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Generalized black diholes
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A five-parametric exact solution, describing a binary system composed of identical counterrotating black
holes endowed with opposite electromagnetic charges, is constructed. The addition of the angular momentum
parameter to the static Emparan-Teo dihole model introduces magnetic charges into this two-body system.
The solution can be considered as an extended model for describing generalized black diholes as dyons. We
derive the explicit functional form of the horizon half-length parameter ¢ as a function of the Komar
parameters: Komar mass M, electric/magnetic charge Qr/Qp, angular momentum J, and a coordinate
distance R, where Q < 0,J > 0 for the upper constituentand Qr > 0, J < 0 for the lower one. The addition
of magnetic charges enhances the standard Smarr mass formula in order to take into account their contribution
to the mass. The solution contains, as particular cases, two solutions already discussed in the literature.
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I. INTRODUCTION

Black dihole (BDH) systems have been proposed by
Emparan [1,2] as static binary configurations of identical
black holes endowed with opposite electric (or magnetic)
charges, which are unbalanced by means of a conical
singularity in between [3]. These two-body systems carry
an electric (or magnetic) dipole moment, and the electromag-
netic duality provides the corresponding dual configurations.

The addition of an angular momentum parameter gen-
eralizes these BDH configurations [4,5] and means that the
system is now composed of a pair of dyons [6]; i.e., due to
rotation of electric charges, the constituents are now
endowed with both electric and magnetic dipole moments
(monopole electric and magnetic charges).

Tomimatsu proposed in 1984 [7] that due to the magnetic
charges in the binary system, the standard Smarr mass
formula [8] does not hold. It should be generalized to
include the contribution of magnetic charges to the mass.
Kleihaus et al. [9] considered black holes with magnetic
monopole or dipole hair, in Einstein-Maxwell theory and
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some extensions of it, and show that the corresponding
black hole solutions satisfy a generalized Smarr type mass
formula, in agreement with Tomimatsu’s proposal.

On one hand, following this idea we considered explicitly
the magnetic charges generated by the rotation of electrically
charged black holes. Moreover, we constructed a four-
parametric asymptotically flat exact solution in [4]. This
generalized stationary Emparan-like solution is endowed
with magnetic monopole charges, and electric dipole
moment, but it does not contain any magnetic dipole moment.

On the other hand, Manko et al. [5] introduced a five-
parametric asymptotically flat exact solution, where instead
of magnetic monopole charges, a magnetic dipole moment
produced by the rotation of electrically charged black holes
is considered. They enlarge the four-parametric Cabrera-
Munguia et al. solution [4] to a five-parametric one, by
means of the introduction of a magnetic moment parameter
b, and they hide the magnetic charges of Cabrera-Munguia
et al. solution in favor of a magnetic dipole. By setting the
magnetic moment b =0, the Cabrera-Munguia et al.
solution is easily recovered. In fact, each solution can be
straightforwardly obtained from the other one, i.e., by
introducing a magnetic dipole moment parameter (Cabrera —
Munguia— Manko) or by Kkilling it (Manko — Cabrera—
Munguia).

© 2014 American Physical Society
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Therefore, both solutions are in fact two faces, two
particular cases of a more general five-parametric exact
solution, including magnetic charge and magnetic dipole
moment parameters. The upper black hole has O < 0 and
J > 0, while the lower one contains Qy > 0 and J < 0. The
electromagnetic potential turns out to be invariant under the
transformation Q<> — iQf. This means that an observer
will measure the same electromagnetic effects if we
exchange the electric and magnetic potentials. The solution
should provide a physical parametrization in terms of the
five physical Komar parameters, i.e., the Komar mass M,
electric and magnetic charges Q/Qp, angular momentum
J, and coordinate distance R.

The outline of the paper is as follows. In Sec. II, the axis
conditions for a five-parametric exact solution describing
a two-body system of identical counterrotating Kerr-
Newman (KN) black holes with a massless strut in between
[3] are considered and solved. In Sec. III the explicit form of
the horizon half-length parameter ¢ in terms of the five
physical Komar parameters (M,J, Qg, Qp,R) is given.
Moreover, in Sec. [V we reduce our more general solution
to the two physical descriptions already presented in [4,5].
The addition of magnetic charges provides us a more general
description of the properties of dyonic BDH [6]. Additionally,
the corresponding Smarr formula and its geometrical
components containing the proper contribution of the mag-
netic charges are displayed. In Sec. V the extreme limit of the
solution is obtained. Section VIis devoted to the conclusions.

II. FIVE-PARAMETRIC CLASS OF SOLUTIONS

Stationary electrovacuum spacetimes can be described
by means of the line element [10]

ds* = f~'[e* (dp* + d2*) + p*d?*] = f(dt —wdp)*, (1)
where f(p,z), o(p, z), and y(p, z) are the metric functions
which can be calculated through the following system of
equations:

f=Re(&)+|®P,
4y, =pf (1€, +20®, —|E. +220.]

—4pf~H(|2, P =2 ).

2y, =pfRe[(E,+29P,)(E, +2P, )| —4pf~'Re(P,D,),
w,=—pf?Im(E, +20D,),
@, =pf*Im(E, +28D,). )

The set of Egs. (2) contains the complex potentials
(€, @), which can be determined from the so-called Ernst
equations [11],

(Re€ + |®>)AE = (VE +2dVD)VE,
(Re€ + |®)AdD = (VE + 20V D)V, (3)
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where V and A are the gradient and Laplace operators
defined in Weyl-Papapetrou cylindrical coordinates (p, z).
The subscripts p and z denote partial differentiation, the bar
over a symbol represents complex conjugation and
|x|* = xx. In addition, ® = —A4 + iA} is the electromag-
netic potential, whose components are the electric potential
A, and the potential A} associated with the magnetic
potential A;. The metric functions f, w, and y are
determined by the Ernst equations (3).

Once we know the complex Ernst potentials on the
symmetry axis, we can use the Sibgatullin’s method (SM),
based on the soliton theory, for solving the nonlinear
equations (3), to obtain straightforwardly the complex
Ernst potentials [12,13] for the whole spacetime. For a
binary system, the explicit solution for the whole space is
obtained by setting N = 2 in the formulas of the last part of
Sec. III of Ref. [13]. Then, the explicit solution contains a
set of twelve algebraic parameters {a,,, f;, §;}, forn = 1,4
and j = 1, 2. Due to the presence of a total magnetic charge
and NUT sources [14], this 12-parametric exact solution is
not asymptotically flat at spatial infinity. Hence, the axis
conditions should be established in order to get rid of such
monopolar terms.

Therefore, the axis conditions turn out to be very
important in order to obtain an asymptotically flat exact
solution which describes a two-body system of KN sources
(subextreme or hyperextreme sources) with a massless strut
in between, i.e., a well-known conical line singularity [3].
The axis conditions can be reduced to an algebraic system
of equations given by [4]

Im[a, (g, +b)] =0,

02 2 1+1 141
1
g =|1 (ay) )
0
0
0 1 1 1 1
1
he =|1 (ax) ,
€1
)
Ty Erie fris fru
a, = Ty trn Era Era ’
My My My My
My My My My

Mj" = [éj + 2fjf<an>](an _Bj)_lv
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f(an) = ijyjn’ Vin = (an _ﬁj)_l’
j=1
5 _
2101 (B — @) 2f 1 fx

T BB B BB —B) =B -B

or — 2Hi:1(/fz_—an) _ _22: 2f2}_f_k
2B =P Br=B) BB = BB
)

It is worth mentioning that the algebraic equations (4)
represent a generalization of the axis conditions introduced
in [15] for vacuum solutions. In order to solve these
algebraic equations (4), we note that the first Simon’s
multipolar moments [16] as the total mass M, total electric
charge Q, and total magnetic charge B of the binary system
can be calculated asymptotically from the Ernst potentials
on the symmetry axis [4]; they read

P+ P2+ P+ fr = —2M, fi+fo=Q+iB. (5)

By choosing p + f, = -M:=-2M, Q:=0, and
B:=0, we are describing a system of two identical
counterrotating KN black holes (or relativistic disks) of
mass M, endowed with opposite electric and magnetic
charge Qp/Qp and separated by a supporting strut in
between [3]. The constant parameters «, fulfill the con-
ditions a; + a4 = @, + a3 = 0, as shown in Fig. 1. They
can be written down in terms of the coordinate distance R
and the horizon half length ¢ of each rod describing the
black holes as follows:

alz—a4:R/2+0, 02:—(13:R/2—6. (6)

An explicit solution to the algebraic equations (4) reads

¥ _]an+ibo
T ptie

p=R%/4—-M?+ 62,

ﬁl,z =-M :l: P + l5,

5= \/(R? — 4M2)[M? — o2 — u(Q3 + BE)),
qo = QO(R/Q’_M)’ bo = BO(R/Z_M)7

R -2M
= . 7
"TRy2m @
|
e AT oy AP R
A+T’ A+T° [A+T)7? 7

~ Im[(A+T)G — 47
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FIG. 1. Two identical KN black holes on the symmetry axis
with ¢ = —a4 = R/2+ 06, ®y = —a3 = R/2 — 0, and R > 2¢.

Since the identical KN black holes are counterrotating and
have opposite electric charges, the full metric exhibits an
equatorial antisymmetry property in the sense proposed by
Ernst et al. [17] and further studied by Sod-Hoffs ez al. [18].

The solution Eq. (7) is reported by Manko et al. in
Ref. [5] as an extension of the one introduced by Cabrera-
Munguia et al. in [4]. It is worthwhile to stress the fact that
a suitable parametrization can give us straightforward
information not only for the identical case under consid-
eration but also for the unequal case [15,19-21].

By using Eq. (7), one is able to prove that the Ernst
potentials on the upper part of the symmetry axis read

e 2(q, + ib,
e(Z):e_Jr’ f(z):_y’ me0>07
e, = ?F2Mz +2M? — R? /4 — 6% — ié. (8)

The constant parameters g, and b, are associated with
the electric and magnetic dipole moment, respectively. One
should notice that the transformation ¢ — ic in Eq. (7)
leads to a description of relativistic disks (hyperextreme
sources). Nevertheless, in what follows in this paper we are
mainly interested in the construction of a five-parametric
asymptotically flat exact solution describing a binary
system composed by identical KN black holes. The black
holes will be characterized by the physical Komar param-
eters {M,J, Qg, Op} and the coordinate distance R. The
Ernst potentials and metric functions for the whole space
are obtained by means of the SM. They read

oy _ AP = ITP +

AP = T2+ [y* Kiriryrsry

A =4c%[k, +2(q5 + b3)](r1 — r3)(ry — ra) + R2[k_ — 2(q5 + b3)|(ry — rp)(r3 — r4) + 26R(R* — 46?)[6R(r 14 + 113)

+i6(ryry = 1ro13)],
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[ =2MoR(R* = 46%)[6R(r| + 1y + 13+ 1) — (2M? = i8)(ry — ry — 13 + 14)),
x =4(q, +ib,)oR[(R = 20) (e} +4M?)(r) = ra) + (R + 20) (e — 4M?)(ry = 13)].
G = =27+ 20R[4ok (riry — r3ry) + 2Rk_(ryr3 — rary) = M(R = 20)v.(ry — ry) = M(R + 206)v_(r, — 13)],
T = (q, +ib,){4M[26*(R?> — 4M? = 2i5)(r ry + r3ry) + R2(2M? — 262 + i8)(r 3 + rary)] — 2(R* — 46?)
x 2M[(e, +4M?)rry = (- = AM?)rar3] + oR[(ey + 8M?)(ry + 1) + (e — 8M?)(ry + r3) + 86MR]]},

K, = 46°R*(R? — 46°),
€y = oRF(2M?* - i5),

where r, are given by

ro = \/,02 + (z = R/2F0)%,

rya = \/p* + (2 + R/2F0) (10)

III. PHYSICAL PARAMETRIZATION AND
LIMITS OF THE SOLUTION

In order to write o in terms of physical Komar parameters
[22], M, QF, Qp, J, and the coordinate distance R, we will
apply the well-known Tomimatsu’s formulas [7] to the
upper object, since the black holes are identical,

1
M=—-— W _dpdz,
SHszq)Z

1
QB = —/ wA4Zd(de,
H

1
=— AL dodz,
Of /H(U31€DZ dr

V¥4

1

1
J=—— a){l—k—
H

2

< w0, — Az} — (AgA3)Z] dodsz,

(I

with A;:=A; +wA,; and ¥ =Im(E). The magnetic
potential A5 is the real part of the Kinnersley’s potential
®, [23]. By means of the SM [13] it can be written as
follows:

AN , T
A3 = Re(‘pz) = Re <—l E__> = —ZA3 + Im(A n F) .
(12)

The upper black hole horizon is defined as a null
hypersurface H ={-6<z-%<0,0<¢ <27,p - 0}.
Thus, M represents the individual mass of each black
hole source. Moreover, the electric and magnetic charges
read

Q()(R2 B 4M2) + 2805
R =40 — 403+ B))
20,6 — B,(R> — 4M?)

08 =R —40? —4u(Q2 1 BY) (9

Op =

Ky = M*(R? — 40%) +2(q2 + b2),

vy = e2(R+20) £ 8(g3 + b2).

©))
|
Combining both Egs. (13), one gets
2 2\( R2 2
2 2 (Qo"’Bo)(R —4M )
= ) 07
10z + s R? — 402 — 4u(Q2 + B2) Or <
(14)

which suggests that we introduce a new auxiliary variable
X as follows:

2 32
X = % (15)
|0% + O3
Hence, o can be written as a function of this auxiliary
variable as follows,

R2
o= \/X[M2 —|0F + Qplul + - (1-X).  (16)

where Q, and B, can be rewritten as

Q, =0+ 0pvX—1, B, =-0p—Q0pvX -1
(17

Since Q, > 0 and B, > 0, the magnetic charge Q3 takes
values in the range Qp/vVX —1 < Qp < —QpvX —1.0On
the other hand, following Tomimatsu [7], the mass formula
reads

kS
M:E+29J+<I>15QE+M;§

= 6+2QJ + D10, + MS, (18)

with M5 an extra boundary term associated with the
magnetic charge, which is given by

1
M ==y [ () d. (19)
4x H h

The angular velocity Q := 1/, where w* is the metric
function w evaluated at the horizon. Moreover, ®# =
—Al — QA" s the electric potential in the frame rotating
with the black hole. Using Eq. (16) and Eq. (17), a simple
calculation leads to the following expressions for M5, ®4,
and Q:
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MS = 0p(Qpp" — 0xQ).
O = Qg — 05Q.

H (R+20)vVX—1
 2M[R + 20— (R = 2M)X] — u|Qf + QF|X
U R+20—-(R-2M)X

P : (20)

“2M[R + 20— (R—2M)X] - 4|0} + Q31X

As Tomimatsu proposed [7], if the potential A; does not
vanish at the two ends of the horizon H, the term Mi does
not disappear and the Smarr mass formula must take into
account the contribution of the magnetic charge Qp to the
mass. Combining Eqs. (20) with each other, it is easy to
find the enhanced Smarr formula for the mass [4,7,9],

0? 0?

M—6+Q{2J—QEQB< ——§>} +q>g’<1 +—§>QE
Oz 0

=04 2Q(J — Qr0p) + Pf O + A6 D5 (21)

|
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where

@SL = QE¢H7 CI)1\H/[AG = QB¢H- (22)

Replacing ¢ from Eq. (16) into the enhanced Smarr
formula Eq. (21) leads us to the following result,

4(J — Qx05)*

= wTon 0 o

(23)

thus, the explicit form of ¢ in terms of physical Komar
parameters reads

T2[(R +2M)* + 4|Q% + Q3[]] R—2M

o= \/Mz— {lQ%+Q%I+

Notice that the angular momentum presents an additional
contribution from the electromagnetic charges, in agree-
ment with Tomimatsu [7]. Equation (24) for ¢ in terms of
the five parameters is one of the main results of our paper.
Another important result is the straightforward reduction of
this solution, Egs. (9), to the two particular solutions
presented by Cabrera-Munguia et al. in [4], and by
Manko ef al. in [5].

As we shall see in the next section, a correct introduction,
in the mass formula, of the boundary term M3 gives us a
proper contribution of the magnetic charge Qp to the
physical and geometrical properties of the system.

A. Physical and geometrical properties

Replacing Eq. (23) into Eq. (17), it is straightforward to
obtain explicit formulas for the electric and magnetic dipole
moments,

L 20,7 )
2%‘{ QE+M<R+2M>+|Q%+Q%J(R 2M).
N 2057 )
2”"‘{ 05 M(R+2M)+|Q%+Q%I](R 2M).

(25)

Since |Q% + Q3| remains always positive, one notes
from Egs. (25) that the term ¢, 4 ib, remains invariant
under the transformation Q<> — iQf. This means that one

[M(R +2M) + |QF + O3]

R+ oM J=J—0Qr0p. (24)

|
observer will measure the same electromagnetic effects if
one exchanges the electric and magnetic potentials.

On the other hand, the surface gravity k and area of the
horizon S can be obtained directly from Eq. (9) and without
any previous knowledge of the explicit form of ¢. In order
to calculate k, one uses the formula [7],

k= V-Q2 2" (26)

where y is the metric function y evaluated at the horizon.
A straightforward calculation leads us to the following
expressions for the surface gravity and the area of the
horizon:

B Ro(R + 20)
T 2M(M 1+ 6)(R+ 20)(R + 2M) — Q*(R—2M >

S_47r[2M(M+U)<1 +2—M> _%}

R
0% = |0} + 03X, 27

with X given by Eq. (15). The energy-momentum tensor
associated with the strut gives us the interaction force
between the black holes [3,24],

M>|Q} + Q}luR

F= ,
R (R? —4M?)?

(e—Vo — 1) =

(28)

A=

where y, is the value of the metric function y on the region
of the strut. One should notice that the strut between the KN
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black holes disappears in the limit R — oo, and the bodies
are isolated. In this limit Eq. (24) reduces to o =
VM? — 0% + 03| — J?/M? and the electric and mag-
netic dipole moments behave as ¢, ~—QpR/2 and
b, ~—QpR/2, respectively. Finally, if R — 2M, the two
horizons overlap each other, both angular velocities stop,
and the system evolves as one single Schwarzschild
black hole.

IV. TWO PARTICULAR CASES
A. The case with B, =0

The first particular case of this more general solution,
Eq. (9), is the Cabrera-Munguia solution [4]. We noticed
already that for a vanishing magnetic dipole moment term
(b, = 0), one obtains the following cubic equation:

2 2 2
2M >] 4J —0. (9

wnpe=2(-gin) | o

whose explicit real root solution is given by

X_1+[a+[b—a3+ b(b —2a%)]'/3]?
b—a® +/b(b-2da%)]'F
1 <1 AM? )
a = — -,
3 0x(1—p)
2J2
b= o b>2d’. (30)
E

From Eq. (17) the monopole magnetic charge reads

Qp=-QpgvX -1, Qp > 0. €2))

The functional form of ¢ reduces to [4]

2

o= \/X(M2 — Q}uX) +R7(1 -X). (32

where the explicit value of X is given by Eq. (30).
Therefore, the interaction force Eq. (28) now contains a
spin-spin interaction,

M? QfuR’

F =
R —am® (R? —4M?)?

X. (33)

The behavior of the magnetic charges arising from the
rotation of electrically charged bodies in a weak electro-
magnetic field or with slow rotation is already discussed
in [4]. To conclude the subsection, it should be pointed
out that Eq. (29) can be also obtained from the mass
formula Eq. (21).

PHYSICAL REVIEW D 90, 024013 (2014)

B. The case with Qp =0

A second particular case of Eq. (9) is the Manko et al. [5]
solution. In this case, Qp = 0, the electric and magnetic
dipole moments read

2q0 = _QE(R - ZM),
20:J(R - 2M)

2b, = — -
M(R +2M) + Q2

(34)

The magnetic dipole moment arises as a consequence of
the rotation of electrically charged black holes.
Nevertheless, the electric dipole moment 2¢g, does not
contain any contribution from the rotation parameter J.
Hence, it remains electrostatic. This is due mainly to the
fact that the rotation effects are associated with the
monopole magnetic charge [see Eq. (25)]. The interaction
force in this case remains electrostatic [see Eq. (28)].

On the other hand, the explicit formula for the horizon ¢
presented in [5] can be obtained from Eq. (24) by setting
03 =0, ie.,

J[(R+2M)* +4Q%]| R-2M
_ 2 _ 2
°= \/M {QE T MERT M) 1+ 0 | R 2

(35)

V. TWO-BODY EXTREME BLACK
HOLES SYSTEM

By setting ¢ = 0 in Eq. (9), the four-parametric extreme
solution is obtained. In this limit, the angular momentum
parameter reads

|T| = {M(R +2M) + |QF + O3}

M?*(R +2M) — | 0% + Qp* (R — 2M) 36)
(R=2M)[(R +2M)> + 4|0 + O3]’
whose asymptotic expansion leads to the condition
7] _
M\/M?* - 0% + Q3|
2M* + (|OF + Q3)(M? — |0F + 05) (1) - 1. (37)
M(M* — Q% + 03) R

The inequality J2/M? > M?* —|Q% + Q%| > 0 holds
for positive values of the distance R > 2M. The equality
J?/M?* = M*> — |0% + Q%| is reached as the distance
grows large enough, tending to infinity; therefore, both
black holes are isolated. A careful use of I’Hopital’s rule
leads to the extreme limit of the solution Eq. (9):
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A =2aMxT",
A4 2aMxT’

2(gy + ib, )yl
A+ 2aMxT",

D
(I):—_’ = —,
/ N
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D

45,y = 1)(y* =W
B2~y

w= , e =
D

A =a?(e? = M) (x* =y?)? + &M (x* = 1) + (g5 + b3) (1 = y*) + 2ia®5, (x> + y* = 2x%y?),

P. = (/M2 4]0} + Q3XFiVa — M)\ M2 = ul 0} + Q3IX (2 — 1) &+ iV/a? — M2 (2 = )

£ 10} + QRIX(2 - 1),
D = [2(a? = M?)(x% = 2 + @M2(x2 — 1) —
N = {@2(a® = M2)(x2 = y2)2 + M2 (x*
+ 40282 [a(x* + y* = 2x%y?) + Mx(1 — y?
W =Ma*[(e® = M?)(x* = y*)(3x> + y?) + M?

).
(

(g2 +b2)(»*
— 1)+ (2 +b2)(1—y*

3x* +6x2 = 1) + 8aMx®] +
—1M2

— 1)2]2 _ 16&45%)62)12()62 _

(1 —-y%),

)+ 2aMx([(o? — M?)(x* — y*) + M*(x* - 1)]}*
(g5 + b3)IM(y* — 1) — daxy?],
|0% + 03 ) R

8=/ (@ = MM — 0} + G}IX).  X=1+4

where (x,y) are prolate spheroidal coordinates,

:r++r_ y:r+—r_
2 2a
P+ (z ), (39)

related to the cylindrical coordinates (p, z) via the relations

(¥ = 1)(1=y%), (40)

p=a Z = axy.

We note that the metric Eq. (38) fulfills the axis condition
for all the regions on the symmetry axis: w(y = +1) =0
for |z| > @ and w(x = 1) = 0 for |z| < a. The Emparan’s
BDH solution [1,20] is obtained from Eq. (38) if Oz =0
and J = 0. The vacuum solution is obtained for Qp =
0p = 0[19,25,26].

VI. CONCLUDING REMARKS

In this work, we study the consequences of the addition
of an angular momentum parameter J to the static
Emparan’s BDH models. Therefore, the system is now
composed of a pair of dyons [6]. Due to rotation of electric
charges, the KN black holes are now endowed with both
electric and magnetic monopole charges (electric and
magnetic dipole moments). We construct a five-parametric
(M,J,Qg, 0p,R) [(M,J,q,,b,,R)] asymptotically flat
exact solution. Our generalized black dihole model reduces,
for b, = 0, to the Cabrera-Munguia et al. solution [4] and
for Qp = 0 reduces to the Manko et al. solution [5].

The parametrization of the solution in terms of magnetic
monopole charges Qp allows a deeper understanding of the
physical properties of the spacetime of such configurations.
The Smarr mass formula should be enhanced in order to
take into account their contributions to the mass, in
agreement with Tomimatsu [7]. Additionally, instead of

(a+M)*+ (0% + 03

= 57 (38)

|

duality properties, the electromagnetic field remains
invariant under the exchange of electric and magnetic
potentials, i.e., Qp<> —iQg. The rotation induces addi-
tional contributions, arising from the magnetic and electric
charges, to the permanent electric and magnetic dipole
moments [27,28].

On the other hand, we derive the corresponding formula
of ¢ in terms of the physical Komar parameters and the
coordinate distance. Moreover, since the mass M and
the angular momentum J now contain contributions from
the gravitational and electromagnetic fields [29], one should
expect that the explicit formula of o, Eq. (24), can give us
explicit values for these components. Indeed, we apply the
Tomimatsu’s formulas, Egs. (11), for the mass and angular
momentum in the following representation [7,29]:

M:MG+ME7

o o

Mg = —Eéa)lm(ééz)dgodz,

J:JG +]E’

- 2Im(®®,)]dgpdz,

JG:_

1 1 -
8/, ® {1 + qu/z — wlm(PP,) | dpdz,

1
JE = E/F]a)A3A’3zd(de, (41)

where the subscripts G and E denote the gravitational
and electromagnetic components, respectively. Therefore,
the gravitational and electromagnetic masses read

MG = O'+2QJG,

Mg =2Q(Jp — QpQp) + Op®f + 0pPisg.  (42)

where J; = QzAX. Table I shows a set of numerical values
for the five physical parameters of our solution, Eq. (9); the
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TABLE 1. Numerical values showing a decomposition of the
mass and angular momentum into their gravitational and electro-
magnetic components.

o Ok O R Mg Mg Jg JE

06 -03 —-04 3813 0955 0.045 1363 0.137
06 -02 -0.1 3813 -0.579 -0.421 -0.285 -0.06
1.2 -0.5 0 4.871 1.267 0.033 0.957 0.043
1.2 -0.13 0 4871 -0.594 -0.706 —-0.226 —0.086
0 -0.3 02 24 0.962 0.038 3.243 0.046
0 -0.1 0.1 24 -0.879 -0.121 -0.206 —-0.011

0 -02 -03 26 0.015 -1.015 0.017 0.032

mass and angular momentum are written in terms of their
gravitational and electromagnetic components. We noticed
in Fig. 2 that the presence of negative mass in the solution
generates ring singularities off the axis and can change the
sign of the angular momentum parameter. Moreover, the
presence of the electric and magnetic charges locates such
singularity outside the ergosurface.

Since the positive mass theorem [30,31] establishes that
a regular solution contains a total positive ADM mass [32],
then M > 0. Nevertheless, the condition M > 0 is not
enough to ensure regularity of the solution. Hence, we need
to be sure that the denominator of the Ernst potentials is
free of zeros. The numerical analysis depicted by Table I
reveals in Fig. 2 that if the individual Komar masses are
positive, our solution does not develop ring singularities off
the axis.

In Fig. 3 we have plotted the stationary limit surfaces
(SLS), for two identical counterrotating extreme KN black
holes, performed by setting f = 0. Once again, the appear-
ance of ring singularities off the axis is due to the presence
of negative masses in the solution, Eq. (38), and the
electromagnetic charges moves the singularity outside
the ergosurface.

To conclude, recently some authors [5] claimed that the
Smarr formula does not suffer any change if one includes
the magnetic charge into the solution. Nevertheless, this
contradicts what Tomimatsu proposed [7] and Kleihaus [9]
and Cabrera-Munguia [4] already confirmed. We have
shown that the addition of the magnetic charge parameter
Qp leads to a deeper understanding of the mathematical
structure of this kind of spacetime. This result is quite
naturally to be expected from a physical point of view.

PHYSICAL REVIEW D 90, 024013 (2014)
(a) (b)
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FIG. 2. (a) If M > O there exist no singularities outside the
ergosurface, and the ring singularity lies inside of it, on the
symmetry axis, for the values ¢ = 0.6, Qp = —0.3, Qg = —-0.4,
R =3.813, M =1, and J = 1.5. (b) Emergence of ring singu-
larities if M < 0, for the values 6 = 0.6, O = —0.2, O = —0.1,
R =3813, M =-1, and J = —0.345. The singularities are
located at p = 0.73, z = +1.89.

(a) (b)
1.5 1
.

0.5 ] 0.5¢
N 0.0 1 N 0.0F
-0.5 1 -0.5}F
-1.5

-1.5kL

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o o

FIG. 3. (a) SLS for identical counterrotating extreme KN black
holes for the values Qp = —0.3, O = —-02, R=24, M =1,
and J =3.289. (b) For the values Qp = —-0.1, Qp = —0.1,
R=24, M = -1, and J = —0.217, the ring singularities are
located at p = 0.76, z = £1.08.
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