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We extend the Kim-Nilles-Peloso (KNP) alignment mechanism for natural inflation to models with
N > 2 axions, which obtains super-Planckian effective axion decay constant feff ≫ MPl through an
alignment of the anomaly coefficients of multiple axions having sub-Planckian fundamental decay
constants f0 ≪ MPl. The original version of the KNP mechanism realized with two axions requires that
some of the anomaly coefficients should be of the order of feff=f0, which would be uncomfortably large
if feff=f0 ≳Oð100Þ as suggested by the recent BICEP2 results. We note that the KNP mechanism can
be realized with the anomaly coefficients of Oð1Þ if the number of axions N is large as
N lnN ≳ 2 lnðfeff=f0Þ, in which case the effective decay constant can be enhanced as feff=f0 ∼ffiffiffiffiffiffi
N!

p
nN−1 for n denoting the typical size of the integer-valued anomaly coefficients. Comparing to the

other multiple axion scenario, the N-flation scenario which requires N ∼ f2eff=f
2
0, the KNP mechanism

has a virtue of not invoking to a too large number of axions, although it requires a specific alignment of
the anomaly coefficients, which can be achieved with a probability of Oðf0=feffÞ under a random choice
of the anomaly coefficients. We also present a simple model realizing a multiple axion monodromy along
the inflaton direction.
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I. INTRODUCTION

Recent detection of tensor modes in the cosmic micro-
wave background by BICEP2 suggests that the inflation
scale is rather high, HI ∼ 1014 GeV [1]. In the context of
slow roll inflation, such a high inflation scale implies that
the inflaton field has experienced a super-Planckian excur-
sion over the inflation period [2]. This poses a question if
the inflaton field can be decoupled from high scale physics
above the scale of quantum gravity, so that an effective field
theory description of inflation does make sense.
An attractive solution to this puzzle is to introduce an

approximate continuous shift symmetry along the inflaton
direction. To implement this idea, in natural inflation [3] the
inflaton is assumed to be a pseudo-Nambu-Goldstone
boson ϕ with a periodic potential

VðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
; ð1Þ

where f is the axion decay constant which defines the
fundamental domain of the axionlike inflaton field:

ϕ≡ ϕþ 2πf: ð2Þ

This inflaton potential is stable against perturbative
quantum corrections, which can be assured through the

approximate shift symmetry ϕ → ϕþ constant. Also,
under a reasonable assumption on the nonperturbative
dynamics generating the axion potential, one can justify
that the above simple potential provides a good approxi-
mation to the full inflaton potential.
However, there is a difficulty in this simple setup.

For successful slow roll inflation, the axion decay constant
is required to have a super-Planckian value. The recent
BICEP2 result makes the problem even more severe as it
suggests [4]

f ≳ 10MPl; ð3Þ

where MPl ≃ 2.4 × 1018 GeV is the reduced Planck mass.
It appears to be difficult to get such a large axion decay
constant from a sensible fundamental theory, particularly
from string theory. In the limit where a controllable
approximation is available, string theory predicts that the
axion scale is typically around g2MPl=8π2 [5].
During the past years, there have been several proposals

to circumvent this problem. They include the two-axion
model of Kim et al. [6], which obtains a super-Planckian
effective axion decay constant through an alignment of the
anomaly coefficients of two axions having sub-Planckian
fundamental decay constants, a five-dimensional (5D)
gauge-axion unification model in which the axionlike
inflaton obtains a super-Planckian decay constant in the
limit that 5D gauge coupling becomes weaker than the 5D
gravitational coupling [7], the N-flation scenario [8] based
on the idea of assisted inflation [9] with many axions, and
the axion monodromy based on either a string theoretic
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[10,11] or field theoretic [12,13] scheme for multiple
windings in the axion field space. In this paper, we revisit
the Kim-Nilles-Peloso (KNP) alignment mechanism to
extend the scheme to models with N > 2 axions.
The original version of the KNP mechanism realized

with two axions requires that some of the anomaly
coefficients should be of the order of feff=fi, where
feff ≫ MPl is the super-Planckian effective decay con-
stant of the axionic inflaton, while fi ≪ MPl are the sub-
Planckian fundamental axion decay constants in the
model. In case that fi ∼ g2MPl=8π2 [5] as suggested by
string theory, this would require that some anomaly
coefficients should be uncomfortably large as feff=fi ¼
Oð102–103Þ. We note that the KNP mechanism can be
realized with the anomaly coefficients of Oð1Þ if the
number of axions is large as N lnN ≳ 2 lnðfeff=fiÞ, in
which case the effective decay constant can be enhanced
as feff=fi ∼

ffiffiffiffiffiffi
N!

p
nN−1 for n denoting the typical size of

the integer-valued anomaly coefficients. We examine also
the probability for the KNP alignment to be achieved
under a random choice of the anomaly coefficients.
In regard to enhancing the effective axion decay constant,

a relevant question is how many fields do we need to get
super-Planckian feff ≫ MPl. As the Planck scale receives
a quadratically divergent radiative correction from each light
field, schematically we have δM2

Pl ∝ NlΛ2, where Nl
denotes the number of light fields and Λ is the cutoff scale
of loop momenta. Then the scheme would be in trouble if it
requires a too large number of light fields asNl ≥ f2eff=f

2
i . In

our multiple axion scenario, feff=fi grows exponentially as a
function of N for a fixed value of n > 1, so the number of
required axions is of the order of lnðfeff=fiÞ. On the other
hand, for the original two-axion KNP model [6], one needs
n ¼ Oðfeff=fiÞ, where the anomaly coefficient n can be
identified as the number of gauge-charged fermions gen-
erating the axion coupling to instantons. In the N-flation
scenario [8], the number of required axions is Oðf2eff=f2i Þ.
So our scheme can enhance feff by introducing a para-
metrically smaller number of fields, as compared to the KNP
two-axion model and the N-flation scenario.
In certain cases, the KNP mechanism can be interpreted

as enhancing the effective axion decay constant as feff=fi ∼
n ≫ 1 through the Zn monodromy structure of a light
axion, which is induced along the inflaton direction by the
mixing with heavy axions. In this context, we present a
simple model yielding feff=fi ∼

Q
N
i¼2 ni through a multiple

axion monodromy described by
Q

N
i¼2 Zni (ni > 1). We

present also a model yielding feff=fi ∼ 2N−1 even when all
the integer-valued anomaly coefficients are restricted
as jnijj ≤ 1.
The organization of this paper is as follows. In Sec. II, we

review the original two-axion model of KNP to illustrate
the basic idea and set the notations. In Sec. III, we extend
the KNP mechanism to models with N > 2 axions. Sec. IV
is the conclusion.

II. KIM-NILLES-PELOSO MECHANISM
WITH TWO AXIONS

We begin with a brief review of the original Kim-Nilles-
Peloso mechanism realized with two axions [6]. In the field
basis of periodic axions:

ϕi ≡ ϕi þ 2πfi; ð4Þ

the axion potential consistent with the axion periodicity is
generically given by

VðϕiÞ ¼ Λ4
1

�
1 − cos

�
n1ϕ1

f1
þ n2ϕ2

f2

��

þ Λ4
2

�
1 − cos

�
m1ϕ1

f1
þm2ϕ2

f2

��
; ð5Þ

where ~n ¼ ðn1; n2Þ and ~m ¼ ðm1; m2Þ are linearly inde-
pendent integer-valued coefficients, and fi (i ¼ 1, 2)
denote the fundamental axion decay constants which are
presumed to be comparable to each other, while being
significantly lower than the reduced Planck scale:

f1 ∼ f2 ≪ MPl:

Here we include only the leading nonperturbative effects
generating the axion potential, under the assumption that
the next order nonperturbative effects are small enough.
The integer-valued coefficients ni, mi parametrize the

discrete degrees of freedom in the underlying nonpertur-
bative dynamics generating the axion potential. A simple
possibility is that the axion potential is generated by hidden
sector gauge field instantons through the symmetry break-
ing by anomalies. In such case, the model involves two
non-Abelian hidden sector gauge groups Ga (a ¼ 1, 2),
together with the gauge-charged fermions having the
following couplings to axions:

X
I

X
i

λiIfieiqiIϕi=fi ψ̄ ILψ IR þ H:c:; ð6Þ

where λiI denote dimensionless Yukawa couplings and ψ I
are assumed to be charged Dirac fermions for simplicity.
Then the Noether current of the nonlinearly realized
Peccei-Quinn symmetries

Uð1Þi∶ ϕi → ϕi þ αifi; ψ̄ ILψ IR → e−iqiIαi ψ̄ ILψ IR ð7Þ

have the Uð1Þi-Ga-Ga anomalies as

∂μJ
μ
i ¼

ni
16π2

F1
~F1 þ

mi

16π2
F2

~F2; ð8Þ

where Fa are the gauge field strength of the gauge group
Ga, and the anomaly coefficients are given by
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ni ¼ 2
X
I

qiITrðT2
1ðψ IÞÞ; mi ¼ 2

X
I

qiITrðT2
2ðψ IÞÞ

ð9Þ

for Taðψ IÞ (a ¼ 1, 2) denoting the Ga-charge matrix of
ψ I normalized as TrðT2

aÞ ¼ 1=2 for the fundamental
representation of Ga. With this symmetry breaking by
anomalies, the gauge field instantons of Ga generate the
axion potential of the form (5). Based on this observation,
in the following we will call ni, mi the anomaly coef-
ficients. However it should be noted that the axion potential
(5) can be generated by different kinds of nonperturbative
effects, for instance string theoretic instantons or hidden
gaugino condensations. In such case, the integer coeffi-
cients ni, mi can be determined by a variety of different
discrete UV quantum numbers, e.g. the quantized fluxes,
the number of stacked D-branes, and/or the number of
windings for stringy instantons.
To discuss the KNP mechanism, it is convenient to

consider the limit Λ2 ¼ 0, in which the axion potential is
given by

VðϕiÞ ¼ Λ4
1

�
1 − cos

�
n1ϕ1

f1
þ n2ϕ2

f2

��
: ð10Þ

Obviously this axion potential has a one-dimensional
periodic flat direction in the two-dimensional fundamental
domain of the axion fields spanned by ϕi ¼ ½0; 2πfi�,

ϕflat ∝
n2ϕ1

f2
− n1ϕ2

f1
; ð11Þ

which can be identified as the inflaton direction. One easily
finds that the length of this periodic flat direction is
given by

lflat ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p
gcdðn1; n2Þ

; ð12Þ

where gcdðn1; n2Þ denotes the greatest common divisor of
n1 and n2. This shows that a super-Planckian flat direction
with lflat ≫ MPl ≫ fi can be developed on the two-
dimensional sub-Planckian domain if

n1
gcdðn1; n2Þ

or
n2

gcdðn1; n2Þ
≫

MPl

fi
≫ 1: ð13Þ

In Fig. 1, we depict the flat direction in the fundamental
domain of axion fields, which has a length given by (12).
Since the axionic inflaton of natural inflation rolls down
along this periodic flat direction, its effective decay con-
stant is bounded as

feff ≤
lflat

2π
;

which means that at least one of ni should be as large
as gcdðn1; n2Þfeff=fi.
Turning on the second axion potential

ΔV ¼ Λ4
2

�
1 − cos

�
m1ϕ1

f1
þm2ϕ2

f2

��
; ð14Þ

a nontrivial potential is developed along the periodic flat
direction having a length (12). Even when lflat ≫ MPl,
natural inflation is not guaranteed as the inflaton potential
induced by ΔV generically has multiple modulations along
the flat direction. We find that the number of modulations
over the full range of the periodic flat direction is given by

Nmod ¼
jn1m2 − n2m1j
gcdðn1; n2Þ

; ð15Þ

which results in the effective decay constant

feff ¼
lflat

2πNmod
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p
jn1m2 − n2m1j

: ð16Þ

It is straightforward to derive the above form of the
effective axion decay constant [6]. Taking the rotated axion
field basis:

ψ ¼ n1f2ϕ1 þ n2f1ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p ; ϕflat ¼
n2f1ϕ1 − n1f2ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21f
2
2 þ n22f

2
1

p ;

ð17Þ

the axion potential (5) can be written as

Vðψ ;ϕflatÞ ¼ Λ4
1

�
1 − cos

�
ψ

fψ

��

þ Λ4
2

�
1 − cos

�
ψ

f0ψ
þ ϕflat

feff

��
; ð18Þ

where

FIG. 1 (color online). Flat direction in the fundamental domain
of axion fields in the limit Λ2 ¼ 0. Even though the fundamental
domain is sub-Planckian with fi ≪ MPl, the flat direction can
have a super-Planckian length if one (or both) of ni=gcdðn1; n2Þ is
large enough. The right panel depicts the flat direction in the
fundamental domain for which the axion periodicity is manifest.
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fψ ¼ f1f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p ;

f0ψ ¼ f1f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p
n1m1f22 þ n2m2f21

;

feff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21f

2
2 þ n22f

2
1

p
jn1m2 − n2m1j

: ð19Þ

Taking the limit Λ4
1 ≫ Λ4

2, the heavy field component ψ
can be integrated out, yielding the effective potential of the
light inflaton direction ϕflat as

VeffðϕflatÞ ¼ Λ4
2

�
1 − cos

�
ϕflat

feff

��
: ð20Þ

From the above expression of feff , it is clear that
feff ≫ fi is not a generic feature of the model, but requires
a special alignment of the anomaly coefficients ni, mi.
Note that in the absence of any alignment, generically

feff ∼
fi
n
; ð21Þ

where n represents the typical size of the anomaly
coefficients ni, mi. Obviously there can be many different
choices (or alignments) of the anomaly coefficients yield-
ing feff=fi ≫ 1. A simple possibility is that one or both of
ni are large, while the denominator ðn1m2 − n2m1Þ is tuned
to be Oð1Þ. As a specific example, KNP considered the
case that n2 ≫ 1 and the other three anomaly coefficients
are given by m1 ¼ n1 ¼ 1 and m2 ¼ n2 þOð1Þ [6].
Of course, one can consider different examples as we
do below, for instance n2 ≫ 1 with n1 ¼ m2 ¼ 1, m1 ¼ 0.
To understand the geometric meaning of the required

alignment, one can introduce an alignment angle δθ as

sin δθ≡ jn1m2 −m1n2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn21 þ n22Þðm2

1 þm2
2Þ

p ; ð22Þ

and rewrite the effective decay constant as

feff ¼
1

sin δθ

�
n21f

2
2 þ n22f

2
1

ðn21 þ n22Þðm2
1 þm2

2Þ
�

1=2

: ð23Þ

Note that δθ corresponds to the angle between the heavy
field direction ψ and the other field direction ϕ of the
second axion potential ΔV:

ψ ∝
n1ϕ1

f1
þ n2ϕ2

f2
; ϕ ∝

m1ϕ1

f1
þm2ϕ2

f2
: ð24Þ

For the case of two axions, one of the economic ways to
get feff=fi ≫ 1 is to have

n1 ∼ n2 ¼ Oðfeff=fiÞ; m1 ∼m2 ¼ Oð1Þ; ð25Þ

for which

δθ ¼ Oðfi=feffÞ: ð26Þ

This implies that the probability for achieving feff ≫ fi
under a random choice of the anomaly coefficients, but
within the specific region of (25), is given by

Pðfeff=fiÞ ¼ Oðfi=feffÞ: ð27Þ

On the other hand, if one extends the random choice to
the generic region where all the anomaly coefficients can be
of the order of feff=fi, one needs an alignment angle
δθ ¼ Oðf2i =f2effÞ, and then the probability for achieving
feff ≫ fi is reduced as

Pðfeff=fiÞ ¼ Oðf2i =f2effÞ: ð28Þ

A particularly interesting choice [14,15] of the anomaly
coefficients realizing the KNP alignment is

n1 ¼ m2 ¼ 1; m1 ¼ 0; jn2j ≫ 1; ð29Þ

for which the light inflaton direction is identified as

ϕflat ¼
n2f1ϕ1 − f2ϕ2

feff
≃ ϕ1 ð30Þ

with the effective decay constant

feff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22f

2
1 þ f22

q
≃ jn2jf1 ð31Þ

where we assumed f1 ∼ f2. In this case, we have

eiϕ1=f1 ¼ e−in2ϕ2=f2 ð32Þ

along the inflaton direction. Then the enhanced effective
axion decay constant can be considered as a consequence
of the Zn2 monodromy structure of ϕ1, which is induced by
the mixing with the heavy axion component ϕ2.

III. GENERALIZATION TO N > 2 AXIONS

It is in fact straightforward to generalize the KNP
mechanism to the case with N > 2 axions.1 In the presence
of N axions, again in the periodic axion field basis

ϕi ≡ ϕi þ 2πfi ði ¼ 1; 2;…; NÞ; ð33Þ

the axion potential takes the form

1A generalization to the case with N > 2 axions has been
discussed in [16] to accommodate the intermediate scale QCD
axion as well as a quintessence axion with Planck scale decay
constant in the model.
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V ¼
XN
i¼1

Λ4
i

�
1 − cos

�XN
j¼1

nijϕj

fj

��
; ð34Þ

where ~ni ¼ ðni1; ni2;…; niNÞ are linearly independent
integer-valued anomaly coefficients, and fi ≪ MPl are the
fundamental decay constants which are presumed to be
comparable to each other. To proceed, let us take the limit

ΛN ¼ 0;

for which the one-dimensional periodic flat direction is
parametrized as

ϕflat ∝
X
i

Xiϕi ≡ Det

0
BBBBBB@

ϕ1 ϕ2 � � � ϕN
n11
f1

n12
f2

� � � n1N
fN

..

. ..
. ..

.

nN−1;1
f1

nN−1;2
f2

� � � nN−1;N
fN

1
CCCCCCA
; ð35Þ

where

Xi ¼
CifiQ

jfj
ð36Þ

for

Ci ¼ ð−1Þiþ1Det

0
BBBBBB@

n11 n12 … n1;ði−1Þ n1;ðiþ1Þ … n1N
n21 n22 … n2;ði−1Þ n2;ðiþ1Þ … n2N

..

. ..
. ..

. ..
. ..

.

nN−1;1 nN−1;2 … nN−1;ði−1Þ nN−1;ðiþ1Þ … nN−1;N

1
CCCCCCA
: ð37Þ

The length of this periodic flat direction is determined
by the minimal discrete shift Δϕi along the flat direction,
under which the axion field configuration comes back to
the original configuration. One then finds

Δϕi ¼
2πCifi

gcdðC1; C2;…; CNÞ
; ð38Þ

yielding the length of the flat direction:

lflat ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1 C

2
i f

2
i

p
gcdðC1; C2;…; CNÞ

; ð39Þ

where gcdðC1; C2; � � � ; CNÞ denotes the greatest common
divisor of all Ci.
For generic anomaly coefficients nij, the magnitude ofCi

is quite sensitive to the number of axions, as well as to the
typical size of nij. Here we are interested in the limit
N ≫ 1 with

jnijj ≤ nmax ¼ OðfewÞ: ð40Þ
To proceed, we can regard nij as a random integer-valued
variable with flat probability distribution:

PðnijÞ ¼
1

2n max þ 1
:

We then have

hniji ¼
Xnmax

nij¼−nmax

nijPðnijÞ ¼ 0;

hn2iji ¼
Xnmax

nij¼−nmax

n2ijPðnijÞ ¼
1

3
nmaxð1þ n maxÞ≡ n2;

where
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmaxð1þ nmaxÞ=3

p
denotes the typical size of the anomaly coefficients in the
range (40). One can similarly compute the expectation
value of C2

i . For CN ¼ P
σsgnðσÞn1σð1Þ…nðN−1ÞσðN−1Þ,

where the summation is over all possible permutations
of f1; 2;…; N − 1g, one easily finds

hC2
Ni ¼

�X
σ

ðn1σð1Þ…nðN−1ÞσðN−1ÞÞ2
�

¼ ðN − 1Þ!n2ðN−1Þ;

and therefore �XN
i¼1

C2
i

�
¼ N! · n2ðN−1Þ:

As implied by this expectation value, in most cases we
have2�XN

i¼1

C2
i

�1=2

∼
ffiffiffiffiffiffi
N!

p
nN−1; gcdðC1; C2;…; CNÞ ¼ Oð1Þ;

ð41Þ

2We have in fact an upper bound
ffiffiffiffiffiffiffiffiffiffiffiffiP

iC
2
i

p
< NN=2nN−1

max .
We found through a numerical analysis that

ffiffiffiffiffiffiffiffiffiffiffiffiP
iC

2
i

p ≳
0.2

ffiffiffiffiffiffi
N!

p
nN−1 in most cases of our interest. It is also known

that a probability for gcdðCiÞ ¼ 1 under a random choice of Ci
within the range jCij ≤ Q is given by PðgcdðCiÞ ¼ 1Þ ¼
1=ζðNÞ þOð1=QÞ, which is close to the unity in the limit
N ≫ 1 and Q ≫ 1. Although in our case Ci is not a randomly
chosen integer, but a determinant of the randomly chosen
anomaly coefficients nij, we confirmed again through a numeri-
cal analysis that gcdðCiÞ ¼ 1 in most cases of our interest.
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and therefore a flat direction enhanced as

lflat

2πfi
∼

ffiffiffiffiffiffi
N!

p
nN−1; ð42Þ

where the sub-Planckian axion decays constants fi are
assumed to be comparable to each other. Here we are
interested in the case that the sub-Planckian axions ϕi
originate from higher-dimensional tensor gauge fields in
compactified string theory, in which case all fi are
comparable to Mst=8π2 for the string scale Mst [5]. Note
that the flat direction length is exponentially enhanced in
the limit N ≫ 1 when the typical anomaly coefficient
n > 1. As a result, an exponentially long flat direction
can be obtained with the anomaly coefficients
jnijj ≤ nmax ¼ OðfewÞ, with a moderately large number
of axions

N lnN ∼ 2 lnðlflat=2πfiÞ: ð43Þ

This can be understood by noting that the flat direction
generically winds each of the additional axion dimensions
by about n times, which would explain the factor nN−1,
and there are also combinatoric degrees of freedom for
the windings of the N-dimensional torus of axion fields,
which would explain the factor

ffiffiffiffiffiffi
N!

p
.

Introducing the last part of the axion potential

ΔV ¼ Λ4
N

�
1 − cos

�X
j

nNjϕj

fj

��
;

a periodic potential is developed along the flat direction.
Again super-Planckian flat direction does not guarantee a
super-Planckian effective decay constant. Instead we have

feff ¼
lflat

2πNmod
; ð44Þ

where Nmod is the number of modulations of the axion
potential over the full period of the flat direction. Taking
the limit Λi ≫ ΛN (i ¼ 1; 2;…; N − 1) to integrate out
the (N − 1) heavy axions, we find that the effective
potential of the flat direction is given by

VeffðϕflatÞ ¼ Λ4
N

�
1 − cos

�
ϕflat

feff

��
; ð45Þ

where

feff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 C

2
i f

2
i

p
jDetNj ; ð46Þ

for

DetN ¼ Det

0
BBBB@

nN1 nN2 � � � nNN

n11 n12 � � � n1N

..

. ..
. ..

.

nðN−1Þ1 nðN−1Þ2 � � � nðN−1ÞN

1
CCCCA

¼
X
i

CinNi: ð47Þ

This tells that the number of modulations over the full range
of the flat direction is

Nmod ¼
jPiCinNij

gcdðC1; C2; � � � ; CNÞ
:

To justify our approach to integrate out the (N − 1)
heavy axions, let us briefly examine the axion masses in our
scheme. For the axion potential (34), the N × N axion
mass-square matrix is given by m2

kl ¼
P

iΛ
4
i niknil=fkfl,

yielding

Detm2 ¼ ðDetNÞ2
YN
i

Λ4
i

f2i
: ð48Þ

In the presence of light flat direction, its mass square is
given by

m2
flat ≃ Λ4

N

f2eff
¼ Λ4

NðDetNÞ2P
jC

2
jf

2
j

: ð49Þ

Then the mass-square determinant can be written as

Detm2 ¼ ðDetNÞ2
YN
i

Λ4
i

f2i
¼ Λ4

N

f2eff

f2eff
f2N

ðDetNÞ2
YN−1

i

Λ4
i

f2i

¼ m2
flat

P
C2
jf

2
j

f2N

YN−1

i

Λ4
i

f2i
∼m2

flat

YN−1

i

Nn2Λ4
i

ef2i

∼m2
flat

YN−1

i

m2
heavyðiÞ; ð50Þ

where mheavyðiÞ is the ith heavy axion mass, and we have
used

P
jC

2
jf

2
j=f

2
N ∼ N!n2ðN−1Þ ∼ NNn2ðN−1Þ=eN under the

assumption that all fi are comparable to each other.
We then find

m2
heavyðiÞ
m2

flat

∼
Nn2

e
f2eff
f2i

Λ4
i

Λ4
N
; ð51Þ

which shows that the heavy axions are heavy enough
compared to the flat direction if the anomaly coefficients
are aligned to yield feff ≫ fi, even when ΛN is comparable
to Λi (i ¼ 1;…; N − 1).
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As in the case with two axions, it is clear that feff ≫ fi is
not a generic feature, but requires a specific alignment of
the anomaly coefficients. Yet, compared to the case of two
axions, a notable difference is that the mechanism does not
require large anomaly coefficients of Oðfeff=fiÞ, but a
moderately large number of axions N lnN ≳ 2 lnðfeff=fiÞ
together with the anomaly coefficients nij ¼ Oð1Þ. To
quantify the required degree of alignment, let us introduce
an alignment angle as in the case of two axions:

sin δθ≡ j~C · ~nN j
j~Cjj~nN j

¼ jDetNj
j~Cjj~nN j

: ð52Þ

Then the effective decay constant reads as

feff ¼
1

sin δθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1 C

2
i f

2
i

p
j~Cjj~nN j

∼
fi

j~nN j sin δθ
; ð53Þ

implying that we need to align δθ to be small as

δθ ¼ Oðfi=feffÞ: ð54Þ

This also suggests that the probability for having feff ≫ fi
under a random choice of the anomaly coefficients in the
range jnijj ≤ nmax ¼ Oð1Þ is given by

Pðfeff=fiÞ ¼ Oðfi=feffÞ: ð55Þ

Note that in the case of two axions we have a similar
probability only when the random selection is limited to a
specific (economic) region of the anomaly coefficients, for
instance the region of (25), while Pðfeff=fiÞ ¼ Oðf2i =f2effÞ
if one extends the random selection to the general region
where all the anomaly coefficients can be comparable to
each other.
In view of that the fundamental axion decay constants in

string theory are typically in the range fi ∼ 1016–1017 GeV
[5], while a successful natural inflation compatible with the
recent BICEP2 results [1] requires feff ≳ 10MPl, we are
particularly interested in the minimal number of axions
which can yield

feff=fi ¼ Oð102–103Þ for jnijj ≤ nmax ðnmax ¼ 1; 2; 3Þ:
ð56Þ

According to our discussion above, the corresponding
range of N is roughly given by

N lnN ≳ 2 lnðfeff=fiÞ: ð57Þ

We have performed a numerical analysis to evaluate
Pðfeff=fiÞ for the three different values of feff=fi:

feff=fi ¼ 102; 5 × 102; 103;

when

N ¼ 8–15ðnmax ¼ 1Þ; N ¼ 7–14ðnmax ¼ 2Þ;
N ¼ 5–12ðnmax ¼ 3Þ:

The results are depicted in Table I, which confirms that the
probability for the necessary alignment to be achieved
under a random choice of the anomaly coefficients is
indeed of the order of fi=feff .
Before closing this section, let us present a couple of

explicit models which achieve an exponentially enhanced
effective axion decay constant within the framework
discussed above. Our first model is

V ¼ Λ4
1

�
1 − cos

�
ϕ1

f1
þ n2ϕ2

f2

��

þ Λ4
2

�
1 − cos

�
ϕ2

f2
þ n3ϕ3

f3

��
þ � � �

þ Λ4
N−1

�
1 − cos

�
ϕN−1
fN−1

þ nNϕN

fN

��

þ Λ4
N

�
1 − cos

�
ϕN

fN

��
; ð58Þ

which is designed to realize a multiple axion monodromy
along the inflaton direction. The anomaly coefficient matrix
of the model takes the form

TABLE I. The probability to fi=feff ratio, R ¼ P=ðfi=feffÞ, for the necessary alignment under 105 random choices of the anomaly
coefficients. We have considered N ¼ 8–15 for nmax ¼ 1, N ¼ 7–14 for nmax ¼ 2, and N ¼ 5–12 for nmax ¼ 3.

N
feff=fi N

feff=fi N
feff=fi

100 500 1000 100 500 1000 100 500 1000

8 0.009 0. 0. 7 0.216 0.030 0. 5 0.060 0. 0.
9 0.064 0. 0. 8 0.411 0.210 0.05 6 0.202 0.060 0.
10 0.258 0.020 0. 9 0.466 0.530 0.26 7 0.322 0.230 0.09
11 0.487 0.105 0.01 10 0.542 0.445 0.43 8 0.373 0.225 0.31
12 0.707 0.275 0.12 11 0.512 0.470 0.70 9 0.383 0.370 0.40
13 0.797 0.500 0.41 12 0.519 0.660 0.64 10 0.393 0.390 0.30
14 0.938 0.800 0.56 13 0.585 0.585 0.47 11 0.408 0.370 0.41
15 0.855 0.850 0.77 14 0.530 0.490 0.43 12 0.404 0.355 0.39
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N ¼ ðnijÞ ¼

0
BBBBBBBB@

1 n2
1 n3

1 . .
.

. .
.

nN
1

1
CCCCCCCCA
; ð59Þ

for which

DetN ¼ 1; jCij ¼
YN
j¼iþ1

nj: ð60Þ

The resulting effective axion decay constant is given by

feff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 f

2
i C

2
i

p
DetN

¼
�XN

i¼1

YN
j¼iþ1

n2jf
2
i

�1=2

∼ n2n3 � � �nNf1

ð61Þ
if ni > 1 and f1 ∼ f2 ∼… ∼ fN . In the limit ΛN ≪ Λi
(i ¼ 1;…; N − 1), the inflaton direction is determined to be

ϕflat ∝
X
i

Ciϕi ¼
�YN

i¼2

ni

�
ϕ1 −

�YN
i¼3

ni

�
ϕ2

þ � � � − nNϕN−1 þ ϕN: ð62Þ

This model can be considered as a generalization of the
two axion models of [14,15], and realizes a multiple axion
monodromy

Q
N
i¼2 Zni along the inflaton direction. As a

consequence, in order for the Nth axion ϕN to travel one
period along the inflaton direction, i.e. ΔϕN ¼ 2πfN , the
other axions ϕi (i ¼ 1; 2;…; N − 1) should experience a
multiple winding as

Δϕi

2πfi
¼

YN
j≥iþ1

nj: ð63Þ

In Fig. 2, we depict such multiple monodromy structure for
the case of N ¼ 3 and n2 ¼ n3 ¼ 2.
Our second model is

V ¼ Λ4
1

�
1 − cos

�
ϕ1

f1
þ ϕ2

f2
− ϕ3

f3
þ � � � þ ð−ÞN ϕN

fN

��

þ Λ4
2

�
1 − cos

�
ϕ2

f2
þ ϕ3

f3
− ϕ4

f4
þ � � � þ ð−ÞN−1 ϕN

fN

��

þ � � � þ Λ4
N−2

�
1 − cos

�
ϕN−2
fN−2

þ ϕN−1
fN−1

− ϕN

fN

��

þ Λ4
N−1

�
1 − cos

�
ϕN−1
fN−1

þ ϕN

fN

��

þ Λ4
N

�
1 − cos

�
ϕN

fN

��
; ð64Þ

which is designed to achieve an exponentially enhanced
effective decay constant even when all the integer-valued
anomaly coefficients are restricted as jnijj ≤ 1. In this case,
we have

DetN ¼ 1; C2
i ¼ 4ðN−1−iÞ ði ¼ 1; 2; � � � ; N − 1Þ;

C2
N ¼ 1: ð65Þ

Then, assuming that all fundamental decay constants are
comparable to each other, the effective decay constant is
exponentially enhanced as

feff ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð4N−1 þ 2Þ

r
fi ∼

2N−1ffiffiffi
3

p fi ð66Þ

although we have jnijj ≤ 1.

IV. CONCLUSION

Natural inflation provides an attractive framework for
large field chaotic inflation which can explain the recent
detection of primordial gravitational waves by BICEP2.
The KNP alignment mechanism offers an interesting
scheme to get a super-Planckian effective axion decay
constant feff ≫ MPl, which is a necessary component of
natural inflation, starting from sub-Planckian fundamental
axion decay constants fi ≪ MPl of multiple axions. In this
paper, we extended the original KNP model with two
axions to models with N > 2 axions. Compared to the
original KNP model, a notable difference is that large

FIG. 2 (color online). Multiple monodromy structure for the
three-axion model with n2 ¼ n3 ¼ 2. The solid red line repre-
sents the inflaton direction in the fundamental domain of three
axions. Note that Δϕ2 ¼ 2πf2 along the inflaton direction
requires Δϕ1 ¼ 2πn2f1, and Δϕ3 ¼ 2πf3 requires Δϕ2 ¼
2πn3f2. As a result, Δϕ3 ¼ 2πf3 along the inflaton direction
yields Δϕ1 ¼ 2πn2n3f1.
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anomaly coefficients of Oðfeff=fiÞ are not required
anymore if the number of axions is moderately large as
N lnN ≳ 2 lnðfeff=fiÞ. With such N, the effective decay
constant can be exponentially enhanced as feff=fi ∼ffiffiffiffiffiffi
N!

p
nN−1 for n denoting the typical size of the integer-

valued anomaly coefficients, and the probability for the
necessary alignment to be achieved under a random choice
of the anomaly coefficients is of the order of fi=feff .
The structure of our setup is rich enough to realize a

variety of different possibilities. For instance, it can realize

a multiple axion monodromy
Q

N
i¼2 Zni yielding feff=fi∼Q

N
i¼2 ni. The setup can also give rise to an exponentially

enhanced effective axion decay constant as feff=fi ∼ 2N−1,
even when all the integer-valued anomaly coefficients are
restricted as jnijj ≤ 1.
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