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We study gravity with torsion in extra dimensions and derive an effective four-dimensional theory
containing four-fermion contact operators at the fundamental scale of quantum gravity in the TeV range.
These operators may have an impact on the low-energy observables and can manifest themselves or can be
constrained in precision measurements. We calculate possible contributions of these operators to some
observables at the one-loop level. We show that the existing precision data on the lepton decay mode of Z
boson set limits on the fundamental scale of the gravity and compactification radius, which are more
stringent than the limits previously derived in the literature.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has proved
to be a very successful and predictive framework.
Moreover, recently, the ATLAS and CMS experiments
discovered a new particle with the approximate mass of
125.6 GeV, which is consistent with the long-awaited last
missing element of the SM, the Higgs boson [1,2].
Nevertheless, this anticipated triumph leaves open many
basic questions, which do not allow qualifying the SM as a
true fundamental theory, but as a low-energy effective
framework. Among these open questions, the huge hier-
archy between the electroweak and gravitational scales and
the lack of compatibility with gravity are specially impor-
tant. Although there exists in the literature many proposals
for the solution of the hierarchy problem, it is remarkable
that two of the most popular, supersymmetry and extra
dimensions, are intimately related to gravity.
There have been many efforts undertaken in the past

toward a deeper understanding of gravity from different
perspectives. One of these is to consider gravity as a gauge
theory. In fact, the conventional Einstein-Hilbert Theory
(EHT) of gravity can be interpreted as a gauge theory of the
Lorentz group [3–5]. On the other hand, classification of
particles with definite mass and spin is given in flat
Minkowski spacetime in terms of irreducible representa-
tions of the Poincaré group. Nonetheless, attempts to
construct a gauge theory for the Poincaré group in four
dimensions have failed [6–9].
An alternative view of the EHT is to consider it

according to a first-order formalism, where the affine
connection and the metric are independent variables. In
cases where the connection has a nonvanishing

antisymmetric part (called torsion), this theory is known
as the Einstein-Cartan Theory (ECT) of gravity [10–12]. In
the pure gravity case, the torsion’s presence does not affect
the well-known predictions of the EHT. However, coupling
fermionic matter to ECT gives rise to new interactions of
the four-fermion type (see Refs. [6,13–15]), absent in the
EHT, due to the spin-torsion interaction.
Cosmological or experimental manifestations of these

interactions would allow discriminating between these two
theories. However, within the minimal torsional generali-
zation in four-dimensional spacetime, the gravity effects in
particle interactions at low energies are highly suppressed
by the inverse squared of the Planck mass (MPl∼1019GeV),
making them experimentally unobservable. On the other
hand, the key point of the extra-dimensional scenarios
[16–20] for the solution of the hierarchy problem is the
reduction of the fundamental gravity scale down to the TeV
range. This implies that the gravity-induced interactions, in
particular those which originate from the torsion, become
phenomenologically important. In fact, the possibility of
observation of the torsion-induced interactions has already
been addressed in the literature [21–25].
In the present paper, we study some phenomenological

implications of the torsion-induced four-fermion inter-
actions (TFFIs) in extra dimensions. Specifically, we
explore one-loop observables within an effective four-
dimensional theory derived from the extra-dimensional
one. We focus on the TFFI contribution to the Z-boson
interaction with fermions. Using the existing data on
precision tests of the SM [26,27], we extract a stringent
limit on the fundamental scale of gravity.
The article is organized as follows: In Sec. II we briefly

summarize the Cartan-Einstein formalism. In Sec. III we
present an extra-dimensional scenario with torsional grav-
ity and derive the corresponding effective four-dimensional
theory. In Sec. IV, data on precision measurement of the
Z-boson decay rate to the electron-positron pair are used
to constraint the parameters of the extra-dimensional
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theory. We conclude with Sec. V, summarizing and dis-
cussing our results, as well as some uncovered aspects of
TFFI phenomenology.

II. EINSTEIN-CARTAN GRAVITY
COUPLED WITH FERMIONS

Within the framework of first-order formalism, spin
connection and vielbeins are independent fields, and
torsion might not vanish. Including torsion implies the
existence of an antisymmetric part of the affine connection

T̂ μ̂
λ̂
ν̂ ≡ 2Γ̂½μ̂λ̂ν̂� ¼ Γ̂μ̂

λ̂
ν̂ − Γ̂ν̂

λ̂
μ̂; ð1Þ

where hatted indices denote coordinates on aD-dimensional
spacetime (M), endowed with a metric ĝμ̂ ν̂ðxÞ, related to the
vielbeins, êâμ̂ðxÞ, via

ĝμ̂ ν̂ðxÞ ¼ ηâ b̂ê
â
μ̂ðxÞêb̂ν̂ðxÞ; ð2Þ

and ηâ b̂ ¼ diagð−;þ; � � � ;þÞ is the D-dimensional
Minkowski metric on the tangent space, TxM.
In differential forms, torsion and curvature are defined in

terms of the vielbeins and spin connection through the
Cartan structure equations,

dêâ þ ω̂â
ĉ ∧ êĉ ¼ T̂ â ≡ 1

2!
T̂ μ̂

â
ν̂dx

μ̂ ∧ dxν̂; ð3Þ

dω̂â b̂ þ ω̂â
ĉ ∧ ω̂ĉ b̂ ¼ R̂â b̂ ≡ 1

2!
R̂â b̂

μ̂ ν̂dxμ̂ ∧ dxν̂; ð4Þ

where êâ and ω̂â
ĉ are the vielbein and spin connection

1-forms, while T̂ â and R̂â b̂ are the torsion and curvature
2-forms, which are used to write the ECT of gravity.
The fermionic matter is introduced via the minimal

coupling procedure by defining the covariant derivative
for fermions

DâΨ ¼ Êμ̂
âDμ̂Ψ ¼ Êμ̂

â

�
∂ μ̂Ψþ 1

4
ðω̂μ̂Þb̂ ĉγb̂ ĉΨ

�
; ð5Þ

that keeps invariant the Dirac action under local Lorentz
transformation. Above, we used the inverse vielbein,
Êμ
a ¼ ðêaμÞ−1, and in general, γa1���an ¼ γ½a1 � � � γan�.
In the context of the ECT, we are considering the

following action (the bold symbols represent differential
forms):

S ¼ 1

2κ2�

Z
ϵâ1���âD
ðD − 2Þ! R̂

â1â2 ∧ êâ3 ∧ … ∧ êâD

−
X
r

Z �
1

2
ðΨ̄rγ ∧ ⋆DΨr − DΨ̄r ∧ ⋆γΨrÞ

þmrΨ̄rΨr
ϵâ1…âD

D!
êâ1 ∧ … ∧ êâD

�
; ð6Þ

where κ2� ¼ 8πG� ¼ M−ð2þnÞ
� , with G� and M� the analog

of the Newtonian gravity constant and the reduced Planck
mass in D dimensions. In the fermionic sector, Ψ̄≡ ıΨ†γ0

is the Dirac adjoint. The r index indicates the fermion
specie (to be clarified below). γ ¼ γâeâ is the gamma
matrix 1-form, and D ¼ Dâeâ. The symbol ⋆ denotes
Hodge duality. In principle, some of the fermion masses
could be the result of spontaneous symmetry breaking, in
particular, the usual electroweak symmetry breaking. As we
comment below, the origin of the fermion masses does not
matter for the present analysis.
The equations of motion are found from the principle of

least action and yield

R̂â b̂ − 1

2
ηâ b̂R̂ ¼ κ2�T̂â b̂ ð7Þ

T̂ â
b̂
ĉ ¼ 2K̂â

b̂
ĉ ¼ − κ2�

2

X
r

Ψ̄rγâ
b̂
ĉΨr; ð8Þ

where T̂â b̂ is the energy-momentum tensor of fermions and
K̂â

b̂
ĉ is the contorsion tensor. From Eq. (3), the spin

connection can be split into a torsion-free part plus the
contorsion

ω̂μ̂
â b̂ ¼ ω

̭∘
μ̂
â b̂ þ K̂μ̂

â b̂ ð9Þ

and additionally

T̂ â ¼ K̂â
b̂ ∧ êb̂: ð10Þ

The equation of motion for the spin connection [Eq. (8)]
is algebraic, and therefore, it can be substituted into the
initial action in order to eliminate the torsion, which acts in
this model as an auxiliary field. Toward this end, it is
convenient to separate the torsion in Eq. (6) by the
following decompositions

R̂â b̂ ¼ R

̭∘ â b̂
þ D

∘
K̂â b̂ þ K̂â

ĉ ∧ K̂ĉ b̂; ð11Þ

DΨr ¼ D
∘
Ψr þ

1

4
K̂â b̂γâ b̂Ψr; ð12Þ

where as before the circled quantities are torsion free.
Integrating out the torsion in Eq. (6), one finds the action

S ¼ S
∘
grav þ S

∘
Ψ þ κ2�

32

X
r;s

Z
dVDðΨ̄rγ

â b̂ ĉΨrÞðΨ̄sγâ b̂ ĉΨsÞ

ð13Þ
with a contact four-fermion interaction, whose presence is a
peculiar prediction of the ECT. The following two features
of the TFFIs should be highlighted. First, they conserve
lepton flavors due to the flavor blindness of gravity.
Second, fermions in these interactions are flavor paired
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due to the fact that the torsion-fermion interactions arise
from the kinetic term of the Dirac action.
Another comment is also in order. In the torsional

extensions of gravity, the measure is not unique. Here
we consider the minimal version of the ECT with the
standard measure, although more general theories can be
constructed if quadratic terms in the torsion are taken into
account (see Ref. [28–31]). Within this framework, gauge
fields do not couple to the torsion at the classical level. This
is because the one-form gauge fields are singlets of local
Lorentz transformations, and no covariant derivative is
needed (for more details see Ref. [32]). Gauge invariance of
the theory in this case is also guaranteed [13]. Demanding
gauge invariance for fermions, the covariant derivative
from Eq. (5) will be shifted by gauge connections V̂A

μ̂ in
order to keep the action invariant under such transforma-
tion, and then interactions between fermions and gauge
bosons will arise. However, the complete implementation
of gauge symmetry, in particular, the SM gauge symmetry,
into the gravity framework is a nontrivial subject of special
study, which we do not pretend to in the present paper.

III. EXTRA-DIMENSIONS SCENARIO

A distinctive feature of the ECT is the presence of the
four-fermion contact operators discussed in the previous
section. Their manifestation in particle interactions could
provide evidence of the spacetime torsion. However, as
seen from Eq. (13), these operators are suppressed by
the inverse of the squared Planck mass, leaving them
experimentally unreachable. The situation may dramati-
cally change in extra dimensions, where the fundamental
Planck scale can be reduced down to the TeV range.
Specific extra-dimensional scenarios have been proposed
as a solution of the hierarchy problem. The most popular
are those with more than two compact extra dimensions,
proposed by Arkani-Hamed, Dimopoulos, and Dvali
[16–18] and with only one but large extra dimension of
Randall and Sundrum [19,20]. A few generalizations of
these scenarios have been considered in Refs. [33–36].

We consider the ECT in five-dimensional spacetime with
the Randall-Sundrum metric [19]

ds2 ¼ e−2kjyjημνdxμdxν þ dy2; ð14Þ

where the fifth dimension, y, is compactified on an S1=Z2

orbifold, corresponding to the interval 0 ≤ y ≤ πR.
The Kaluza-Klein (KK) decomposition of five-

dimensional fermions into chiral four-dimensional ones
[37–40], taking into account for phenomenological reasons
only the zero KK modes and using the profiles from
Refs. [41,42], is

Ψrðx; yÞ ¼ fðcr; yÞðψþðxÞ þ ψ−ðxÞÞ; ð15Þ

with

fðcr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − 2crÞ

eð1−2crÞπkR − 1

r
eð2−crÞky; ð16Þ

where for simplicity we have chosen the same profile for
left- and right-handed parts. The cis coefficients control the
localization of fermions. For ci > 1

2
and ci < 1

2
, they are

localized near the Planck and the TeV branes, respectively,
while for c ¼ 1

2
, fermions lie in the bulk.

The Clifford algebra in five dimensions can be con-
structed using the four-dimensional one. The gamma
matrices in five-dimensional spacetime are

γâ ¼ ðγa; γ�Þ: ð17Þ

With this definition, the product of gamma matrices in
Eq. (13) is

ðγâ b̂ ĉÞðγâ b̂ ĉÞ ¼ 6ðγaγ�Þðγaγ�Þ þ 3ðγabγ�Þðγabγ�Þ: ð18Þ

Using the chirality condition γ�ψ r� ¼ �ψ r�, the TFFIs
in Eq. (13) can be written in the zero-mode approximation
as (see Ref. [43])

S4FI ≈
X
r;s

κ2eff
32

Z
d4xf6ðψ̄ rþγμψ rþ − ψ̄ r−γμψ r−Þðψ̄ sþγμψ sþ − ψ̄ s−γμψ s−Þ

þ 3½ðψ̄ rþγμνψ r−Þðψ̄ sþγμνψ s−Þ þ ðψ̄ r−γμνψ rþÞðψ̄ s−γμνψ sþÞ�g; ð19Þ
where

k2eff ≡ ð2cr − 1Þð2cs − 1Þðe−2πkRðcrþcs−1Þ − 1Þκ2�k
ð4 − 2cr − 2csÞðeπkRð1−2crÞ − 1ÞðeπkRð1−2csÞ − 1Þ : ð20Þ

Notice that the axial-tensor term in Eq. (19) must be
discarded by phenomenological reasons. This is required
by the presence of chiral fermions in the four-dimensional
effective theory, leading, as demonstrated in Ref. [44], to

the orbifold boundary condition�γ�frðyÞ ¼ frð−yÞ. Since
before the dimensional reduction the term Ψ̄rγ

μνγ�Ψr is odd
under y → −y, it must vanish identically [22]. Thus, in
four dimensions, we are left with only the axial-vector
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torsion-induced interaction in Eq. (19). We rewrite the
corresponding part of the Lagrangian in the form

L4FI ¼
X
i;j

6κ2eff
32

J μ
ðiÞJ μðjÞ; ð21Þ

where i, j are the fermion generation induces and the
fermion currents can be written in the manifestly SM gauge
invariant form

J μ
ðiÞ ¼ ðēRγμeR þ ūRγμuR þ d̄RγμdR

− L̄γμL − Q̄γμQÞðiÞ: ð22Þ

Here L and Q are the left-handed lepton and quark
electroweak doublets, while eR, uR, dR are the electroweak
singlets. Thus, the torsion generates in four-dimensional
theory the SM gauge-invariant four-fermion interactions.
However, as we commented at the end of Sec. II, we do not
consider the complete implementation of the SM gauge
symmetry to the gravity framework in question. Instead, we
adopt here the low-energy approach dealing with the
broken phase of the SM symmetry, taking into account
only the known SM fermions specified in Eq. (22) with
measured values of their masses and participating in
the SM interactions plus the torsion-induced interactions
in Eq. (21).
Using the definitions κ2eff ≡M−2

Pl and κ2� ≡M−3� and
the stabilization value kR ∼ 10 (see Ref. [45]), we
obtain

M2
Pl ≈

8>>><
>>>:

5 × 10−27 M3�
k ; cr ≃ cs ≃ 0

10−24 M3�
k ; cr ≃ cs ≃ 1=2

10−2 M3�
k ; cr ≃ cs ≃ 1:

ð23Þ

Let us note that in the following the effects of
curvature in the effective theory in four dimensions are
ignored, due to the fact that the Universe is essentially
flat (cf. Ref. [46]). This fact has been used before in
Refs. [21,23,47] and allows us to discriminate between
the EHT and the ECT of gravity. Moreover, this condition
is compatible with the independence of the Riemaniann
curvature and torsion.

IV. CONSTRAINTS FROM PRECISION
MEASUREMENTS OF Z-BOSON DECAY

Here we analyze the contribution of the torsion-induced
interactions to the one-loop form factors of the gauge
bosons trilinear couplings to leptons. Considering that
the gauge sector of the SM is torsion free, the only effect
of torsion comes through the four-fermion contact
ðaxial-vectorÞ ⊗ ðaxial-vectorÞ terms in Eq. (19).
The neutral gauge boson-fermion vertex

(24)

where Vμ ¼ fγμ; Z0
μg can be generically parametrized in

terms of the fermion neutral current Jμ form factors FI as

Jμðp; p0Þ≡ ūðp0Þ
�
γμFVðk2Þ þ FAðk2Þγμγ� þ i

σμνkν
2mf

FMðk2Þ þ FDðk2Þ
1

2mf
σμνγ�kν

�
vðpÞ: ð25Þ

We decompose the form factors into the tree-level and one-
loop contributions Fiðk2Þ ¼ Ftree

i þ δFiðk2Þ. The tree-level
part Ftree

i corresponds to the usual SM couplings of photon
or Z boson to the fermions, while the one-loop term
δFiðk2Þ may also receive contributions from beyond the
SM interactions. In our case, they are the TFFIs [also
known as Eq. (19)].
The corresponding one-loop calculations have been

carried out in Ref. [48] for the Lagrangian

LV ¼ ηV
g2

Λ2
½ψ rγμðVV − AVγ

�Þψ r�
× ½ψ sγ

μðVV − AVγ
�Þψ s�; ð26Þ

where r and s denote flavor indices as in the previous
sections. We use the results of Ref. [48] taking into account
both s- and t-channel contributions with external electrons
and with all of the possible particles running in the loop.
Following Ref. [48], we used the normalization g2=4π ¼ 1.
Let us note that if Jμðp; p0Þ in Eq. (25) is coupled to the

photon field, the only nonvanishing form factor would be
Fγ
V , due to the absence of (axial) tensor interactions

forbidden in Eq. (19) by the orbifold condition in the
Randall-Sundrum (RS) scenario [see the comment after
Eq. (20)]. Thus, there are no phenomenologically interesting
torsion contributions to the fermionic anomalous magnetic
and electric dipole moments.
Then we focus on the Z0 boson coupling to electrons

and evaluate the torsion contribution to the corresponding
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form factors at Z0 pole. The nonvanishing contributions
are

δFZ
VðM2

ZÞ ¼ 28.7

�
GeV2

Λ2

�
ln

�
Λ2

M2
Z

�
; ð27Þ

δFZ
AðM2

ZÞ ¼ −3.43 × 104
�
GeV2

Λ2

�
ln

�
Λ2

M2
Z

�
: ð28Þ

We take the renormalization scale equal to the Z-boson
mass μ ¼ MZ.
With these results, we are ready to calculate the four-

fermion torsion contribution to one of the best experimen-
tally studied quantities, the decay width of Z boson to the
electron-positron pair. We decompose the theoretical value
of this observable into two parts

ΓthðZ0 → eþe−Þ ¼ ΓSM þ δΓ4FI; ð29Þ

where

ΓSM ¼ 84.00� 0.01 MeV ð30Þ

is the theoretical prediction of the SM (cf. Ref. [27]) and the
four-fermion contribution is given by

δΓ4FI ¼ − αMZ

6sWcW
½ð1 − 4s2WÞδFZ

VðM2
ZÞ þ δFZ

AðM2
ZÞ�:

Substituting expressions shown in Eqs. (27) and (28), we
find

δΓ4FI ¼ 9.87 × 106 MeV

�
GeV
Λ

�
2

ln

�
Λ2

M2
Z

�
: ð31Þ

The best updated experimental value of Z0 boson decay
width into the electron-positron pair is [27]

Γexp ¼ 83.984� 0.086 MeV: ð32Þ

Below we denote the standard experimental deviation from
the best fit value as Δexp ¼ 0.086 MeV. We require that the
SM contribution taken together with the torsion one be
compatible with the experimental data (32). This leads to
the condition

jΓth − Γexpj ≤ αΔexp; ð33Þ

with the statistical factor α ¼ 1.64 for the 95% C.L. limits
(cf. Ref. [27]). Here Γth is defined in Eq. (29).
In Fig. 1, the solid line shows the dependence of the four-

fermion contribution δΓ4FI to the Z0-boson decay width on
the scale Λ.
Solving Eq. (33), we find

Λ ≥ 31.6ð25.8Þ TeV at 95% C.L.; ð34Þ

depending on which sign is taken for the uncertainty of the
SM prediction in Eq. (30). These two options are depicted
in the figure by the dashed and dotted horizontal lines,
respectively.
Comparing with the coupling of the contact interaction

in Eq. (21) with the one in Eq. (26),

6

32
κ2eff ⟷

1

Λ2
: ð35Þ

To solve the hierarchy problem in the RS scenario, the
value M� ∼ 1 TeV has been fixed. Using the stabilization
value kR ∼ 10 (see Ref. [45]), one obtains the following
95% C.L. limits on the compactification radius for different
fermion localization values,

R≲

8>><
>>:

7.5ð4.9Þ1010 m; ci ≃ 0

3.7ð2.5Þ108 m; ci ≃ 1=2

3.7ð2.5Þ10−14 m; ci ≃ 1;

ð36Þ

where the strongest limit comes from fermions localized
near to the Planck brane, which was expected due the
enhancement of the gravitational scale close to this brane.

V. CONCLUSIONS

In this paper, we have considered Dirac fermions
coupled with the (minimal) ECT of gravity. Within this
framework, a four-fermion contact interaction arises,
which preserves lepton number and fermions are paired
by flavor. For this minimal generalization of the EHT of

FIG. 1 (color online). The solid line shows the dependence of
the four-fermion contribution δΓ4FI to the Z0 boson decay width
on the scale Λ. The dashed and dotted horizontal lines depict the
uncertainty of the SM prediction in Eq. (30), and their inter-
section with the solid curve gives bounds on Λ, shown as vertical
straight lines on the zoomed part of the plot.
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gravity, the new fermion interaction is suppressed by the
gravitational scale, which in four dimensions is the Planck
mass, MPl ∼ 1019 GeV.
In order to circumvent this suppression, the gravita-

tional scale should be much lower, not too far from
the electroweak scale. This is also suggested by the
arguments of radiative stability of the Higgs boson mass.
We considered the Randall-Sundrum scenario, which
does not suffer of the problems of hierarchical scales.
It suggests the existence of one large extra dimension
compactified on a S1=Z2 orbifold, and a fundamental
gravitational scale (M�), which gives rise to an effective
(exponentially enhanced) Planck mass through a dimen-
sional reduction. We implemented the torsional gravity
into this scenario.
The four-fermion interaction in five-dimensions

yields both axial-vector and (axial) tensor interactions.
Interestingly, the orbifold structure of the extra dimension
in RS scenarios requires vanishing the (axial) tensor terms,
for the effective four-dimensional theory to contain chiral
fermions. For this reason, there are no phenomenologically
meaningful torsion contributions to the fermionic anoma-
lous magnetic and electric dipole moments.

On the other hand the remaining ðaxial-vectorÞ ⊗
ðaxial-vectorÞ torsion-induced interactions give a contri-
bution to the width of Z0 → eþe−, which allowed us to
extract from the existing experimental data upper limits on
the compactification radius in the RS setup. These limits
shown in Eq. (36) are more stringent then the correspond-
ing limits previously derived in the literature (see, for
instance, Refs. [24,25] and references therein).
Note that these limits are not going to change even after

the complete implementation of the SM gauge symmetry in
the ECT gravity framework, not considered in the present
work. This is because the only phenomenologically rel-
evant remnant of of the ECT, the TFFI in Eq. (21), is
already SM gauge invariant.
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