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We revisit the gravitational collapse of spherically symmetric Lemaître-Tolman-Bondi dust models.
A sufficient condition for global visibility of singularity is given. This condition also allows us to extend
the condition of local visibility to mass functions which are not Taylor expandable near the center.
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I. INTRODUCTION

The gravitational collapse of a spherically symmetric
ball of dust given by Oppenheimer and Snyder (OS) gives
the most transparent demonstration of the formation of
black holes in general relativity [1]. The key idea of an
event horizon hiding the singularity at the center of a
collapsing star is elucidated by infinite redshift of the
signals from its boundary as seen by an asymptotic
observer, far away from the boundary. Thus, an event
horizon provides a protection from a singularity. However,
a singularity does raise an important question about
viability of the general theory of relativity, and covering
it by a horizon only reduces it to a minor embarrassment for
the theory. Earlier, singularities were seen as an artefact of
underlying symmetry of the collapsing scenario, as the
collapsing dust particles were aimed at the center. It was
believed that any departure from spherical symmetry would
make singularities disappear. However, two major develop-
ments in the 1960’s changed our perception on singular-
ities. First, the observation of cosmic microwave
background which strongly supported the idea that the
Universe had a singular beginning, and second a series of
theorems by Hawking and Penrose indicating that singu-
larities can occur under very generic conditions both in
cosmology and gravitational collapse of stars [2]. This
essentially meant that singularities could not be swept
under a carpet (event horizon) but, in a way, should be
stitched to it.
In the late 1960’s, the OS model led to black hole

formation as the “establishment viewpoint” in classical
general relativity, if the remnant mass of the collapsing star
was more than a few solar masses [3]. However, with the
proof of singularity theorems there was an increasing need
to protect general relativity, an otherwise very successful
classical theory, from such a catastrophic consequence.
Most of these attempts led to various conjectures shielding
the singularity. Two of the most widely discussed proposals

were the cosmic censorship conjecture by Penrose [4], and
the Hoop conjecture by Thorne [5]. To date both remain
unproven, and the cosmic censorship conjecture is consid-
ered to be one of the most important unsolved problems in
classical general relativity (see [6] for reviews).
With progress in our understanding of solutions to

Einstein equations the evidence against cosmic censorship
has only mounted. Nevertheless most of these counter-
examples have been limited to spacetimes with assump-
tions on underlying symmetry (spherical/cylindrical) and
choice matter models (dust/directed radiation/perfect flu-
ids, etc.) [7–14]. With the advent of string/M theory as the
best candidate theory for quantum gravity it is considered
likely that in late stages of collapse we have higher order
curvature corrections to Einstein equations. However,
several studies initiated in this area have been unable to
restore censorship [15–17].
The analysis of singularities in almost all the cases

mentioned above has been limited to radial null geodesics
in the neighborhood of singularity. This violates only the
so-called weak censorship conjecture. The case of astro-
physical interest would be a violation of strong censorship
which requires the singular geodesic to reach the boundary
of the collapsing cloud without getting trapped. This can
allow for a possibility to model extreme high energy
phenomenon (e.g., gamma ray bursts) on naked singular-
ities. In this paper we derive a sufficient condition for the
existence of a globally visible singularity forming in dust
collapse.
In the next section we give a brief overview of margin-

ally bound dust models. This is followed by a section on
causal structure of singularity arising in gravitational
collapse. The main results are summarized in the section
on local and global visibility of singularity. We end with a
section on discussion and concluding remarks.

II. THE MODEL

The well-known Lemaître-Tolman-Bondi (LTB) space-
time [18] is a spherically symmetric solution of Einstein
field equations with metric of the form

*sanjay.jhingan@gmail.com
†sahal.kaushik@gmail.com

PHYSICAL REVIEW D 90, 024009 (2014)

1550-7998=2014=90(2)=024009(8) 024009-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.024009
http://dx.doi.org/10.1103/PhysRevD.90.024009
http://dx.doi.org/10.1103/PhysRevD.90.024009
http://dx.doi.org/10.1103/PhysRevD.90.024009


ds2 ¼ −dt2 þ ðR0Þ2
1þ fðrÞ dr

2 þ R2ðdθ2 þ sin2 θdϕ2Þ: ð1Þ

It is sourced by an energy-momentum tensor in the form
of a pressure-free perfect fluid (equation of state p ¼ 0),
given by

Tμν ¼ ϵδμt δ
ν
t : ð2Þ

Here, energy density ϵ, and area coordinate R are functions
of r and t. As a reasonability condition on the energy-
momentum tensor in GR we impose some energy condition
on initial data. We impose a weak energy condition which,
in case of dust, restricts energy density to positive values.
The underlying symmetry of spacetime allows us to define
an invariant mass function 2m ¼ Rð1 − gμν∂μR∂νRÞ, giv-
ing the mass inside a sphere of radius R. The Einstein field
equations take a particularly simple form in terms of the
mass function:

ϵðr; tÞ ¼ m0

4πR2R0 ; ð3Þ

_R2 ¼ 2m
R

þ fðrÞ; ð4Þ

where superscripts “prime” and an “overdot” signify partial
derivatives with respect to r and t, respectively. The first
equation is the t; t component of the Einstein field
equations, and second is the definition of mass function
giving dynamics of the collapsing shells. Since dust
particles follow geodesics, the mass inside a shell is
conserved, hence mass function is a function of r only.
Note that the form of Eq. (2) allows us to interpret fðrÞ

as the total energy function. From the Eq. (4) describing
growth of energy density we see that there are both shell-
crossing ðR0 ¼ 0Þ, and shell-focusing ðR ¼ 0Þ singularities
in these models. The shell crossing singularities can be
easily avoided in these models by choosing appropriate
initial conditions, i.e., considering models with decreasing
density away from the center, and by not giving any
additional inward velocity to the outer shells. The first
condition is physically realistic as we expect stars to have
maximum density at the center. The marginally bound
scenario ensures the second condition as all shells start at
rest from infinity. Thus, we will be concerned with shell
focusing singularities here.
The LTB solution for the marginally bound case can be

written as

R
3
2 ¼ r

3
2 −

3

2

ffiffiffiffiffiffiffi
2m

p
t: ð5Þ

This is the integrated form of Eq. (4), and where we have
fixed the integration constant using scaling freedom
Rð0; rÞ ¼ r, i.e., on initial hypersurface we equate the

proper and the coordinate distance. In what follows we
shall analyze the marginally bound models [fðrÞ ¼ 0] only.

III. SINGULARITY AND HORIZONS

As discussed in the previous section, in dust spacetime,
the shell crossing singularities can be easily avoided by a
suitable choice of initial data. From Eq. (5), the singularity
curve describing a shell focusing singularity R ¼ 0, in
spacetime is

t0ðrÞ ¼
2r3=2

3
ffiffiffiffiffiffiffi
2m

p : ð6Þ

Since a physically reasonable density profile is a monotonic
decreasing function away from the center, the singularity
forms at the center first. Also, this restricts the spacetime
coordinates to values

0 ≤ r ≤ rc; −∞ < t < t0ðrÞ;
where rc is the boundary of the collapsing cloud.
The characteristic feature of a black hole is that it

represents a region of spacetime from where no information
(matter or energy) can escape. This phenomenon is a
consequence of the fact that propagation of light is influ-
enced by gravitational field. If the gravitational field of an
object is strong enough the light cannot escape eventually
falling back on it. This allows us to define a wavefront which
is moving outward yet decreasing in its area, a criterion for
light being trapped. More precisely can we define a trapped
surface as “a closed (compact without boundary) spacelike
2-surface which has the property that the null geodesics
which meet this surface orthogonally are all converging in its
neighborhood” [19].
The equation for outgoing radial null geodesics in the

marginally bound dust spacetime is

dt
dr

¼ ∂R
∂r : ð7Þ

Using the outgoing null geodesic equation we can derive
the following expression for a change in the proper distance
R as

dR
dr

¼
�
1 −

ffiffiffiffiffiffiffi
2m
R

r �
R0: ð8Þ

Since we are assuming no shell-crossings (R0 > 0) every-
where in the spacetime, dR=dr is either positive, negative,
or 0, when 2m < R, 2m > R, or 2m ¼ R, respectively.
Therefore, the surface defined by

R ¼ 2m ð9Þ
describes a locus of the turning points of outgoing radial
null geodesics. This is the equation for an apparent horizon.
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Thus, a second condition for a physically reasonable initial
data is the absence of trapped surfaces (2m < r) every-
where in the collapsing cloud.
It has been shown by several authors [7] that dust

collapse models lead to violation of cosmic censorship
conjecture. This revived a wide interest in the problem and
in past two decades we have seen censorship violation in
various collapse scenarios. Essentially, most of the ana-
lytical approaches in this area analyze null geodesics in the
neighborhood of the singularity. What is shown is that
depending on initial data we can have radial null geodesics
in the spacetime with their past end points at singularity.
Due to the vacuum exterior, the event and the apparent
horizons meet at the boundary. When traced backwards the
apparent horizon meets the singularity at the center.
However, tracing the event horizon requires integrating
the radial null geodesic equation. It is only in the homo-
geneous dust collapse model, studied by Oppenheimer and
Snyder [1], that one can draw the event horizon curve.
In what follows we give a brief review of results on

local visibility of singularities in dust collapse [10,20,21].
Consider outgoing radial null geodesics in the spacetime
(7). The geodesics with past end points at singularity t0ð0Þ,
take the following approximate form:

t ¼ t0ð0Þ þ Xrα; ð10Þ

near center. Here α and X are both positive for geodesics
to exist in the spacetime. Using solution (5) we expand R0
near the center, and evaluate dt=dr using Eq. (10) above.
Thus we can write null geodesic equation (7) near the
center where the left-hand side has unknown parameters X
and α and its right-hand side has initial data in terms of
mass (or energy density) expanded near r ∼ 0. Thus,
existence or otherwise of a naked singularity, which
requires positive definite values for X and α gets deter-
mined in terms of initial data. In marginally bound dust
collapse if the leading inhomogeneity term in the density
near the center is either linear or quadratic, the singularity is
always naked (locally) [21]. If it is cubic we can have both
black hole and naked singularity [21,22].

IV. LOCAL AND GLOBAL VISIBILITY

The role of apparent horizon in describing the final fate
of gravitational collapse and its relation to initial data in
dust spacetimes was shown in [22]. The analytical work in
this area has been limited to local analyses of geodesics
surrounding central singularity. An astrophysically inter-
esting scenario would be to have a globally visible
singularity [23]. Combining Eqs. (5), (6), and (9) we
can write

t0ðrÞ − tahðrÞ ¼
4

3
mðrÞ: ð11Þ

Since regular initial data ensures that mass should vanish at
the center, singularity curve and apparent horizon curve
meet there. The positivity of mass for any noncentral shell
(r > 0) ensures that all the noncentral points on the
singularity curve are safely trapped. Therefore, it is only
the central shell focusing singularity from where light may
escape getting trapped. In what follows we shall focus on
the central singularity (r ¼ 0).
In marginally bound dust collapse, initial data can be

specified in terms of local expansion of density near central
singularity (3),

ρðrÞ ¼ ϵðr; 0Þ ¼ ρ0 þ
1

n!
ρnrn þ � � � ¼ 1

4πr2
dm
dr

ð12Þ

and the corresponding mass function takes the form

mðrÞ ¼ m0r3 þmnrnþ3 þ � � � : ð13Þ

Here n ≥ 1 takes integral values. As far as local visibility is
concerned it is the first nonzero value of n which decides
the end state of collapse [8–11,21] (see [20] for a review).
If the first nonzero term near the center is n ¼ 1 or 2, the
singularity is always visible. At n ¼ 3 we can have a
transition from visible singularity to a black hole depending
on initial data (central density and inhomogeneity). For
n ≥ 4 the collapse always ends in a black hole. However,
the analysis provides a sufficient condition for the local
visibility of singularity as it is limited to conditions near
the center. In the remaining paper we have developed a
sufficient condition for the global visibility of singularity.
In what follows it is convenient to define an auxiliary

variable so that r ¼ rðfÞ. The equation of outgoing null
geodesics (7) can be rewritten as

dt
df

¼ ∂R
∂f : ð14Þ

Due to the absence of any pressure the dust particles
follow geodesics, and this conserves mass within a comov-
ing radius. Thus, instead of comoving distance r, we
can also use mass function mðrÞ as a coordinate. Let
fðrÞ ¼ ð9mðrÞ=2Þ13, be the definition of the auxiliary
variable. In terms of f the dust solution (5) can be rewritten
as

R
3
2 ¼ r

3
2 − tf

3
2: ð15Þ

This solution takes a particularly simple form in terms of
time of formation of singularity t0 ¼ ðr=fÞ32,

R ¼ fðt0 − tÞ23: ð16Þ

Further, defining ðt0 − tÞ ¼ u3, we can rewrite the radial
null geodesic equation (14) as
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du
df

¼ q
3u2

−
1

3
−
2qf
9u3

; ð17Þ

where ðdt0=dfÞ ¼ q. We make one final transformation:

v ¼ u
f
: ð18Þ

The radial null geodesics in ðv; fÞ coordinates take the
following form

dv
df

¼ 1

f

��
−v −

1

3

�
þ q
f2

�
1

3v2
−

2

9v3

��
: ð19Þ

The proper distance R, and the comoving coordinates
(t; r), have the following functional form in the new
coordinates ðv; fÞ,

R ¼ fu2 ¼ f3v2;

r ¼ Rðt ¼ 0Þ ¼ ft
2
3

0;

t ¼ t0 − u3 ¼ t0 − f3v3: ð20Þ

Since f ∝ m1=3, for small f, r is proportional to f and
increases with it. t decreases with v, but lines of constant v
are not lines of constant t,

∂t
∂f

����
v
¼ q − 3f2v3: ð21Þ

The singularity is at t ¼ t0, i.e.,

u ¼ fv ¼ 0: ð22Þ

This definition is crucial in distinguishing regular and
singular points along null geodesics. Along a radial null
geodesic, if v attains a finite value in the limit of approach
to center it implies the geodesic is singular; as f tends to
zero u approaches 0 (t → t0) and the singularity is
approached. On the other hand, v necessarily blows up
if the null geodesic approaches a regular center. In a special
case, when v is proportional to f−1, u approaches a nonzero
value, and a regular center is approached and v blows up.
The apparent horizon is at R ¼ 2m, i.e.,

v ¼ 2

3
: ð23Þ

Any region of spacetime where v > 2=3 is free of trapped
surfaces. If a geodesic crosses the apparent horizon it has to
fall back into the singularity, i.e., after crossing the apparent
horizon v remains bounded in interval ð0; 2=3Þ. Therefore,
for a singular null geodesic to escape to infinity, v has to
remain greater than 2=3 on it throughout the collapsing
cloud. In what follows we derive a sufficient condition on a
radial null geodesic for which v remains above 2=3 until the

boundary of the cloud, and it remains finite in the f ¼ 0
limit (i.e., it is singular). Existence of such a geodesic
ensures that singularity is globally visible.
From Eq. (19), if v > 2

3
,

dv
df

¼ 1

f

��
−v −

1

3

�
þ q
f2

�
1

3v2
−

2

9v3

��
> 0; ð24Þ

iff

q
f2

>
3v3ð3vþ 1Þ

3v − 2
: ð25Þ

The function ð3v3ð3vþ 1ÞÞ=ð3v − 2Þ has a local minimum
ð52þ 30

ffiffiffi
3

p Þ=9 at v ¼ ð1=3þ 1=
ffiffiffi
3

p Þ. It approaches ∞ as
v → 2=3, and as v → ∞. Thus, if q=f2 > ð52þ 30

ffiffiffi
3

p Þ=9
for all f, dv=df > 0 in an interval of v containing
ð1=3þ 1=

ffiffiffi
3

p Þ.
A null geodesic is characterized by parameters v and f.

Consider a point with finite values v > 2=3 and f on it. The
geodesic is now extended from this point in both directions.
If qðfÞ satisfies q

f2 >
1
9
ð52þ 30

ffiffiffi
3

p Þ for all f, the geodesic
cannot cross the line v ¼ 1=3þ 1=

ffiffiffi
3

p
again as dv=df > 0

on that line. Therefore, v approaches a finite value (2=3)
as f → 0, and it remains greater than 2=3 as f → ∞. This
geodesic starts from the singularity at the center, and
escapes boundary without getting trapped.
The sufficient condition for the global visibility of

singularity (25) can also be written as

dt0
dm

>
1

3
ð26þ 15

ffiffiffi
3

p
Þ ð26Þ

for all m. Alternatively, using Eq. (11) the global visibility
condition reads

dtah
dm

>
1

3
ð22þ 15

ffiffiffi
3

p
Þ ð27Þ

for all m.

V. SPECIAL CASES

In this section we provide some explicit examples of
globally visible singularities based on the condition derived
above (26).

A. Non-self-similar collapse

(i) ρ ¼ ρ0ð1 − rÞ: Consider a collapsing dust cloud
with central density ρ0, and comoving boundary
rb ¼ 1. Thus the interior region of the cloud is
characterized by a range 0 ≤ r ≤ 1. The mass as a
function of radius for this density profile is
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mðrÞ ¼ 4M

�
r3 −

3

4
r4
�

ð28Þ

Where M ¼ mð1Þ is the total mass. This mass profile
ensures regular mass function at the center. Another
regularity condition is the requirement of on trapped
surfaces on an initial hypersurface (2m=r < 1) re-
stricts total mass in the range 0 < M < 0.4746. From
Eq. (6), the singularity curve is

t0 ¼
2

3
ffiffiffiffiffiffiffi
2M

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3r

p ; ð29Þ

and

dt0
dm

¼ 1

12
ffiffiffi
2

p 1

M
3
2

1

r2ð1 − rÞð4 − 3rÞ32 : ð30Þ

The function r2ð1 − rÞð4 − 3rÞ32 goes to 0 as r goes
to 0 or 1, it has a maximum of 0.0618508 at
r ¼ 0.514191. Thus

dt0
dm

≥
1

8.3971
M−3

2; ð31Þ

and the sufficient condition for global visibility (26) is
satisfied if

M < 0.036149: ð32Þ

(ii) ρ ¼ ρ0ð1 − r2Þ: The mass function in this case
becomes

mðrÞ ¼ 5

2
M

�
r3 −

3

5
r5
�
: ð33Þ

The condition for absence of trapped surfaces on
initial hypersurface gives the following condition on
initial data, 0 < M < 0.48. The singularity curve for
this profile is

t0 ¼
2

3
ffiffiffiffiffi
M

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 3r2

p ; ð34Þ

and

dt0
dm

¼ 4

15

1

M
3
2

1

ð5 − 3r2Þ32rð1 − r2Þ : ð35Þ

The function rð1 − r2Þð5 − 3r2Þ32 goes to 0 as r goes
to 0 or 1, and has a maximum value 0.206295 at
r ¼ 0.403231. Thus,

dt0
dm

≥
1

8.64918
M−3

2; ð36Þ

and the sufficient condition for global visibility (26) is
satisfied if

M < 0.035443: ð37Þ

The global visibility of singularity for various values
of initial mass functions is shown in Fig. 1 below. We
start with some value v > 2=3 on the boundary on a
radial null geodesic Eq. (19) and integrate it toward
the center for different values of total mass of the
cloud. When the value of total mass violates the global
visibility condition (37), v blows up as we move
toward the center showing that such geodesics can
only originate from a regular center.

(iii) ρ ¼ ρ0ð1 − r3Þ: The mass function corresponding to
this density profile is

m ¼ Mð2r3 − r6Þ: ð38Þ

Absence of trapped surfaces on a regular initial
hypersurface gives the following bound on total mass
0 < M < 0.4835. The singularity curve and its deriva-
tive with respect to mass function is given by,
respectively,

t0 ¼
21=2

3

1

ð2 − r3Þ1=2 ; ð39Þ

and

dt0
dm

¼ 21=2

12

1

M
3
2

1

ð1 − r3Þð2 − r3Þ32 : ð40Þ

FIG. 1. Figure showing regular (dotted) and singular (bold)
curves, respectively for M ¼ 0.05; 0.02, and 0.01.
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This has a minimum at r ¼ 0. This is unlike the
previous two cases where the denominator had a
maximum value in the interval r ∈ ½0; 1�. Thus,

dt0
dm

≥
1

24
M−3

2 ð41Þ

and the condition (26) is satisfied if

M <
1

4
ð26 − 15

ffiffiffi
3

p
Þ23 ¼ 0.017949; ð42Þ

and a black hole forms if M > 0.017949.
First, this is the same condition as obtained by [21].
Assuming 2m ¼ r3ðF0 þ F3r3 þ…Þ the singularity
curve is given by:

t0 ¼
2

3

r
3
2ffiffiffiffiffiffiffi
2m

p ¼ 2

3
ffiffiffiffiffiffi
F0

p −
2

3

F3

F
5
2

0

mþ � � � :

At m ¼ 0,

dt0
dm

����
m¼0

¼ 2

3

−F3

F
5
2

0

:

So the condition for local visibility in the n ¼ 3 case is

dt0
dm

����
m¼0

>
1

3
ð26þ 15

ffiffiffi
3

p
Þ;

i.e.,

−F3

F
5
2

0

>
1

2
ð26þ 15

ffiffiffi
3

p
Þ ¼ 25.9904:

For the ρð1 − r3Þ profile, dt0=dm has a minimum
at m ¼ 0. If the singularity is locally visible,
dt0
dm > 1

3
ð26þ 15

ffiffiffi
3

p Þ, this condition holds for all m,
and the singularity is also globally visible.
Therefore, in this case, we have either a black hole or a
globally naked singularity, there is no mass such that
the singularity is locally but not globally naked. The
special nature of this profile comes out in the plot of
null geodesics. The singular geodesics in Fig. 2 meet
the central singularity with different values of v unlike
previous two cases where v ¼ 2=3 at the center on
singular geodesics.

B. Self-similar collapse

The assumption of self-similarity restricts mass function
to have a linear form

m ¼ κr: ð43Þ

Here κ > 0, and r ¼ 1 characterizes boundary of the cloud.
The condition for absence of trapped surfaces (2m=r < 1)
implies 0 < κ < 0.5. The singularity curve is

t0 ¼
2

3

rffiffiffiffiffi
2κ

p ; ð44Þ

and its derivative with respect to mass

dt0
dm

¼
ffiffiffi
2

p

3

1

κ
3
2

: ð45Þ

By Eq. (26) the singularity is globally naked if

κ < ð26 − 15
ffiffiffi
3

p
Þ2321

3 ¼ 0.090458: ð46Þ

A black hole forms if κ > 0.090458 [24]. In this case
also, our sufficient condition is also a necessary condition.
Moreover, the nature of singular geodesics, Fig. 3, is very
similar to the previous case where they met central
singularity with finite but different values of v.

C. A special case

The analysis of the local visibility of the singularity has
been limited to density functions which are Taylor expand-
able near the center. The visibility or otherwise of the
singularity is then shown to be related to the first nonzero
coefficient in the expansion of density near the center.
Clearly, during late stages of collapse, it difficult to justify
mathematical properties like smoothness of functions
which allows expansion inside the matter cloud. In what

FIG. 2. Figure showing a regular (dotted) and singular (bold)
curves, respectively, for M ¼ 0.019; 0.011; 0.008, and 0.005.

SANJAY JHINGAN AND SAHAL KAUSHIK PHYSICAL REVIEW D 90, 024009 (2014)

024009-6



follows we propose as an example a density profile which is
not Taylor expandable near the center. This function has a
reasonable behavior as density falls away from the center,
and mass function vanishes at the center.
Consider an initial density profile of the form

ρ ¼ ρ0ð1þ r ln r − rÞ:

In this distribution, the density cannot be expanded as a
Taylor series about the center. The corresponding mass
function takes a form

m ¼ Mð16r3 − 15r4 þ 12r4 ln rÞ: ð47Þ

And,

t0 ¼
2

3
ffiffiffiffiffiffiffi
2M

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 15rþ 12r ln r

p ; ð48Þ

dt0
dm

¼ 1

48
ffiffiffi
2

p 1

M
3
2

1 − 4 ln r

r2ð1þ r ln r − rÞð16 − 15rþ 12r ln rÞ32 ;

ð49Þ

dt0
dm

≥ 0.13777M−3
2: ð50Þ

Condition (26) is satisfied if

M < 0.039837: ð51Þ

A naked singularity forms if the radius of the cloud is less
than 12.55 times the Schwarzschild radius (see Fig. 4).

VI. DISCUSSION AND CONCLUSIONS

The cosmic censorship conjecture remains one of the
most important unsolved problem in classical general
relativity. The visibility of a singularity to an observer
falling onto a black hole after it crosses the horizon is
benign compared to singular geodesics escaping to far
away observers. Though such a violation of the censorship
conjecture should have serious consequences for physics, it
also allows us the possibility to model violent high energy
phenomenon in astrophysics using naked singularities.
Recently, Jhingan et al. [25] proposed a possibility to
quantify energy coming out from such singularities.
In this paper we have studied the collapse of spherically

symmetric dust models. These models have provided some
of the most serious counterexamples to the cosmic censor-
ship conjecture. The studies in dust models have been
focused on developing local nakedness criterion bases on
expansion of initial data near the center. This restricts the
analysis to a special class of initial data space, i.e.,
expandable near the center. The analysis of causal structure
has been limited to analyzing the apparent horizon curve.
Moreover, astrophysically interesting scenarios of globally
visible singularities have been limited to numerical studies
(see, for example, [23]).
To see the causal structure of a spacetime we need to

trace the null geodesics in it. However, this can be done
only in homogeneous dust models. In inhomogeneous

FIG. 3. Figure showing a regular (dotted) and singular (bold)
curves, respectively, for κ ¼ 0.1; 0.03; 0.02; 0.013, and 0.01.

FIG. 4. Figure showing a regular (dotted) and singular (bold)
curves, respectively, for M ¼ 0.1; 0.02; 0.01, and 0.005.
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models it is not possible to integrate null geodesics
analytically and our understanding is based on numerical
studies [23]. In this paper we have given a sufficient
criterion for existence of a globally naked singularity
(26). It is shown how the known examples of initial data
which lead to formation locally visible singularities can be
extended to global visible cases. This condition for global
visibility does not depend on the expansion of functions
near the center. Therefore, it allows us to probe end states
of gravitational collapse for a wider class of functions
representing initial data. It would be interesting to see if

this condition for global visibility can yield results in the
case of perfect fluid collapse where local analysis near
singularity relating initial data with visibility of singularity
is not known.
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