric metric gμν to Oðϵ2Þ in rotation can
be written as

ds2¼−eν½1þ2ϵ2ðh0þh2P2Þ�dt2

þ1þ2ϵ2ðm0þm2P2Þ=ðr−2mÞ
1−2m=r

dr2

þ r2½1þ2ϵ2ðυ2−h2ÞP2�½dϑ2þ sin2ϑðdφ− ϵωdtÞ2�;
ð10Þ

where P2 ¼ P2ðcos ϑÞ ¼ ð3cos2ϑ − 1Þ=2 is a Legendre
polynomial. The radial functions ν and m are of zeroth
order in rotation; ω and the related quantity ω̄ ¼ Ω − ω
(that will be useful below) are of first order; and h0, h2,m0,
m2, and v2 are of second order. Under an infinitesimal
rotation, the scalar field, the pressure and the density all
transform as scalars. As shown in Refs. [65,66], in order to
perform a valid perturbative expansion, it is necessary to
transform the radial coordinate in such a way that the
deformed density in the new coordinates coincides with the
unperturbed density at the same location. It can be shown
that this transformation is formally equivalent to working in
the original coordinates but expanding the pressure and the
density as
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P ¼ P0 þ ϵ2ðρ0 þ P0Þðp0 þ p2P2Þ; ð11Þ

ρ ¼ ρ0 þ ϵ2ðρ0 þ P0Þ
∂ρ0
∂P0

ðp0 þ p2P2Þ; ð12Þ

where we have assumed a barotropic EOS of the form
P ¼ PðρÞ. On the other hand, the scalar field is not affected
by the fluid displacement and is simply expanded as

Φ ¼ Φ0 þ ϵ2ðϕ0 þ ϕ2P2Þ: ð13Þ

By plugging this decomposition into the gravitational and
scalar-field equations (4)–(5) and by solving the equations
order by order in ϵ, we obtain a system of ordinary
differential equations (ODEs).
We could in principle include a nonzero potential VðΦÞ

in these equations. While the inclusion of the potential is
crucial in a cosmological context and can affect binary
dynamics [67], for the present study of isolated compact
objects, we will assume that the scalar-field mass (and other
self-interactions described by the potential) are small
enough to be negligible, and we will focus on the case
VðΦÞ≡ 0. The final form of the equations when VðΦÞ≡ 0
is given in Appendix A. The more general equations for
VðΦÞ ≠ 0, along with the procedure to integrate the
equations numerically and extract the relevant quantities
(discussed below), are presented in a publicly available
MATHEMATICA notebook [68].

A. Integration of the field equations and extraction of
the moment of inertia and quadrupole moment

The perturbation equations are very lengthy, and we
summarize them in Appendix A. Schematically, the system
can be written in the form

dYðrÞ
dr

¼ AYðrÞ; ð14Þ

where

YðrÞ ¼ fm;P0; ν;Φ0;Φ0
0; ω̄; ω̄

0; m0; p0; h0; υ2; h2;

υðhÞ2 ; hðhÞ2 ;ϕ0;ϕ0
0;ϕ2;ϕ0

2;ϕ
ðhÞ
0 ;ϕðhÞ

0

0;ϕðhÞ
2 ;ϕðhÞ

2

0g;
ð15Þ

and A is a 22-dimensional square matrix. The functions m2

and p2 are algebraically related to the others. This system
of linear equations must be solved by imposing regularity
at the center of the star, continuity at the surface, and
asymptotic flatness at infinity. As we will discuss shortly,
when we work at second order in rotation, some of the
equations are inhomogeneous, and the boundary conditions
at infinity can be conveniently imposed using the corre-
sponding homogeneous solutions, denoted by a superscript
“(h)” in Eq. (15). This is the reason why we integrate the

full system (14), including both inhomogeneous and
homogeneous quantities. The problem can be solved order
by order in ϵ, but in practice it is more convenient to
integrate all (zeroth-, first-, and second-order) equations
simultaneously.
Near the center, the leading-order behavior of the regular

solution is

m ∼m3r3; ν ∼ νc; P0 ∼ Pc;

Φ0 ∼ Φc; ω̄ ∼ ω̄c;

p0 ∼ p02r2; υ2 ∼ υ22r2; h2 ∼ h24r4;

υðhÞ2 ∼ υðhÞ22 r
2; hðhÞ2 ∼ hðhÞ24 r

4; ϕ0 ∼ ϕ04r4;

ϕ2 ∼ ϕ22r2; ϕðhÞ
0 ∼ ϕðhÞ

00 ; ϕðhÞ
2 ∼ ϕðhÞ

22 r
2;

where Pc, νc, Φc, and ω̄c denote the values of the
corresponding functions at the center of the star. Not all
of the series expansion coefficients listed above are
independent. Furthermore, to improve numerical stability,
in our MATHEMATICA notebook we included higher-order
terms in the series expansions near the center. Without loss
of generality, νc can be set to unity through a time rescaling,
and ω̄c can be set to unity by using the fact that the relevant
ODE, Eq. (A5), is homogeneous in ω̄. Since the gyro-
magnetic factor is linear in Ω, at first order in rotation, the
entire family of spinning solutions can be obtained from a
single element of the family by a suitable rescaling.
Therefore, the first-order equilibrium structure is defined
by two parameters: the central pressure Pc and the central
value of the scalar field Φc.
Using the boundary conditions above, the system (14)

can be integrated from r ¼ 0 to the stellar surface r ¼ R,
defined by P0ðRÞ ¼ 0. By imposing continuity at the
surface, all dynamical variables can be computed at
r ¼ R, and the system can be integrated outward from
r ¼ R to infinity in the vacuum exterior, where P0ðrÞ ¼
ρ0ðrÞ ¼ 0. To zeroth order the quantity Φc is fixed by
requiring asymptotic flatness, i.e.,

mðrÞ → M; νðrÞ → 0; Φ0ðrÞ → Φ∞
0 þ C

r
; ð16Þ

as r → ∞, where M is the mass of the star1 and
C ¼ q=

ffiffiffiffiffiffi
4π

p
, where q is the scalar charge of the star.

For any fixed value of Pc, we can determine the central

1Since we integrate the equations derived from the action (3),
all quantities are here defined in the Einstein frame. When
presenting the results, however, we shall consider the corre-
sponding quantities in the physical (Jordan) frame. The relevant
transformations are discussed in Appendix B. Strictly speaking,
only quantities in the Jordan frame can be observationally
interpreted as the total mass, charge, angular momentum, etc.:
for example, the Jordan-frame mass ~M is the quantity measured
by applying Kepler’s law to weak-field orbits.
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scalar field Φc that enforces asymptotic flatness through a
shooting procedure. The angular momentum J of the star is
related to the asymptotic expansion of ω̄ as follows:

ω̄ → Ω −
2J
r3

þ 12πJC2

5r5
as r → ∞: ð17Þ

The moment of inertia of the star I is simply

I ¼ J
Ω
; ð18Þ

and at leading order in the slow-rotation expansion, it
is independent of the NS spin (see Refs. [23,69] for
higher-order corrections).
Let us now discuss the boundary conditions for quan-

tities of second order in rotation. Generic solutions of the
inhomogeneous system are irregular at infinity, the general
behavior being

h2ðrÞ → hirr2 r
2; ϕ2ðrÞ → ϕirr

2 r
2; ð19Þ

where hirr2 and ϕirr
2 are constants. The regular solution can

be constructed by a suitable linear combination of a
particular inhomogeneous solution and the corresponding
homogeneous solution. The homogeneous system forms a
two-parameter family, defined by the values of ðhðhÞ2 ;ϕðhÞ

2 Þ
at the center. Without loss of generality, we construct two
linearly independent solutions of the homogeneous system
by choosing the values (1,0) and (0,1) for these parameters.
A linear combination of these solutions is added to a
particular solution of the inhomogeneous problem, and we
choose the coefficients of the linear combination in order to
cancel the divergent terms (19). A similar procedure is
employed in the GR case [66]. The leading-order, large-
distance behavior of the regular solutions reads

h2ðrÞ →
Q
r3
; ϕ2ðrÞ →

Qs

r3
; ð20Þ

whereQ is the spin-induced quadrupole moment of the star
[66] and Qs is a new quantity related to a quadrupolar
deformation of the scalar field. A similar procedure is
applied to compute the regular solutions m0 and ϕ0, for
which the asymptotic behavior reads m0 → δM and
ϕ0 → δq=ð ffiffiffiffiffiffi

4π
p

rÞ, where δM and δq are the second-order
corrections to the total mass and to the total scalar charge,
respectively.

B. Tidal Love numbers in scalar-tensor gravity

We compute the tidal Love numbers in scalar-tensor
gravity by extending the relativistic formalism developed
by Hinderer in GR [70], which in turn is based on the
analysis of metric perturbations sourced by an external
quadrupolar tidal field [71].

Restricting the analysis to l ¼ 2, static, even-parity
perturbations, a consistent ansatz is obtained from a subset
of the decomposition in Eqs. (10)–(12) by setting ω̄1 ¼
h0 ¼ m0 ¼ p0 ¼ ϕ0 ¼ 0. After redefining h2 ¼ −H0=2,
m2 ¼ ð1 − 2m=rÞrH2=2, and ϕ2 ¼ Φ2, it can be shown
that the field equations imply H2 ¼ H0 and that the
perturbation equations reduce to a coupled system of
second-order ODEs,

H00
0 þ c1H0

0 þ c0H0 ¼ csϕ2; ð21Þ

Φ00
2 þ d1Φ0

2 þ d0Φ2 ¼ dsH0; ð22Þ

with

c1 ¼ d1 ¼
1þ eΛ½1þ 4πr2ðA4ðP0 − ρ0Þ − 2VÞ�

r
; ð23Þ

c0 ¼ −
1

r2

�
e2Λð1þ 8πr2ðA4P0 − VÞÞ2 þ ð1 − 4πr2Φ02

0 Þ2

þ4eΛ
�
1þ πr2

�
8V þ 2ð1 − 8πr2VÞΦ02

0

−A4

�
ρ0
Pρ

þ 5ρ0 þ P0

�
1

Pρ
þ 13 − 16πr2Φ02

0

�����
;

ð24Þ

d0 ¼ eΛ
�
A2A02

�
P0 þ ρ0

Pρ
þ 6ðP0 − ρ0Þ

�

þ A3ð3P0 − ρ0ÞA00 − V 00
�
−

6

r2
eΛ − 16πΦ02

0 ; ð25Þ

cs ¼ 16πds ¼
2Φ0

0

r
ð4πr2Φ02

0 − 1Þ

− 8πeΛ
�
A3A0

Pρ
ðð9Pρ − 1ÞP0 þ ðPρ − 1Þρ0Þ − 2V 0

þ 2

r
ð1þ 8πr2ðA4P0 − VÞÞΦ0

0

�
; ð26Þ

where Pρ ≡ ∂P0=∂ρ0, e−ΛðrÞ ¼ 1 − 2mðrÞ=r and primes
denote derivatives with respect to the argument, i.e., H0

0 ≡
dH0=dr and A0 ≡ dA=dΦ0. As discussed in Appendix A,
the variables p2 and υ2 can be determined in terms of the
other functions. As expected, the nonhomogeneous coef-
ficients of the differential system depend only on zeroth-
order (in Ω) background quantities, so that Eqs. (21) and
(22) can be solved together with the original system (14),
consideringH0 and Φ2 as additional independent variables.
The regular solutions of Eqs. (21)–(22) near the center of

the star behave as H0 ∼H02r2, Φ2 ∼ Φ22r2, and higher-
order coefficients can be expressed in terms ofH02 and Φ22

by solving the equations order by order near the center. We
integrate the system twice with boundary conditions
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ðH02;Φ22Þ ¼ ð1; 0Þ and ðH02;Φ22Þ ¼ ð0; 1Þ at the center,
respectively. By imposing continuity of H2, Φ2, and their
derivatives at the radius, we construct two linearly inde-
pendent solutions in the entire domain. Finally, we con-
struct a linear combination of these solutions such that Φ2

(as obtained by the linear combination) is regular at
infinity; i.e., we impose the asymptotic behavior for the
linear combination of the two solutions,

H0 → a−2r2 þ a−1rþ a0 þ
a1
r
þ a2

r2
þ a3

r3
; ð27Þ

Φ2 → b0 þ
b3
r3

; ð28Þ

where the ai’s and bi’s are constants that can be expressed
in terms of four independent parameters by using the field
equations. The expression above is valid for VðΦÞ≡ 0, but
it can be easily generalized to include a scalar potential.
Finally, the tidal Love number is defined as [70]

λ ¼ a3
3a−2

: ð29Þ

We note that a−1 ¼ −2Ma−2 and that a0, a1, a2, and b0
are vanishing when the scalar charge q ¼ 0. Therefore,
it is harder to extract the subdominant coefficient a3 from
a numerical solution when q ≠ 0. Furthermore, the for-
malism allows us to extract also b0 ∝ q and b3, which is
related to a quadrupolar deformation of the background
scalar field. In analogy with the tidal Love number
introduced above, we can define a scalar Love number
(with dimensions of M3) as follows:

λs ¼
b3
b0

: ð30Þ

C. Ī − λ̄ − Q̄ relations and the slow-rotation
approximation

Yagi and Yunes [16,17] discovered that, within GR, the
dimensionless quantities

Ī ¼ I
M3

; λ̄ ¼ λ

M5
; Q̄ ¼ Q

M3χ2
ð31Þ

(χ ¼ J=M2 being the dimensionless spin) satisfy nearly
universal relations that are insensitive to the NS EOS within
an accuracy of the order of a few percent.
Another relevant quantity in the context of universal

relations is the rotational Love number λrot, which is related
to the deformability of the NS away from sphericity due to
its own rotation [72,73]. The dimensionless quantity
associated with this number can be expressed in terms
of Ī and Q̄ as [17]

λ̄rot ≡ λrot

M5
¼ Ī2Q̄: ð32Þ

Our stellar structure equations correctly reduce to their
GR counterparts [66,74] when AðΦÞ≡ 1 and VðΦÞ≡ 0,
and we have tested our code by reproducing the results of
Refs. [16,17] in the GR case. As an additional test, we have
reproduced the results of Ref. [75] for the mass, radius,
moment of inertia, and quadrupole moment for several EOS
models within GR.
It is important to remark that the universality discovered

in Refs. [16,17] can be affected both by observational
uncertainties and by the slow-rotation approximation.
The normalizations in Eq. (31) involve powers of the

mass M of a nonrotating star (for I and λ) as well as
powers of the dimensionless spin χ (for Q). Astrophysical
observations yield unbarred quantities, which must be
normalized by the measured mass and (dimensionless)
spin in order to satisfy EOS-independent relations. In the
second-order slow-rotation approximation used here, the
observable massMrot of a rotating NS is related to the mass
of the nonrotating model by

Mrot ¼ M þ ϵ2δM; ð33Þ
where ϵ is the slow-rotation expansion parameter intro-
duced earlier. The applicability of the universality relations
to infer (say) I and Q from λ will be limited in practice by
measurement errors on Mrot and λ, not by the remarkably
small dispersion between “barred” quantities. Since the
normalization involves high powers ofM, small (say ∼5%)
errors on the mass would translate into large (∼25%) errors
on λ̄. Similar considerations apply to the quadrupole
moment, where the normalization is affected by both mass
and spin measurement errors.
A related limitation in the practical use of I-Love-Q

relations is that universality is effectively broken by a
rotation-dependent term, because Mrot ≠ M. For typical
nuclear-physics motivated EOS and in the mass range of
interest for NSs, δM=M ∼ 0.3 (cf. e.g., Ref. [75] or Fig. 1
below). For millisecond pulsars the small rotation param-
eter can be as large as ϵ ∼ 0.5 [76], so the difference
between the rotating and nonrotating masses would
introduce corrections to the universality that are of order
ð0.5Þ2 × 0.3 ∼ 7.5%, larger than the dispersion in the
I-Love-Q relations themselves. While important in princi-
ple, this limitation is not of much concern in practice, for
two reasons:
(1) The systems for which I-Love-Q tests would be

astrophysically interesting include double pulsars,
where precessional effects could lead to measure-
ments of the moment of inertia I [77], and compact
binaries coalescences that may be observed by future
gravitational-wave interferometers, allowing for
measurements of the tidal Love number [74]. As
argued convincingly in Refs. [16,17], these systems
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typically involve NSs for which rotation rates are
rather low.

(2) More recent studies [20–23] show that, at least in
GR, the I-Love-Q universality is remarkably robust
even for fast rotating stellar models, when the
various quantities are normalized by powers of the
appropriate (measurable) mass.

III. RESULTS

For concreteness, in our numerical integrations, we focus
on a theory defined by the action (3) with VðΦÞ ¼ 0 and

AðΦÞ ¼ e
β
2
Φ2

: ð34Þ
Isolated NSs in this theory were studied in Refs. [55,56],
where it was shown that GR solutions become energetically

disfavored for sufficiently negative values of β due to a
phase transition (spontaneous scalarization) analogous to
spontaneous magnetization in ferromagnetism. Therefore,
in some regions of the parameter space, the theory admits
stable NS configurations with nonvanishing scalar
charge (q ≠ 0).
In addition to the coupling parameter β, the theory is also

defined by the asymptotic value of the scalar field at
infinity, Φ∞

0 . Binary-pulsar observations [63] require
β=ð4πÞ ≳ −4.5, whereas the measurement of the Shapiro
time delay by the Cassini spacecraft [78] implies ωBD >
4 × 104, where ωBD is related to the asymptotic value of
the scalar field through [59]

Φ∞
0 ¼ 2

ffiffiffi
π

p
jβj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2ωBD
p : ð35Þ
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FIG. 1 (color online). NS configurations in GR (solid lines) and in two scalar-tensor theories defined by Eq. (3) with AðΦÞ≡ e
β
2
Φ2

and
VðΦÞ≡ 0. Dashed lines refer to β=ð4πÞ ¼ −4.5, Φ∞

0 ¼ 10−3; dashed-dotted lines refer to β=ð4πÞ ¼ −6, Φ∞
0 ¼ 10−3. Each panel shows

results for three different EOS models (FPS, APR, and MS1). Top-left panel, left inset: relation between the nonrotating massM and the
radius R. In all plots M refers to the Arnowitt—Deser—Misner mass in the Einstein frame; see Appendix B for a discussion. Top-left
panel, right inset: relative mass correction δM=M induced by rotation as a function of the mass M of a nonspinning star with the same
central energy density [cf. Eq. (33)]. Top-right panel, left inset: scalar charge ~q=M as a function of M. Top-right panel, right inset:
relative correction to the scalar charge δ ~q= ~q induced by rotation as a function ofM. Bottom-left panel: Jordan-frame moment of inertia ~I
(left inset) and Jordan-frame quadrupole moment ~Q (right inset) as functions of M. Bottom-right panel: Jordan-frame tidal (~λ) and
rotational (~λrot) Love numbers as functions of M.
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Binary-pulsar constraints set even stronger bounds on
Φ∞

0 when β ≲ −2, and, in fact, the upper bound on Φ∞
0

decreases very steeply as β=ð4πÞ → −4.5 [63].
Using nuclear-physics-based tabulated EOSs, we have

computed slowly rotating NS configurations in this theory
and extracted all relevant quantities to second order in the
NS angular momentum. As a further test of our procedure,
we have reproduced the results of Refs. [55,56] for
scalarized NSs to first order in the spin. The second-order
results presented below are new. In our analysis we used
three different EOSs covering a wide range of stiffness,
namely, FPS, APR, and MS1 (cf. e.g., Ref. [79] for a
discussion of the models).
A summary of our findings is presented in Fig. 1.

We perform numerical integrations in the Einstein frame,
but all physical quantities shown in Fig. 1 refer to the
physical (Jordan) frame, except for the mass that refers
to the Einstein-frame Arnowitt—Deser—Misner mass
(see Appendix B for details and for the relation between
the two frames). The figure contains four panels. Each
panel presents results for three models: (i) GR solutions
(solid lines); (ii) scalarized solutions where the theory
parameters are marginally excluded by binary pulsar
experiments,2 i.e., β=ð4πÞ ¼ −4.5 and Φ∞

0 ¼ 10−3 (dashed
lines); and (iii) scalarized solutions where the theory
parameters violate current experimental bounds at more
than 1σ confidence level [63], i.e., β=ð4πÞ ¼ −6 and
Φ∞

0 ¼ 10−3 (dashed-dotted lines).
Above some critical value of the central pressure Pc, the

exact value depending on the EOS, scalarized solutions
coexist with their GR counterpart. A linear perturbation
analysis and numerical simulations of stellar collapse show
that the domain of existence of the scalarized solutions
coincides with the region where spherically symmetric GR
solutions are linearly unstable and spontaneously develop a
scalar charge [81–83]. The effects of scalarization are clear
in the left inset of the top-left panel of Fig. 1, where we
show the mass-radius diagram for the GR branch and for
two scalarized theories. Rotationally induced mass correc-
tions (shown in the right inset) are sensibly theory
dependent. The top-right panel shows the scalar charge
(left inset) and rotationally induced corrections to the scalar
charge (right inset) as functions of the stellar mass for
scalarized solutions constructed using different EOS mod-
els. Corrections to the scalar charge can be very large, with
δ ~q= ~q ∼ 2 for some values of the mass. This is consistent
with the findings of Doneva et al. [62], who showed that
rotation strengthens the effects of scalarization: roughly
speaking, the total energy of the star must be large enough

in order to scalarize, and scalarization is favored in
spinning stars because of the rotational contribution to
the total energy. The bottom-left panel shows that scala-
rization affects the moment of inertia (left inset) and the
quadrupole moment (right inset). Finally, the bottom-right
panel shows that tidal and rotational Love numbers are
nontrivially modified by scalarization, with very large
deviations in the case of theories that are already ruled
out by binary pulsar experiments.
Although all quantities to second order in the spin

display large modifications for different EOSs and also
relative to GR, the behavior of the dimensionless quantities
(31) turns out to be much more universal. In Fig. 2 we show
the Īðλ̄Þ (left panels) and Q̄ðλ̄Þ (right panels) relations for
scalarized solutions. In the top panels, scalarized solutions
refer to a theory with β=ð4πÞ ¼ −4.5 and Φ∞

0 ¼ 10−3; in
the bottom panels, the theory parameters are β=ð4πÞ ¼ −6
and Φ∞

0 ¼ 10−3.
Let us first focus on the most relevant case, that of

solutions that are only marginally disfavored by experiment
(top panels). The top insets show six curves, corresponding
to scalarized and nonscalarized solutions for three different
EOSs, but these curves are indistinguishable on the scale
of the plot; both in GR and in scalar-tensor theories, the
I-Love-Q relations display very small deviations from
universality. In general, the universal I-Love-Q relation
will depend on our assumption on the correct theory of
gravity; we can construct I-Love-Q relations either by
fitting only pure GR solutions (middle inset in each panel)
or by fitting only scalarized solutions (bottom inset). In the
middle inset, we show deviations from “pure-GR univer-
sality” for stars in GR (continuous lines) and for scalarized
stars (dashed lines with symbols). Deviations from univer-
sal relations are typically of the order of 2% or less for both
Īðλ̄Þ and Q̄ðλ̄Þ. Furthermore, the universal relations in
experimentally viable scalar-tensor theories are very close
to their GR counterparts.
One could have expected a priori that universal relations

in scalar-tensor gravity would differ from those in GR, with
larger deviations for larger absolute values of the coupling
parameter jβj. The top panels of Fig. 2 show that, even for a
theory that is already marginally ruled out by binary-pulsar
measurements, the I-Love-Q relations agree with those in
GR within a few percent, and, in fact, the deviation is
comparable with the spread between different EOS models
within GR. To assess the dependence on the coupling
parameters, in the bottom panels of Fig. 2, we show results
for a theory with β=ð4πÞ ¼ −6 and Φ∞

0 ¼ 10−3, which is
already excluded by binary pulsar experiments at more than
1σ confidence level [63]. In this unrealistic case, the
residual from the GR universal relation can be as large
as ∼10% (cf. middle insets in the bottom panels Fig. 2),
whereas within the scalarized theory, the I-Love-Q relations
are still nearly universal, as shown by the small residuals in
the lower insets of the bottom panels.

2Recent unpublished observations of PSR J0348þ 0432 seem
to exclude the region β=ð4πÞ≲ −4.2 [80]. To maximize devia-
tions from GR, we use very conservative parameters
(β=ð4πÞ ¼ −4.5 and Φ∞

0 ¼ 10−3) for a marginally excluded
scalar-tensor theory. The new observational bounds, if confirmed,
would only strengthen our conclusions.
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For both scalar-tensor theories, the bottom insets high-
light a rather interesting point: if we consider scalar-tensor
theory as the correct theory of gravity, the deviations from
a universal relation obtained by fitting numerical data
within the theory are always very small. This means that
the I-Love-Q relations are nearly universal, independently
of whether GR or scalar-tensor theory is the correct theory
of gravity. In other words, the universality is intimately tied
to universal properties of matter, and it is quite insensitive
to the dynamics of strong-field gravity.
Finally, the dimensionless rotational Love number (32) is

shown in Fig. 3 as a function of the stellar compactness

M=R for a scalar-tensor theory that is only marginally ruled
out by binary pulsar experiments. As shown in the middle
and lower insets, the residuals from a universal fit are
smaller than ∼5%, even for scalarized solutions. An
interesting fact is that, contrary to the cases shown in
Figs. 1 and 2, the residuals of the scalarized solutions do
not increase relative to the GR solutions; i.e., scalarization
seems to affect the dimensionless rotational Love number
even less than other quantities. A measurement of the
NS mass and radius can be used to infer the rotational
Love number even if the underlying theory of gravity is
scalar-tensor theory.
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FIG. 2 (color online). EOS-independent relations Īðλ̄Þ (left) and Q̄ðλ̄Þ (right). Solid line styles refer to data in GR and dashed line styles
to data for scalarized stars. In each panel, the top inset shows the relation itself; the middle and bottom insets show deviations from
universality, as measured by the residual ΔX ¼ 100½X=Xfit − 1�. ΔGRX means that the universal relation is obtained by fitting only pure
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In conclusion, the degeneracy between the I-Love-Q
relations in GR and in scalar-tensor theories that allow for
scalarization is a nontrivial fact. The degeneracy holds
because of the tight experimental bounds imposed on
scalarization by current binary pulsar experiments, and it
is conceptually very different from the degeneracy observed
in the EiBI theory [44]. In that case, the degeneracy occurs
because the theory does not contain any extra degree of
freedom with respect to GR. As a consequence, perfect-fluid
NS solutions in EiBI can be mapped to GR solutions with a
different EOS [45]. The case discussed here is more
interesting because scalar-tensor theories propagate an extra
scalar degree of freedom, so they are dynamically different
from GR. Even at the mathematical level, all the equations
that define the I-Love-Q relations depend explicitly on the
background scalar field and, in turn, on the scalar charge q.
This result limits the prospects of performing strong-field
tests of GR using I-Love-Q relations. On the plus side, it also
means that astrophysical measurements of any of the three
quantities (Ī, λ̄, or Q̄) can be used to infer the other two,
quite independently of assumptions on the EOS, as long
as the underlying theory of gravity is well constrained by
weak-field or binary-pulsar experiments.

IV. CONCLUSIONS

We have presented a framework to construct slowly
rotating NSs in a generic scalar-tensor theory of gravity,
extracting all relevant quantities to second order in the NS

spin: mass, spin, scalar charge, moment of inertia, spin-
induced quadrupole, tidal Love number, and rotational
Love number.
We have focused on the simplest theory allowing

for spontaneous scalarization [55,56], but our equations
(available online [68]) can be directly integrated in any
scalar-tensor theory. In particular, our framework can be
used to study NSs in fðRÞ gravity theories by virtue of their
equivalence with scalar-tensor theories [53,54].
We have found that the nearly universal I-Love-Q

relations that were recently discovered in GR [16,17] are
very accurate (better than a few percent) for scalar-tensor
theories that allow for spontaneous scalarization within
current experimental bounds. Even for a theory that is
already ruled out by observations, the universal relations
agree with their GR counterparts within 10% or less,
whereas for a theory that is only marginally viable, the
deviations are lower than 2%, i.e., comparable to the
dispersion due to a different EOS within GR.
Our results imply that the simplest, best-motivated, and

most-studied extension of GR cannot be distinguished from
Einstein’s gravity using tests based on the I-Love-Q triad
(cf. Ref. [44] for another example). On the other hand, our
analysis tests the robustness of the I-Love-Q relations
against beyond-GR corrections, showing that the relations
derived in GR survive in scalar-tensor theories that are
phenomenologically viable. This suggests that a measure-
ment of one element of the I-Love-Q triad can be used to
infer the remaining two quantities within less than a few
percent, even adopting a relatively agnostic view on the
behavior of gravity in the strong-curvature regime, which
remains experimentally unexplored to date.
Finally, for a given scalar-tensor theory, the dispersion

fromuniversalityduetodifferentEOSsisalwayssmaller than
afewpercent,quite independentlyof thecouplingparameters
appearing in the action. This observation illustrates that the I-
Love-Q relations remain EOS independent in scalar-tensor
gravity, and it seems to suggest hat NS universal relations
hinge more deeply on the “extrinsic,” global properties of
ultrastiff matter, rather than on the “dynamical” properties of
the underlying gravitational theory.
To test these implications, it would be interesting to

extend our study to other scalar-tensor theories. Examples
include (i) theories where the scalar field is massive,
VðΦÞ ∼m2

sΦ2, which can evade weak-field tests [67,84]
and give rise to interesting strong-field effects, such as the
existence of floating orbits [85]; (ii) tensor multiscalar
theories [86]; and (iii) the Horndeski theory [50,87].
Another interesting avenue for future investigation is the

extension of our study to universal relations between high-
order multipoles in scalar-tensor theory. Studies in GR [23]
show that high-order multipole relations have larger spread
than the original I-Love-Q relations. Furthermore, high-
order multipoles are harder to measure than low-order
multipoles. For these reasons it seems unlikely that
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FIG. 3 (color online). Dimensionless rotational Love number
λ̄rot ≡ Ī2Q̄ as a function of the compactness M=R in a scalar-
tensor theory defined by AðΦÞ≡ e

β
2
Φ2

and VðΦÞ≡ 0, for
β=ð4πÞ ¼ −4.5, Φ∞

0 ¼ 10−3 and for different tabulated EOS
models. The residuals shown in the insets are defined as in
Fig. 1, and they are always smaller than a few percent. All
quantities refer to the Jordan frame, M is in solar-mass units
whereas R is in units of kilometers.
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high-multipole relations will help in discriminating
between scalar-tensor theories with spontaneous scalariza-
tion and GR better than the I-Love-Q relations. In any
event, this is an interesting possibility that should be
explored.
It will also be interesting to extend the second order in

rotation formalism developed here to other theories, such as
Einstein-dilaton-Gauss-Bonnet gravity: first-order calcula-
tions were carried out in Refs. [88–90] and recently
extended to slowly rotating black holes at second order
in rotation [91], but (to the best of our knowledge) second-
order calculations of stellar structure were not reported in
the literature.
Finally, our results can be complemented and extended

by constructing fast-rotating NS solutions in scalar-tensor
theories (see Ref. [62] for work in this direction). This
would allow us to verify whether the I-Love-Q universality
in scalar-tensor theories is accurate enough for large
rotation, as it seems to be in GR [20–23]. In this context,
the results of our slow-rotation study can be used as a
benchmark and code test for full numerical solutions.
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APPENDIX A: HARTLE—THORNE
SECOND-ORDER EQUATIONS FOR

GENERIC SCALAR-TENSOR
THEORIES

In this Appendix, we present the field equations of a
slowly rotating, perfect-fluid star to second order in the
angular momentum in scalar-tensor theories of gravity.
We set VðΦÞ≡ 0 for simplicity, but a more general form of
the equations with VðΦÞ ≠ 0 can be found in a publicly
available MATHEMATICA notebook [68], together with
the procedure to integrate the equations numerically (as
explained in the main text).
Given the decomposition (10)–(12) in the Einstein

frame, the zeroth-order quantities are described by the
following modified Tolman—Oppenheimer—Volkoff
equations:

m0 ¼ 4πr

�
rA4ρ0 þ

1

2
ðr − 2mÞΦ02

0

�
; ðA1Þ

ν0 ¼ 2mþ 8πr3A4P0

rðr − 2mÞ þ 4πrΦ02
0 ; ðA2Þ

P0
0 ¼ −ðP0 þ ρ0Þ

�
mþ 4πr3A4P0

rðr − 2mÞ þ A0Φ0
0

A
þ 2πrΦ02

0

�
;

ðA3Þ

Φ00
0 ¼

r2A3ðρ0 − 3P0ÞA0 þ 2½m− rþ 2πr3A4ðρ0 − P0Þ�Φ0
0

rðr− 2mÞ :

ðA4Þ
The only first-order quantity is ω̄ ¼ Ω − ω, which is
described by a second-order ODE:

ω̄00 ¼ 1

rðr − 2mÞ 4½ðr − 2mÞðπr2Φ02
0 − 1Þω̄0 þ πr2A4ðP0 þ ρ0Þð4ω̄þ rω̄0Þ�: ðA5Þ

To Oðϵ2Þ, we obtain five first-order ODEs for p0, m0, h0, v2, and h2,

p0
0 ¼

e−ν

3A2ðr − 2mÞ ½2rA
2ω̄ðω̄ðr − 3m − 4πr3A4P0 − 2πr2ðr − 2mÞΦ02

0 Þ þ rðr − 2mÞω̄0Þ

−3eνðr − 2mÞðA2h00 − ϕ0A02Φ0
0 þ AðA0ϕ0

0 þ ϕ0Φ0
0A

00ÞÞ�; ðA6Þ
m0

0 ¼ ½e−νrð128π2r6A9P0ðP0 þ ρ0Þω̄2 þ 768π2eνr4A8P0ρ0ϕ0A0 þ 192πeνr2A3ðr − 2mÞρ0ϕ0A02Φ0
0

þ32πrA4A0ðr3ðr − 2mÞðP0 þ ρ0Þω̄2Φ0
0 þ 6eνρ0ϕ0ðmþ 2πr2ðr − 2mÞΦ02

0 ÞÞ
þrðr − 2mÞA0Φ0

0ð−48πeνΦ0
0ð−ðr − 2mÞϕ0

0 þm0Φ0
0Þ þ r2ðr − 2mÞω̄02Þ

þAðmþ 2πr2ðr − 2mÞΦ02
0 Þð−48πeνΦ0

0ð−ðr − 2mÞϕ0
0 þm0Φ0

0Þ þ r2ðr − 2mÞω̄02Þ
þ4πr2A5ð8rðP0 þ ρ0Þω̄2ðmþ 2πr2ðr − 2mÞΦ02

0 Þ þ 12eνð−ðr − 2mÞp0ρ
0
0

þ 4πrP0Φ0
0ððr − 2mÞϕ0

0 −m0Φ0
0ÞÞþr3ðr − 2mÞP0ω̄

02ÞÞ�
× ½12ð4πr3A5P0 þ rðr − 2mÞA0Φ0

0 þ Aðmþ 2πr2ðr − 2mÞΦ02
0 ÞÞ�−1; ðA7Þ
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h00 ¼ −
e−ν

12ðr − 2mÞ2 ð−12e
νðm0ð1þ 8πr2A4P0Þ þ 4πrðr − 2mÞðrA3ðAp0ðP0 þ ρ0Þ þ 4P0ϕ0A0Þ

þ ðr − 2mÞϕ0
0Φ

0
0ÞÞþr3ðr − 2mÞ2ω̄02Þ; ðA8Þ

υ02 ¼
1

6rðr − 2mÞ ð12h2ð−m − 4πr3A4P0 − 2πr2ðr − 2mÞΦ02
0 Þ þ e−νð−48πeνrðr − 2mÞϕ2Φ0

0

þr3ðr −mþ 4πr3A4P0 þ 2πr2ðr − 2mÞΦ02
0 Þð16πrA4ðP0 þ ρ0Þω̄2 þ ðr − 2mÞω̄02ÞÞÞ; ðA9Þ

h02 ¼ ½e−νð−24eνh2ðrm −m2 − 2πr4A4P0 þ 12πr3A4mP0 þ 16π2r6A8P2
0 − 2πr4A4ρ0 þ 4πr3A4mρ0

þ2πr3ðr − 2mÞð1þ 8πr2A4P0ÞΦ02
0 þ 4π2r4ðr − 2mÞ2Φ04

0 Þ þ rð−24eνðr − 2mÞυ2 þ 512π3r9A12P2
0ðP0 þ ρ0Þω̄2

−48πeνr2A3ðr − 2mÞð3P0 − ρ0Þϕ2A0 þ 32π2r6A8P0ð8ðP0 þ ρ0Þω̄2ðmþ 2πr2ðr − 2mÞΦ02
0 Þ þ r2ðr − 2mÞP0ω̄

02Þ
þðr − 2mÞð−48πeνΦ0

0ð2ϕ2ðr −mþ 2πr2ðr − 2mÞΦ02
0 Þ þ rðr − 2mÞϕ0

2Þ
þr2ð−r2 þ 2mðrþmÞ þ 8πr2ðr − 2mÞðr −mÞΦ02

0 þ 8π2r4ðr − 2mÞ2Φ04
0 Þω̄02Þ

þ16πr3A4ðρ0ω̄2ðr2 þ 2mðm − rÞ þ 8πr2ðr − 2mÞðr −mÞΦ02
0 þ 8π2r4ðr − 2mÞ2Φ04

0 Þ
þ P0ðω̄2ðr2 þ 2mðm − rÞ þ 8πr2ðr − 2mÞðr −mÞΦ02

0 þ 8π2r4ðr − 2mÞ2Φ04
0 Þ

þðr − 2mÞð−24πeνϕ2Φ0
0 þ r2ðmþ 2πr2ðr − 2mÞΦ02

0 Þω̄02ÞÞÞÞÞ�
× ½12rðr − 2mÞðmþ 4πr3A4P0 þ 2πr2ðr − 2mÞΦ02

0 Þ�−1; ðA10Þ

and two second-order ODEs for ϕ0 and ϕ2, which we write
schematically as

ϕ00
0 þ C1ϕ0

0 þ C0ϕ0 ¼ S1; ðA11Þ

ϕ00
2 þ C1ϕ2

0 þD0ϕ2 ¼ S2; ðA12Þ

where the radial coefficients C1, C0, and D0, as well as the
source terms Si, are lengthy and unenlightening; their form
can be found in the MATHEMATICA notebook [68].
Using the other field equations, the right-hand side of

Eq. (A8) can be written as a total derivative and integrated,
with the result

h0ðrÞ ¼ constant − p0 þ
r2ω̄2

3
e−ν − ϕ0

A0

A
: ðA13Þ

This expression reduces to Eq. (17b) in Ref. [66] in the
GR limit AðΦÞ≡ 1. Finally, the functions p2 and m2 are
algebraically related to the others through

p2 ¼ −h2 −
r2ω̄2

3
e−ν − ϕ2

A0

A
; ðA14Þ

m2 ¼
e−ν

6
ðr − 2mÞ½r3ð16πrA4ðP0 þ ρ0Þω̄2

þ ðr − 2mÞω̄02Þ − 6eνh2�: ðA15Þ

The equations for υ2, h2, ϕ0, and ϕ2 are nonhomogene-
ous. As explained in the main text, the appropriate
boundary conditions can be imposed with the help of the
homogeneous equations, along the lines of the GR

case [66]. We denote the solutions of the homogeneous
equations as υðhÞ2 , hðhÞ2 , ϕðhÞ

0 , and ϕðhÞ
2 , respectively. In

reduced first-order form, we need to solve a system of
16 coupled ODEs plus six homogeneous first-order ODEs
for υðhÞ2 , hðhÞ2 , ϕðhÞ

0 , and ϕðhÞ
2 . The system can be written

schematically as in Eq. (14).
Note that the equations at first order in rotation are a

particular case of those presented in Ref. [90].3 Here we
have extended the analysis to second order, focusing on
generic scalar-tensor theories.

APPENDIX B: TRANSFORMATIONS OF
THE PHYSICAL QUANTITIES TO

THE JORDAN FRAME

The field equations that we integrate numerically are
derived from the Einstein-frame action of Eq. (3). In the
Einstein frame, matter fields are nonminimally coupled
with the conformal Einstein metric gμν. However, labora-
tory clocks and rods measure the “physical” metric ~gμν that
appears in the Jordan-frame action of Eq. (1). In this
Appendix we explicitly give the transformations relating
the macroscopic properties characterizing NSs in the two
frames.
Since the moment of inertia, the quadrupole moment,

and the tidal Love number all depend on the falloff of the
metric at large distances, once the asymptotic behavior of
the Einstein-frame metric gμν and of the scalar field Φ are

3We note here that the field equations in Ref. [90] contain some
typos when A ≠ 0, which are corrected in this paper and in the
MATHEMATICA notebook [68].
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known, the Jordan-frame quantities can be easily computed
from the asymptotic behavior of the Jordan-frame metric

~gμν ¼ AðΦÞ2gμν; ðB1Þ

where Φ is defined in Eq. (13), and we recall that tilded
quantities refer to the Jordan frame.
Because we imposed asymptotic flatness on the Einstein-

frame metric, the conformal transformation (B1) yields
~gμν → AðΦ∞

0 Þ2ημν at infinity. For the Jordan-frame metric
to be also asymptotically Minkowskian, we can simply
rescale the time and radial coordinates: ~t ¼ AðΦ∞

0 Þt and
~r ¼ AðΦ∞

0 Þr. Note that, for phenomenologically viable
values of Φ∞

0 , AðΦ∞
0 Þ≃ 1 to a very good approximation,

so this rescaling is practically negligible.
In addition, in scalar-tensor theories, the effective gravi-

tational constant ~G (as measured by a Cavendish-like
experiment) is not necessarily the same as the “bare”
constant G appearing in Eq. (1) (recall that we set G ¼
1 in our Einstein-frame integrations). For the theory
considered in the main text, where VðΦÞ ¼ 0 and AðΦÞ
is given by Eq. (34), the relation between these two
quantities reads (see, e.g., Refs. [59])

~G ¼ eβγ
2

�
Gþ β2γ2

4π

�
∼Geβγ

2

; ðB2Þ

where for ease of notation we defined γ ¼ Φ∞
0 and in the

last step we have neglected the second term in square
brackets because it is negligible in the phenomenologically
viable region of the ðβ; γÞ parameter space. Thus, in the
physical frame, some coefficients of the large-distance
expansion of the metric ~gμν must be rescaled. For example,
the Jordan-frame Arnowitt—Deser—Misner mass ~M is
obtained by comparing the asymptotic expansion of
Eq. (B1) with 1=~grr → 1 − 2 ~G ~M=~r at large distances.
By applying a similar procedure to the other components of
~gμν, we obtain

~M ¼ e−
β
2
γ2ðM þ βγCÞ; ðB3Þ

~J ¼ J; ðB4Þ

~q ¼ −2βγe−
β
2
γ2q; ðB5Þ

~I ¼ I; ðB6Þ

~Q ¼ e
β
2
γ2ðQþ βγQsÞ; ðB7Þ

and

~λ ¼ e
3β
2
γ2λþ e

3β
2
γ2 C
135

½30Mβλsγ þ 48M4βγ − 4M3Cð66π þ 5βð1þ 2βγ2ÞÞ − 6M2βγC2ð5βð3þ 2βγ2Þ − 24πÞ
þ2MC3ð26π2 þ 20πβð1þ 2βγ2Þ þ 5β2ð3þ 4βγ2ð3þ βγ2ÞÞÞ
þβγC4ðþ20πβð3þ 2βγ2Þ þ 3β2ð15þ 4βγ2ð5þ βγ2ÞÞ − 52π2Þ�: ðB8Þ

Note that the moment of inertia is the same in both frames.
This follows from the fact that ~J ¼ J and that also the fluid
angular velocity, Ω, is the same in both frames:
Ω≡ uφ=ut ¼ ðAðΦÞ ~uφÞ=ðAðΦÞ ~utÞ. The transformation of
the tidal Love number is more complex than the others
because it depends on the expansion (27), for which the
subleading terms mix—through Eq. (B1)—with the falloff
of the scalar field.
Since the issue about which frame should be considered

physical in scalar-tensor theories is still debated (see, e.g.,
Refs. [64,92]), we have computed all quantities in both

frames, with very similar results. All of the numerical
results presented in the main text refer to the (measurable)
Jordan-frame quantities, except for the mass. In theories
that violate the strong equivalence principle, the notion of
mass is subtle. Following previous work (see, e.g.,
Refs. [58,62]), here we decided to present the Arnowitt—
Deser—Misner mass in the Einstein frame M, which
coincides with the so-called tensor mass and has several
desirable properties: it is positive definite, it decreases
monotonically under gravitational-wave emission, and it is
well defined even for dynamical spacetimes [93].
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