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Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively
taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that
by adopting analysis parameters that naturally characterize this “picture,” the physical parameters of the
system can be extracted more efficiently from the gravitational wave data and interpreted more easily.
We assess the performance of Markov chain Monte Carlo parameter estimation in this physically intuitive
coordinate system, defined by (a) a frame anchored on the binary’s spins and orbital angular momentum
and (b) a time at which the detectors are most sensitive to the binary’s gravitational wave emission. Using
anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find
that this careful choice of reference frame and reference time significantly improves parameter estimation
efficiency for binary neutron stars, neutron star–black hole, and binary black hole signals.
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I. INTRODUCTION

The Advanced LIGO (aLIGO) gravitational-wave
detectors are expected to come online in 2015 [1], with
Advanced Virgo (AdV) following in 2016 [2]. They are
expected to directly detect gravitational wave (GW) signals
and, once they reach design sensitivity, could detect tens
of events per year [3] from the coalescence of compact
binaries composed of neutron stars (NSs) and/or black
holes (BHs). Black holes in particular are expected to have
large spin [4], so properly modeling spins will be especially
important for neutron star–black hole (NS-BH) and binary
black hole (BBH) systems. Spin-induced precession,
caused when one or both spin vectors are misaligned with
the orbital angular momentum, is a particularly challenging
effect to model, as it induces amplitude and phase mod-
ulations, changes the relative strength of the two waveform
polarizations, and complicates a spin-weighted spherical
harmonic mode decomposition of the waveform [5,6].
In an important early work, Apostolatos et al. [7] laid out

a “simple precession” model for the evolution and gravi-
tational wave emission of compact binaries with generic
spins. With the exception of rare cases of transitional
precession, or the simpler special case of spins aligned or
antialigned with the orbital angular momentum, the orbital
angular momentum vector of the binary will precess on a

cone about the total angular momentum. Since this and
other important early work [5,8], there have been a number
of improvements to waveform models from spinning
systems. This has included deriving and studying further
post-Newtonian (PN) corrections to the waveform dynam-
ics and phasing [9–12], amplitude [5,6] and precession
equations [13], the development of spinning, precessing
inspiral-merger-ringdown waveforms [14–17] and a
frequency-domain precessing waveform model [18], and
efforts to track precessional motion and disentangle it
from other dynamical effects [19–23]. Despite all of these
refinements, precessing waveforms still qualitatively match
the Apostolatos et al. picture of the orbital angular
momentum moving along a precession cone that slowly
grows due to radiation reaction.
Although suboptimal, matched filter searches with non-

spinning or aligned-spin templates could still detect GW
signals from spinning, precessing binaries, albeit with
significant parameter bias [24]. If a detection can be made,
then the LALINFERENCE module of LAL [25] can be used
for a focused parameter estimation follow-up effort [26].
LALINFERENCE is a suite of routines to perform Bayesian
inference techniques such as Markov chain Monte Carlo
(MCMC) and nested sampling on gravitational wave
detector data. Bayesian inference has proven adept at
sampling the 11-15–dimensional parameter space of circu-
larized compact binary mergers with non-negligible spin
[26–31].
Nonetheless, there is a significant computational cost

to performing Bayesian inference. Typically, waveform
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generation is the dominant cost. Performing parameter
estimation with MCMC on real or simulated data typically
requires generating several million compact binary coa-
lescence (CBC) waveforms to produce≃1000 independent
samples from the posterior probability density on parameter
space. Depending on the computational cost of generating
the waveforms, this can take hours to weeks or longer to
complete. The latency of such analyses must, at the very
least, be low enough to keep up with potential advanced-
detector trigger rates. If these analyses are completed
within hours, then they can potentially play a critical role
in the search for electromagnetic counterparts to binary
neutron stars (BNS) or NS-BH GW signals.
The latency of MCMC analyses, assuming fixed wave-

form generation costs, are governed by the sampling
efficiency of the chains, which are intimately tied to the
parametrization and proposal distributions that are used.
In an extreme limit, local one-dimensional jumps and
distorted coordinates require the Markov chain to jump
slowly through tightly correlated, twisting paths in param-
eter space.
In this work we demonstrate that MCMC-based param-

eter estimation is significantly more efficient when we
adopt coordinates well adapted to the dynamics of the
precessing binary. We parametrize the spin and orbital
angular momentum degrees of freedom of a precessing
binary with a set of angles describing the simple precession
cone model of Apostolatos et al. [7]. We use the inclination
of the total angular momentum to the line of sight, the
azimuthal position of orbital angular momentum LN on this
cone at some reference point, three angles describing the
orientation of the spins relative to LN and each other at the
reference point, and the magnitude of each spin. Critically,
we also choose the GW frequency (i.e., twice the instanta-
neous orbital frequency) fref at which these angles are
defined. Choosing such a reference frequency near the peak
sensitivity of the detector also dramatically improves the
convergence of Bayesian parameter estimation methods.
We find that the new parametrization and a suitable

choice of fref can decrease the “mixing” or autocorrelation
time in the stochastic parameter sampling by a factor of
3.7–11 for the cases considered here. We find the shortest
autocorrelation times and best parameter constraints occur
for fref ≃ 70–100 Hz. Previously, other authors have pro-
posed specifying parameters at a fixed reference frequency
and in a frame relative to the total angular momentum of
the system, both for nonprecessing and single-spin binaries
[32,33]. However, this work is the first to demonstrate that
such a parametrization can improve the parameter estima-
tion of precessing binaries.
This work is organized as follows. In Sec. II, we briefly

review the dynamics of precessing binaries and the com-
monly used “radiation frame” coordinates, and we intro-
duce our well-adapted coordinate system for generic
precessing binaries. In Sec. III we very briefly describe

the parallel-temperedMarkov chain Monte Carlo parameter
estimation strategy adopted in this work, emphasizing
why well-adapted coordinates improve its performance.
In Sec. IV, we compare the results of parameter estimation
calculations performed using radiation frame coordinates
and our well-adapted coordinates. We show that MCMC
calculations using the well-adapted coordinates converge
more efficiently, providing reliable results in less time.
Furthermore, our well-adapted coordinates correspond to
physically pertinent, well-constrained observables, so the
posteriors for astrophysically interesting angles such as
spin tilts are obtained directly without further (expensive)
postprocessing. We finish with some concluding remarks
in Sec. V.

II. COORDINATES FOR PRECESSING BINARIES

A. Evolution equations for precessing PN binaries

Here for convenience we briefly review the formalism
for generating PN precessing waveforms. For more details,
we refer the reader to [34] (and references therein) for a
summary of various nonspinning PN waveforms. For a
generalization to spinning waveforms, the reader may refer
to [5,6,35,36] among others.
The gravitational wave strain observed by a detector is

given by1

hðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ; ð2:1Þ
where Fþ and F× are antenna pattern functions describing
the detector and hþðtÞ and h×ðtÞ are the gravitational wave
polarizations. For a compact binary evolving along a series
of quasicircular orbits, these functions have the following
form at leading order:

hþðtÞ ¼ −
2Mη

DL
vðtÞ2ð1þ ðL̂ · N̂Þ2Þ cos 2ϕðtÞ; ð2:2Þ

h×ðtÞ ¼ −
2Mη

DL
vðtÞ22ðL̂ · N̂Þ sin 2ϕðtÞ: ð2:3Þ

Here DL is the luminosity distance to the binary, M is the
total mass, η ¼ m1m2=M2 is the symmetric mass ratio, L̂ is
the direction of orbital angular momentum, N̂ is the
direction of GW propagation, ϕ is the orbital phase of
the binary, and v ¼ ð2πMForbÞ1=3 is the “characteristic
velocity” PN expansion parameter (with Forb the orbital
frequency). Higher-order corrections to the polarizations
valid for precessing binaries can be found in [5,6]. For our
purposes, the important point is that these polarizations
depend only on the masses, the inclination between the

1We note that this expression assumes that the sky position of
the source remains constant, i.e., that the Earth rotates by a
negligible amount over the duration of the signal. As NS-BH GW
signals evolve from 10 Hz to coalescence in≲5min, this is true to
a very good approximation.
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orbital angular momentum and the line of sight, and the
time-dependent phasing and frequency parameters ϕðtÞ
and vðtÞ.2
For compact binaries on quasicircular orbits, ϕðtÞ and

vðtÞ can be computed via the energy balance equation.
PN expansions are known for both the binding energy of
the binary, E, and the gravitational wave luminosity
(commonly called the “flux”), F . We assume that emission
of gravitational waves accounts for all of the loss of binding
energy and a simple use of the chain rule provides a
differential equation for the evolution of vðtÞ,

−
dE
dt

¼ dE
dv

dv
dt

¼ F ⇒
dv
dt

¼ −
F

dE=dv
: ð2:4Þ

Since the derivative of the orbital phase is simply the
(angular) orbital frequency, we trivially obtain a coupled
differential equation for the phase ϕðtÞ,

dϕ
dt

¼ 2πForb ¼
v3

M
: ð2:5Þ

For nonspinning binaries, these are the only equations
needed to evolve the orbital dynamics and compute a
gravitational waveform. Equations (2.4) and (2.5) are
integrated to compute vðtÞ and ϕðtÞ, which are then
plugged back into Eqs. (2.2) and (2.3) to obtain the
waveform. There are a number of different ways to solve
these differential equations which are equivalent up to the
PN order of E and F , but differ in truncation error at the
next, unknown PN order. These different methods for
solving the energy balance equation are known as PN
approximants. For example, E and F are known as Taylor
series in v, so the right hand side of Eq. (2.4) is a rational
function of v. One could keep it in this form (referred to as
the TaylorT1 approximant), or reexpand it as a Taylor series
(TaylorT4). In this work we will use TaylorT4, but our
results are equally applicable to any PN approximant. See
[34] for a summary of the various PN approximants, and
[18,37] for two newly proposed approximants.
For precessing binaries, we note that there are spin

corrections proportional to Ŝ1;2 · L̂ and Ŝ1 · Ŝ2 in E and F .
Additionally, we have already noted that L̂ · N̂ appears in
the polarizations. The orientations of these vectors can
change over time for precessing binaries, and so they must
be computed as functions to time, along with vðtÞ and ϕðtÞ.
Their evolution is given by the precession equations [5,7].

dL̂
dt

¼ v6

2M3

���
4þ 3

m2

m1

�
S1 þ

�
4þ 3

m1

m2

�
S2

�

−
3v
M2η

½ðS2 · L̂ÞS1 þ ðS1 · L̂ÞS2�
�
× L̂; ð2:6Þ

dS1

dt
¼ v5

2M

��
4þ 3

m2

m1

�
L̂

þ v
M2

½S2 − 3ðS2 · L̂ÞL̂�
�
× S1; ð2:7Þ

dS2

dt
¼ v5

2M

��
4þ 3

m1

m2

�
L̂

þ v
M2

½S1 − 3ðS1 · L̂ÞL̂�
�
× S2: ð2:8Þ

To generate a gravitational wave signal from a precessing
binary, we first solve for its orbit and spin [Eqs. (2.4)–(2.8)],
and then substitute these kinematic quantities into Eqs. (2.2)
and (2.3).
Higher-order polarization expressions valid for precess-

ing binaries can be found in [6]. While in this work we
report results using only leading-order polarizations,
related work by [29,30] suggests our conclusions will also
hold for higher-order polarizations.

B. Behavior of precessing waveforms

The behavior of precessing binaries was first laid out in
significant qualitative and quantitative detail in [7]. To
summarize, they find that almost all spinning binary
configurations would undergo simple precession. This
means that the direction of total angular momentum, Ĵ,
remains very nearly fixed and the orbital angular momen-
tum vector moves on a cone about Ĵ. The angle between L
and the total spin, S ¼ S1 þ S2, will remain nearly constant
throughout the binary evolution. The magnitude of L will
slowly decrease due to radiation reaction, and since its
angle with S does not change appreciably, this means the
opening angle of theL precession cone will slowly grow as
the binary inspirals.
There are two types of special cases of spinning binary

configurations which do not obey simple precession. First,
if both spins are aligned and/or antialigned with the orbital
angular momentum, then the binary will not precess and the
orbital angular momentum will remain in a fixed direction.
It is clear from Eqs. (2.6)–(2.8) that the direction of all of
these vectors will be constant when they are all parallel.
Second, transitional precession can occur if the binary
has large spins which are nearly, but not perfectly, anti-
aligned with the orbital angular momentum. In this case,
the binary will initially be in a state where the orbital
angular momentum is the dominant contribution to J.3

Gravitational wave emission will decrease the magnitude
of L, but will not change the magnitude of S1 and S2. If it
decreases such that jLj≲ jSj, then the direction of Ĵ will
change from being near L̂ to near Ŝ. This brief period when

2At higher order, the spins also enter the polarizations. Our
main point is that Eqs. (2.4)–(2.8) are sufficient to compute the
polarizations, and this is true at all PN orders.

3Since L≃ r × p, the orbital angular momentum will always
dominate the spin angular momentum for sufficiently wide binary
separations r.
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jJj ≈ 0 and the direction of Ĵ changes rapidly is known
as transitional precession. Note that it is preceded and
proceeded by periods of simple precession.
We note that the simple precession model presented in

[7] primarily focused on the special cases of equal masses
and/or single spin binaries. This was so the precession
equations (2.6)–(2.8) would imply that S1 · S2 ¼ const and
simplify the behavior. However, even for a generic case
with unequal masses and spins, the simple precession
model is still a good qualitative description of the precess-
ing binary’s behavior. One difference is that the orbital
angular momentum exhibits nutation. That is, L̂ bobs up
and down as it moves on its cone about Ĵ. The cone
opening angle still tends to grow as orbital angular
momentum is radiated away, but it is no longer a monotonic
increase. Compare the single spin NS-BH binary to the
double spin BBH binary in Fig. 1. The angle between Ĵ and
L̂, θJL, nutates strongly in the latter but not in the former.

Note, however, that the angles θJN and ψ J, the inclination
and polarization angles of the total angular momentum,
respectively, are nearly constant in each case, as Ĵ remains
essentially fixed. Additionally, Fig. 1 shows the tilt of the
component spins and the total spin S ¼ S1 þ S2 relative to
L̂. Note that these angles can change by a few tenths of a
radian (with the total spin oscillating less than the indi-
vidual spins), while for the single-spin case (not shown)
L̂ · Ŝ1 is constant throughout the evolution.

C. Previous coordinate conventions

As we have summarized, computing the orbital dynam-
ics of a precessing post-Newtonian waveform involves
numerically integrating the coupled set of ordinary differ-
ential equations (ODEs) in (2.4)–(2.8). Typically, one
specifies a binary with parameters m1 and m2, plus the
initial Cartesian components of the spin and orbital angular
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FIG. 1 (color online). Fiducial binary orientation: We plot the evolution of angles describing the orientation of our fiducial NS-BH
and BBH binaries versus time to coalescence. For both the NS-BH (top left) and the BBH (top right) binaries, the radiation-frame angle ι
evolves significantly, while the system-frame angles ψ J; θJL; θJN evolve slowly. For the single-spin NS-BH binary the spin maintains a
constant tilt relative to L̂ (not shown). For the double-spin BBH binary, the tilts of the component spins relative to L̂ do vary by a few
tenths of a radian (lower left panel). In the lower right panel we plot the azimuthal angles ϕJL describing the motion of L̂ moving in its
cone about Ĵ, and ϕ12, the azimuthal separation of component spins measured relative to L̂ for the BBH binary.

FARR et al. PHYSICAL REVIEW D 90, 024018 (2014)

024018-4



momentum vectors specified at the minimum frequency at
which the signal enters the detector’s sensitive band. This is
indeed an obvious, natural choice to specify the initial
conditions of the ODEs and is what has previously been
used to generate CBC waveforms in the LAL software.
Actually, for precessing binaries LAL codes adopt a

simplifying convention, without loss of generality, so that
the orbital angular momentum vector can be specified by a
single inclination angle, ι. In particular, the z axis of the
Cartesian frame is taken to be the direction of propagation
of the gravitational wave. The orbital angular momentum
is assumed to lie in the x-z plane, such that L̂ ¼
ðsin ι; 0; cos ιÞ, and hence such that the projection of L̂
on the plane of the sky is in the direction
ðcosψL; sinψLÞ ¼ ð1; 0Þ. Therefore, the LAL waveform
generation routines depend on the parameters

fm1; m2; ι; ðS1x;S1y;S1zÞ; ðS2x;S2y;S2zÞg: ð2:9Þ

This Cartesian parametrization, with the z axis along the
direction of GW propagation, is commonly called the
radiation frame. Previous parameter estimation efforts,
such as [26–28,30], would estimate these radiation frame
parameters.4

While the radiation frame is very convenient for gen-
erating waveforms, it has several drawbacks for parameter
estimation. First of all, the Cartesian angular momentum
coordinates of a binary, and hence their projection on the
plane of the sky (i.e., ψL), can vary considerably over its
evolution. Figure 1 shows how the inclination of the orbital
plane (ι) varies across the observed signal, and the
Cartesian components of Ŝi (not shown) cover most of
their allowed range ½−1; 1�. Otherwise identical binaries
that happen to be at two different points along the
precession cone at the reference point will have very
different Cartesian components. Thus, systems that pro-
duce similar GW signals are spread across the parameter
space in complex ways, and parameter estimation analyses
must map out these complicated correlations. Furthermore,
the Cartesian components are specified at the low fre-
quency limit, where detectors have poor sensitivity. Two
binaries with similar vector components at fmin might have
rather different component values when the signal is in the
sensitive band of the detector.

D. Nearly conserved coordinates

Motivated by the simple precession picture of
Apostolatos et al., we parametrize the binary configuration
via a set of angles that describe the position and shape

of the precession cone, as well as where L̂ is along its
cone. In particular, we parametrize a binary configuration
with

fm1; m2; χ1; χ2; θJN; θLS1 ; θLS2 ;ϕ12;ϕJLg: ð2:10Þ

Here 0 ≤ χ1;2 ≤ 1 are the spin magnitudes, θJN is the
inclination between the total angular momentum and the
direction of propagation, θLS1;2 are the inclinations of each
spin relative to L̂ (commonly referred to as tilts), ϕ12 is the
azimuthal angle of Ŝ2 − Ŝ1 measured relative to L̂,5 and ϕJL

is the azimuthal position of L̂ on its cone about Ĵ (with N̂
setting the zero of azimuth). We refer to this parametriza-
tion as precessing system coordinates (or the “system
frame” for short).
We note that this parametrization, like the standard

Cartesian one, requires nine parameters to specify the
orbital dynamics. The system frame parametrization
captures all degrees of freedom in the binary but does
not overdetermine it. Given values for all the parameters
of either the system or the radiation frame, one can
compute the values of the other parametrization through
a series of Euler rotations. We have implemented such
transformations in the LAL software. As a practical
implementation, parameter estimation routines propose
values for the parameters of Eq. (2.10); these are trans-
formed into the parameters of Eq. (2.9) and passed to
waveform generation routines which take input in terms
of these parameters.
An advantage of the precessing system frame is that

many of the parameters are nearly conserved for the
duration that the signal is in band. It is well known the
masses and spin magnitudes do not change significantly
during inspiral, and Apostolatos et al. showed that θJN is
very nearly constant. For the case of a single-spin binary,
Apostolatos et al. showed θLS1 is constant at leading order.
For a double-spin binary, the angles θLS1 , θLS2 , ϕ12 need not
be conserved—indeed Fig. 1 shows the first two vary by a
few tenths of a radian, while ϕ12 grows through approx-
imately two full cycles. However, it should be noted that the
BBH binary plotted in Fig. 1 was intentionally chosen as an
extreme case. Many double spin binaries will have sig-
nificantly less variation in these angles. For example, there
are known to be spin resonances where both spins and L̂
get locked into a coplanar configuration [38]. Last, ϕJL is
not constant, but does increase steadily and monotonically,
essentially chirping on a precessional time scale. As wewill
see in Sec. IV, using these nearly conserved coordinates
improves the convergence rates of Bayesian parameter
estimation.4Additionally, the time and phase of some reference point tref ,

ϕref , sky location ðδ; αÞ, luminosity distance DL, and polarization
angle ψL are needed, but they merely describe the orientation of
the binary relative to the observer and do not affect the orbital
dynamics in any way.

5Only the relative azimuthal difference between the spin
vectors matters. The absolute azimuth, relative to, say N̂, is
implicitly set by ϕJL.
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E. In-band coordinates

Precessional motion causes amplitude and phase mod-
ulations, and can change the polarization content of the
observed waveform (i.e., the relative strength of hþ and
h×). For example, we see from Eqs. (2.2) and (2.3) that hþ
and h× polarizations will have equal strength when the
binary is face on, but h× vanishes when the binary is edge
on. The detectors will essentially be measuring the polari-
zation content when the signal is in the “bucket,” or the
most sensitive frequency band of the detector. They will
necessarily be less sensitive when the binary is at lower
frequencies near the seismic cutoff. Therefore, it stands to
reason that it is more difficult to constrain the orientation of
the binary at low frequencies, where there is little sensi-
tivity, than at frequencies of peak sensitivity, which are
typically ∼100–200 Hz for ground-based detectors.
It is therefore unfortunate that waveform generation

routines and parameter estimation jump proposals in
LAL have until now specified initial conditions for binary
orientation at the low frequency limit, where the sensitivity
is worst. If the orientations of two binaries are similar at low
frequencies, they need not be similar in the bucket. For
example, if the masses and/or spin magnitudes are a bit
different, they may precess at different rates and could be at
different points along similar precession cones when in the
bucket, thus having very different polarization content for
certain observers. Or, they could move along very dissimi-
lar precession cones that happen to be nearly tangent at a
certain point at low frequency.
Fortunately, we note that the differential equations

needed to evolve the orbital dynamics, Eqs. (2.4)–(2.8),
can be integrated backward in time just as easily as forward.
The same is true for any post-Newtonian waveform model.
As a practical implementation, we choose some reference
frequency, fref , and specify the “initial” conditions for the
binary orientation at that gravitational-wave frequency. We
then make two calls to evolve the orbital dynamics: one
integrates Eqs. (2.4)–(2.8) backward in time until it reaches
the minimum frequency of detector sensitivity fmin, and the
other integrates forward in time to a frequency fend, which
can be the minimum energy circular orbit (MECO) or some
other waveform stopping condition. We then stitch together
the waveform time series from each integration to get a
seamless waveform that covers the full frequency range
½fmin; fend�. As we have implemented it, this method of
two-way integration agrees with the standard approach of
forward integration from fmin to within numerical preci-
sion, and there is virtually no difference in the speed of
waveform generation.
In principal, we can choose fref to be any value which the

binary reaches before the MECO or other termination
condition. However, as expected, we find in Sec. IV that
parameter estimation codes are most efficient when choos-
ing fref near where the detector has peak sensitivity.

III. PARAMETER ESTIMATION WITH MARKOV
CHAIN MONTE CARLO

For CBC parameter estimation, MCMC methods are
used to sample the full 15-dimensional posterior distribu-
tion as a function of the parameters describing the circu-
larized compact binary merger. These methods employ
serial Markov chains that stochastically wander the param-
eter space through the use of various proposal distributions.
By accepting or rejecting proposed jumps according to the
Metropolis-Hastings ratio [39,40], samples recorded by the
Markov chains are distributed with a density proportional
to the target posterior probability density. To ensure each
sample is an independent draw from the posterior distri-
bution, samples are first thinned based on the correlations
present in the chain. Thus, assuming the likelihood function
is equally expensive to compute at all times, the efficiency
of the MCMC sampler will ultimately be decided by the
maximum one-dimensional (1D) autocorrelation time
(ACT), tmax, of the chains. We estimate the 1D autocorre-
lation time t for random variable X as the smallest s that
satisfies

1þ 2

C0

XMs

τ¼1

CðτÞ < s; ð3:1Þ

where CðτÞ is the autocorrelation function CðτÞ ¼
E½ðXt − μÞðXtþτ − μÞ�=σ2, with μ and σ being the mean and
standard deviation of X, respectively, and C0 ¼ Cðτ ¼ 0Þ
is the zero-lag autocorrelation. M is a tunable parameter,
ensuring the stability of the ACT estimate by requiring the
length of the window used to estimate the ACT to be at least
M times the estimated ACT. We have empirically found
M ¼ 5 to produce reliable ACT estimates.
To minimize ACTs, it is critical that the acceptance rates

of jump proposals are balanced with the correlations they
introduce. In general, the most efficient proposal distribution
is the target distribution. The target distribution is typically
unknown, and a collection of generally useful proposal
distributions are used in its place. The most basic jump
proposal typically used for MCMC sampling is a local
Gaussian, centered on the current location of the chain. The
width of this Gaussian in each dimension will affect the
acceptance rates and ACTs. In the small-width limit jump
acceptance rates approach 1; however, the very small steps of
the chain greatly increase ACTs. In the large-width limit
jump acceptance rates approach 0, also resulting in large
ACTs due to many repeated samples in the chains. In the
idealized case of an N-dimensional Gaussian target
distribution composed of N independent one-dimensional
Gaussians, it can be shown that the ideal acceptance rate of
this proposal that minimizes ACTs is ∼23.4% [41]. In the
case of non-Gaussian target distributions, this acceptance
rate is not necessarily optimal, and this proposal (even with
optimized widths) can be very inefficient.
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For CBC parameter estimation, the local Gaussian
proposal distribution, though not the only one, is the
proposal used most often. Since this proposal is optimal
for Gaussian target distributions, the parametrization used
for sampling should be chosen such that the posterior is as
close to Gaussian as possible. For the purpose of determin-
ing the efficiency gains from the system frame, we will
focus on the sampling of the intrinsic parameters:
fM; q; ι; χ1; θNS1 ;ϕ1; χ2; θNS2 ;ϕ2g for the radiation frame
and fM; q; θJN;ϕJL; χ1; θLS1 ; χ2; θLS2 ;ϕ12g for the system
frame, where M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5 is the chirp
mass and q is the asymmetric mass ratio m2=m1 defined
such that 0 < q ≤ 1.

IV. RESULTS

To assess the overall improvement in MCMC sampling
efficiency, we have simulated GW inspiral signals from
the three main types of compact binaries expected to be
observed by advanced ground-based detectors: BNS,
NS-BH, and BBH. The range of parameters studied are
provided in Table I. For BNS systems we focus on the
impact of the system frame on analyses during the first year
of the advanced-detector era (2015), assuming Gaussian
noise from the Hanford and Livingston detectors with
“early” aLIGO sensitivity, as defined in [42].
For the fiducial NS-BH and BBH systems we move to

the projected 2016 three-detector network, with “mid”
aLIGO sensitivity for Hanford and Livingston and “early”
AdV sensitivity for Virgo, as defined in [42]. For these
systems we also consider the choice of reference frequency,
and its impact on parameter constraints and sampling
efficiency.

A. Binary neutron stars

With Virgo not coming online until 2016, the first year of
the advanced-detector era will see only two operational
detectors. Since binary neutron stars are observationally
confirmed sources that aLIGO is expected to be sensitive
to, we place particular emphasis on the impact of system
frame analyses on BNS signals in the early advanced-
detector era. To this end, we have randomly selected 15
BNS signals detected from an astrophysically distributed
set of injections in a simulated two-detector network.

Motivated by the observed neutron star population to
date, the injection population was chosen to have dimen-
sionless spin magnitudes distributed uniformly below
0.05 [43], with isotropic spin orientations, and component
masses drawn uniformly between 1.2 and 1.6 M⊙.
This injection set was distributed uniformly in the local
universe, and 15 randomly selected signals detected by
GSTLAL_INSPIRAL [44] were chosen for the purposes
of this study [45].
We compare the maximum one-dimensional ACT from

each MCMC chain sampling in the radiation frame
(fref ¼ 40 Hz) and system frame (fref ¼ 100 Hz) para-
metrizations. We find that the precessing system frame
gives ACTs which are shorter by 7.6, initially surprising
due to the minimal effects of spin on the GW signal.
Figure 2 shows the cumulative distribution of ACTs for
the intrinsic parameters of the relevant frame across the
15 BNS systems. Even though these systems have very
low spin, and therefore very little precession, a long-known
degeneracy between mass ratio and spin magnitude
[46–48] comes into play. In the simplified picture of a
BNS system with spins aligned with the orbital angular
momentum, changes to the waveform from increasing
spin magnitude cannot be distinguished from increases in
mass ratio, and vice versa. Because BNS systems are very
close to equal mass, the posterior is highly skewed toward
lower mass ratios, and thus higher spin magnitudes in the
direction of the angular momentum. Support for antialigned
spin would require support for higher mass ratios, which
would be unphysical. Parametrically this is easily described
in the system frame as cosðθLS1Þ; cosðθLS2Þ > 0, resulting
in an excluded region in θLS1-θLS2 space as seen in Fig. 3.
In the radiation frame, however, this region of parameter
space is nontrivially defined as a function of all four spin
orientation angles, which no proposal used by the MCMC
is able to navigate efficiently.

B. Neutron star–black hole and binary
black hole systems

1. System frame efficiency

Based on current estimates from low-mass x-ray bina-
ries, most black holes in binary systems are believed to
have significant spin angular momentum [4]. Thus, even

TABLE I. The precessing system parameters [see Eq. (2.10) and the surrounding text] for our BNS population and fiducial NS-BH and
BBH binaries. For the NS-BH and BBH systems we provide the opening angle of the precession cone (θJL), the polarization angle of the
total angular momentum (ψ J), and the network SNR (ρnet), for a three-detector network of early aLIGO-AdV detectors. A population of
15 BNS systems with masses and spins chosen uniformly from the specified ranges, orientations chosen isotropically, and the range of
their SNRs in two-detector early aLIGO detectors are shown.

Binary type m1 m2 χ1 χ2 θJN θLS1 θLS2 ϕ12 ϕJL θJL ψ J ρnet
BNS 1.2–1.6 1.2–1.6 0–0.05 0–0.05 � � � � � � � � � � � � � � � � � � � � � 10.3–33.4
NS-BH 10 1.4 1 0 1.22 1.175 N/A N/A π=4 π=4 2.36 20.3
BBH 8 5 0.8 0.9 π=6 π=2 π=2 π=2 0 0.36 1.57 19.1
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slight misalignments for NS-BH and BBH systems will
lead to precession of the orbital plane and modulation of the
measured gravitational wave signal. For the case of NS-BH
systems, the neutron star has negligible angular momentum
compared to the black hole, and the system will undergo
simple precession, as described in Sec. II B. For BBH
systems, both components will have comparable angular
momenta. In this regime the precession behavior becomes
more complex, with L̂ nutating as it moves along its cone
and the spins not maintaining a fixed orientation relative to
L̂. We have chosen two fiducial NS-BH and BBH binaries
with parameters given in Table I to assess the importance of
well-chosen parameters for strongly precessing binaries.
For the NS-BH system, the spin of the BH is well

constrained. In the radiation frame, shown in Fig. 3, the BH
spin is constrained to a single mode with strong nonlinear

correlation between θNS1 and ϕ1. In the system frame, this
constraint is mainly in θLS1 and ϕJL, but with little
correlation between these parameters. Sampling correla-
tions like that found in the radiation frame proves very
inefficient, since the jump proposal used most often
proposes jumps in one dimension at a time.
Both components of the BBH system in this study have

significant angular momentum, making degeneracies
stronger between them. For this particular system, the
constraints placed on the spin parameters are much weaker
than for the NS-BH system’s primary spin. However, the
system frame still isolates physical features in the wave-
form and reduces the correlation between spinning param-
eters. Figure 4 shows the 95% credible regions in the
primary spin’s orientation parameters. In the radiation
frame, the posterior is highly structured, with regions of

Radiation Frame

System Frame

FIG. 3 (color online). Left panel: MCMC samples from the posterior of a simulated BNS signal. The region where both spins have a
negative L̂z component is excluded. This information is easily described, and sampled, in the system frame. Right panel: Posterior
samples from the analyses of an NS-BH injection, centered on the mean. θ and ϕ correspond to θNS1 and ϕ1 in the radiation frame, and
θLS1 and ϕJL in the system frame. The strong, nonlinear correlation between spin parameters in the radiation frame is difficult to sample,
resulting in large ACTs. The system frame parametrization eliminates this correlation, allowing for more efficient MCMC sampling.
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FIG. 2 (color online). Autocorrelation times: Cumulative histogram of the largest intrinsic parameter ACT of each MCMC chain, for
signals analyzed using the radiation frame (with parameters defined at 40 Hz) and precessing system frame (parameters defined at
100 Hz). Left panel: Results for the 15 BNS signals; using the system frame reduces ACTs by a median factor of 7.6. Center panel:
Results for each analysis of the NS-BH binary described in Table I. The system frame is found to have a median improvement of a factor
of 11 in efficiency over the radiation frame. Right panel: Results for each analysis of the BBH binary described in Table I. The system
frame is found to have a median improvement of a factor of 3.7 in efficiency over the radiation frame.

FARR et al. PHYSICAL REVIEW D 90, 024018 (2014)

024018-8



high correlation between parameters that make MCMC
sampling inefficient. In the system frame, however, pos-
terior support is confined to a single uncorrelated mode
that stretches across the cyclic boundary of ϕJL, ideal for
sampling efficiently with the proposal set employed.
To assess the improved sampling efficiency using the

system frame, MCMC chains were used to analyze the
fiducial NS-BH and BBH binaries described in Table I.
In Fig. 2 we show the cumulative distributions of one-
dimension ACTs for the intrinsic parameters in the para-
metrization relevant to the frame.

2. Reference frequency

It is clear the system frame parametrization, with
evolving parameters defined at 100 Hz, is beneficial for
MCMC sampling. To justify this choice in reference
frequency, we have conducted a suite of analyses where
the system frame parameters are specified at differing
reference frequencies. Figure 5 shows the efficiency of
MCMC analyses for 11 different choices of reference
frequency. We find that a reference frequency near
100 Hz achieves the most efficient MCMC sampling.
By taking the posterior samples from an analysis with

fref ¼ 40 Hz, we can use the PN equations outlined in
Sec. II to evolve the posterior samples to later times in the
inspiral. We have done this for the NS-BH system to
determine how the primary component’s spin orientation is
constrained over the course of the inspiral. Figure 5 shows
the constraint on θLS1 is roughly uniform across the
waveform, as we would expect under the simple precession
evolution. The constraints on ϕJL, however, vary signifi-
cantly over the inspiral with a minimum around ∼70 Hz.
The correlation between θLS1 and ϕJL has a less consistent
evolution, but for this system has a minimum at ∼140 Hz.
Since the jump sizes for the Gaussian proposal are adapted
to the width of the posterior in each dimension separately,
the correlation is expected to impact the sampling effi-
ciency more than the one-dimensional standard deviations.
This is reflected by the ACTs in the left panel of Fig. 5,
where the ACTs can be seen to oscillate roughly in
accordance with the correlation in the right panel. This
picture is likely to change for different systems, which is
reflected by the BBH ACTs. Ultimately we find that
choosing a reference frequency of ∼100 Hz should reliably
result in efficient sampling.

Radiation Frame

System Frame

FIG. 4 (color online). The 95% posterior credible regions from
analyses of a BBH injection. θ and ϕ correspond to θNS1 and ϕ1 in
the radiation frame, and θLS1 and ϕJL in the system frame. The
posterior in the radiation frame parametrization has significant
structure. In the system frame parameters, support is largely
confined to a single uncorrelated mode that crosses the cyclic
boundary of ϕJL, proving much more efficient to sample.

FIG. 5 (color online). Left panel: Box-and-whisker plots summarizing the distributions of maximum intrinsic-parameter ACTs for the
fiducial NS-BH and BBH systems for the 11 tested reference frequencies. Boxes indicate the first and third quartiles, with interior lines
indicating medians, whiskers showing the range of data within 1.5 inner-quartile widths, and þ’s indicating points outside this range.
Right panel: The standard deviations and correlation of the θLS1 and ϕJL distributions of the NS-BH fiducial system over the evolution of
the waveform. θLS1 is found to have a relatively stationary distribution, while ϕJL is best constrained at ∼70 Hz. The correlation between
parameters, though highly variable, has a minimum near 140 Hz.
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V. CONCLUSIONS

In this work we present an improved method for para-
metrizing precessing compact binary coalescence wave-
forms, which we have implemented in the LAL software
library. We have compared the efficiency of MCMC
sampling with both parametrizations for BNS, NS-BH,
and BBH systems, and find improvements of factors of
7.6, 11, and 3.7, respectively. We have also determined the
sampling efficiency and parameter constraints for system
frame parameters for a range of reference frequencies.
We find that using a reference frequency of ∼100 Hz
will ensure efficient sampling for both NS-BH and BBH
signals.
While we assessed the improvement using a specific

parameter estimation algorithm (LALINFERENCE_MCMC)
and waveform model (a time domain SpinTaylorT4 imple-
mentation), this method can be expected to improve the
performance of any underlying sampling method (e.g.,

nested sampling) and any precessing waveform implemen-
tation (e.g., frequency-domain templates [49] and precess-
ing effective-one-body [50]). By moving to a more
astrophysically intuitive parametrization, physical features
in the waveform, such as a lack of precession, are described
using fewer parameters. This reduces the correlation
between model parameters and increases the efficiency
of parameter estimation analyses. By additionally specify-
ing the orientation of the binary and its components at a
point near the detectors’ peak sensitivity, the efficiency or
parameter estimation can be further increased.
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