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We have investigated the local invariant scalar observables—energy density and flux—which explicitly
depend on the kinematics of the concerned observers in the thin null shell gravitational collapse geometry.
The use of globally defined null coordinates allows for the definition of a unique in-vacuum for the scalar
field propagating in this background. Computing the stress-energy tensor for this scalar field, we work out
the energy density and flux for the static observers outside the horizon and then consider the radially
in-falling observers who fall in from some specified initial radius all the way through the horizon and inside
to the eventual singularity. Our results confirm the thermal Tolman-shifted energy density and fluxes for the
static observers which diverge at the horizon. For the in-falling observer starting from far off, both the
quantities—energy density and flux—at the horizon crossing are regular and finite. For example, the flux
at the horizon for the in-falling observer from infinity is approximately 24 times the flux for the observer
at infinity. Compared with the static observers in the near-horizon region, this is quite small. Both the
quantities grow as the in-fall progresses inside the horizon and diverge at the singularity.
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I. INTRODUCTION

In classical general relativity, the geometry of spacetime
is sourced by the matter stress-energy tensor taken to be
classical. Since matter is inherently quantum mechanical,
we need to consistently combine the ideas of general
relativity with quantum mechanics of matter fields. In
the absence of a viable theory of quantum gravity, the
standard approach is to consider the semiclassical modi-
fication of the field equations as Gab ¼ κðTab þ hT̂abirenÞ
such that the background spacetime is treated classically,
sourced by the background stress-energy tensor, Tab, while
all other fields propagating on this background are quan-
tized, backreacting on the background through the renor-
malized expectation value of the field stress-energy tensor
hT̂abiren. This permits us to do quantum field theory in
curved spacetime and has given rise to some very interest-
ing results in the case of black holes, cosmological space-
times and so on (see for details [1–5]). It is important
to emphasize here that in the semiclassical approximation,
we ignore the effect of fluctuations of T̂ab and treat it as a
classical quantity which enters the field equations, back-
reacting on the geometry. While considering the back-
reaction, we of course, need to determine the fluctuation in
T̂ab which would then test the validity of the semiclassical
approximation.
There are two ways in which one can describe the

physical content of the vacuum of a quantum field in a
gravitational background. The first is using model of a
particle detector [6] which clicks (makes a transition in its

internal energy levels) whenever it encounters an excitation
of the field. The response function of a detector is
essentially given by the Fourier transform of the two-point
function of the field with respect to proper time on the
detector’s trajectory. This very definition has a slight
drawback that the Fourier transform with respect to differ-
ent time coordinates can give different results. Also, the
response function depends on the complete history along
the detector’s trajectory and hence on the global structure
of the spacetime. The other approach, free of these
pathologies, is constructing two local observables (see
[7–12]) from the renormalized stress-energy tensor, an
invariant quantity and a measure of the “vacuum activity.”
Given the four-velocity, ua of an observer and a normal na
such that naua ¼ 0, we have,

U ¼ hT̂abiuaub; F ¼ −hT̂abiuanb ð1Þ
as the energy density and flux in the frame of that observer.
Both energy density and flux are local invariant scalars
and have an explicit dependence on the kinematics of the
observers. The next thing that one can do, to take into
account the fluctuations in T̂ab, is to consider a detector
coupled to the stress-energy tensor of the field [13] which
responds to the two-point function of the stress-energy
tensor. We shall, however, work within the semiclassical
approximation in this paper and neglect the fluctuations of
T̂ab in this limit.
It is well known (see [14,15]) that the asymptotic

observers see a thermal flux with temperature TH¼
1=8πM being radiated from the black hole horizon.
However, we can have nonasymptotic observers and the
energy density and flux will be different for each of them
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depending on their trajectories. There have been many
attempts at answering the question, “What do these
nonasymptotic observers see?”. The responses to this
question include the study of particle detectors on
various nonasymptotic trajectories giving the “effective”
temperatures [16,17] measured on those trajectories. For
example, the effective temperature perceived near the
horizon for a radially in-falling observer from infinity is
4TH and the response is not thermal because of non-
stationarity. This is also confirmed [17] by computing
the flux at horizon crossing for in-falling observers.
However, these answers stop at the horizon and one
would like to know what happens on the inside too.
Even though the observers who enter the trapped,
nonstationary region are doomed to hit the eventual
singularity, the energy density and flux they observe is
important to consider the backreaction in the semi-
classical field equations. This can be motivated by a
look at Fig. 1 where we have a gravitationally collaps-
ing system and hence the relevant part of the Kruskal
extension. Now consider two rays, 1 and 2, as straddling
the horizon at r ¼ 2M, inside and outside, respectively.
The outside ray reaches the asymptotic infinity and the
redshift gives rise to the standard Hawking effect while
the inside ray goes and hits the singularity in the finite
time. It is not clear immediately what happens for the
rays hitting the singularity and hence one can ask

whether there is any accumulation of flux near the
singularity. These questions give a sufficient purpose to
look at the insides. We would like to note that although
the result concerning the flux at the horizon crossing
has been reported earlier [17], it is important to look at
its evolution during the complete history of the in-fall—
outside, through and inside the horizon—and also how
it compares with the flux observed by the static
observers at various radii along the in-fall.
We take up these issues in this paper working in the

framework of reference [17]. The key feature therein is
the use of the new globally defined null coordinates.
These coordinates are regular everywhere as well as on
the horizon except at the singularity as we will see briefly
in Sec. II. There is a natural and uniquely defined “in”-
vacuum for the scalar field in this background.1 We work
out the renormalized stress-energy tensor for this scalar
field in Sec. IVand look at the observables—energy density
and flux—measured by the static observers and radially
in-falling observers for different cases in Sec. V before
concluding in Sec. VI.
As a side note we would like to mention the ongoing

debate concerning the firewalls at the horizon. AMPS [21]
have suggested the presence of a “firewall” at the horizon
according to principle of information conservation and
various quantum constraints. But some others (see [6,22]
for example) claim that the in-falling observer should not
detect anything near the horizon on the basis that the
Hawking effect reduces to the Unruh effect in the near
horizon limit. It would help to know what is happening
for the in-falling observers near the horizon at least
semiclassically.

II. THE GRAVITATIONAL
COLLAPSE GEOMETRY

For simplicity, we shall work with a collapsing, thin-null
shell since the results in any realistic collapse are similar as
far as the structure is concerned. We thus have a collapsing
null thin-shell separating the spacetime into two regions:
the Minkowski interior and a Schwarzschild exterior.
The metric for this case can be expressed in Eddington-
Finkelstein advanced coordinates ðv; rÞ as

ds2 ¼ −
�
1 −

rs
r
ΘðvÞ

�
dv2 þ 2dvdrþ r2dΩ2; ð2Þ

where rs ¼ 2M defines the event horizon with the
surface gravity κ ¼ 1=2rs, the Heaviside function
ΘðvÞ separates the two regions-Minkowski andFIG. 1. The Kruskal diagram of the gravitationally collapsing

body showing two rays near the horizon—inside and outside.
While the outside one goes off to asymptotic infinity and gives
the standard Hawking effect, the inside one hits the singularity in
a finite time. As the outside ray gives rise to the standard
Hawking effect at infinity, one can ask about the effects of the
inside ray.

1It is to be noted that this is in contrast to working in the
Kruskal extension of the Schwarzschild metric, where different
vacua need to be defined according to the different boundary
conditions (see for example [18–20]). We believe that the in-
vacum is more natural to work with in the collapse geometry.
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Schwarzschild mentioned above and dΩ2 ¼ dθ2 þ
sin2θdφ2 is the standard angular part. It is however
convenient to introduce globally defined null coordi-
nates ðvþ; v−Þ for the ðv; rÞ sector of the spacetime as
follows: For each event x (see Fig. 2), we can have
two null rays—one incoming from J − which labels it
vþ and another outgoing which we can track back to
J − after reflecting off the origin in the past r ¼ 0,
which is the vertical line, labeling it v−, which naturally
makes vþ ≥ v−. This coordinate construction is regular
everywhere except at the singularity and is generic
irrespective of the nature of collapse. The mapping
ðv; rÞ↦ðvþ; v−Þ for the Vaidya metric [Eq. (2)] is
straightforward (the details can be found in [17]) giving
vþ ¼ v and

v−ðv; rÞ ¼
�
v − 2r for v < 0

−2rs½1þWðδeδ−κvÞ� for v < 0;
ð3Þ

where δ≡ r=rs − 1 and WðzÞ is the Lambert W func-
tion. Since WðzÞ ∼ z as z → 0, we have the equation of
the event horizon as v− ¼ −2rs. With the above map-
ping of coordinates we can express the metric in Eq. (2)
in a more pertinent form,

ds2 ¼ −Cðvþ; v−Þdvþdv− þ r2dΩ2; ð4Þ

where Cðvþ; v−Þ is the conformal factor of the (1þ 1)
sector given by

Cðvþ; v−Þ ¼ 1þ
�
−1þ a − 1

a
Wð−ae−aþκvþÞ

1þWð−ae−aþκvþÞ

�
ΘðvþÞ

ð5Þ

with a≡ 1þ κv−.

III. INTRODUCING THE SCALAR FIELD

We consider minimally coupled massless scalar field
on the background in Eq. (4). It is well known that the
dominant contribution to the Hawking effect comes from
the s-waves (l ¼ 0 part of the spherical wave expansion).
This reduces the dynamics to effectively (1þ 1) dimen-
sions and the solution to the field equation can be written
down as

ϕðxÞ
r

∼ lim
r→∞

ϕðvþ; rÞ − ϕðv−; rÞ
r

: ð6Þ

The physical interpretation of the ðvþ; v−Þ coordinates is
also tied to this eikonal approximation. The field at a
given point x is given as a superposition of two
spherical waves originating from past null infinity: a
convergent wave arriving directly from vþ and a
divergent wave arriving from v− after a reflection off
the origin. The vacuum for this field is defined naturally
and uniquely at J − and hence the name “in-vacuum.”
Reduced to two dimensions, the dynamics gets coded in
the conformal factor and we shall now move on to the
calculation of renormalized stress-energy tensor for this
scalar field.

IV. RENORMALIZED STRESS-ENERGY
TENSOR

We follow the standard procedure (see [23,24] for
details) for evaluating the stress-energy tensor for a scalar
field in the conformal metric which gives the components
in terms of the conformal factor as

hT̂þþi ¼ −
1

12π
C1=2∂2þC−1=2

hT̂−−i ¼ −
1

12π
C1=2∂2

−C−1=2

hT̂þ−i ¼
1

96π
∂þ∂− lnC; ð7Þ

where we have employed the notation � as shorthand for
coordinates v�, respectively. Given the conformal factor in
Eq. (5), we have the following list of derivatives,

FIG. 2 (color online). Penrose diagram for the Vaidya space-
time with two regions—Minkowski (interior) and Schwarzschild
(exterior)—separated by null thin-shell (dashed) at v ¼ 0. The
dotted line denotes the event horizon H. Any event x on the
spacetime can be labeled by two globally defined null coordinates
ðvþ; v−Þ, which correspond to a null ray coming directly from J −

and a null ray traced back in the past to the vertical line (r ¼ 0)
and then reflected off to J −, respectively.
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∂þC ¼
�
−1þ a − 1

a
W

1þW

�
δðvþÞ þ

�a − 1

a

� κW
ð1þWÞ3Θðv

þÞ

∂2þC ¼
�
−1þ a − 1

a
W

1þW

�
δ0ðvþÞ þ 2κ

�a − 1

a

� W
ð1þWÞ3 δðv

þÞ þ
�a − 1

a

� κ2Wð1 − 2WÞ
ð1þWÞ5 ΘðvþÞ

∂−C ¼ 1

a2
W

1þW

�
1 −

� a − 1

1þW

�2�
κΘðvþÞ

∂2
−C ¼

�
−

2

a3
W

1þW
−
a − 1

a3
W

ð1þWÞ3 þ
�a − 1

a

�3Wð1 − 2WÞ
ð1þWÞ5 −

ða − 1Þ
a3

2W
ð1þWÞ3

�
κ2ΘðvþÞ

∂2þ−C ¼
� 1
a2

W
1þW

−
�a − 1

a

�2 W
ð1þWÞ3

�
κδðvþÞ −

� 1
a2

W
ð1þWÞ3 −

�a − 1

a

�2Wð1 − 2WÞ
ð1þWÞ5

�
κ2ΘðvþÞ;

where again note that a¼1þκv− andW¼Wð−ae−aþκvþÞ.
Though these expressions seem complicated in the com-
plete forms, they are simple if confined to individual
regions. We observe that for vþ < 0 all the components
of stress-energy tensor vanish as they should being in the
Minkowski region. Then there is a discontinuity at vþ ¼ 0
due to the discontinuity in the metric itself and we have
factors of δðvþÞ which contribute only at vþ ¼ 0. For
vþ > 0, the components of the stress-energy tensor are
simply

hT̂−−i ¼ κ2
ð1þ 4WÞð1þ δÞ4 − ð1þWÞ4ð1þ 4δÞ

48πð1þWÞ2W2ð1þ δÞ4

hT̂þþi ¼ −
κ2

48π

1þ 4δ

ð1þ δÞ4

hT̂þ−i ¼
κ2

12π

1þW
W

δ

ð1þ δÞ4 ð8Þ

in terms of δ using Eq. (3) with W ¼ Wðδeδ−κvþÞ. This is
for future convenience since we need to look at observables
at different radii concerning relevant observers.

V. ENERGY DENSITY AND FLUXES

Knowing the stress-energy tensor, we can construct
the local observables, energy density and flux, following
reference [7,25]. Let ua be the four-velocity (or two-
velocity in our case) of an observer and nb be a normal
such that uana ¼ 0. Then we have,

U ≡ hT̂abiuaub
F≡ −hT̂abiuanb ð9Þ

as the local energy density and flux perceived (in the
direction given by na), respectively, by that particular
observer at any point along its world line. We shall now
consider these quantities for the static observers and free
radially in-falling observers for various trajectories of the
type as shown in Fig. 3.

A. Static observers

Consider an observer at rest in the Minkowski region
specified by a constant radial position, r > rs. The observer
can stay put at that radius till the shell hits it at vþ ¼ 0.
After this point, the observer has to fire rockets or
accelerate in order to be stationary at the that fixed radius.
The velocity components are then,

_vþ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

δ

r

_v− ¼ Wðδeδ−κvþÞ
1þWðδeδ−κvþÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

δ

r
ð10Þ

for a given δ and the components of the normal with
na _va ¼ 0 are

nþ ¼ _vþ; n− ¼ − _v− ð11Þ
which can easily be verified to be the outward radial normal.
Then, for vþ > 0, the energy density and flux can be

FIG. 3 (color online). The trajectories of Static observer (cyan)
and a radially in-falling observer who diverts from the static path
at some time after vþ > 0 (orange).
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computed using Eq. (9) for static trajectories as a function of
vþ which is proportional to the proper time along them and
are plotted in Fig. 4. (An analysis on similar lines concerning
radiation from collapsing shells for observers outside the
horizon was also done in [25]). The energy density and flux
show similar behavior for static trajectories at large radii. The
onset begins from positive values and grows in a very slow
linear way and then makes a sharp transition and saturates
thereon. This can be tracked to the behavior of Lambert
W-function, so that the sharp transition occurs when the
argument of Wðδeδ−κvþÞ is close to unity, that is, when
vþ ∼ ðδþ log δÞ=κ, for δ > 1. For δ < 1, the transition time
is given by vþ ∼ δ. This shows that the thermalizing time is
very small near the horizon where δ → 0. The analytical
expressions for the saturating value can be obtained in the
late-time (vþ) limit when Wðδeδ−κvþÞ ∼ δeδ−κv

þ
giving

U ¼ πT2
H

12

�
1 −

2r4s
r4

��
1 −

rs
r

�
−1 ð12aÞ

F ¼ πT2
H

12

�
1 −

rs
r

�
−1
: ð12bÞ

These expressions reduce to the Hawking energy density
and flux for the asymptotic observers with r → ∞ and
otherwise the temperature is given by the Tolman blueshift
factor. This factor diverges as one nears r ¼ rs. As seen in

Fig. 4, the energy density U (at late-times) as a function
of r shows a growth to the maximum positive value as r
decreases to 1.63rs ≈ 3.25M after which it decreases
with r, vanishing at r ≈ 1.18rs ¼ 2.38M and then becomes
negative, subsequently diverging at r ¼ rs ¼ 2M implying
that there is a negative energy density region outside and
near the horizon for static observers. The flux on the other
hand is positive throughout and diverges at the horizon.
Since the energy density is negative in the near- horizon
region, it is better to interpret the flux in the same region
as ingoing negative energy flux than a positive outgoing
one. We shall now consider the case of radially in-falling
(geodesic) observers.

B. Radially In-falling observer

An in-falling observer in Schwarzschild metric is char-
acterized by their energy, E or initial radius, ri from which
the free-fall begins. These two are related by

E ¼
�
1 −

rs
ri

�
1=2

: ð13Þ

Using the geodesic equation, we find the components
of the velocity for the ingoing observer as

_vþ ¼ E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − δ=1þ δ

p
δ=1þ δ

ð14Þ
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FIG. 4 (color online). The figures show energy densities, U and fluxes, F perceived by a static observers specified by their radial
positions along their trajectory as a function of vþ which is proportional to the proper time. BothU and F are normalized to their value at
infinity, πT2

H=12 and we have taken M ¼ 1 so that rs ¼ 2 in our case. The energy density and flux show similar behavior of growing
slowly early on and later making a transition to saturated thermal state for larger radii but as we near rs the differences come in. The
energy density can be negative for region below certain radius (see text for details). Then we have the late-time energy density and flux
for static observers as a function of r showing that the energy density increases with decreasing r to a maxima, then decreases thereon
becoming negative at a point and diverging at r ¼ rs. The flux on the other hand is positive throughout increasing with decreasing r and
diverging at r ¼ rs.
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_v− ¼ Wðδeδ−κvþÞ
1þWðδeδ−κvþÞ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − δ=1þ δ

p
δ=1þ δ

; ð15Þ

and the components of the normal given by na _va ¼ 0 are

nþ ¼ _vþ; n− ¼ −_v−: ð16Þ
The sign of the normal is chosen such that the flux is
positive at the start of infall matching with the observer who
is on a static trajectory at r ¼ ri. We also need the evolution
of vþ. To match with the static observer, we note by
integrating the first equation of Eq. (10) that

vþðηÞ ¼ τið1þ ηÞ
�
1þ δi
δi

�
1=2

¼ τi
E
ð1þ ηÞ; ð17Þ

where we have introduced a parameter η such that vþð0Þ ¼
vþi ¼ τi=E. The parameter η is proportional to proper time
τ on the static trajectory. For the infall, the solution of
geodesic equations is given by,

r ¼ ri
2
ð1þ cos ηÞ

τ ¼ τi þ
ri
2

ffiffiffiffi
ri
rs

r
ðηþ sin ηÞ ð18Þ

with 0 ≤ η ≤ π such that rðτiÞ ¼ rðη ¼ 0Þ ¼ ri. The first
equation in the above set can be inverted to get

η ¼ cos−1
�
2r
ri

− 1

�
; ð19Þ

which is useful whenever we need everything as a function
of r. Using the second equation we have

dτ
dη

¼ ri
2

ffiffiffiffi
ri
rs

r
ð1þ cos ηÞ; ð20Þ

which with the first equations of Eq. (18) and Eq. (14),
gives

dvþ

dη
¼ ri cos η=2

ffiffiffiffiffiffiffiffiffiffi
ri=rs

p ð1 − rs=riÞ1=2 cos η=2 − sin η=2
1 − rs=risec2η=2

ð21Þ

that can be integrated to get vþðηÞ for η ≥ 0. Thus we have,

vþðηÞ ¼ vþi þ fðηÞ − fð0Þ ð22Þ

where fðηÞ symbolically represents the integral of Eq. (21).
The energy density and flux are then given by using the
definition in Eq. (9) as Uðη; ri; τiÞ and Fðη; ri; τiÞ or as
function of r by using Eq. (19) to replace η. We give the
complete expressions for these quantities in Appendix A.
The two plots in the first column in Fig. 5 show U and F as
functions of η for ri ¼ 40rs with M ¼ 1 so that rs ¼ 2
normalized by πT2

H=12. For η ≤ 0, both the observables
match with those of the static observer at ri which are
thermalized to the values shifted by the Tolman factor.
From then on, both the energy density and flux show a
steady growth but remain finite even at the horizon crossing
when ηH ≈ 2.824 and diverge as the singularity is

ri  = 40 rs
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FIG. 5 (color online). The plots show Energy density (U) and Flux (F) perceived by a radially in-falling observer normalized by
πT2

H=12 and with M ¼ 1 so that rs ¼ 2. The first column gives both U and F as a function of parameter η along the trajectory with the
in-fall beginning at ri ¼ 40rs. The second column compares U and F for the in-falling observer from ri ¼ 20rs with those observed by
the thermal static observers at different radii. The last column shows U and F for in-fall beginning close to the horizon at ri ¼ 1.03rs.
(See text for description).
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approached. We next compare the energy density and flux
measured at different radii by the static observers at those
locations and the radially in-falling observer. This time the
plots are for the in-fall that begins at ri ¼ 20rs. Observe
that both energy density and the flux grow steadily and are
positive for the in-falling observer and are larger than what
the corresponding static observers at different radii perceive
except near the horizon, where the static U and F diverge.
For the in-falling observer both the observables are regular
and finite during the transition through the horizon and
diverge subsequently at the eventual singularity. In the third
column, we have U and F for an in-fall that begins close
to the horizon for ri ¼ 1.03rs. In this case, we see that the
energy density is negative (matching with the static case)
early on, vanishes at the horizon and becomes positive after
that, diverging at the singularity subsequently. The flux is
positive early on and unusually shows a dip and then the
usual growth pattern. The analytical expressions for the
energy density and flux at horizon crossing can be obtained
easily as

UH ¼ πT2
H

�
2

3
−

1

48E2
þ 2E2

�

FH ¼ πT2
H

�
1

48E2
þ 2E2

�
ð23Þ

in the late-time limit so that the factors of expð−2κvþÞ drop
away. For E ¼ 1, UH ≈ 32U∞ and FH ≈ 24F∞. As is seen
in reference [17], the detectors on such a trajectory measure
an “effective” temperature of T ≈ 4TH near the horizon (in
the UV limit) but in a strict nonadiabatic regime. Thus, the
temperature, if at all inferred from this flux when normal-
ized to the flux at infinity, does not match the one with the
detector calculation. We compare the energy density and
flux at the horizon crossing plotting these expressions in
Fig. 6 with the initial radius ri which is connected to energy
E by Eq. (13) characterizing the trajectory. Both the
observables are regular except for the in-falls that begin

very close to the horizon. The energy density at the horizon
crossing vanishes for the in-fall beginning at ri ¼ 1.03rs,
goes negative for the any in-fall that begins with ri below
that and diverges for the in-fall beginning at the horizon.
The flux is positive for all ri and also diverges for the in-fall
beginning at the horizon. This is not too unusual since even
for the static observer we have seen the same effect and
any in-falling observer would thermalize quickly near the
horizon to the value of the static observer. The regularity of
the flux while near the horizon for the in-falling observer
with respect to the static observer is also shown in the
second plot of Fig. 6. In the log - log plot, we see that the
ratio Fstatic=Fin-fall is unity initially. It then decreases with
decreasing radius since Fin-fall is greater than Fstatic till
the near-horizon region, where it switches trend diverging
at the horizon subsequently due to nonregularity of the
static flux.

VI. SUMMARY AND DISCUSSION

The thin null-shell gravitational collapse scenario can
be studied unambiguously using the globally defined null
coordinates defined in [17]. This is in contrast with the
Kruskal extension of Schwarzschild metric, where different
vacuum states are defined for different boundary conditions
to mimic the collapse. In that case, we have viz., (i) the
Kruskal or the Hartle-Hawking vacuum state which is
defined for the eternal black hole with respect to the global
Kruskal coordinates and is symmetric under time reversal,
thus describing a steady-state thermal equilibrium between
the black hole and its surroundings, (ii) the Boulware
vacuum state defined with respect to the Schwarzschild
time and which reduces to the Minkowski vacuum state at
large distance from the black hole, thus having no particles
from the point of view of the far-away observer (similar to
the Rindler vacuum) and (iii) the Unruh vacuum which is
constructed to be time-asymmetric to reproduce the effects
of a collapsing body yielding a time-asymmetric thermal
flux from the black hole rather than a thermal bath. In this

UH

FH
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104
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FIG. 6 (color online). The first plot shows the energy density (U) and flux (F) perceived by a radially in-falling observer at horizon
crossing as a function of the initial radius of the in-fall. Next, we plot the ratio of the flux seen by a static observer at different radii to the
flux seen by a radial in-faller.
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picture, however, with the globally defined null coordi-
nates, the vacuum is the uniquely defined in-vacuum in the
past on J − for the scalar field which we feel is more
advantageous.The authors in reference [17] use the adiabatic
expansion of detector response yielding the concept of an
“effective” temperature to study the Hawking phenomenon
for various geodesic observers and also give the flux
observed by an in-falling observer near the horizon.
Building up on those lines we have considered the two
local invariant quantities—energy densities and fluxes con-
structed from the renormalized stress-energy tensor and
the four-velocity of an observer and its normal. The depend-
ence on kinematics gives rise to very different perceptions
of these two quantities given the parameters characterizing
each trajectory in the spacetime. These quantities have been
studied in the literature (for example see [7] andAppendixD
of [24]) for the case of either an asymptotic observer who
perceives the standard Hawking flux or for a radial in-faller
from infinity and that too in the Unruh vacuum construction.
It is important to note that no account of what is measured by
the nonasymptotic observers other than these has been
accounted for before with regard to the more natural in-
vacuum state.
For instance, for the static observers indicated by the

their radius, the expressions for energy density and flux
show quite some changes as the null shell collapses.
Initially observed energy density and flux is zero with
observer being in the Minkowski interior. It then shows a
discontinuity when the null shell arrives which is quite
understandable and then grows steadily entering the tran-
sient phase given by the thermalizing time which is
different for different radii and reaches a saturated value
which corresponds to the standard Tolman-shifted result in
the Unruh vacuum for the static observers. The energy
density for static observers also shows another feature that
there is a negative energy region around near the horizon
for which we have negative ingoing flux. Further the
energy density diverges to the negative infinity at the
horizon for the static observers while the flux diverges
to the positive infinity. This is quite well known and related
to the infinite acceleration of the static observers at the
horizon.
We have next considered the radially in-falling observers

marked by the energy per unit rest mass or the initial radius
and the proper time at which the in-fall begins. We have
explicitly calculated the energy density and flux as mea-
sured by this radially in-falling observer along its trajectory.
It is observed that both energy density and flux are positive
for these observers for larger initial radius matching
initially with the static trajectory from which the in-falling
observer diverts. But for an in-fall starting near the horizon
the energy density can be negative to begin with. Both the

observables are regular and finite for all in-falling observers
except if the in-fall begins at the horizon. This is the case
since any observer before in-falling would be thermalized
to the static results and we see that the thermalizing time
near the horizon is very quick. So except for this case, our
answer to the question, “What do the in-falling observers
measure at the horizon?” is that they measure finite energy
density and flux. However, the ratio of flux seen by an
observer falling from far off to that of the static observers is
extremely small near the horizon. Both the quantities—
energy density and flux—diverge at the singularity as the
in-fall progresses inside the horizon. This feature of energy
density and flux near the singularity is important for
considering backreaction on the geometry and is a work
in progress which we shall address separately.
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APPENDIX: COMPLETE EXPRESSIONS
FOR SOME QUANTITIES

Below we give the complete expressions for the energy
density and flux for a radially in-falling observer with
W ¼ Wðδeδ−κvþÞ:

F ¼ πT2
H

12

"
−4ð1þ 4δÞE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

δ

1þ δ

r

þð1þ 4WÞð1þ δÞ4
ð1þWÞ4

 
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

δ

1þ δ

r !#
1

δ2ð1þ δÞ2

ðA1Þ

U ¼ κ2

48π

"
1þ 4W
ð1þWÞ4

ð1þ δÞ2
δ2

×

 
2E2 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

δ

1þ δ

r
−

δ

1þ δ
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