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We introduce a new Markov-chain Monte Carlo (MCMC) approach designed for the efficient sampling
of highly correlated and multimodal posteriors. Parallel tempering, though effective, is a costly technique
for sampling such posteriors. Our approach minimizes the use of parallel tempering, only applying it for a
short time to build a proposal distribution that is based upon estimation of the kernel density and tuned to
the target posterior. This proposal makes subsequent use of parallel tempering unnecessary, allowing all
chains to be cooled to sample the target distribution. Gains in efficiency are found to increase with
increasing posterior complexity, ranging from tens of percent in the simplest cases to over a factor of 10 for
the more complex cases. Our approach is particularly useful in the context of parameter estimation of
gravitational-wave signals measured by ground-based detectors, which is currently done through Bayesian
inference with MCMC, one of the leading sampling methods. Posteriors for these signals are typically
multimodal with strong nonlinear correlations, making sampling difficult. As we enter the advanced-
detector era, improved sensitivities and wider bandwidths will drastically increase the computational cost
of analyses, demanding more efficient search algorithms to meet these challenges.
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I. INTRODUCTION

In the coming years, the detectors of the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo Collaboration (LVC) will come online following
a multiyear endeavor to upgrade the instruments. This so-
called “advanced-detector era” will ultimately bring a
projected factor of 10 increase in range and a broadened
band of sensitivity reaching down to 10 Hz from the
previous era’s lower limit of 40 Hz [1,2]. This additional
sensitivity at lower frequencies makes the detectors sensi-
tive to gravitational waves (GWs) from compact binary
mergers even earlier in their inspiral phase. This has a
tremendous impact on the computational cost of analyses,
as waveform models become up to a factor of ∼40 longer
than in previous analyses.
To estimate the parameters of a GW source, the LVC

parameter estimation (PE) algorithms (found in the
LALINFERENCE software package [3,4]) compute
∼107–108 model waveforms that are compared to the
interferometric data. Because the generation of these wave-
forms constitutes the computational bottleneck of the
analysis, the longer waveforms required for advanced
LVC parameter estimation will increase analysis times
by up to a factor of ∼50. PE analyses required several
hours to several days to analyze a GW candidate that

entered the band of sensitivity at 40 Hz [3]. Without further
optimization the analysis of individual GW candidates in
the advanced detector era will become prohibitively long,
requiring improvements to both model waveforms and PE
algorithms. The present work addresses inefficiencies of
the PE methods currently employed, particularly focusing
on Markov-chain Monte Carlo (MCMC) methods, and
offers an approach that can significantly reduce the total
number of waveforms generated during a given analysis.
We propose a new analysis method that adopts a longer

burn-in phase than standard MCMC, relying on parallel
tempering only to produce a rough estimate of the target
posterior through an approach based upon estimation of the
kernel density. The resulting proposal more efficiently
generates uncorrelated samples from multimodal and cor-
related posteriors than parallel tempering, eliminating the
need for the latter and allowing all chains to sample from
the target posterior. We emphasize that although this
algorithm was developed to aid in the parameter estimation
of GW sources, the techniques are not problem-specific,
and can potentially be applied to other MCMC algorithms
to increase the efficiency of estimating highly structured
posteriors.
In Sec. II we give a brief introduction to the noise

and the signal models for GWs from binary inspirals.
Section III outlines the MCMC methods employed by
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LALINFERENCE in the LVC’s last science run. Section IV
describes the new MCMC strategy that we have developed
to increase sampling efficiency.

II. SIGNAL AND NOISE MODELS

The Bayesian PE algorithms used to analyze LVC data
depend on models for both the noise and the signal. To
provide context, here we briefly discuss those models. The
most accurate models for GWs produced by compact
binary systems are those generated by simulations that
numerically solve the full nonlinear differential equations
of general relativity. However, this approach is computa-
tionally far too expensive to be used for PE analyses.
Therefore, in lieu of numerical waveforms, PE algorithms
rely on approximate methods such as post-Newtonian
expansion [5] or the effective-one-body formalism [6] to
generate model waveforms for a given set of physical
parameters θ.
The GWs produced by a quasicircular compact binary

system of masses m1 and m2 are parametrized by fifteen
parameters [5],

θ ¼ fMc; q; S1; S2; ι; DL;ψ ; α; δ; tc;ϕcg; ð1Þ
where Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass,
q ¼ m2=m1 the asymmetric mass ratio defined such that
0 < q ≤ 1, Si the spin vector of the ith binary component, ι
the inclination of the orbital plane relative to the observer’s
line of sight, DL the luminosity distance, ψ the polarization
angle, α the right ascension, δ the declination, tc the time of
coalescence, and ϕc the phase at coalescence. For the
purposes of this work, we will focus only on mergers of
nonspinning compact objects where jS1j ¼ jS2j ¼ 0,
reducing the parameter space to nine dimensions.
The current noise model used for PE analyses assumes

the noise to be stationary and Gaussian, with a power
spectral density that is estimated via Welch’s method [7]
near the time of interest (i.e., trigger time) [3]. However,
real detector noise is often nonstationary and non-Gaussian,
with occasional glitches and nonstationarities not currently
accounted for in the noise model [8] that can potentially
bias parameter estimates. More sophisticated noise model-
ing is outside the scope of this work, but remains an area of
active research [9,10].

III. MCMC TECHNIQUES AND
PARAMETER ESTIMATION

The posterior probability pðθjdÞ of the parameter set θ
given the data d is calculated according to Bayes’s theorem,
a framework for updating prior information πðθÞ based on
newly measured data,

pðθjdÞ ¼ πðθÞLðθÞ
pðdÞ ; ð2Þ

where the likelihood LðθÞ ¼ pðdjθÞ is the probability of
measuring the data d given the parameter set θ, and pðdÞ is
the marginal likelihood. The likelihood function for a
detector network is given by the product of individual
detector likelihoods [11],

LðθÞ ∝
Y
i

exp

�
−2

Z
∞

0

j ~diðfÞ − ~hiðf; θÞj2
Sn;iðfÞ

df

�
; ð3Þ

where ~diðfÞ, ~hiðf; θÞ, and Sn;iðfÞ are the ith detector’s data,
modeled signal, and one-sided noise power spectral den-
sity, respectively, in the frequency domain.
To define our formalism and notation we briefly sum-

marize the basics of Bayesian analysis and MCMC
methodology. The posterior distributions (2) of compact
binary GW signals in the LVC are typically estimated using
multiple sampling algorithms. Nested sampling [12],
MultiNest [13], and MCMC [14,15] have all proven to
be effective sampling techniques. Here we introduce
several improvements aimed at the MCMC approach,
but some of the proposed techniques (in particular the
tuned jump proposal outlined in Sec. IVA) may improve
the efficiency of other sampling techniques as well.
MCMC methods produce samples at a density propor-

tional to that of the target posterior distribution by con-
structing a Markov chain whose equilibrium distribution is
proportional to the posterior distribution. Our MCMC
implementation uses the Metropolis-Hastings algorithm
[16,17], which requires a proposal density Qðθ0jθÞ to
generate a new sample θ0 given the current sample θ.
Such a proposal is accepted with a probability
rs ¼ minð1; αÞ, where

α ¼ Qðθjθ0Þpðθ0jdÞ
Qðθ0jθÞpðθjdÞ : ð4Þ

If accepted, θ0 is added to the chain; otherwise, θ is
repeated.
Chains are typically started at a random location in

parameter space, requiring some number of iterations
before dependence on this location is lost. The samples
collected during this burn-in period are necessary, but do
not provide useful data, as they are typically discarded
when the posterior is estimated. Furthermore, adjacent
samples in the chain are usually correlated, requiring the
chain to be “thinned” by its integrated autocorrelation time
(ACT). We refer to the samples remaining after discarding
burn-in and thinning by the ACT as the effective samples.
The efficiency of the Metropolis-Hastings algorithm is

largely dependent on the choice of proposal density, since
that is what governs the acceptance rates and ACTs. The
most commonly used proposal density is a Gaussian
centered on θ. The width of this Gaussian for each
parameter will affect the acceptance rate of the proposal.
Widths that are too large will cause low acceptance rates,
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whereas widths that are too small will lead to strongly
correlated samples and large ACTs. For the idealized
case of a posterior on Rd composed of independent
and identically distributed components such that
pðθ1; θ2;…; θdÞ ¼ fðθ1Þfðθ2Þ…fðθdÞ, where f is a one-
dimensional smooth density, it can be shown that the
optimal acceptance rate is approximately 23.4% [18,19].
This value, applicable only to the local Gaussian jump
proposal, provides the optimum balance between accep-
tance rate and ACT. In principle, proposals can achieve
arbitrarily high acceptance rates and yet produce uncorre-
lated samples—as shown in the context of MCMC schemes
in statistical mechanics [20–22]. Nevertheless, we find that
for typical situations in GW data analysis, targeting an
acceptance rate of 23.4% allows for relatively consistent
ACTs for all posteriors. Therefore, during the burn-in
period we scale the one-dimensional Gaussian widths of
all proposal densities to approximately achieve this accep-
tance rate. This adaptation is limited to the first ∼105
likelihood evaluations, and is removed after the burn-in.
Gaussian jump proposals are typically sufficient for

unimodal posteriors and spaces without strong correlations
between parameters. However, there are many situations
where strong parameter correlations exist and/or multiple
isolated modes appear spread across the multidimensional
parameter space. When parameters are strongly correlated,
the ideal jumps would be along these correlations. This
makes the one-dimensional jumps in the model parameters
very inefficient. Furthermore, to sample between isolated
modes, a chain must make a large number of jumps through
regions of low probability. To properly weigh these modes,
a Markov chain must alternate between them frequently.
Two commonly used techniques to achieve this are parallel
tempering (PT) and differential evolution.

A. Parallel tempering

Tempering introduces a “temperature” T into the like-
lihood function, resulting in a modified posterior,

pTðθjdÞ ∝ πðθÞLðθÞ1T: ð5Þ

Increasing temperatures above T ¼ 1 reduces the contrast
of the likelihood surface, shortening and broadening the
peaks in the distribution and making them easier to sample.
PT originates from Monte Carlo simulations in condensed-
matter physics, starting from replica-exchange Monte Carlo
[23] and then generalized to the full exchange of “con-
figurations” [24] (cf., Ref. [25] for a review). It exploits the
“flattening” of the distributions with increasing temperature
to construct an ensemble of tempered chains with temper-
atures spanning T ¼ 1 to some maximum temperature
Tmax. Chains at higher temperatures are more likely to
accept jumps to lower posterior values and hence more
likely to explore parameter space and move between
isolated modes. Regions of higher posterior value found

by the high-temperature chains are then passed down
through the temperature ensemble via swaps between
chains at adjacent temperatures. Such swaps are proposed
periodically and accepted at a rate rs ¼ minð1;ωijÞ, where

ωij ¼
�
LðθjÞ
LðθiÞ

� 1
Ti
− 1
Tj
; ð6Þ

with Ti < Tj. This technique greatly increases the prob-
ability of the T ¼ 1 chain sampling between modes, but
does so by creating many additional chains whose samples
are ultimately discarded, since they are not drawn from the
target posterior. In our calculations, the temperatures Ti are
distributed logarithmically. Every 100 iterations, swaps are
proposed sequentially between adjacent chains starting
from the highest-temperature pair. All runs using the
standard PT approach are done using eight chains, con-
sistent with the analyses conducted during the last LVC
science run [3]. It should be noted that this approach subtly
violates detailed balance, as the location of a hot chain can
be passed to the T ¼ 1 chain in a single sequence of swaps,
but the reverse is not possible. Tests carried out as part of
the work in [3] showed this to have no measurable effect on
posterior estimates, thus we use the same parallel swapping
method here for consistency.

B. Differential evolution

Differential evolution attempts to solve the multimodal
sampling problem by leveraging information gained pre-
viously in the run [26]. It does so by drawing two previous
samples θ1 and θ2 from the chain and proposing a new
sample θ0 according to

θ0 ¼ θþ γðθ2 − θ1Þ; ð7Þ
where γ is a free coefficient. Fifty percent of the timewe use
this as a mode-hopping proposal, with γ ¼ 1. In the case
where θ1 and θ are in the same mode, this proposes a
sample from the mode containing θ2. The other 50% of the
time we choose γ uniformly between 0 and 1 to sample
along correlations. This proves useful when linear corre-
lations are encountered, but performs poorly on nonlinear
correlations.

C. Previous implementation

The MCMC implementation used during the last LVC
science run by LALINFERENCE employed a combination of
PT and differential evolution [4]. Eight tempered chains
were typically employed, with computation time per chain
ranging from several hours to 1–2 weeks, depending on the
waveform model used. Although this approach proved
effective at sampling multimodal distributions, it required
up to several thousand CPU hours for a single run due to
the number of samples collected at T > 1 that did not
contribute to the estimation of the posterior.
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IV. PARALLEL-TEMPERED TUNING

We propose a pragmatic approach to address the high
computational cost associated with the conventional PT
implementation. PT is effective at proposing jumps
between isolated modes, but requires ntemps − 1 additional
likelihood evaluations for each sample in the T ¼ 1 chain,
where ntemps is the number of parallel chains. Differential
evolution is a computationally less expensive method to
propose intermodal jumps, but the differential evolution
buffer (i.e., sampling history) must first be filled with
samples across the posterior. Even if the history of a chain
represents a perfect sampling of the posterior, there is only
a probability ðn − 1Þ=n2 of drawing an intermodal jump
vector originating from the mode the chain is currently in,
for the case of a posterior with n modes of equal weight.
To remedy this situation, we use parallel tempering only

during the burn-in phase. The purpose of this short PT
phase is to allow the T ¼ 1 chain to collect samples from
each of the isolated modes of the posterior. Once collected,
these samples are used to produce a specialized jump
proposal that is tuned to the target posterior. This new
proposal eliminates the need for PT chains, thus the T > 1
chains can be cooled to T ¼ 1, where they sample
independently using the tuned proposal. Figure 1 shows
a rough schematic of this PT-tuned approach.

A. PT-tuned jump proposal

Central to this approach is a method for producing a
proposal distribution from the samples collected during the
PT burn-in phase. A kernel-density estimator (KDE) is an
obvious choice, as it produces a continuous distribution

from a sample set, and is trivial to draw samples from.
Given a set of samples fx1; x2; :::; xng drawn from the target
distribution f, its Gaussian KDE is given by

f̂hðxÞ ∝
Xn
i¼1

exp

�
−ðx − xiÞT · Σ−1 · ðx − xiÞ

2h2

�
; ð8Þ

where Σ is the covariance of the sample and h is the
bandwidth, which we have defined using Scott’s Rule [27]
to be

h ¼ n−1=ðdþ4Þ; ð9Þ

with d the number of dimensions. A sample is drawn from
the estimated distribution by first drawing a point xi from
the sample, then drawing a point from a Gaussian centered
on that point with covariance Σ.
However, KDEs tend to artificially broaden the modes of

multimodal distributions, which results in a poor estimate
of the posterior and in low proposal acceptance rates. To
avoid such “over-smoothing” we first cluster the collected
samples, identifying isolated areas of high posterior density
and effectively partitioning the parameter space into sub-
spaces. With each partition containing a single mode of the
posterior, an individual KDE can be used to estimate the
posterior in each partition with little over-smoothing. These
individual KDEs are weighted by the fraction of total
samples contained within the partition, then combined to
produce a single estimate of the posterior distribution
across the full parameter space.
For the clustering step we have elected to partition the PT

samples using OPTICS (“Ordering Points To Identify the
Clustering Structure”) [28], a density-based algorithm
designed to order a set of samples based on their density
in parameter space. A tree-based method [29] is used to
extract the clustering structure from this ordering. Before
clustering, the data is scaled in each dimension by the
standard deviation of the data in that dimension, to remove
the variation in scales between different dimensions. More
sophisticated distance measures such as the Mahalanobis
distance [30] were also tested, but did not yield significant
improvements compared to the normalized Euclidean
distance method. This approach does not require the
number of clusters to be known a priori, nor does it expect
clusters to follow a particular distribution. The only input
parameters required are the maximum distance ε to
determine nearest neighbors, and the minimum number
of points Nmin defining a cluster. Once the clustering tree is
determined, each “leaf” is treated as a partition for which a
KDE is calculated.
A sample is generated from this proposal density by first

drawing a leaf from the tree, where leaf c is drawn with a
probability

FIG. 1. Schematic of the parallel-tempering tuned approach.
Each line represents a chain with temperature increasing verti-
cally. Swaps in chain locations show when PT is in effect. Phase I
is the parallel-tempered burn-in which ends after ∼500 effective
samples, at which point the T ¼ 1 chain shares its differential
evolution buffer with the other chains and the specialized
proposal is tuned using its samples. During phase II the T > 1
chains are linearly annealed to T ¼ 1 over the course of ∼10
ACTs. Phase III produces all samples used to estimate the
posterior, where chains sample independently using a jump
proposal optimized to the target posterior.
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γc ¼
NcP
l∈CNl

; ð10Þ

whereNl is the number of samples in leaf l and C the set of
all leaves in the tree. A sample is then drawn from the
estimate of the posterior in the leaf’s subspace pcðθÞ as
estimated by the kernel-density estimator.
To illustrate the faithfulness of the clustered KDE of a

distribution compared to the simple KDE, we combined
several two-dimensional (2D) Gaussians with random sizes
and orientations. Samples were drawn from this “true”
distribution in Fig. 2, which were then used to estimate the
underlying distribution using both methods. Subsequently,
samples were drawn from these estimates and compared to
the true distribution. Even in this simple 2D case the

clustered KDE can be seen to be remarkably more faithful
to the target distribution (Fig. 2b), resulting in much higher
acceptance rates for the proposal.
To ensure that detailed balance is maintained, the

forward and backward jump probabilities must be com-
puted to determine the acceptance probability (4). In this
caseQðθ0jθÞ, the probability of proposing a jump to θ0 from
θ, is given by

Qðθ0jθÞ ¼ Qðθ0Þ ¼
X
l∈C

γlplðθ0Þ: ð11Þ

Since the jump proposal is independent of the chain’s
current location, proposals are never correlated. This
reduces ACTs and thereby increases the effective sample
size for a chain of a given length.
Lastly, the KDE is able to accurately estimate distribu-

tions with modes of arbitrary shape. This makes the
proposal efficient for proposing jumps along nonlinear
correlations as well, addressing a shortcoming of differ-
ential evolution.

B. Annealing for efficient use of chains

During the parallel-tempering phase, typically several
hundred effective samples are collected by the T ¼ 1 chain.
A PT phase of ∼500 effective samples has proven sufficient
for GW analysis, but will likely require tuning when
applied to problems with longer burn-in periods. Once
all modes in the posterior have been sampled to some
extent, the PT-tuned jump proposal and differential evolu-
tion buffer will propose frequent intermodal jumps. This
eliminates the need for PT, allowing us to anneal all chains
to T ¼ 1 where they independently sample the target
posterior distribution. Here we have chosen the annealing
function of chain i to decrease linearly with iteration
number from its original temperature Ti to T ¼ 1 over
the course of 100lPT iterations, where lPT is the ACTof the
T ¼ 1 chain during the parallel-tempering phase. The
cooling rate and precise mathematical form of the cooling
function were found to have no strong effect on the
sampling efficiency of this approach.
Once all chains have reached T ¼ 1, no further

exchanges between chains are proposed. From this point
onwards all chains draw samples from the target distribu-
tion, and owing to the PT-tuned jump proposal are able to
do so with shorter ACTs. The set of jump proposals used
for the final phase consists of 20% PT-tuned proposals,
50% differential-evolution draws, 25% Gaussian proposals,
and 5% proposals that account for an exact degeneracy
between ϕc and ψ . Testing showed this set of proposals to
be effective for simulated GW data sets; however, extensive
testing to find the optimal proposal set was outside the
scope of this work.

(a)

(b)

FIG. 2 (color online). An illustration of the clustered-KDE
approach to estimating a distribution from a set of samples.
(a) Samples drawn from a distribution composed of several 2D
Gaussians with random sizes and orientations. The distribution
was then estimated from these samples using both the simple
KDE and the clustered-KDE methods. (b) Comparison of
samples drawn from these estimates and the original set drawn
from the true distribution.
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V. EFFICIENCY TESTS

To achieve the most efficient analysis we must minimize
the number of likelihood computations that are ultimately
discarded. This means minimizing the length of chains with
T > 1, and minimizing the ACTs of chains sampling the
target posterior.
To compare the efficiency of the algorithms we define an

effective sampling rate

reff ¼
Pnchains

i¼1 Neff;iPnchains
i¼1 Niter;i

; ð12Þ

where Neff;i is the number of effective samples collected by
chain i, and Niter;i the total number of likelihood calcu-
lations performed for chain i. If we consider the entire
ensemble of chains in a run, the effective sampling rate is
the number of uncorrelated samples (at T ¼ 1) divided by
the total number of likelihood computations. For a run
using only parallel tempering, Neff;i ¼ 0 for i > 1, since
only the T ¼ 1 chain samples from the target distribution.
For all analyses to follow, 12 chains were run in parallel.
For the GW analyses, a maximum temperature Tmax was
chosen for each simulation such that Lmax followed

1

Tmax
logðLmaxÞ ∼ 10; ð13Þ

whereLnull is the likelihood of measuring the observed data
with no signal present, and 10 was chosen to ensure that the
chain with the highest temperature would be effectively
sampling the prior distribution.

A. Analytical likelihoods

To test the ability of our approach to sample posteriors
with correlated parameters and multiple modes we tested it
on three different distributions. We chose these distribu-
tions in a 15-dimensional space to emulate the dimension-
ality of the parameter space that this proposal will
ultimately need to handle (i.e., spinning compact binaries).
The distributions used for testing consisted of (i) a multi-
variate Gaussian (200:1 ratio between largest and smallest
widths), (ii) a bimodal distribution with two isolated
multivariate Gaussians of the same shape and orientation,
separated by eight standard deviations, and (iii) a
Rosenbrock function [31,32],

fðx1; x2;…; xdÞ ¼
Xd−1
i¼1

½ð1 − xiÞ2 þ 100ðxiþ1 − x2i Þ2�:

ð14Þ
The performance of the proposed method is compared to
that of the previous implementation (Sec. III C), which used
only parallel tempering and differential evolution. In all
cases the chains ran until ∼103 effective samples were

collected, not including the burn-in. With standard PT this
amounts to running all chains for ∼1000 effective samples
after burn-in, whereas for the new method each chain is run
for about 1000=nchains effective samples after annealing.
The one-dimensional marginalized posteriors recovered

by both methods pass one-sample Kolmogorov-Smirnov
(K-S) tests against the analytical one-dimensional functions
for the unimodal and bimodal multivariate Gaussian like-
lihoods, and two-sample K-S tests against each other for the
Rosenbrock likelihood. Acceptance rates for the PT-tuned
proposal were in the range 6%–20%. This demonstrates
that the new proposals are able to generate successful jumps
around nontrivial likelihood surfaces without the use of
parallel tempering.
Table I compares the ACTs and effective sampling rates

of the two approaches for each of the tested analytical
likelihoods. In all cases the PT-tuned proposal produces
chains with shorter ACTs, although the improvement is
minimal for the unimodal likelihood. The simple structure
of a single Gaussian makes the PT burn-in criterion of
∼500 effective samples unnecessarily long, since no alter-
native modes need to be found or weighed. This minimizes
the gain in efficiency possible, since the majority of the
chain’s total length (85% in this case) is still done in the PT
phase. In practice even standard PT is not needed to sample
such a simple distribution, and we merely include it here as
a benchmark. Furthermore, these comparisons are sensitive
to both the length of the burn-in and the total number of
effective samples collected. Since the burn-in procedure of
the new method contains both a parallel-tempering phase of
hundreds of effective samples and the annealing phase, it is
typically much more expensive. Thus, the reduction in
ACT from the PT-tuned proposal must be substantial
enough to warrant the burn-in, making situations in which
the posterior is highly structured the best candidates for
improvement. In addition, for long runs (i.e., large numbers
of effective samples), the cost of the burn-in period
becomes less important and even small improvements in
the ACT can result in far fewer likelihood computations
over the course of the run. We note that this approach
provides more efficient sampling both due to a decrease in

TABLE I. Efficiency comparison between standard parallel
tempering and the PT-tuned proposal for various test functions.
The autocorrelation times (ACTs) and effective sampling rates
reff reported for standard PT are the median values from ten runs
with different random seeds. The PT-tuned ACTs are the median
values from the 12 chains after burn-in.

Standard PT PT-tuned

Distribution ACT reff ACT reff
reff;new
reff;old

Unimodal 280 3.3 × 10−4 200 4.2 × 10−4 1.26
Bimodal 850 1.3 × 10−4 120 1.2 × 10−3 9.02
Rosenbrock 3280 3.5 × 10−5 470 3.4 × 10−4 9.71
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ACT and due to the fact that all chains contribute to the
posterior.

B. Simulated GW data

To ensure that our findings are relevant to the analysis of
GW signals, we performed additional comparisons using
simulated Gaussian detector noise containing simulated
gravitational-wave signals. GW signals were generated
using the TaylorF2 template family [33]. For this work
we only included nonspinning compact binary mergers,
restricting the parameter space to nine dimensions. Ten
different signals were tested with total masses ranging from
1.4 to 12.8 M⊙, and network signal-to-noise ratios between
12.5 and 63.4. Again, we found that comparisons of the
estimated posteriors pass the two-sided K-S test and are
consistent with the injected signal. The clustering phase
identified a varying number of clusters when estimating the
posterior, ranging from 2 to 12 clusters. Acceptance rates
for the subsequent PT-tuned proposal fell in the range of
∼0.2%–18%, compared to the ∼0.2%–10% achieved from
differential evolution, and ∼22%–25% from the local one-
dimensional Gaussian proposals. The 0.2% acceptance rate
was an outlier, with typical acceptance rates on the upper
end of this range. However, even with such a low
acceptance rate the run still outperformed the standard
PT approach.
Table II compares the ACTs and effective sampling rates

of the two methods for ten randomly selected nonspinning
simulated gravitational-wave signals. The PT-tuned
approach shows improved efficiencies over standard PT

for all “events,” but unlike our findings for the analytical
likelihoods, here the ACTs of the chains are not always
smaller for the PT-tuned proposal. Nevertheless, in these
cases the cost due to longer ACTs is still compensated by
the fact that all chains contribute to the effective sampling.
The wide range in efficiency improvement, from factors of
1.3 to 13 in these tests, can be attributed to several factors.
The complexity of the posterior depends strongly on the
injection parameters, ranging from unimodal with little
correlation to multimodal and highly correlated. Moreover,
for some runs the posterior was poorly estimated when
constructing the jump proposal, a natural consequence of
estimating the posterior before it has been exhaustively
sampled. This is the cause for the small efficiency improve-
ment seen for event 7, which had proposal acceptance rates
of ∼0.2%–0.3%. Yet, despite these low acceptance rates,
the chains were still able to sample the whole posterior, and
did so more efficiently than standard PT.

VI. SUMMARY

We have presented an alternative implementation to
standard parallel tempering, designed to minimize the time
spent on parallel tempering, thus avoiding likelihood
computations not contributing to the estimation of the
posterior. By parallel tempering only long enough for the
T ¼ 1 chain to identify the modes of the posterior, a jump
proposal can be tuned to the target posterior. These tuned
jump proposals allow sampling of multiple modes and/or
along nonlinear correlations without the continued use of
parallel tempering, while also reducing ACTs. These
benefits come with the trade-off of a more expensive
burn-in process than traditional parallel tempering.
However we find that for highly structured (i.e., non-
Gaussian) likelihood surfaces the proposed approach
proves to be worth this cost. The gains in efficiency
increase with the complexity of the posterior, making us
optimistic that the more complex posteriors encountered in
the parameter space of spinning compact binary mergers
will see even larger increases in sampling efficiency.
However, due to the computational cost of spinning
analyses we have not included them in this study, leaving
them as the subject of future work.
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TABLE II. Efficiency comparison between standard parallel
tempering and the PT-tuned approach for ten randomly selected
simulated nonspinning gravitational-wave signals. The values
reported for standard parallel tempering are collected from the
T ¼ 1 chain of an analysis with eight parallel chains. The
autocorrelation times for the new method are the median values
from the 12 chains after burn-in.

Standard PT PT-tuned

Event ACT reff ACT reff
reff;new
reff;old

1 1300 8.5 × 10−5 1040 1.2 × 10−4 1.4
2 2700 4.6 × 10−5 190 5.8 × 10−4 13
3 2160 5.2 × 10−5 340 3.1 × 10−4 5.9
4 1440 7.6 × 10−5 430 3.2 × 10−4 4.2
5 4220 2.8 × 10−5 5500 9.4 × 10−5 3.3
6 840 1.3 × 10−4 270 2.4 × 10−4 1.9
7 1540 7.8 × 10−5 2030 9.8 × 10−5 1.3
8 560 1.8 × 10−4 200 2.7 × 10−4 1.5
9 1460 7.9 × 10−5 300 3.6 × 10−4 4.6
10 960 7.9 × 10−5 310 3.0 × 10−4 3.9
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