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We discuss the semiclassical limit of quantum reduced loop gravity, a recently proposed model to
address the quantum dynamics of the early Universe. We apply loop quantum gravity (LQG) techniques in
order to define the semiclassical states in the kinematical Hilbert space and we demonstrate that the
expectation value of the euclidean scalar constraint coincides with the classical expression, i.e., one of the
local Bianchi I dynamics. The result holds as a leading order expansion in the scale factors of the Universe
and opens the way to study the subleading corrections to the semiclassical dynamics. We outline how by
retaining a suitable finite coordinate length for holonomies that our effective Hamiltonian at the leading
order coincides with the one expected from loop quantum cosmology (LQC). This result is an important
step in fixing the correspondence between LQG and LQC.
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I. INTRODUCTION

A viable quantum gravity model must reduce to general
relativity (GR) in the proper semiclassical limit. Although
this is a quite natural requirement, it can nevertheless
be a far-from-trivial issue. This is the case also for the
approaches of loop quantum gravity (LQG) in its canonical
[1–3] or covariant formulation (spinfoam models) [4,5].
In fact, while going from the classical to the quantum realm
is a well-settled procedure; going back is much more
complicated since it involves the construction of a proper
semiclassical limit. The definition of semiclassical states
for a quantum theory of the geometry has been given in
[6,7] in the kinematical Hilbert space via the application of
the complexifier technique. At the end one can define states
peaked around a given set of classical holonomies and
fluxes, but these have to be tested against the dynamics.
This can be done looking at the graviton propagator in the
spinfoam setting [8–11] or looking at the expectation value
of the Hamiltonian [12] or the master constraint [13,14]
in canonical LQG. The difficulties with finding an analytic
expression for the scalar constraint matrix elements
[15–17] in the spin network basis forbid a direct compu-
tation of the dynamic behavior of semiclassical states. Only
the master constraint operator in the context of algebraic
quantum gravity [18] has been shown to converge to the
right classical expression in the semiclassical limit [19,20]
under the simplifying replacement of the gauge group
SUð2Þ with Uð1Þ3.
The situation is quite different in loop quantum

cosmology (LQC) [21,22], the standard cosmological

implementation of LQG (other cosmological models
related with LQG are given in [23,24], [25], and [26]). In
LQC, the quantization is performed in minisuperspace, i.e.,
after reducing the phase space according to the homo-
geneity requirement for Bianchi models. All the kinemati-
cal symmetries [SUð2Þ gauge symmetry and background
independence] are fixed on a classical level, such that
quantum states are described by quasiperiodic functions
of the three independent connection components ca. The
semiclassical states are naturally defined by peaking around
classical trajectories. The dynamic issue is greatly simpli-
fied and an analytic expression for the scalar constraint is
obtained. A crucial point is the regularization, which is
realized by fixing nonvanishing polymeric parameters, μ̄a,
such that the momenta operators have a discrete spectrum,
whose eigenvalues are ∝ μa. The expectation value of the
scalar constraint in the presence of a clock-like scalar field
reproduces the classical expression as soon as the energy
density of the field ρ ≫ ρcr, ρcr being a critical energy
density related with μ̄a. For ρ ∼ ρcr, quantum effects are not
negligible and they induce a bouncing scenario replacing
the initial singularity [27].
In [28] we proposed a new loop quantum model, namely

quantum reduced loop gravity (QRLG), in which the
dynamic issue is simplified with respect to the full theory
thanks to the restriction to a diagonal metric tensor (see also
[29,30] for a local Bianchi I space). The idea of QRLG is
to implement such a restriction directly in the kinematical
Hilbert space of LQG. This allows us to retain the basic
structure of the full theory, such as graphs and intertwiner
structures, but in a simplified framework. As a conse-
quence, the (reduced) graphs have only a cuboidal struc-
ture, while intertwiners are only complex numbers. In
the limit of the Belinski Lipschitz Kalatnikov (BKL)
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conjecture [31,32], the dynamics preserve the metric to be
diagonal and it locally coincides with those of the Bianchi I
model. The associated scalar constraint can be defined along
the lines developed in the full theory. The volume operator
turns out to be diagonal in the (reduced) spin network basis
and the matrix elements of the scalar constraint can be
analytically evaluated. The possibility to apply LQG tech-
niques in a computable model makes QRLG a tantalizing
subject of investigation.
In this work we investigate the semiclassical limit of

QRLG. We will outline how the construction of semi-
classical states can be done as in [6,7,33–36], the only
difference being that the sum over spin quantum numbers is
replaced by the one over the maximun/minimum magnetic
indices. Then we will explicitly evaluate the expectation
value of the nongraph changing Euclidean scalar constraint
on such states. We will carry on in detail all of the
calculations. By using the asymptotic expansion of the
Clebsch-Gordan coefficients entering the final expression,
we will compute the leading order contribution in the limit
of high spin quantum numbers. This way, we demonstrate
how at each node the expectation of the Euclidean scalar
constraint reproduces the analogous expression for the
Bianchi I model and, in the continuum limit, the corre-
sponding classical expression, i.e., local Bianchi I dynamics.
Hence, the semiclassical dynamics in QRLG coincide

with a local Bianchi I model. This means that the quantum
restriction we performed to simplify the dynamic problem
is well grounded, since the resulting quantum system
approaches, in the classical limit, GR within the proper
approximation scheme.
QRLG can thus be used to realize a viable quantum

description for the Universe, in which all the predictions of
the standard cosmological model are safe, while we can get
some hints on the fate of the initial singularity in LQG.
At the same time, even if in this work we investigate only

the leading order term in the semiclassical expansion, we
will set up all the techniques to evaluate the corrections,
which can provide nontrivial modification with respect to
the classical behavior. We want to stress how among such
corrections there are the ones related to the fundamental
SU(2) structure, which have no counterpart in LQC and
come from the next-to-leading order expansion of the 3j, 6j,
and 9j symbols entering the Euclidean scalar constraints.
The expectation value of the Hamiltonian equals the

anologous expression for the quantum Hamiltonian used in
LQC [37,38], the relevant difference being due to sublead-
ing corrections (to be computed in upcoming works) and
the explicit presence of the coordinate length in the semi-
classical expression, which plays the role of μ̄a. In our
analysis this parameter is not entering at all in the quantum
theory; it is only an artifact of the semiclassical construc-
tion the requires the use of kinematical states; it can be
removed with the same considerations that allow us to
remove it in the full theory. The final expression we find

opens the way to properly relate LQC and LQG (see also
[39,40]) and eventually address the role of the holonomic
and triad corrections to LQC [41,42].
The article is organized as follows: in Sec. II, LQG is

reviewed, focusing attention on the construction of semi-
classical states. In Sec. III, the framework of QRLG is
introduced, while semiclassical states are defined in Sec. IV
along the lines of the full theory. The action of the Euclidean
scalar constraint is evaluated on basis states based at dressed
nodes in Sec. V, such that we can compute the expectation
value of the scalar constraint on semiclassical states in
Sec. VI. Concluding remarks follow in Sec. VII.

II. LOOP QUANTUM GRAVITY

Gravity phase space in LQG is described by the holon-
omies of Ashtekar-Barbero connections, Ai

a, along curves
and the fluxes of inverse desensitized triads, Ei

a, across
surfaces. The corresponding kinematical Hilbert spaceH is
the direct sum over all of the graph Γ of the single Hilbert
spacesHΓ associated with each graph. The elements of GHΓ
are gauge-invariant functions of L copies of the SUð2Þ
group, L being the total number of links in Γ. Basis vectors
are given by the invariant spin networks

hhjΓ; fjlg; fxngi ¼
Y
n∈Γ

xn ·
Y
l

DjlðhlÞ; ð1Þ

DjlðhlÞ and xn beingWignermatrices in the representation jl
and invariant intertwiners, respectively, while the products
extend over all the nodes n in Γ and all the links l emanating
from n. The symbol · means the contraction between the
indices of intertwiners and Wigner matrices.
The fluxes EiðSÞ across a surface, S, realize a faithful

representation of the holonomy-flux algebra and they act
as left (right)-invariant vector fields of the SU(2) group. In
particular, given a surface, S, having a single intersection
with Γ in a point P ∈ l, such that l ¼ l1⋃l2 and l1∩l2 ¼ P,
the operator ÊiðSÞ is given by

ÊiðSÞDðjlÞðhlÞ ¼ 8πγl2Poðl; SÞDjlðhl1ÞτiDjlðhl2Þ; ð2Þ

γ and lP being the Immirzi parameter and the Planck length,
respectively, while oðl; SÞ is equal to 0; 1;−1 according to
the relative sign of l and the normal to S, and τi denotes the
SU(2) generator in the jl-dimensional representation.
Indeed, one still has to impose background independence

and this can be done in the dual space H� via s-knots,
which are an equivalence class of spin networks under
diffeomorphisms.
Finally, the last constraint to implement is the scalar one,

Ĥ, for which a regularized expression can be given in [12]
by a graph-dependent triangulation of the spatial manifold.
This triangulation, T, contains the tetrahedra Δ obtained by
considering all the incident links at a given node and all the
possible nodes of the graph Γ on which the operator acts.
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For each pair of links, li and lj, incident at a node, n,
of Γ we choose a semianalytic arc, aij, whose end points
sli ; slj are interior points of li and lj, respectively, and
aij∩Γ ¼ fsli ; sljg. The arc si (sj) is the segment of li (lj)
from n to sli (slj), while si, sj, and aij generate a triangle:

αij≔si∘aij∘s−1j . The Euclidean and Lorentian parts of the
scalar constraint can then be promoted to operators replacing
the classical holonomies and fluxes entering the regularized
expression with their quantum expression. In this process
one can fix an arbitrary representation ðmÞ for the holon-
omies contained in the regularized constraint. The final
expression for the Euclidean part is then

ĤE¼
X
Δ∈T

Ĥm
Δ ½N�≔

X
Δ∈T

NðnÞCðmÞϵijkTr½ĥðmÞ
αij ĥ

ðmÞ−1
sk ½ĥðmÞ

sk ;V̂��;

ð3Þ

V being the volume operator, and CðmÞ ¼ −i
8πγl2PN

2
m

denotes a normalization constant depending on the repre-
sentation ðmÞ chosen for the holonomy operators
where N2

m ¼ −dmmðmþ 1Þ.
The lattice spacing ϵ of the triangulation T (which here

acts as a regulator) can be removed in a suitable operator
topology in the space of s-knots.
Even though one can write formal solutions to the

constraint in terms of graphs based at dressed nodes
[2,12], these solutions are only formal since an analytical
expression for the matrix elements of the volume V, and
thus of the whole scalar constraint, is missing.
The same strategy can be adopted to build regulariza-

tions using different decompositions, for example, in terms
of cubulations, and can be extended to be graph changing
or not using loops to regularize the curvature that belongs
or does not belong to the underlying spin networks [2,19].

A. Semiclassical limit of LQG

The construction of semiclassical states in LQG is a very
nontrivial topic. One of the major difficulties is already
at the basic level since we are dealing with a constrained
system. In particular, one has at his disposal the kinemati-
cal, the gauge-invariant, the diffeomorphisms invariant, and
the physical Hilbert spaces and a common definition of
semiclassical states for all of them has not been found (see
the discussion in [2], chapter XI).
The currently available techniques allow us to treat only

nongraph changing operators using coherent states defined
at most in the gauge-invariant Hilbert space (the sum over
different graphs, which one must perform in the diffeo-
morphisms invariant Hilbert space, introduces intermediate
scales that must be kept under control in the continuum
limit [43,44]).
Hence, we review the construction of semiclassical states

on a fixed graph for nongraph changing dynamics, via the

application of the complexifier technique to a Hilbert space
made of functions of copies of the SU(2) group.
Let us consider a single link, l, and a dual surface, S, and

let us suppose that we want to peak around the classical
configuration, i.e., a holonomy h0 along l and a flux E0

i
across S. These two quantities can be combined to form the
complexifier H0:

H0 ¼ h0 exp
�

α

8πγl2P
E0
iτi

�
; ð4Þ

α being a parameter, which is an element of SLð2; CÞ, the
complexification of the original SUð2Þ group. Following
[34], a state, ψα

H0 ðhlÞ, peaked around such a classical
configuration can be constructed from the heat-kernel of
the Laplace-Beltrami operator Δhl applied to the δ-function
over the group elements hl, i.e.,

Kαðhl; h0Þ ¼ e−
α
2
Δhl δðhl; h0Þ; ð5Þ

and the explicit form reads

Kαðhl; h0Þ ¼
X
jl

ð2jl þ 1Þe−jlðjlþ1Þα
2 TrðDjlðh−1l h0ÞÞ: ð6Þ

The semiclassical state is obtained via analytic continuation
from h0 ∈ SUð2Þ to H0 ∈ SLð2; CÞ as follows:

ψα
H0 ðhlÞ ¼ Kαðhl; H0Þ: ð7Þ

These states are eigenfunctions of the operator Ĥl ¼
hl expð α

8πγl2P
EiðSÞτiÞ with the eigenvalue H0 and, just like

the usual coherent states in quantum mechanics, they are
peaked around hl ¼ h0 and EiðSÞ ¼ E0

i, while fluctuations
are controlled by the parameter α.
By repeating this construction for several copies of the

SUð2Þ group, one can define coherent states for a generic
graph, so finding

ΨH0;ΓðfhlgÞ ¼
Y
l∈Γ

ψα
H0 ðhlÞ: ð8Þ

The main difficulty is to reconcile such a construction with
SUð2Þ gauge invariance. In fact, the expression above
behaves as follows under an SU(2) transformation:

Ψ0
H0;ΓðfhlgÞ ¼

Y
l∈Γ

ψα
H0 ðgtlhlg−1sl Þ; ð9Þ

sl and tl being the source and target points of l. In order to
define gauge-invariant coherent states, one must average
Ψ0

H0;ΓðfhlgÞ over gsl and gtl for the links of the graph. The
resulting expression can be expanded in terms of invariant
spin networks. However, while by construction the gauge-
variant coherent state exhibit the right peakness properties,
this is not necessary the case for gauge-invariant ones.
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In fact, it has been verified only by explicit calculation that
gauge-invariant coherent states are proper semiclassical
states in GH [34].
We want to point out that working with a fixed graph

is a necessary step for further developments of the theory
(the imposition of the vector and scalar constraints in a
vacuum), because the extension to the diffeomorphism
invariant Hilbert space is made by constructing the rigging
map as the sum over the equivalence class of functionals
acting on the Hilbert space at a fixed graph, symmetrized
with respect to the graph-preserving diffeomorphisms [3].
Moreover, the analysis at a fixed graph is also relevant
for deparametrized models [45–47], where the kinematical
Hilbert space is promoted to be the physical one.

III. QUANTUM REDUCED LOOP GRAVITY

QRLG realizes the quantum reduction of the full LQG
kinematical Hilbert space down to a proper reduced space,
HR, capturing the relevant degrees of freedom of a system
with a diagonal metric tensor [28] (see also [29,30] for
early attempts restricted to the Bianchi I model). Such a
projection has been performed by
(1) the implementation of the partial gauge fixing

condition of diffeomorphism invariance restricted
to a diagonal metric tensor: this implies a truncation
of the admissible graphs to reduced graphs, which
are the union of some links that are parallel to one of
the three fiducial vectorsωi (we denote these links as
being of the kind li for some i);

(2) the implementation of an SUð2Þ gauge-fixing con-
dition: this is realized via the restriction to those
functions of the SUð2Þ group elements based at li
that are entirely determined by their restriction to
some functions of the Uð1Þi group elements. Such
Uð1Þi are the Uð1Þ subgroup obtained by stabilizing
the SUð2Þ group around the internal direction ~ui:

~u1¼ð1;0;0Þ; ~u2¼ð0;1;0Þ; ~u3¼ð0;0;1Þ: ð10Þ

These two steps affect the kind of symmetries we have
on a kinematical level. The former implies that full back-
ground independence is not realized. In fact, the only kind
of diffeomorphisms that survive after the truncation to
reduced graphs are those mapping reduced graphs among
themselves (and on a classical level preserving the
diagonal form of the metric). We call these transformations
reduced diffeomorphisms. As for the SUð2Þ gauge fixing,
it makes SUð2Þ gauge invariance not manifest anymore.
Nevertheless, since the Uð1Þi groups are not independent,
some reduced intertwiners arise as relics of the original
SUð2Þ gauge invariance.
Finally, the kinematical Hilbert space HR is the direct

sum over all the reduced graphs Γ of the ones based on a
single reduced graph, HR

Γ :

HR ¼ ⊕ΓHR
Γ : ð11Þ

A generic element, ψΓ ∈ HR
Γ , is a proper function of L1 þ

L2 þ L3 copies of the SUð2Þ group elements hl, Li being
the total number of the links of the kind li in Γ. Given a link,
l, let us denote by ul the internal direction corresponding to
it (if l is of the kind li, then ~ul ¼ ~ui); the functions of hl
group elements can be expandend in terms of the following
projected Wigner matrices:

lDjl
jljl

ðhlÞ ¼ hjl; ~uljDjðgÞjjl; ~uli;
lDjl

−jl−jlðhlÞ ¼ hjl;−~uljDjðgÞjjl;−~uli; ð12Þ

jj; ~uli and jj;−~uli being the basis of SUð2Þ irreducible
representations with the spin number j and the magnetic
components along the direction ~ul equal to j and −j,
respectively. We will denote them by lDjl

mlmlðhlÞ with
ml ¼ �jl. Here for the first time we will also consider
reduced states with minimum magnetic numbers. The
projected Wigner matrices are entirely determined by their
restriction to the Uð1Þi subgroup.
The whole basis state in the gauge-invariant reduced

space GHR is obtained by inserting at each node, n, the
reduced intertwiners hjl;xnjml; ~uli, which are constructed
from the SUð2Þ intertwiner basis xn. At the end, one gets

hhjΓ;ml;xni ¼
Y
n∈Γ

hjl;xnjml; ~uli
Y
l

lDjl
mlmlðhlÞ; ð13Þ

where
Q

n∈Γ and
Q

l extend over all the nodes n ∈ Γ
and over all the links l emanating from n, respectively.
Henceforth, each basis element is labeled by the reduced
graph Γ, with the spin quantum numbersml associated with
each link and the SUð2Þ intertwiners xn used to construct
the reduced ones (jl ¼ jmlj).
These basis states are not orthogonal with respect to xn,

since the scalar product is given by

hΓ;ml;xnjΓ0;m0
l;x

0
ni

¼ δΓ;Γ0
Y
n∈Γ

Y
l∈Γ

δml;m0
l
hml; ~uljjl;xnihjl;x0

njml; ~uli: ð14Þ

The reduced fluxes REi are defined only across the surfaces
Si dual to ωi and their action is nonvanishing only on those
states based at the links li, in which case it reads

RÊiðSiÞlDjl
mlmlðhlÞ ¼ 8πγl2Pml

lDjl
mlmlðhlÞ li∩Si ≠ ⊘:

ð15Þ

As a consequence the reduced volume operator is diagonal
in the basis (13). For instance, the volume of a region, ω,
containing the node n acts as follows on basis vectors based
at the links li emanating from n:
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RV̂ðωÞ
Y
l

hjl;xnjml; ~uli · lDjl
mlmlðhlÞ

¼ ð8πγl2PÞ3=2Vml

Y
l

hjl;xnjml; ~uli · lDjl
mlmlðhlÞ; ð16Þ

where

Vml
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
i

j
X
li

mli j
s

: ð17Þ

The sum inside the square root extends over the links of the
kind li emanating from n; thus, generically it is the sum of
two terms (based at the links incoming and outgoing in n).
The invariance under reduced diffeomorphisms can be

implemented on a quantum level according to standard
LQG techniques, i.e., by defining reduced s-knots:

hs; jl;xnjhi ¼
X
Γ∈s

hΓ; jl;xnjhi; ð18Þ

where the sum is over all the reduced graphs related by a
reduced diffeomorphism.
The scalar constraint can be implemented in GHR by

taking the expression of the full theory and substituting the
elements of the reduced Hilbert space as in [29]. This
procedure provides a quantumoperator acting in the reduced
Hilbert space describing a diagonal metric tensor. Hence, it
is well grounded only if the classical action of the scalar
constraint preserves the gauge condition on the metric
tensor. This is not generically the case, since after a finite
transformation generated by H the metric is diagonal only
modulo a diffeomorphism (which is not a reduced one). The
definition of themodified constraint preserving the diagonal
form of the metric and its quantization will be discussed
elsewhere. Here, we return back to the first application to
QRLG, the inhomogeneous extension of the Bianchi I
model, in which case the dynamics are entirely determined
by the reduced Euclidean scalar constraint, which preserves
the diagonal form of the metric.

A. Inhomogeneous extension of the Bianchi I model

The Bianchi I model is the anisotropic extension of the
flat Friedmann-Robertson-Walker space-time. The spatial
sections are still flat and the fiducial one’s forms, whose
dual ωi are Killing vectors, can be taken as ωi ¼ δiadxa, xa

being Cartesian coordinates. The line element reads

ds2I ¼ N2ðtÞdt2 − a21ðtÞdx1 ⊗ dx1

− a22ðtÞdx2 ⊗ dx2 − a23ðtÞdx3 ⊗ dx3; ð19Þ
N ¼ NðtÞ being the lapse function, while ai ði ¼ 1; 2; 3Þ
denotes the three scale factors, all depending on the time
variable only.
We considers the following inhomogeneous extension of

the line element (19):

ds2I ¼ N2ðx; tÞdt2 − a21ðt; xÞdx1 ⊗ dx1

− a22ðt; xÞdx2 ⊗ dx2 − a23ðt; xÞdx3 ⊗ dx3; ð20Þ

in which each scale factor ai is a function of time and of the
spatial coordinates. By fixing the group of internal rotations
[48,49], the desensitized inverse 3-bein vectors can be
taken as

Ea
i ¼ piðt; xÞδai ; pi ¼ a1a2a3

ai
; ð21Þ

where the index i is not summed. In the following, repeated
indices will not be summed. As for Ashtekar connections,
we get a similar expression, i.e.,

Ai
aðt; xÞ ¼ ciðt; xÞδia; ciðt; xÞ ¼

γ

N
_ai; ð22Þ

in the two relevant cases of (i) the reparametrized Bianchi I
model (in which each scale factor ai is a function of the
corresponding Cartesian coordinate xi ¼ δiaxa only) and
(ii) the generalized Kasner solution within a fixed Kasner
epoch (in which spatial gradients are negligible with respect
to time derivatives). It is worth noting how the expression
for Aa

i (22) is exact in the former case, which is equivalent
to the homogeneous Bianchi I model, while it holds only
approximatively in the latter by assuming the BKL con-
jecture [32]. In this case, the inhomogeneous model is made
of a collection of homogeneous patches, one for each point.
In reduced phase space the SUð2Þ Gauss constraint and

the vector constraint do not vanish, but they generate Uð1Þi
gauge transformations and reduced diffeomorphisms. The
Lorentzian part of the scalar constraint is proportional to the
Euclidean one, such that the sum is 1=γ2 times the latter and
the explicit expression reads

H½N� ¼ 2

γ2
HE½N�

¼ 1

γ2

Z
d3xN

" ffiffiffiffiffiffiffiffiffiffi
p1p2

p3

s
c1c2

þ
ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

s
c2c3 þ

ffiffiffiffiffiffiffiffiffiffi
p3p1

p2

s
c3c1

#
; ð23Þ

which can be seen as the sum of local Bianchi I patches,
i.e.,

H½N� ¼ 2

γ2
X
x

VðxÞNðxÞ
� ffiffiffiffiffiffiffiffiffiffi

p1p2

p3

s
c1c2

þ
ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

s
c2c3 þ

ffiffiffiffiffiffiffiffiffiffi
p3p1

p2

s
c3c1

�
ðxÞ; ð24Þ

VðxÞ being the volume of the homogeneous patch based at
the point x, where all the ci and pi variables are evaluated.
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This is the kind of classical dynamics we are going to
compare with the semiclassical limit of QRLG, since it
preserves the diagonal form of the metric.

IV. SEMICLASSICAL STATES IN QRLG

Let us define semiclassical states in QRLG by projecting
the expression (7) down to redH. Hence, let us first define
the semiclassical states along a given link, l. The analogous
expression of (6) now reads

Kαðhl; h0Þ ¼
Xþ∞

ml¼−∞
ð2jl þ 1Þe−jlðjlþ1Þα

2
lDjl

mlmlðh−1l h0Þ;

ð25Þ
where jl ¼ jmlj and h0 is an element of the SUð2Þ subgroup
generated by τi (Uð1Þi), i being the internal direction
associated with the link l (l is of the kind li), i.e.,

h0 ¼ eiθlτi ; ð26Þ
θl being the parameter along the group, which can be
determined from the explicit expression of the holonomy
along the links l. In the limit in which ci is constant along l,
there is the direct identification of θl ¼ �ϵlci, ϵl being the
length of l and the þð−Þ signs are for positive (negative)-
oriented l.
The complexification of h0 is given by

H0 ¼ h0e
α

8πγl2
P
E0
iτi
; ð27Þ

which differs from the expression (4) because the indices i
in the exponent are not summed and h0 is a Uð1Þi group
element. We can rewrite the expression (27) as follows:

H0 ¼ Rð~ulÞe
iθlτ3þ α

8πγl2
P
E0
iτ3
R−1ð~ulÞ; ð28Þ

Rð~ulÞ being the rotation sending the direction ~ul into the
direction ~u3. A clear interpretation of the classical data
we are peaking on can now be given in terms of a cellar
decomposition. In fact, we can compare Eq. (28) with the
expression of the coherent states for a homogeneous model
defined in [35,36]. These coherent states are defined via a
geometrical parametrization of the phase space in terms of
twisted geometries [50], [51], in which two SUð2Þ rotations
are inserted at the target and source points. By comparing
Eq. (28) with Eq. (52) in [36], one sees how in our case, in
which the intrinsic curvature of the spatial section vanishes,
these two rotations coincide and they are given by Rð~ulÞ.
The semiclassical state for QRLG takes the following

expression:

ψα
H0 ðhlÞ ¼ Kαðhl; H0Þ; ð29Þ

with Kαðhl; H0Þ and H0 given by Eqs. (25) and (27),
respectively. We can write an explicit expression for

ψα
H0 ðhlÞ in terms of basis vectors (12), thanks to the fact

that the SUð2Þ representation lDjl
mnðhlÞ of the Uð1Þi group

elements is diagonal, i.e.,

lDjl
mlmlðh−1l H0Þ ¼

Xjl
n¼−jl

lDjl
mlnðh−1l ÞlDjl

nmlðH0Þ

¼ lDjl
mlmlðh−1l ÞlDjl

mlmlðH0Þ: ð30Þ

The last factor on the right-hand side of the equation above
can be easily evaluated, so getting

lDjl
mlmlðH0Þ ¼ eiθlmle

α
8πγl2

P
E0
iml

: ð31Þ
By collecting together all the equations of this section, one
finds the following expression for the semiclassical states in
QRLG:

ψα
H0 ðhlÞ ¼

X∞
ml¼−∞

ψα
H0 ðmlÞlDjl

mlmlðh−1l Þ; ð32Þ

with

ψα
H0 ðmlÞ ¼ ð2jl þ 1Þe−jlðjlþ1Þα

2eiθlmle
α

8πγl2
P
E0
iml

; ð33Þ
where jl ¼ jmlj. It is worth noting how in the limit
E0

8πγl2P
≫ 1 one has

−jðjþ 1Þ α
2
þm

αE0

8πγl2P
¼ −mðm� 1Þ α

2
þm

αE0

8πγl2P

∼ −
α

2

�
m −

E0

8πγl2P

�
2

þ α

�
E0

8πγl2P

�
2

: ð34Þ

Hence, the coefficients ψα
H0 ðmlÞ modulo a factor not

depending on ml become Gaussian weights and ψα
H0

l
ðhlÞ

can be written as

ψα
H0 ðhlÞ ∼

X∞
ml¼−∞

ð2jl þ 1Þe−
α
2
ðml−

E0
i

8πγl2
P
Þ
2

eiθlml lDjl
mlmlðh−1l Þ

¼
X∞

ml¼−∞
ψα
H0 ðmlÞlDjl

mlmlðh−1l Þ; ð35Þ

which outlines that the state is peaked around m̄l ¼ E0
l

8πγl2P
.

Such a value corresponds to the following momenta p̄l:

p̄lδ2l ¼ 8πγl2Pm̄l; ð36Þ

δ2l being the area of the surface across which E0
l is smeared

in the fiducial metric. Similarly, it can be shown that the
state is also peaked around the classical holonomy h0.
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It is worth noting that the behavior (35) obtained in the
large j limit (here corresponding to jmlj ≫ 1) is a good
approximation for relatively small values of j (j ∼ 100),
which physically just amounts to considering the size of the
Universe as being few orders of magnitude bigger than the
Planck length.
For multilink states, one simply has to consider the direct

product of states of the kind (32) and to insert invariant
intertwiners at nodes. We remember that in QRLG the
invariant intertwiners are merely coefficients, so the exten-
sion of the expression (35) to the gauge-invariant Hilbert
space GHR can be done straightforwardly by inserting
reduced intertwiners both in basis elements and in the
coefficients, so finding

ψα
ΓH0 ¼

X
ml

Y
n∈Γ

hjl;xnjml; ~uli�
Y
l∈Γ

ψα
H0

l
ðmlÞhhjΓ;ml;xni;

ð37Þ
where

P
ml

¼ Q
l∈Γ

P
ml
.

V. THE HAMILTONIAN ON BASIS STATES

We are now interested in implementing the action of the
Hamiltonian RĤ as

RĤ ¼ 1

γ2
RĤE; ð38Þ

via an operator RĤE defined on GHR: a convenient way
of constructing it is to replace in the expression (3),
regularized via a cubulation C adapted to the reduced spin
network graph, as explained in [29], quantum holonomies
and fluxes with the ones acting on the reduced space as
follows:

(39)

where

(40)

The reduced holonomy operators Rĥ are obtained by projecting the SUð2Þ ones on the projected Wigner
matrices (12), while the reduced volume operator is the one given in (16).
The action of this operator has already been computed in [29]; however, there we allowed only states of the kind jDj

jjðhÞ
for the holonomies contained in the expresssion (40), but here we consider general states in GHR of the form lDj

nnðhÞ with
n ¼ �j. This implies that in the regularized Hamiltonian the intertwiners between two different directions will have the
possibility to connect holonomies projected on the maximum and minimum magnetic number running on different
segments, si. The practical rule is then to connect in the Hamiltonian (40) objects of the kind

RDj
mnðhlÞ ¼

X
λ¼�1

hj; mjj; λ ~ulihj; λ ~uljDjðhlÞjj; λ ~ulihj; λ ~uljj; ni ð41Þ

to the standard intertwiners.
In view of the application of the nongraph changing version of the Hamiltonian, we consider the simplest state on which

the action is nontrivial, namely [52],

(42)
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Note that, here and in the following, in the graphical
formulas the 3-valent nodes represent Clebsh-Gordan coef-
ficients, while in the previous papers [29,30] instead we
were using the same symbol for 3j symbols. This is just to
avoid the presence of dimension factors that would appear
in subsequent recouplings, and, if one keeps track of the
direction of the holonomies, there is no difference between
the two choices. Note also that the quantum numbers jl here
are properly speaking the ml of the previous section
(the magnetic numbers), but here we consider states with
a positive magnetic number and, to keep the notation
analogous to the SUð2Þ one, we set jl ¼ ml. This state,
jnziR ¼ jlx; ly; lz; ll; jx; jy; jz; jl; xniR, is based on a dressed
node, n, with three noncoplanar outgoing links, lx; ly; lz, in
the directions x; y; z, respectively, and an arc ll lying in the
plane orthogonal to the direction z formed by two links, llx

and lly , respectively, parallel to lx and ly and closing a
squared loop with them as in (42).
The operator acting at the node n is the

sum of three terms, ,

where k ¼ x; y; z for sk ∈ lx; ly; lz, respectively.

Now we restrict our attention to because

for an appropriate choice of coherent states (based on
αij ¼ lx∘lly∘llx∘l−1y ) this will be the only operator that
matters. As noted several times [15,17,53], only the term

in the commutator of (40) with the holonomy RĥðmÞ
sz on the

right contributes. This holonomy produces (from now on
we focus to the central 3-valent node with links in the three
orthogonal direction; we will analyze the remaining nodes
in the following)

(43)

(44)

with the magnetic index μ ¼ �m (remember that in the reduced case in the recoupling rules are the relative magnetic
numbers that determine the resulting representation; see appendix A).
Then the volume in (40) acts diagonally, multiplying by ð8πγl2PÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxjyðjz þ μÞp

; considering, then, the inverse
holonomy along z, we have
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(45)

Before attaching the last part of the action of , it is convenient to simplify the Uð1Þz group elements and separate the
projected lines, obtaining

(46)

The next step is to compute the action of hαij − hαji contained in (40); to this aim we can use a recoupling identity (the loop
trick; see [17]), namely,

(47)

where all the lines are SUð2Þ objects with the arrows in the upper part of Eq. (47) representing a recoupling
of the free indices while the arrows in the loop represent the group element hαij , and the sum extends over all of the
odd value for ~m compatible with the recoupling theory. Applying this identity, using the reduced recoupling and
summing over μ and μ0, we get
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(48)

where ~m is odd. In this graphical formula we recognize a δμμ0 ; this forces the magnetic indices appearing in the formula to be
equal, and this in turn implies that the line in the representation ~m has a vanishing magnetic number. From the sum over
magnetic indices along the line ~m, we are left with a single term:

(49)

where sðμÞ is the sign function with the argument μ and Cmm
mm ~m0 ¼ 2m!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ1

ð2m− ~mÞ!ð2mþ ~mþ1Þ!
q

is a Clebsh-Gordan coefficient.

The presence of the sign factor follows from the symmetry property of the Clebsh ð−1Þaþb−cCcγ
aαbβ ¼ Cc−γ

a−αb−β that in our
case implies Cmm

mm ~m0 ¼ ð−1Þ ~mCm−m
m−m ~m0 ¼ −Cm−m

m−m ~m0 because ~m is always an odd integer.
Recoupling the rotation matrices R around the central node and multipling the Uð1Þ elements, we get
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(50)

with k running from jjk − ~mj to jjk þ ~mj and with μx ¼ �m, μy ¼ �m being the magnetic numbers of the reduced
holonomy in the representation m attached by the hamiltonian in the direction lx and ly, respectively. The central node can
then be simplified, obtaining a 9j symbol as showed in [17]; thus, we get

(51)

We can now turn our attention to the remaining nodes, where the loop attached by the Hamiltonian constraint overlaps the
existing loop in the state and we have to evaluate the following diagram:
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(52)

Recoupling at the nodes produces just a 6j symbol per node, and we finally find

(53)
with
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H
mjxj0xjyj0y
μxμ

0
xμyμ

0
y
ðjz; jlÞ ¼ ð8πγl2PÞ3=2

X
k

X
~m

X
μ¼�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxjyðjz þ μÞ

q
sðμÞCmm

mm ~m0

8><
>:

k ~m jz
jy − μy m jy
jx þ μx m jx

9>=
>;

×

�
j0x jl þ μ0y jx þ μx

m jx jl

��
jl þ μ0x j0y jy − μy

jy m jl

�
ð54Þ

This is the final form of the Hamiltonian action.

VI. EXPECTATION VALUE OF THE HAMILTONIAN ON COHERENT STATES

We focus on the action of the Hamiltonian on a coherent state, jΨHnzi, based on the simple graph on which we computed
the action of the Hamiltonian in the previous section:

(55)

namely, the states (37) where the graphs in the ket notation are the basis states and the graphs out of the brackets are just the
product of the functions ΨHl

ðjlÞ ¼ NψHl
ðjlÞ with the invariant intertwiners of our model. In particular, these functions are

such that
P

jl jΨHl
ðjlÞj2 ¼ 1, i.e., obtained by normalizing ψHl

ðjlÞ, which are peaked on classical valuesHl, in the magnetic
spin variables (35).
We are interested in describing the dynamics on the simplest possible state on which the operator (40) has a nonvanishing

expectation value :

(56)

The best choice is a state based on a lattice with cubic topology and 6-valent nodes. However, the computation in this case
complicates and will be presented in future work. A symmetrization of the state (55), namely,

jΨHni ¼
X
k

1ffiffiffi
3

p jΨHnki; ð57Þ

with k ¼ x; y; z is the simplest possible state on which the Hamiltonian has nontrivial action and we will focus on it in the
following. Hence, since the states jΨHnki are orthogonal we need to evaluate

(58)

It is enough to understand the behavior of a single term in the sum. Restricting to k ¼ z, we have
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(59)

To proceed, note that the state (42) is not normalized in the SUð2Þ scalar product as shown in (14); to normalize it, it is
enough to divide each 3-valent node by

(60)

In the coherent states (55), this normalization must be done twice: for both the intertwiners in the basis elements
and the intertwiners in the coefficients (since the latter are dual to the former). This corresponds to using a
normalized intertwiners basis for which each intertwiner is just a phase and the expression above is equal to 1.
Having normalized intertwiners, the full state jΨHni is normalized too, i.e.,

hΨHnjΨHni ¼ 1: ð61Þ

We have then
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(62)

where the coefficients in the first line are the only remnants of the scalar product between the basis elements in the
expression (59) and the dual basis elements in hΨHnzj. This complicated expression can be greatly simplified using
the explicit form of the coherent states (32). In fact, for large mean values one has

Ψ�
Hl
ðjl þ μÞΨHl

ðjlÞ ≈ N 2e−αðjl−j̄lÞ2e−iθlμ j̄l ≫ μ; ð63Þ

N being the factor normalizing ΨHl
and for j̄l ≫ μ also the Gaussian e−αðjl−j̄lÞ2 . Hence, to compute (62) we only

need to understand the role of the reduced intertwiners. To this aim we note that

(64)

and
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(65)
We can thus proceed by observing that the Gaussians peak the jl around large values of j̄ls and this allow us to use a

fundamental approximation for the Clebsh-Gordan coefficients viable when a; c ≫ b [54]:

Ccc
aαbβ ≈ δβ;c−αδβ;c−a: ð66Þ

The coefficients appearing in the previous formula of (64) and (65) are of the form

Ckκ
jjmμ ¼ ð−1Þjþm−kCkκ

mμjj ¼ ð−1Þjþm−k

ffiffiffiffiffi
dk
dj

s
ð−1Þm−μCjj

kκm−μ;

ð67Þ

and using (66) we have

Ckκ
jjmμ ≈ ð−1Þjþm−kð−1Þm−μ

ffiffiffiffiffi
dk
dj

s
δ−μ;j−κδ−μ;j−k ¼ ð−1Þjþm−kð−1Þm−μ

ffiffiffiffiffi
dk
dj

s
δκ;jþμδk;jþμ: ð68Þ

Hence, Eq. (64) can be approximated as

(69)

where in the first line we have explicitly reintroduced the magnetic indices in the inferior legs and we used (68) to
evaluate the two inferior Clebsh coefficients. Proceeding in the same way for (65), we find
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(70)

Up to subleading corrections, we can use (69) and (70) to simplify (62). We note that the expression (62) is made by the
product of the following four kind of terms:
(1) two factors in the first line, namely, the remnant of the scalar product between the basis elements,
(2) the coefficients in the big conjugate parenthesis ðÞ� left from the coherent state coefficients of hΨHnzj,
(3) the coefficients in the big () parenthesis left from the coherent state coefficients of jΨHnzi,
(4) the matrix elements of the Hamiltonian operator .

The terms of the kind (2) and (3) are disposed according to their original position with respect to the state, i.e., node, the left

corner, the corner opposite to the node, and the right corner. The matrix elements of too consist of a 9j and two 6js

associated, respectively, to the node and the two corners. We illustrate the simplification by looking at the coefficient
involving the node.
The first coefficient in the first line of (62) times the node coefficient in the complex conjugate parenthesis ðÞ� simplifies

due to the normalization. The node contribution left is then the node coefficient in (), the second factor in the first line of
the (62) and the 9j in Hm…

… . The product of the latter two terms is the left-hand side of (70) at the leading order. This
expression is in turn made of two factors: a 3-valent reduced intertwiner in the js representations and a second in them and 1
representation. The first is just the dual of the one appearing in (), and their product gives 1 according to the normalization.
Proceeding in the same way for the corners, we obtain the leading order contribution:

(71)

We see how each link of the plaquette provides a contribution,Ψ�
Hl
ðjl þ μÞΨHl

ðjlÞ for μ ¼ �m, which gives phase terms
and the product of two Gaussians centered around different values, i.e.,

Ψ�
Hl
ðjl þ μÞΨHl

ðjlÞ ∝ N 2e−
αl
2
ðjl−j̄lþμÞ2e−

αl
2
ðjl−j̄lÞ2e−iθμ; ð72Þ

which can be rewritten as
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Ψ�
Hl
ðjl þ μÞΨHl

ðjlÞ ∝ N 2e−αlμðjl−j̄lÞ−
αl
2
μ2e−

αl
2
ðjl−j̄lÞ2e−iθμ; ð73Þ

The sum over the spin numbers jx, jy, jz and jl can be approximated with an integral over continuous variables as they go to
infinity, such that the expression (71) can be evaluated via a saddle point expansion around j̄l, so finding

(74)

whose leading order corrections are OðαlÞ, and since, as discussed in [35], αl ¼ 1=ðj̄lÞk with k > 1, they are negligible in
the limit j̄l → ∞.

Let us now fix m ¼ 1=2, which implies ~m ¼ 1 and Cmm
mm ~m0 ¼ C

1
2
1
2
1
2
1
2
10

¼ 1ffiffi
3

p . The sums over μs in the plaquette are now

actually sums over all the components of the SUð2Þ fundamental representations, m ¼ 1=2, and we haveX
μ¼�1=2

Riμ0μe−iθμR−1
iμμ00 ¼ ðe−i

2
θσiÞμ0μ00 ≡ hμ0μ00 ðθliÞ; i ¼ x; y; z; ð75Þ

σi being Pauli matrices. Hence, we can represent the expression (74) as follows:

(76)

We can reverse the orientation of h−1ðθyÞ such that the 3-valent intertwiner projected on 0 coincides with the Pauli matrix σ3
(modulo a factor 1=

ffiffiffi
3

p
) and we can rewrite Eq. (76) as

(77)
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We have seen how θðliÞ ¼ �c̄iϵl, ϵl being the length of the link l, and the sign depends on the orientation, while c̄i denotes
locally constant connections around which the semiclassical state is peaked. The expression above becomes

(78)

and by expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j̄z þ μ

p
and making the sum we get

(79)

The full semiclassical state is the sum over the directions x; y; z (57) and, remembering the relations (36) and (38), we can
write the expectation value of the scalar constraint as

(80)

where we assumed δx ¼ δy ¼ δz ¼ δ. In the continuum limit ϵ; δ → 0, the scalar constraint describing the local Bianchi I
dynamics comes out [the term within square brackets into Eq. (23)] if we also assume ϵlx ¼ ϵly ¼ ϵlz ¼ ϵ:

(81)

which means that the model has the proper semiclassical limit (24), 1
54
δϵ2 playing the role of the volume element VðnÞ of

the homogeneous patch around the node n (this result has been foreseen in [55]). Generically, we have arbitrary values for
δs and ϵs, in which case the proper semiclassical limit is achieved in the continuum limit for

δx ¼
54VðnÞ
ϵlx

ffiffiffiffiffiffiffiffiffiffiϵlyϵlz
p ; δy ¼

54VðnÞ
ϵly

ffiffiffiffiffiffiffiffiffiffi
ϵlzϵlx

p ; δz ¼
54VðnÞ
ϵlz

ffiffiffiffiffiffiffiffiffiffiϵlxϵly
p : ð82Þ

If instead we fix nonvanishing values for ϵ; δ, the expectation value of the scalar constraint is given by the expression (80).
By using Eqs. (82) this expression becomes

(83)

and it coincides with the expectation value of the Bianchi I scalar constraint in LQC [37,38] at the leading order in the
semiclassical expansion as far as one identifies ϵli with the regulator μ̄i adopted in LQC.

VII. CONCLUSIONS

We discussed the semiclassical limit of the scalar
constraint operator acting on a 3-valent node in QRLG.
In order to get a nontrivial result we had to dress the node
by adding a loop and summing over all the permutations of
the three fiducial directions. This procedure allowed us to
construct semiclassical states in the kinematical Hilbert
space of QRLG by mimicking the procedure adopted in
loop quantum gravity [7].

We evaluated explicitly the expectation value of the
Euclidean part of the (nongraph changing) scalar constraint
on such states. With respect to the previous works on
QRLGwe admit also the presence of states projected on the
minimum magnetic number of the SUð2Þ representation.
These states enter the construction of the scalar constraint
operator. In the limit j̄ ≫ 1, j̄ denoting the spin quantum
numbers around which the semiclassical states are peaked,
we could approximate the expectation value of the scalar
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constraint using the asymptotic forms of the Clebsch-
Gordan coefficients involved.
This way, we demonstrated how the expectation value of

the scalar constraint acting on the coherent states based at
dressed nodes reproduces the local Bianchi I dynamics for
high occupation numbers, i.e., j̄ ≫ 1, and in the continuum
limit, which means sending the area of the dressing loop
to zero. Therefore, the classical limit of QRLG coincides
with the local Bianchi I dynamics, i.e., it reproduces
general relativity in the proper (BKL) approximation
scheme. This result makes the whole QRLG a viable
scenario to investigate the quantum corrections to the early
Universe dynamics.
Furthermore, by taking only the limit of high occu-

pation numbers for spins, while retaining a nonvanishing
loop, we reproduced the leading order term of the scalar
constraint in LQC. The length of the edges into the loop
plays the role of the regulator in LQC. Therefore, we can
trace back the origin of the LQC regulator as entering
the definition of semiclassical states in QRLG. However,
from this analysis we get no indication on how to fix
such a parameter or on its dependence from the spins
(as in the μ̄ scheme).
The next step is to investigate the semiclassical

corrections to the classical dynamics. These are of
two kinds: the corrections coming from the expansion
in ϵ and those due to the expansion around j̄. While the
latter are expected to provide (at least qualitatively) the
same corrections as in LQC, the former will provides
new contributions that survive in the continuous limit.
These will be determined by considering the next-to-
leading order expansion of the 3j, 6j, and 9j symbols
entering the expression (62). The order of magnitude of
these corrections will tell us whether they can be
discussed in the QRLG paradigm or if the full LQG
theory is needed. Moreover, it remains to investigate the
Lorentzian part of the constraint, which in the classical
limit is proportional to the Euclidean one. It will be
discussed elsewhere. However, we gave in this work all
the necessary tools to make such an analysis and we
expect it to be pursued straightforwardly.
Furthermore, we discussed only the case of a 3-valent

node. In order to realize a realistic description of a quantum
universe we must consider a generic three-dimensional
reduced graph, whose nodes are up to 6 valent. We expect
that the approximation scheme adopted here is still suitable
to provide a proper semiclassical limit, the only difficulty
being that more complicated nj symbols appear in
calculations.
This extension will also allow us to test the construction

of semiclassical states for collective observables, along the
lines of [56], and the consistency of the collective quantum
dynamics with the BKL approximation scheme.
The presented analysis can be repeated with an alter-

native choice of coherent states, like the ones in [57],

which improves the peakedness properties in the flux
variables.
Finally, the semiclassical techniques we developed are

expected to be useful also with respect to the quantization
of a generic metric in the diagonal form, in which case a
combination of the scalar and the vector constraints
generates the dynamics.
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APPENDIX: REDUCED RECOUPLING

The standard multiplication of SUð2Þ holonomies and
their recoupling, i.e.,

Dj1
m1n1ðgÞDj2

m2n2ðgÞ ¼
X
k

Ckm
j1m1j2m2

Dk
mnðgÞCkn

j1n1j2n2
; ðA1Þ

using the graphical calculus, introduced in [16] and based
on 3j symbols related to Clebsch-Gordan coefficients by

Cj3m3

j1m1j2m2
¼ ð−1Þj1−j2þm3

ffiffiffiffiffiffi
dj3

q �
j1 j2 j3
m1 m2 −m3

�
; ðA2Þ

can be written as

where the triangle denotes a generic SUð2Þ group element
and the notation with the two kinds of arrows is used to
distinguish indices belonging to the vector space Hj or the
dual vector spaceHj�. The expression (A1) in the quantum
reduced case [29] becomes

Djn1j
n1n1ðgÞDjn2j

n2n2ðgÞ¼Cjn1þn2jn1þn2
j1n1j2n2

Djn1þn2j
n1þn2n1þn2ðgÞC

jn1þn2jn1þn2
j1n1j2n2

:

ðA4Þ

If in the graphical notation we use 3-valent nodes to
represent Clebsh-Gordan coefficients instead of 3j sym-
bols, the graphical transposition of the previous formula,
using the label n to denote the magnetic number of a link in
the representation jnj, is just
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where the projection on the reduced Hilbert space forces the magnetic number n1 þ n2 of the recoupled group element to be
equal to the spin admitting only the channel K ¼ jn1 þ n2j.
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