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The generalized uncertainty principle (GUP) corrected modified relativistic particle model has been
derived in curved space-time. From this modified model, the equation of motion (EM) has been constructed
relativistically in terms of the affine parameter (λ) or proper time (τ) and nonrelativistically in terms of
coordinate time (t). In this context, the constraint analysis technique has been applied to get the EM.
Interestingly, the EM obtained in both cases is the usual one. This result clearly indicates an important fact,
that is, consistency of the equivalence principle in the GUP framework, and furthermore it can be concluded
that with the GUP-corrected modified algebra it is impossible to get the GUP effect in point particle motion.
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I. INTRODUCTION

Various approaches of quantum gravity such as string
theory, doubly special relativity, and black hole physics
predict that there should exist a minimum measurable
length at the order of the Planck length. By considering
the black hole gedanken experiment, it has been shown that
gravity generates an uncertainty in determining the position
of a black hole [1–4]. Depending on such arguments, the
well known Heisenberg’s uncertainty principle has been
modified to the generalized uncertainty principle (GUP)
[5–8]. This GUP incorporates the existence of a minimum
measurable length and maximum observable momentum.
Quantum mechanics has already been modified accord-
ingly [9,10]. All the quantum mechanical symmetries have
been checked in this modified version. Recently, it has been
shown that the GUP discloses a self-complete characteristic
of gravity, namely, the possibility of masking any curvature
singularity behind an event horizon [11]. In order to
construct the quantum theory of gravity, it is now required
to check whether the GUP-corrected classical and the
relativistic theory satisfy all the fundamental laws and
principles of general relativity. By considering the non-
relativistic GUP model, it has been shown that the
equivalence principle (EP) is violated in the GUP frame-
work [12]. But to verify the EP relativistically, here we first
construct a GUP-corrected noncanonical modified structure
of a point particle in curved space-time, and thereafter the
equation of motion has been derived. Henceforth, consid-
ering a special nonrelativistic example by studying particle
dynamics in terms of coordinate time t, we analyze the
consistency of the equivalence principle in the GUP
framework.
Out of the few forms of the GUP [6–8], we are interested

in the model that has been proposed in Ref. [6], because it is
in a more general form than Ref. [7] and becomes [7] by

linearizing with respect to the GUP parameter β. In order to
get the classical structure corresponding to the quantum
model [6], we can take the help of the well known relation

fX;Pg ¼ ½X;P�
iℏ , where f; g stands for symplectic structure or

Poisson bracket and ½; � is the quantum commutator. Also
comparing with Refs. [13,14], we can generate the rela-
tivistic four-dimensional form of our symplectic structures.
Throughout this paper, we consider ðX;PÞ as canonical
variables and ðx; pÞ as noncanonical variables [6].
In order to build up modified structures, we resort to the

following approach:
A GUP-corrected modified structure is constructed in

terms of the noncanonical representation ðx; pÞ, where the
canonical representation ðX;PÞ satisfies all the usual
known relations.
This approach is quite precise to construct modified

dynamics from GUP-corrected commutation relations
[6–8]. This is because, in the GUP formalism, all these
commutators have been written in terms of noncanonical
variables ðx; pÞ where the canonical variables ðX;PÞ are
known to satisfy the usual commutation relations
½Xμ; Pν� ¼ iℏημν. Therefore, following the above approach
we build up the GUP-corrected noncanonical Lagrangian
and Hamiltonian of a particle in Sec. II. Afterward, in
Sec. III, we derive the equation of motion of that particle in
an arbitrary reference frame (which may be curvilinear or
accelerating) by applying a constraint analysis technique.
From this equation of motion, we conclude about the
consistency of the equivalence principle in Sec. IV.

II. GUP-CORRECTED MODIFIED
NONCANONICAL STRUCTURE

A. The noncanonical Lagrangian

In this section, first we build up the Lagrangian in
flat space-time. Thereafter, from this flat space-time
Lagrangian we construct a Lagrangian in curved space-time.*souvick.in@gmail.com
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The symplectic structures or the Poisson brackets corre-
sponding to the GUP model [6] can be written in relativistic
four-vector form in flat space-time as

fxμ; pνg ¼ βp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

p
− 1

ημν þ βpμpν; ð1Þ

fxμ; xνg ¼ 0; fpμ; pνg ¼ 0; ð2Þ
where the variables ðx; pÞ are noncanonical. We have
considered the metric to be as usual ημν ≡ ð−1; 1; 1; 1Þ.
Now it has been shown that [15] the GUP-corrected Poisson
brackets are the Dirac brackets of an extended system in
which xμ and pν are initially treated as independent
configuration degrees of freedom with momenta ΠðxÞμ and
ΠðpÞν, respectively. Second-class constraints are then
imposed which eliminate ΠðxÞμ and ΠðpÞν and turn pν into
the momentum of xν. Therefore, we can consider the above
symplectic structures (1) and (2) as our Dirac brackets. With
these Dirac brackets in hand, we derive the GUP-corrected
point particle Lagrangian in flat space-time following the
procedure presented in Ref. [16]. The procedure is going
through the reverse direction of the conventional analysis

Lagrangian → constraints → Dirac brackets

or equivalently

symplectic structure → symplectic matrix

→ symplectic brackets:

It is important to note that Dirac brackets and symplectic
brackets are same. So, in this case, our path of analysis
will be

symplectic brackets → symplectic matrix → Lagrangian:

In order to follow this path, it will be beneficial if we
write down the mathematical method.
The generic structure of the symplectic brackets (SB) are

of the form

ff; ggSB ¼ Γμν
abð∂a;μfÞð∂b;νgÞ≡ ff; ggDB

¼ ff; gg − ff;Φμ
agΣμν

abfΦν
b; gg; ð3Þ

where ∂a;μ ¼ ∂
∂ημa, η

μ
1 ¼ xμ, ημ2 ¼ pμ, and Φμ

a are second-
class constraints. Now the inverse of this Σ matrix provides

the constraint matrix Σab
μν ¼ fΦa

μ;Φb
νg. If ΠðxÞ

μ ¼ ∂L
∂ _xμ and

ΠðpÞ
ν ¼ ∂L

∂ _pν are the momenta corresponding to the variable x
and p, respectively, that satisfy the Poisson brackets

fxμ;ΠðxÞ
ν g ¼ ημν and fpμ;Π

ðpÞ
ν g ¼ ημν and then form the

constraint matrix fΦa
μ;Φb

νg, we can make a judicious choice
of the constraints containing the momenta ΠðxÞ

μ and ΠðpÞ
ν .

The presence of these momentum terms in the constraints is
required to construct a Lagrangian from constraint
structures.
Now following this method first the symplectic matrix

that can be formed from the above symplectic structure (1)
and (2) is

Σμν ¼
�

0 Λημν þ βpμpν

−Λημν − βpμpν 0

�
; ð4Þ

where Λ ¼ βp2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2βp2

p
−1
. The inverse of this symplectic

matrix yields the matrix of constraint brackets

Σμν ¼

2
64

0 −
ημν
Λ

þ βpμpν

Λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

p
ημν
Λ

−
βpμpν

Λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

p 0

3
75

≡ fΦi
μ;Φ

j
νg: ð5Þ

Then from (5) the structure of constraints that can be
formed is

Φ1
μ ¼ ΠðxÞ

μ −
pμ

Λ
≈ 0; Φ2

ν ¼ ΠðpÞ
ν ≈ 0; ð6Þ

where ΠðxÞ
μ ¼ ∂L

∂ _xμ and ΠðpÞ
ν ¼ ∂L

∂ _pν satisfy the Poisson brack-

ets fxμ;ΠðxÞ
ν g ¼ ημν and fpμ;Π

ðpÞ
ν g ¼ ημν. With this con-

straint structure (6) in hand, one can derive the Dirac
bracket between the variables ðx; pÞ and check the con-

sistency of the constraints (6). Now (6) implies ΠðxÞ
μ ¼

∂L
∂ _xμ ¼

pμ

Λ and ΠðpÞ
ν ¼ ∂L

∂ _pν ¼ 0. Integrating these two rela-
tions, we have the Lagrangian that is compatible with (6):

LNCðxðλÞÞ ¼
ðημνpμ dxν

dλ Þ
Λ

þ υðλÞðfðp2Þ þm2c2Þ; ð7Þ

where υðλÞ is the Lagrange multiplier. Here λ is the affine
parameter, which is linearly related to proper time τ by
λ ¼ aþ bτ [17], for any arbitrary constant a and b. One
can construct the function fðp2Þ as fðp2Þ ¼ ðpμ

Λ Þ2 [16].
Another structure of constraint that can be formed from

(5) is Φ1
μ ¼ ΠðxÞ

μ ≈ 0 and Φ2
ν ¼ ΠðpÞ

ν þ xν
Λ − βðxpÞpν

Λ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2βp2

p ≈ 0

[16]. The corresponding Lagrangian that can be constructed

is LNCðxðλÞÞ ¼ − ðx _pÞ
Λ þ βðxpÞðp _pÞ

Λ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2βp2

p þ υðλÞðfðp2Þ þm2c2Þ
[16]. Though this Lagrangian and (7) seem to be com-
pletely different, actually one can be achieved from another
just by doing one time integration by parts on the action
integral. In other words, these two are equivalent. This can
be shown as follows: the action corresponding to the
Lagrangian (7) is [by dropping the last term of (10)]
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S ¼
Z

LNCdλ ¼
Z

ημνpμ dxν
dλ

Λ
dλ: ð8Þ

Then by performing integration by parts on the right-hand
side of (8) we get the Lagrangian [16]

S ¼
Z �

−
ðημνxμ _pνÞ

Λ
þ βðημνxμpνÞðημνpμ _pνÞ

Λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

p �
dλ: ð9Þ

We are interested in the form (7), because the Lagrangian
(7) is much more suitable than (9) for constructing a
Lagrangian in curved space-time. Before going into detail,
let us consider first for simplicity the lowest nontrivial
lowest order of β, i.e. the first order ofOðβÞ. Up to this first
order of OðβÞ, the Lagrangian (7) gets its OðβÞ structure as

LNCðxðλÞÞ ≈
�
1 −

β

2
p2

�
ημνpμ dx

ν

dλ

þ υðλÞðp2 − βðp2Þ2 þm2c2Þ: ð10Þ

Let us define A ¼ ð1 − β
2
p2Þ. One can check the

consistency of the Lagrangian (10) by deriving the
Poisson bracket [fB;CgPB ¼ Pð∂B∂xμ ∂C

∂ΠðxÞ
μ

− ∂C
∂xμ

∂B
∂ΠðxÞ

μ

Þ, where
ΠðxÞ

μ ¼ ∂LðOðβÞÞ
∂ _xμ ] between xμ and pν. Once again, it can be

shown that this Lagrangian (10) is equivalent to the
Lagrangian that can be derived from (9) just by considering
the first order of β:

LNCðxðλÞÞ ¼ −
�
1 −

β

2
p2

�
ðημνxμ _pνÞ

þ βðημνxμpνÞðημνpμ _pνÞ: ð11Þ

This form of Lagrangian (11) is too complicated to get a
Lagrangian in curved space-time. This is due to the presence
of _p terms in (11). The _p terms can arise in the Lagrangian
only by performing integration by parts on the usual
Lagrangian containing _x terms. In curved space-time,
whenever ημν is replaced by gμν, then this integration by
parts generates extra terms like the derivative of gμν which
are difficult to guess from a flat space-time Lagrangian like
(11). But since the Lagrangian (10) contains as usual only
the _x term and not _p, then a Lagrangian in curved space-time
can easily be obtained just by replacing all ημν by gμν:

LNCðxðλÞÞ ¼
�
1 −

β

2
p2

�
gμνpμ dx

ν

dλ
: ð12Þ

This is our point particle Lagrangian in curved space-time.
This Lagrangian is as usual of the form L ¼ gμν _xμΠðxÞν. But
one cannot start just by replacing all canonical variables by
noncanonical ones in the canonical Lagrangian, because we
have only GUP-corrected Poisson brackets in hand and we
have to build up a Lagrangian compatible with it.

The equivalent form of this Lagrangian (12) which
contains _p terms can be obtained by performing integration
by parts on the corresponding action and yields

LNCðxðλÞÞ ¼ −Aðgμνxμ _pν − ∂γðgμνÞ_xγpμxνÞ
þ βðgμνxμpνÞðgμνpμ _pνÞ

þ β

2
ðgμνxμpνÞ∂γðgμνÞ_xγpμpν: ð13Þ

This form of the Lagrangian is difficult to construct from
the Lagrangian (11). In Ref. [20], the curved space-time
Lagrangian (constructed from a flat space-time Lagrangian)
does not contain all terms of the GUP-corrected
point particle Lagrangian (13) in curved space-time or
equivalently (12).

B. The noncanonical Hamiltonian

To the first order ofOðβÞ the Poisson brackets (1) can be
written in the curved space-time background as

fxμ; pνg ¼
�
1þ β

2
p2

�
gμν þ βpμpν; ð14Þ

where gμν ≡ ð−;þ;þ;þÞ. The relation between the non-
canonical variables ðx; pÞ and canonical variable ðX;PÞ can
be constructed from the above bracket (14):

xμ ¼ Xμ; pν ¼ Pν

�
1þ β

2
P2

�
: ð15Þ

Since the canonical momentum P satisfies the dispersion
relation P2 þm2c2 ¼ 0, we get our modified dispersion
relation as [18]

p2 − βðp2Þ2 þm2c2 ¼ 0: ð16Þ

Now to derive the Hamiltonian we take the help of the
technique presented in Ref. [19]. First of all, differentiating

the Lagrangian (12) with respect to dxμ
dλ gives ΠðxÞ

μ ðλÞ ¼
∂L

∂ðdxμdλ Þ ¼ gμγpγð1 − β
2
p2Þ, which provides

H1 ¼ gμγ
dxμ

dλ
ΠðxÞγðλÞ−L¼ gμγ

dxμ

dλ
pγ

�
1−

β

2
p2

�
−L¼ 0:

ð17Þ

As we have first-class primary constraint (16), then the total
Hamiltonian can be written as

H ¼ H1 þ υðλÞðp2 − βðp2Þ2 þm2c2Þ; ð18Þ

where υðλÞ is an unknown function that has to be
determined. H correctly generates Hamilton’s equation
of motion with respect to the parameter λ:
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_xμ ≡ fxμ; Hg ¼ ∂H
∂ΠðxÞ

μ

¼ 2υðλÞpμ

�
1 −

β

2
p2

�
: ð19Þ

The last relation of (15) implies Pμ ¼ pμð1 − β
2
p2Þ. Since

the canonical Lagrangian is LC ¼ −mc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν dXμ

dλ
dXν

dλ

q
,

where the canonical momentum P is related to _X by the

relation Pμ ¼ mcdX
μ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσdX

ρ

dλ
dXσ
dλ

p , then one can write

pμð1 − β
2
p2Þ ¼ mcdx

μ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσdx

ρ

dλ
dxσ
dλ

p . Substituting this into (19) gives

the coefficient υðλÞ as υðλÞ ¼ 1
2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ dxρ

dλ
dxσ
dλ

q
. Therefore,

our relativistic Hamiltonian becomes

H ¼ 1

2mc
ðp2 − βðp2Þ2 þm2c2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ

dxρ

dλ
dxσ

dλ

r
: ð20Þ

This is the final form of our GUP-corrected relativistic
Hamiltonian. However, the _x term present in (20) can be
scaled by choosing a suitable gauge constraint, but in order
to study the dynamics from an arbitrary reference frame we
cannot do this.

III. DERIVATION OF DIRAC BRACKETS
AND EQUATION OF MOTION

To derive the equation of motion by the constraint
analysis technique, first of all it is essential to find the
Dirac brackets between the noncanonical variables x and p
for such a constraint system. In this section, we concentrate
on this.
Now the momentums corresponding to the variables x

and p obtained from the above Lagrangian (12) are

ΠðxÞ
μ ðλÞ ¼ ∂L

∂ðdxμdλ Þ
¼

�
1 −

β

2
p2

�
gμλpλ;

ΠðpÞ
μ ðλÞ ¼ ∂L

∂ðdpμ

dλ Þ
¼ 0: ð21Þ

The structure of constraints can be constructed from the
above momenta:

Φ1
μ ¼ ΠðxÞ

μ ðλÞ −
�
1 −

β

2
p2

�
gμγpγ ≈ 0;

Φ1
ν ¼ ΠðpÞ

ν ðλÞ ≈ 0; ð22Þ

which yields the constraint matrix

fΦi
μ;Φ

j
νg¼

�
AQμν−

β
2
Mμν −Agμνþβpμpν

Agμν−βpμpν 0

�

¼
�

AQμν −Agμνþβpμpν

Agμν−βpμpν 0

�
−
β

2

�
Mμν 0

0 0

�

¼ ½A�−β

2
½B�; ð23Þ

whereQμν¼ð∂μðgνcÞ−∂νðgμcÞÞpc andMμν¼ðpν∂μðgρσÞ−
pμ∂νðgρσÞÞpρpσ. The inverse of this constraint matrix to

the first order of OðβÞ can be written as fΦi
γ;Φ

j
μg−1 ¼

ð½A�−1Þγμ þ β
2
ð½A�−1Þγρð½B�Þρσð½A�−1Þσμ, which after using

the definition of Dirac brackets provides the Dirac bracket
between the noncanonical variables ðx; pÞ as

½xγ; pμ�D ¼ 1

A
gγμ þ β

AðA − βp2Þp
γpμ ≈

�
1þ β

2
p2

�
gγμ þ βpγpμ;

½pγ; pμ�D ¼ 1

A
gγρgμσQρσ −

β

AðA − βp2Þ ðp
γgμρ − pμgγρÞQρσpσ −

β

2A2
gγρgμσMρσ

≈
�
1þ β

2
p2

�
gγρgμσQρσ − βðpγgμρ − pμgγρÞQρσpσ −

β

2
gγρgμσMρσ;

½xγ; xμ�D ¼ 0: ð24Þ

Interestingly, the Dirac bracket between x and p is the same
as their Poisson bracket (14). By using these Dirac brackets
(24) and the above Hamiltonian (20), the equations of
motion are obtained from

dxμ

dλ
¼ ½xμ; H�D;

dpμ

dλ
¼ ½pμ; H�D: ð25Þ

From the first equation of (25), we have

dxμ

dλ
¼ pμ

�
1 −

β

2
p2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ dxρ

dλ
dxσ
dλ

q
mc

: ð26Þ

It is easy to verify the dispersion relation (16) from (26).
Again to the first order of β, Eq. (26) can be written as

pμ ¼ mc dxμ
dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρσ dxρ
dλ

dxσ
dλ

q �
1þ β

2
p2

�
: ð27Þ
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Now differentiating (27) with respect to the affine param-
eter λ, we get

dpμ

dλ
¼ mcd2xμ

dλ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ dxρ

dλ
dxσ
dλ

q ×

�
1þ β

2
p2

�
þ βmcdxμ

dλ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρσ dxρ

dλ
dxσ
dλ

q dðp2Þ
dλ

:

ð28Þ

To obtain dðp2Þ
dλ we can take the help of the relation

dðp2Þ
dλ ¼ ½p2; H�D, which yields dðp2Þ

dλ ¼ 0. Now from the
second equation of (25), we have

dpμ

dλ
¼ ð1 − 2βp2Þ

mc

�
−
1

2
∂γðgνδÞpνpδ½xγ; pμ�D

þ pν½pμ; pν�D
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρσ
dxρ

dλ
dxσ

dλ

r
: ð29Þ

Using the Dirac brackets (24) and replacing all p by (27),
the right-hand side of (29) to the first order of OðβÞ
becomes dpμ

dλ ¼ − mcð1−β
2
m2c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρσdx
ρ

dλ
dxσ
dλ

p Γμ
νδ

dxν
dλ

dxδ
dλ . Comparing this

with (28) immediately gives the same geodesic equation
as usual:

d2xμ

dλ2
þ Γμ

νγ
dxν

dλ
dxγ

dλ
¼ 0: ð30Þ

Thus in the noncanonical representation ðx; pÞ the geodesic
equation remains unchanged. In other words, the particle
dynamics in curved space-time do not change by consid-
ering the usual algebra (15) obtained from the GUP.

IV. ANALYTIC DISCUSSION
OF THE ABOVE RESULTS

In this section, we discuss the consistency of the
equivalence principle in the GUP framework. Let us
consider a specific example by changing our independent
parameter (affine parameter λ) to coordinate time t and take
the nonrelativistic limit from (12).
But before that, it is required to note that the canonical

Lagrangian LC and the noncanonical one LNC are different
whenever they are written in terms of ð _X;PÞ and ð_x; pÞ,
respectively. But their form becomes the same if we write
them in terms of only _X and _x, respectively. This can be
achieved by replacing all p in (12) by (27), and as a result
LNC becomes

LNCðxðλÞÞ ¼ −mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dλ
dxν

dλ

r
: ð31Þ

The reason behind the noncanonical Lagrangian (31)
having the same form as canonical Lagrangian

LC ¼ −mc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν dXμ

dλ
dXν

dλ

q
is that we have taken x ¼ X

through (15). On the other hand, since we have modified
the momentum part P (15), in order to get the GUP effect
we have to go to the Hamiltonian formalism and derive
Hamilton’s equations of motion.
First, we write down the Lagrangian (31) in terms of dxðtÞdt

in order to study the dynamics in coordinate time t. This
yields LNCðxðtÞÞ as

LNCðxðtÞÞ ¼ −mc2
ffiffiffiffiffiffiffiffiffiffi
−g00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ giiðdxidt Þ2

g00c2

s
; ð32Þ

where gμν is considered as a diagonal matrix to avoid the
complexity of calculation. The corresponding Hamiltonian
is (see the Appendix)

HNCðpÞ ¼ mc2
ffiffiffiffiffiffiffiffiffiffi
−g00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ giiðpiÞ2

m2c2ð1 − βm2c2Þ

s
: ð33Þ

Now we want to study the dynamics of a freely falling
particle in Earth’s uniform gravitational field from a
coordinate system fixed on Earth. In this context, we
consider gii ¼ grr only. In the nonrelativistic limit, the
above Hamiltonian (33) becomes

H ¼ mc2 þ p2
r

2mð1 − βm2c2Þ þmΦðrÞ; ð34Þ

where we have used the approximation gμμ ¼ ημμ þ hμμ
[hμμ ≪ 1, μ ¼ ðt; rÞ] with h00 ¼ hrr ¼ − 2Φ

c2 and neglect the
terms containing Oð 1c2Þ. Here Φ is the gravitational poten-
tial. With such kinds of approximation, the Poisson bracket
(14) can be written as fr; prg ¼ ð1 − β

2
m2c2Þ þ βm2 _r2.

Since β ¼ β0
M2

plc
2 [7], the last term of the Poisson bracket is

Oð 1c2Þ, which can be further neglected. Thus the Poisson
bracket finally becomes

fr; prg ¼
�
1 −

β

2
m2c2

�
: ð35Þ

Hamilton’s equations of motion dr
dt ¼ fr;Hg and dpr

dt ¼
fpr;Hg then give the differential equation for the motion as

̈r ¼ −∇Φ: ð36Þ
This is just the usual Newton’s law of gravity. Therefore, in
terms of coordinate time t we have again reached the usual
equation of motion. Now it is clear from (30) and (36)
that the equivalence principle is consistent in the GUP
framework. We have reached to (36) depending on non-
relativistic Hamiltonian (34) and Poisson bracket (35).
Interestingly, this Hamiltonian (34) incorporates GUP
corrections. But the GUP corrections are not present in
the Hamiltonian [12]. By reason of the nonrelativistic limit
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[neglecting Oð 1c2Þ terms], the Poisson bracket (35) does not
contain any _x terms, whereas the _x terms are present in the
Poisson bracket [12]. The presence of these _x terms in the
Poisson bracket therein has brought off the dependence of
test particle mass m in the motion [12]. But the result we
have obtained here is that the equation of motion remains
unchanged whenever one studies the dynamics in terms of
the affine parameter ðλÞ or proper time ðτÞ or coordinate
time t.

V. CONCLUSION

Going through a consistent way of constraint analysis,
we have derived here a GUP-corrected modified point
particle Lagrangian (12), Hamiltonian (20), and thereafter
the equation of motion (30) in curved space-time. These
structures are derived here by taking the affine parameter
(λ) (or proper time τ) as an independent variable.
Henceforth, the relativistic and nonrelativistic GUP-
corrected point particle Hamiltonians (33) and (34) are
also obtained in terms of the coordinate time t (of an
arbitrary reference frame). Such a point particle dynamics
has also been studied in the context of κ-Minkowski space-
time in Ref. [21]. In Ref. [12] it has been shown that the
equivalence principle is violated in the GUP framework
whenever particle dynamics is studied nonrelativistically
by taking t as an independent parameter. But the important
result we have obtained here is that, whenever one studies
the particle dynamics from any arbitrary reference frame
(whatever this may be) by taking affine parameter λ or
proper time τ or coordinate time t as a dynamical parameter,
the same geodesic equation will reproduced. This result
clearly indicates consistency of the equivalence principle in
the GUP framework. Consistency of the equivalence
principle gives some support to construct the quantum
theory of gravity with the GUP. But with the proposed
algebra (15) in hand, it is impossible to get the GUP effect
classically in point particle dynamics. More specifically,
only by modifying the momentum part P one cannot obtain
any GUP effect in single particle motion. This analysis
brings up the thought of whether it is possible to get GUP
effects by deriving other algebras from GUP models [6,7].
For instance, one possibility is that one can study GUP
effects by modifying the curvature tensor part and building
up modified algebra. For this, we have to look at the near
future.
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APPENDIX

The momenta corresponding to LNCðxðtÞÞ are

ΠðxÞ
j ðtÞ ¼ ∂LNCðxðtÞÞ

∂ðdxjdt Þ
¼ mgjj dx

j

dtffiffiffiffiffiffiffiffiffiffi−g00
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ giiðdxidt Þ2

g00c2

r ;

using which we get the corresponding Hamiltonian as

HNCðxðtÞÞ ¼
mc2

ffiffiffiffiffiffiffiffiffiffi−g00
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ giiðdxidt Þ2
g00c2

r : ðA1Þ

Now, since

ΠðxÞ
j ðλÞ ¼ ∂LNCðxðλÞÞ

∂ðdxjdλ Þ
¼ mcgμj dx

μ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν dxμ

dλ
dxν
dλ

q

can be written as

mgij dx
i

dtffiffiffiffiffiffiffiffiffiffi−g00
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ giiðdxidt Þ2

g00c2

r ;

then comparing ΠðxÞ
i ðλÞ with (21) we get

mgij dx
i

dtffiffiffiffiffiffiffiffiffiffi−g00
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ giiðdxidt Þ2

g00c2

r ¼ gijpi

�
1 − β

p2

2

�
: ðA2Þ

A little calculation leads to

�
1þ giiðdxidt Þ2

g00c2

�
¼ 1

1þ giiðpiÞ2
m2c2ð1−βm2c2Þ

;

which finally yields modified Hamiltonian (33).
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