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The generalized uncertainty principle (GUP) corrected modified relativistic particle model has been
derived in curved space-time. From this modified model, the equation of motion (EM) has been constructed
relativistically in terms of the affine parameter (1) or proper time (z) and nonrelativistically in terms of
coordinate time (7). In this context, the constraint analysis technique has been applied to get the EM.
Interestingly, the EM obtained in both cases is the usual one. This result clearly indicates an important fact,
that is, consistency of the equivalence principle in the GUP framework, and furthermore it can be concluded
that with the GUP-corrected modified algebra it is impossible to get the GUP effect in point particle motion.

DOI: 10.1103/PhysRevD.90.024023

I. INTRODUCTION

Various approaches of quantum gravity such as string
theory, doubly special relativity, and black hole physics
predict that there should exist a minimum measurable
length at the order of the Planck length. By considering
the black hole gedanken experiment, it has been shown that
gravity generates an uncertainty in determining the position
of a black hole [1-4]. Depending on such arguments, the
well known Heisenberg’s uncertainty principle has been
modified to the generalized uncertainty principle (GUP)
[5-8]. This GUP incorporates the existence of a minimum
measurable length and maximum observable momentum.
Quantum mechanics has already been modified accord-
ingly [9,10]. All the quantum mechanical symmetries have
been checked in this modified version. Recently, it has been
shown that the GUP discloses a self-complete characteristic
of gravity, namely, the possibility of masking any curvature
singularity behind an event horizon [I1]. In order to
construct the quantum theory of gravity, it is now required
to check whether the GUP-corrected classical and the
relativistic theory satisfy all the fundamental laws and
principles of general relativity. By considering the non-
relativistic GUP model, it has been shown that the
equivalence principle (EP) is violated in the GUP frame-
work [12]. But to verify the EP relativistically, here we first
construct a GUP-corrected noncanonical modified structure
of a point particle in curved space-time, and thereafter the
equation of motion has been derived. Henceforth, consid-
ering a special nonrelativistic example by studying particle
dynamics in terms of coordinate time ¢, we analyze the
consistency of the equivalence principle in the GUP
framework.

Out of the few forms of the GUP [6-8], we are interested
in the model that has been proposed in Ref. [6], because it is
in a more general form than Ref. [7] and becomes [7] by
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linearizing with respect to the GUP parameter f. In order to
get the classical structure corresponding to the quantum

model [6], we can take the help of the well known relation
{X,P} = % where {, } stands for symplectic structure or
Poisson bracket and [,] is the quantum commutator. Also
comparing with Refs. [13,14], we can generate the rela-
tivistic four-dimensional form of our symplectic structures.
Throughout this paper, we consider (X, P) as canonical
variables and (x, p) as noncanonical variables [6].

In order to build up modified structures, we resort to the
following approach:

A GUP-corrected modified structure is constructed in
terms of the noncanonical representation (x, p), where the
canonical representation (X, P) satisfies all the usual
known relations.

This approach is quite precise to construct modified
dynamics from GUP-corrected commutation relations
[6-8]. This is because, in the GUP formalism, all these
commutators have been written in terms of noncanonical
variables (x, p) where the canonical variables (X, P) are
known to satisfy the wusual commutation relations
[X#, PY] = ihn. Therefore, following the above approach
we build up the GUP-corrected noncanonical Lagrangian
and Hamiltonian of a particle in Sec. II. Afterward, in
Sec. III, we derive the equation of motion of that particle in
an arbitrary reference frame (which may be curvilinear or
accelerating) by applying a constraint analysis technique.
From this equation of motion, we conclude about the
consistency of the equivalence principle in Sec. IV.

II. GUP-CORRECTED MODIFIED
NONCANONICAL STRUCTURE

A. The noncanonical Lagrangian

In this section, first we build up the Lagrangian in
flat space-time. Thereafter, from this flat space-time
Lagrangian we construct a Lagrangian in curved space-time.
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The symplectic structures or the Poisson brackets corre-
sponding to the GUP model [6] can be written in relativistic
four-vector form in flat space-time as

2
{x”7P”}:#ﬂ”b+ﬂP”P% (1)
(. xp=0,  {p'p'}=0, (2)

where the variables (x, p) are noncanonical. We have
considered the metric to be as usual 7 = (-1,1,1,1).
Now it has been shown that [15] the GUP-corrected Poisson
brackets are the Dirac brackets of an extended system in
which x# and p* are initially treated as independent
configuration degrees of freedom with momenta IT®* and
(P, respectively. Second-class constraints are then
imposed which eliminate IT*®* and I and turn p* into
the momentum of x”. Therefore, we can consider the above
symplectic structures (1) and (2) as our Dirac brackets. With
these Dirac brackets in hand, we derive the GUP-corrected
point particle Lagrangian in flat space-time following the
procedure presented in Ref. [16]. The procedure is going
through the reverse direction of the conventional analysis

Lagrangian — constraints — Dirac brackets
or equivalently

symplectic structure — symplectic matrix

— symplectic brackets.

It is important to note that Dirac brackets and symplectic
brackets are same. So, in this case, our path of analysis
will be

symplectic brackets — symplectic matrix — Lagrangian.

In order to follow this path, it will be beneficial if we
write down the mathematical method.

The generic structure of the symplectic brackets (SB) are
of the form

{f.9Yse =T, (0upf)(0b,9) ={f.9}ps
={f.g} —{f ®a}=, {®%. g} (3)

where 0, = 8—%, iy = x*, n; = p*, and P} are second-
class constraints. Now the inverse of this £ matrix provides
: : b _ b () _ oL
the constraint matrix Xf) = {®, ®y}. If I’ = 55 and
Hﬁp ) = (‘?}f are the momenta corresponding to the variable x
and p, respectively, that satisfy the Poisson brackets
x P
{x”,H£ )} = 1], and {pﬂ,Hg >} = 1], and then form the
constraint matrix {®¢, %}, we can make a judicious choice
of the constraints containing the momenta H,(f) and ng >.
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The presence of these momentum terms in the constraints is
required to construct a Lagrangian from constraint
structures.

Now following this method first the symplectic matrix
that can be formed from the above symplectic structure (1)
and (2) is

0 A + pp*p*

= NG
—Ant = ppp 0
o ﬁPz . . .
where A = 7\/@_1. The inverse of this symplectic
matrix yields the matrix of constraint brackets
0 M PPupy
s A A1+ 2pp2
o e Bpup, 0
A AT+ 2pp2
= {®, /). (5)

Then from (5) the structure of constraints that can be
formed is

L0, 2 =11" ~0, (6)

where Hf,x ) = g;; and 1" = g_i)L”

ets {xﬂ,H,(f)} =1, and {pM,H,(,p)} = 1, With this con-
straint structure (6) in hand, one can derive the Dirac
bracket between the variables (x, p) and check the con-

satisfy the Poisson brack-

sistency of the constraints (6). Now (6) implies I'[,(f> =

(% = % and H,Sp ) = % = 0. Integrating these two rela-

tions, we have the Lagrangian that is compatible with (6):

(M”25

AU +mie?), (T)

Lnc(x(4)) =
where v(4) is the Lagrange multiplier. Here 4 is the affine
parameter, which is linearly related to proper time 7 by
A= a+ bt [17], for any arbitrary constant a and b. One
can construct the function f(p?) as f(p?) = (&) [16].

Another structure of constraint that can be formed from

: 1 ) 2 _ P | x pp)p,
(5)is @, =11;” ~ 0 and ®; =TI, +K—A2\/++§W~

[16]. The corresponding Lagrangian that can be constructed
is Lnc(x(2) = =5 + SR + o) (£(p?) + mPe?)

YT
[16]. Though this Lagrangian and (7) seem to be com-
pletely different, actually one can be achieved from another
just by doing one time integration by parts on the action
integral. In other words, these two are equivalent. This can
be shown as follows: the action corresponding to the
Lagrangian (7) is [by dropping the last term of (10)]
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u dx’
S = /Lchﬂ - /'WA‘“CM. 8)

Then by performing integration by parts on the right-hand
side of (8) we get the Lagrangian [16]

(X' p*) P p*) (M p" p¥) }
S = — dAi
/ { A A%\/1 +28p?

We are interested in the form (7), because the Lagrangian
(7) is much more suitable than (9) for constructing a
Lagrangian in curved space-time. Before going into detail,
let us consider first for simplicity the lowest nontrivial
lowest order of f3, i.e. the first order of O(/3). Up to this first
order of O(f3), the Lagrangian (7) gets its O(f3) structure as

©)

g, dx”
L ~(1-2 it
NC ()C(/l)) < ) P NP di

+o()(p? = B(p*)* + m*c?).  (10)

Let us define A:(l—/%pz). One can check the
consistency of the Lagrangian (10) by deriving the
Poisson bracket [{B, C}pg = > (28 2C. _ 0C 0B ) '\yhere

X om0 oY)
l'[,(,x) = %] between x* and p”. Once again, it can be

shown that this Lagrangian (10) is equivalent to the
Lagrangian that can be derived from (9) just by considering
the first order of f:

Lnclx@) = = (1-5 7))
+ B x P*) (0 P* D). (11)

This form of Lagrangian (11) is too complicated to get a
Lagrangian in curved space-time. This is due to the presence
of p terms in (11). The p terms can arise in the Lagrangian
only by performing integration by parts on the usual
Lagrangian containing x terms. In curved space-time,
whenever 7, is replaced by g,,, then this integration by
parts generates extra terms like the derivative of g, which
are difficult to guess from a flat space-time Lagrangian like
(11). But since the Lagrangian (10) contains as usual only
the x term and not p, then a Lagrangian in curved space-time
can easily be obtained just by replacing all 7, by g,,:

v

Letx@) = (1-577)our G (1)

This is our point particle Lagrangian in curved space-time.
This Lagrangian is as usual of the form L = gﬂp)'c/‘l'l(x)”. But
one cannot start just by replacing all canonical variables by
noncanonical ones in the canonical Lagrangian, because we
have only GUP-corrected Poisson brackets in hand and we
have to build up a Lagrangian compatible with it.
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The equivalent form of this Lagrangian (12) which
contains p terms can be obtained by performing integration
by parts on the corresponding action and yields

Lnc (x(ﬂ) ) =-A (g/wxﬂpy - ay (g;w)jcypﬂxy)
+ B9 ¥ P*) (G P P*)

B .
+ /5 (9uX" p*)0, (g )X P* p¥. (13)

This form of the Lagrangian is difficult to construct from
the Lagrangian (11). In Ref. [20], the curved space-time
Lagrangian (constructed from a flat space-time Lagrangian)
does not contain all terms of the GUP-corrected
point particle Lagrangian (13) in curved space-time or
equivalently (12).

B. The noncanonical Hamiltonian

To the first order of O(f) the Poisson brackets (1) can be
written in the curved space-time background as

{x,p¥} = (1 +§p2>9"” + Bp*p. (14)

where ¢*¥ = (—, +, +, +). The relation between the non-
canonical variables (x, p) and canonical variable (X, P) can
be constructed from the above bracket (14):

X=X, p”:P”(1+§P2>. (15)

Since the canonical momentum P satisfies the dispersion
relation P? + m?c?> = 0, we get our modified dispersion
relation as [18]

p?=p(p*)* + m*c* = 0. (16)

Now to derive the Hamiltonian we take the help of the
technique presented in Ref. [19]. First of all, differentiating

the Lagrangian (12) with respect to 2% gives H,(,x) (1) =

_02,%) = g,,p"(1 =% p?), which provides

dx* dx*

X)y ﬁ
H, :gwﬁrﬂ )/(i) —-L :gﬂyﬁpJ’(l _EPZ -L=0.
(17)

As we have first-class primary constraint (16), then the total
Hamiltonian can be written as

H=H +vd)(p* = p(p*) +m’c?).  (18)

where »(4) is an unknown function that has to be
determined. H correctly generates Hamilton’s equation
of motion with respect to the parameter A:
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)'C”E{x”,H}—87,9)—21)(/1)19”(1—';[)2). (19)

The last relation of (15) implies P* = p#(1 — gpz) Since

the canonical Lagrangian is Lc = —mcy/—g,, 22,

where the canonical momentum P is related to X by the

. i"lCM .
relation PY=——%—,  then one can write
\/ _9/)6 aidi
pr(1 - g p*) = ———Z—_. Substituting this into (19) gives
“Ypoar ax

the coefficient v(4) as v(4) = 52—/ —g,, 47 %7 Therefore,

our relativistic Hamiltonian becomes

1 dx” dx°
H=—(p* - p(p*)? \ - 2
e P B(p*)* + m* N\ =Gpo—7 i (20)

This is the final form of our GUP-corrected relativistic
Hamiltonian. However, the x term present in (20) can be
scaled by choosing a suitable gauge constraint, but in order
to study the dynamics from an arbitrary reference frame we
cannot do this.

III. DERIVATION OF DIRAC BRACKETS
AND EQUATION OF MOTION

To derive the equation of motion by the constraint
analysis technique, first of all it is essential to find the
Dirac brackets between the noncanonical variables x and p
for such a constraint system. In this section, we concentrate
on this.

Now the momentums corresponding to the variables x
and p obtained from the above Lagrangian (12) are
|

X, ptlp = —g* +

1 p
" p*lp = 1979 Qo =

A(A - pp?)
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X OL p
HI(4 >(ﬂ“) = ardey <1 _§p2>gﬂ/1p/11

()
~0. (21)

o)

oL

dpt
Car

() =

o)

The structure of constraints can be constructed from the
above momenta:

x p
(DL:Hfl)(l)_( _Epz gyyp7z07

®! =T1{" (1) ~ 0, (22)

which yields the constraint matrix

{(I)i’(I)i}: [AQﬂ”_gM/w _Agﬂv+ﬁpﬂpy:|
Agﬂu_ﬂpypy 0
_ |: AQ;w _Agﬂy +ﬁp,upy:| [_}|: :|
Agﬂu_ﬂpypy 0 2000
=[A] —g[B], (23)

where Q/w = (aﬂ (gvc) -0, (gyc))pc and M/w = (Puaﬂ (gpzr)_
Pu0,(9ps))p” p°. The inverse of this constraint matrix to

the first order of O(f) can be written as {®, &)}~ =
([A]~1yr= —i—/j([.A] )W([B])pa([.A]_l)"”, which after using
the definition of Dirac brackets provides the Dirac bracket
between the noncanonical variables (x, p) as

1 p s
Tpha [ 1452 p2 |g# Y pt,
2 A= PP (+2p)9 +pp'p

p

(pygyp - pﬂg}’f))Q/mp - _gy/)gﬂo’M

2A?

~ <1 + g p2> 979 Qps = B(P" 9" = P"9") Qpep” — ggypg""Mpm

[x7, x*], = 0.

Interestingly, the Dirac bracket between x and p is the same
as their Poisson bracket (14). By using these Dirac brackets
(24) and the above Hamiltonian (20), the equations of
motion are obtained from

dx# dp*

7 = [x”’H]D» ar = [P”’H]D- (25)

From the first equation of (25), we have

(24)

dxP dx°

dx* B \ “9po ar ax
=pi(1-Zp* | X——= 26
P ( 2P > me (26)

It is easy to verify the dispersion relation (16) from (26).
Again to the first order of 4, Eq. (26) can be written as

dx*
mc - B
=2 (14+Zp7). 27
S o 2p> 7
po
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Now differentiating (27) with respect to the affine param-
eter 4, we get

dpt mcd»
iziﬂ <1+ép2> +
2 2

ﬂmcd"” d(p?)

di dx? dx” A dxe dA
V “Ypodi di ~Y9p6 a1 d;
(28)
To obtain %;) we can take the help of the relation
% = [p?, H]p, which ylelds dP’) — . Now from the

second equation of (25), we have

dp"_(l—Zﬂpz) 1 v oSlvr
T e an(gms)l? P°Ix", p*lp
dx’ dx°

_g, 2
AP (29)

+ p.[p", p”]u]

Using the Dirac brackets (24) and replacing all p by (27),

the right-hand side of (29) to the first order of O(f)
14

dpt _mc(l——m ) dyt did . .
becomes = m Vs ‘o - Comparing  this
po

with (28) immediately gives the same geodesic equation
as usual:

d*xt L, dxtdx?

praRRl e (30)

Thus in the noncanonical representation (x, p) the geodesic
equation remains unchanged. In other words, the particle
dynamics in curved space-time do not change by consid-
ering the usual algebra (15) obtained from the GUP.

IV. ANALYTIC DISCUSSION
OF THE ABOVE RESULTS

In this section, we discuss the consistency of the
equivalence principle in the GUP framework. Let us
consider a specific example by changing our independent
parameter (affine parameter A) to coordinate time ¢ and take
the nonrelativistic limit from (12).

But before that, it is required to note that the canonical
Lagrangian L. and the noncanonical one Ly are different
whenever they are written in terms of (X, P) and (, p),
respectively. But their form becomes the same if we write
them in terms of only X and %, respectively. This can be
achieved by replacing all p in (12) by (27), and as a result
Lync becomes

dx* dx¥
L A) = - — G ———— 31
e(x() G
The reason behind the noncanonical Lagrangian (31)
having the same form as canonical Lagrangian

Lc = —mcy/—g,, 2% is that we have taken x =X
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through (15). On the other hand, since we have modified
the momentum part P (15), in order to get the GUP effect
we have to go to the Hamiltonian formalism and derive
Hamilton’s equations of motion.

First, we write down the Lagrangian (31) in terms of =, ( J
in order to study the dynamics in coordinate time ¢. Th1s

yields Lyc(x(7)) as

L (dx\2
Lyc(x(1)) = =mc\/=gooy | 1 + g;(dctz) . (32)
00

where g,, is considered as a diagonal matrix to avoid the
complexity of calculation. The corresponding Hamiltonian
is (see the Appendix)

H ( o 2 gii(pi)z
Ne(p) = me?y/=gooy |1 + m2 (1 — ) (33)

Now we want to study the dynamics of a freely falling
particle in Earth’s uniform gravitational field from a
coordinate system fixed on Earth. In this context, we
consider g;; = g, only. In the nonrelativistic limit, the
above Hamiltonian (33) becomes

p;

2m(1 — pm?c?)
where we have used the approximation g,, = n,, + hy,
[hy, < 1, = (2. r)] with hog = h,, = —22 and neglect the
terms containing O(CI—Z) Here @ is the gravitational poten-
tial. With such kinds of approximation, the Poisson bracket
(14) can be written as {r,p,} = (1 =4m?c?) + pm?i?
Since f = M/Z:)cz [7], the last term of the Poisson bracket is
0(%), Whicli can be further neglected. Thus the Poisson
bracket finally becomes

H = mc? + + m®(r), (34)

{nm}—< —§m%ﬂ (35)

Hamilton’s equations of motion 9 = {r, H} and d”’ =

{p,. H} then give the differential equation for the motlon as

F=-Vo. (36)

This is just the usual Newton’s law of gravity. Therefore, in
terms of coordinate time 7 we have again reached the usual
equation of motion. Now it is clear from (30) and (36)
that the equivalence principle is consistent in the GUP
framework. We have reached to (36) depending on non-
relativistic Hamiltonian (34) and Poisson bracket (35).
Interestingly, this Hamiltonian (34) incorporates GUP
corrections. But the GUP corrections are not present in
the Hamiltonian [12]. By reason of the nonrelativistic limit
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[neglecting 0( ;) terms], the Poisson bracket (35) does not
contain any x terms, whereas the X terms are present in the
Poisson bracket [12]. The presence of these x terms in the
Poisson bracket therein has brought off the dependence of
test particle mass m in the motion [12]. But the result we
have obtained here is that the equation of motion remains
unchanged whenever one studies the dynamics in terms of
the affine parameter (1) or proper time (z) or coordinate
time t.

V. CONCLUSION

Going through a consistent way of constraint analysis,
we have derived here a GUP-corrected modified point
particle Lagrangian (12), Hamiltonian (20), and thereafter
the equation of motion (30) in curved space-time. These
structures are derived here by taking the affine parameter
(4) (or proper time 7) as an independent variable.
Henceforth, the relativistic and nonrelativistic GUP-
corrected point particle Hamiltonians (33) and (34) are
also obtained in terms of the coordinate time ¢ (of an
arbitrary reference frame). Such a point particle dynamics
has also been studied in the context of k-Minkowski space-
time in Ref. [21]. In Ref. [12] it has been shown that the
equivalence principle is violated in the GUP framework
whenever particle dynamics is studied nonrelativistically
by taking ¢ as an independent parameter. But the important
result we have obtained here is that, whenever one studies
the particle dynamics from any arbitrary reference frame
(whatever this may be) by taking affine parameter 1 or
proper time 7 or coordinate time ¢ as a dynamical parameter,
the same geodesic equation will reproduced. This result
clearly indicates consistency of the equivalence principle in
the GUP framework. Consistency of the equivalence
principle gives some support to construct the quantum
theory of gravity with the GUP. But with the proposed
algebra (15) in hand, it is impossible to get the GUP effect
classically in point particle dynamics. More specifically,
only by modifying the momentum part P one cannot obtain
any GUP effect in single particle motion. This analysis
brings up the thought of whether it is possible to get GUP
effects by deriving other algebras from GUP models [6,7].
For instance, one possibility is that one can study GUP
effects by modifying the curvature tensor part and building
up modified algebra. For this, we have to look at the near
future.
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APPENDIX

The momenta corresponding to Lyc(x(?)) are

dx’/
W, OLnc(x(1)) mgjj-a
H/ (t) - dx/ - l ’

(%) ()2
R TR

using which we get the corresponding Hamiltonian as

mc? —900
Hye (x(r) = X220 (A1)
gii(%)z
gOUCZ
Now, since
dxt
H§X) (ﬂ.) — aLNC( ,(/1)) _ mcgﬂj dl
8(dx ) _ dx* dx*
v az “ax
can be written as
dx!
mgi;i-ar
ama ] 1 gii(%)z
Yoo + Goo¢>
then comparing HEX) (1) with (21) we get
dx’ 2
mg;;i - i )4
S = gijpP (1 _‘B2)' (A2)
)

— gn dt
V=900¢/ 1 + e

A little calculation leads to

Qii(de,i)z _ 1
1 + 2 ( ,')2 ’
Goo€ 1 + ﬁ

1/}22)

which finally yields modified Hamiltonian (33).
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