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We study the effects of a generalized uncertainty principle on the classical and quantum cosmology of a
closed Friedmann universe whose matter content is either a dust or a radiation fluid. More concretely,
assuming the existence of a minimal length, we show that the entropy will constitute a Dirac observable.
In addition, ’t Hooft conjecture on the cosmological holographic principle is also investigated. We describe
how this holographic principle is satisfied for large values of a quantum number, n. This occurs when the
entropy is computed in terms of the minimal area.
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I. INTRODUCTION

It has been pointed out that our existing theories will break
down when applied to small distances or very high energies.
In particular, the geometrical continuum beyond a certain
limit will no longer be valid. This suggested the development
of a scenario based on indivisible units of length. In recent
years, the concept of minimal length has been described
through algebraic methods, by means of a generalized
uncertainty principle, which could be induced by gravita-
tional effects, first proposed by Mead [1]. Moreover, a
generalized uncertainty principle (GUP), as presented in
theories such as string theory and doubly special relativity,
conveys the prediction of a minimal measurable length [2]. A
similar feature appears in the polymer quantization in terms
of a mass scale [3]. The concept of a subsequent minimal
area can, thus, be considered. This then raises the question of
whether it can be used in discussions about entropy, namely,
involving the holographic principle.
The holographic principle in quantum gravity was first

suggested by ’t Hooft [4] and later extended to string theory
by Susskind [5]. The most radical part of this principle
proposes that the degrees of freedom of a spatial region
reside not in the bulk but in the boundary. Furthermore, the
number of boundary degrees of freedom per Planck area
should not be larger than 1. In this context, it is worth
reminding the reader of the general assumption that the
Bekenstein-Hawking area law applies universally to all
cosmic or black hole horizons. On the other hand, it has
been shown recently (in Ref. [6]), that there is a derivation
for the holographic/conformal-anomaly Friedmann equation.

This is of interest because that derivation was obtained by
assuming that the effect of GUP on the entropy from the
apparent horizon admits a constraint which relates the
anomaly coefficient and the GUP parameter.
In this paper we investigate the quantum cosmology of a

closed Friedmann-Lemaître-Robertson-Walker (FLRW)
universe, filled with either radiation or dust. Our aim in this
scenario, by assuming a minimal length, is to determine
whether a correspondingminimal areawill be of relevance in
discussing the holographic principle. The paper is organized
as follows. In Sec. II we present the classical setting in the
presence of a GUP. Section III provides the quantum
cosmological description of our model. Section IV conveys
howourmodelcanbeused todiscussholographic features. In
Sec. V, we summarize our results.

II. CLASSICAL MODEL WITH GUP

Let us start with the line element of the closed homo-
geneous and isotropic FLRW geometry

ds2 ¼ −N2ðηÞdη2 þ a2ðηÞdΩ2
ð3Þ; ð1Þ

where NðηÞ is the lapse function, aðηÞ is the scale factor
and dΩ2

ð3Þ is the standard line element for a unit three-

sphere. The action functional corresponding to the line
element (1) displays in the gravitational and matter sectors
(with the latter as perfect fluid) [7]

S ¼ M2
Pl

2
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M

ffiffiffiffiffiffi
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in which M2
Pl ¼ 1

8πG (where G is the Newton gravitational
constant) is the reduced Planck’s mass squared in natural
units,M ¼ I × S3 is the spacetime manifold, ∂M ¼ S3, R
is the Ricci scalar associated to the metric gμν whose
determinant has been denoted by g, ρ is the energy density,
K is the trace of the extrinsic curvature of the spacetime
boundary and an overdot denotes differentiation with
respect to η.
For a radiation fluid (pγ ¼ 1

3
ργ where the ργ and pγ are

the energy density and pressure associated to the radiation
fluid, respectively), redefining the scale factor and lapse
function as (

aðηÞ ¼ xðηÞ þ M
12π2M2

Pl
≔ x − x0;

NðηÞ ¼ 12π2MPlaðηÞ ~N;
ð3Þ

the total Lagrangian, if we further add a dust fluid that does
not interact with the radiation, will be

L ¼ −
1

2 ~N
MPl _x2 þ

~N
2
MPlω

2x2 − E ~N; ð4Þ

where we have employed

�
E ¼ M2

2MPl
þ 12π2N γMPl;

ω ¼ 12π2MPl:
ð5Þ

Moreover, we introduce M and N γ as

�
M ¼ R

∂M
ffiffiffiffiffiffiffi
gð3Þ

p
ρ0ma30d

3x;

N γ ¼
R
∂M

ffiffiffiffiffiffiffi
gð3Þ

p
ρ0γa40d

3x:
ð6Þ

In the above definition,M denotes the total mass of the dust
matter. In addition,N γ could be related to the total entropy
of radiation as follows: the energy density ργ, the number
density nγ, the entropy density sγ and the scale factor are

related to temperature, T, via ργ ¼ π2

30
gT4, nγ ¼ ζð3Þ

π2
gT3,

sγ ¼ 4
3

ργ
T and aðηÞ ∼ 1

T [8]. Consequently, we find

N γ ¼
�
5 × 35

28π4g

�
1=3

ðSðγÞÞ4=3; ð7Þ

where SðγÞ denotes the corresponding total entropy [9].
The momenta conjugate to x and the primary constraint,

which are necessary to construct the Hamiltonian of the
model, are given by

(
Πx ¼ ∂L

∂ _x ¼ − ~N
MPl

_x;

Π ~N ¼ ∂L
∂ _~N

¼ 0:
ð8Þ

Therefore, the Hamiltonian corresponding to (4) becomes

H ¼ − ~N

�
1

2MPl
Π2

x þ
1

2
MPlω

2x2 − E
�
: ð9Þ

From (8) we see that the momentum conjugate to ~N
vanishes, i.e., the Lagrangian of the system is singular.
Thus, we have to add it to the Hamiltonian (9) and construct
the total Hamiltonian as

HT ¼ − ~N

�
1

2MPl
Π2

x þ
1

2
MPlω

2x2 − E
�
þ λΠ ~N; ð10Þ

where λ is a Lagrange multiplier.
During the evolution of the system, the primary con-

straint should hold; namely, we should have

_Π ~N ¼ fΠ ~N;HTg ≈ 0; ð11Þ

which leads to the secondary (Hamiltonian) constraint as

H ≔
1

2MPl
Π2

x þ
1

2
MPlω

2x2 − E ≈ 0: ð12Þ

We should note that a gauge-fixing condition is required for
the constraint (12), in which ~N ¼ const. can be a possibil-
ity. Thus, by choosing the gauge as ~N ¼ 1=ω, and
reminding the reader that the canonical variables satisfy
the Poisson algebra fx;Πxg ¼ 1, we get the following
Hamilton equations of motion:

�
_x ¼ − 1

ωMPl
Πx;

_Πx ¼ ωMPlx:
ð13Þ

Employing the Hamiltonian constraint (12), it easily leads
us to the well-known solution for a closed universe as

8>>><
>>>:

aðηÞ ¼ aMax
1þsecϕ ½1 − secϕ cosðηþ ϕÞ�;

aMax ≔ M
12π2M2

Pl
þ
�

2E
MPlω

2

�1
2;

cosϕ ≔ Mffiffiffiffiffiffiffiffiffi
2EMPl

p ;

ð14Þ

where aMax represents the maximum radius of the closed
universe and we have assumed that the initial singularity
occurs at η ¼ 0.
Let us now investigate the effects, at a classical level, of a

deformed Poisson algebra in the presence of a minimal
length. We write [10]

� fx; xg ¼ fΠx;Πxg ¼ 0;

fx;Πxg ¼ 1þ α2L2
PlΠ2

x;
ð15Þ

where α is a dimensionless constant and LPl denotes
Planck’s length in the natural units. It is normally assumed
that α is to be of order unity. In this case, the deformation
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will contribute only to the Planck regime of the Universe,
and for this reason, the quantum cosmology of the model
will be studied in the next section. A physical length of the
order αLPl is yet unobserved so it cannot exceed the
electroweak scale [11], which implies 1ffiffiffiffi

8π
p ≤ α ≤ 1017.

As a consequence of the above deformation with
Hamiltonian (9), the Hamilton equations become

�
_x ¼ − ~N

MPl
ð1þ α2L2

PlΠ2
xÞΠx;

_Πx ¼ ~Nω2MPlð1þ α2L2
PlΠ2

xÞx:
ð16Þ

To solve these equations, we relate the Πx to the new
variable y as

Πx ¼
1

αLPl
tanðαLPlyÞ; ð17Þ

which, using the Hamiltonian constraint (12) and the gauge
~N ¼ 1=ω, gives

8>>>>>>>>><
>>>>>>>>>:

aðηÞ ¼ aMax
B
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1 − A cosðΩηþϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α2LPlEcos2ϕ

p
secϕ;

A ≔ secϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α2LPlEcos2ϕ

p
;

Ω ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Eα2LPl

p
;

cosϕ ≔ Mffiffiffiffiffiffiffiffiffi
2EMPl

p ð1þ 24π2α2N γÞ−1
2;

ð18Þ

and aMax is similar to the nondeformed case defined in (14).
If we take the limit α → 0, we find solution (14) which
shows that the canonical behavior is recovered in this limit.
We immediately obtain from (18) that the Universe reaches
its maximum radius at η ¼ π−ϕ

Ω , and it terminates in the

big-crunch singularity at η ¼ 2ðπ−ϕÞ
Ω .

III. QUANTUM COSMOLOGY WITH
MINIMAL LENGTH

At the quantum level, the deformed Poisson algebra (15)
is replaced by the following commutation relation between
the phase space variables of the minisuperspace:

½x;Πx� ¼ ið1þ α2L2
PlΠ2

xÞ: ð19Þ

Commutation relation (19) provides the minimal length
uncertainty relation (MLUR) [12]

Δx ≥
1

2

�
1

ΔΠx
þ α2L2

PlΔΠx

�
: ð20Þ

This MLUR implies the existence of a minimal length

Δxmin ¼ αLPl; ð21Þ

which indicates it is impossible to consider any physical state
as the eigenstate of the position operator [13]. Consequently,
workingwith the position representation jxi is impossible. In
the presence of GUP, in order to recover the information on
the spatial distribution of the quantum system, we would
introduce a quasiposition representation, which consists of
the projection of the states onto a set of maximally localized
states jψml

ξ i [14]. These states are the proper physical states
around a position ξ with property hψml

ξ jxjψml
ξ i ¼ ξ and

ðΔxÞjψml
ξ i ¼ Δxmin. Thus, the quasiposition wave function

will be

ψðξÞ ¼
Z

∞

−∞

dΠxe
iξ

αLPl
tan−1ðαLPlΠxÞ

ð1þ α2L2
PlΠ2

xÞ32
ψðΠxÞ; ð22Þ

which is a generalization of the Fourier transformation. The
Hilbert space, in the quasiposition representation, is the space
of functionswith the usualL2 norm.Onadensedomainof the
Hilbert space, the position andmomentumoperators obeying
relation (19) couldbe represented inmomentumspace as [15]

�Πx ¼ Πx;

x ¼ ið1þ α2L2
PlΠ2

xÞ d
dΠx

:
ð23Þ

Hence, the inner product between two arbitrary states on a
dense domain will be

hφjψi ¼
Z þ∞

−∞

dΠx

1þ α2L2
PlΠ2

x
φ�ðΠxÞψðΠxÞ: ð24Þ

Therefore, themodifiedWheeler-DeWitt (WDW)equation in
the presence of MLUR (20) is given by

�
−MPlω

2

�
ð1þ α2L2

PlΠ2
xÞ

d
dΠx

�
2

þ 1

2MPl
Π2

x

�
ψ ¼ Eψ :

ð25Þ

We now proceed using the transformation (17). Hence, the
above WDW equation will be changed to the trigonometric
Pöchl-Teller (TPT) equation

d2ψðzÞ
dz2

þ
�
ϵ −

V
cos2ðzÞ

�
ψðzÞ ¼ 0; ð26Þ

where z ¼ αLPly and

(
ϵ ¼ 1

ð12π2αÞ2
�

2E
MPl

þ 1
α2

�
;

V ¼ 1
ð12π2α2Þ2 :

ð27Þ

The normalized eigenfunctions of theTPTequation are given
by [16]
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ψnðzÞ ¼ 2νΓðνÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν!ðnþ νÞαLPl
2πΓðnþ2νÞ

q
cosνðzÞCν

nðsinðzÞÞ; ð28Þ

where n is an integer, Cν
n is the Gegenbauer polynomial and

ν ≔
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

36π4α4

r �
: ð29Þ

Moreover, the corresponding eigenvalue of the WDW
equation is given by

En ¼ 12π2MPl

��
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36π4α4

p

þ 6π2α2
�
n2 þ nþ 1

2

�	
¼ 72π4α2MPlðn2 þ 2nνþ νÞ: ð30Þ

Let us now obtain the Dirac observables of the model.
According to Dirac [17], the observables of a theory are
those quantities which have vanishing commutators with
the constraints of theory. In order to retrieve them, we start
by finding the symmetries of the WDW equation in the
form given by (26). Considering the infinite number of
bound states of Eq. (26), the underlying Lie algebra could
be expected as its spectrum generating algebra. The low-
ering and raising operators for the WDW equation in (26)
can be built using a factorization type method [18]. To do
this, let us start with the WDW Eq. (26), and rewrite it as a
bound state stationary Schrödinger equation

� hψn ¼ ϵnψn;

h ≔ − d2

dz2 þ UðzÞ; ð31Þ

where UðzÞ≔V=cos2ðzÞ¼ νðν−1Þ=cos2ðzÞ. Introducing
the following first order differential operators [18]

a�ν ≔ ∓ d
dz

þWðz; νÞ; ð32Þ

where Wðz; νÞ ¼ ν tanðzÞ is the superpotential, we obtain
the first supersymmetric partner Hamiltonian

hþ ≔ aþν a−ν ¼ h − ϵ0; ð33Þ

where ϵ0 ¼ ν2 is the ground state energy eigenvalue. The
second supersymmetric partner Hamiltonian is given by

h− ≔ a−ν aþν : ð34Þ

The Hamiltonians h� have the same energy spectrum
except the ground state of hþ�

hþψn
ν ¼ aþν a−ν ψn

ν ¼ ðϵn − ν2Þψn
ν ;

h−ψn
ν ¼ a−ν aþν ψn

ν−1 ¼ ðϵn − ν2Þψn
ν−1:

ð35Þ

We see that changing the order of operators aþν and a−ν
simply leads to the shift of the value of ν. This symmetry is
called shape-invariance symmetry [18]. Using shape-
invariance symmetry, we can show that ψn

ν and ψn
ν−1

are proportional to aþν ψn
ν−1 and a−ν ψn

ν , respectively. The
shape-invariance condition (35) can be rewritten as

a−ν aþν ¼ aþνþ1a
−
νþ1 þ RðνÞ; ð36Þ

where RðνÞ ¼ 2νþ 1 is independent of z. According to
[19], we assume that replacing ν with νþ 1 in a given
operator, say Oν, can be achieved with a similarity
transformation Tν:

�TνOνðzÞT−1
ν ¼ Oνþ1ðzÞ;

Tν ≔ exp
�

∂
∂ν
�
:

ð37Þ

The shape-invariant potentials are easy to deal with, if
lowering and raising operators are employed, developed
originally for the harmonic oscillator. However, as the
commutator ½a−ν ; aþν � does not yield a constant value,
namely,

½a−ν ; aþν � ¼
2ν

cos2ðzÞ ; ð38Þ

the choice of a�ν does not work. To establish a suitable
algebraic structure, we introduce the following operators
[19]:

�
A ≔ T†a−ν ;

A† ≔ aþν T;
ð39Þ

which lead to

½A; A†� ¼ 1 − 2ν: ð40Þ

The action of these factor operators on normalized
eigenfunctions will be

�
Ajν; ni ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð2νþ 2þ nÞp jνþ 2; n − 1i;
A†jν; ni ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þð2ν − 1þ nÞp jν − 2; nþ 1i:

ð41Þ

It can be verified that these operators, together with
~Ajν; ni ¼ ð1=2 − νÞjν; ni, obey the suð2Þ Lie algebra

½ ~A; A� ¼ −A; ½ ~A; A†� ¼ A†; ½A; A†� ¼ −2 ~A: ð42Þ

Also, based on recursion relations of Gegenbauer poly-
nomials, we can introduce the following three operators
[20] associated with the dynamical group suð1; 1Þ of the
WDW equation (26):
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8>>><
>>>:

Jþ ≔ ½− cosðzÞ d
dz þ sinðzÞðN̂ þ νÞ� 1þ N̂þνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN̂þνÞðN̂þ2νÞ
p ;

J− ≔ ½cosðzÞ d
dz þ sinðzÞðN̂ þ νÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂þ ν−1
N̂þ2ν−1

q
;

J0 ≔ N̂ þ νþ1
2
;

ð43Þ

where N̂ denotes the number operator with the property
N̂jν; ni ¼ njν; ni. The action of the above generators on a
set of basis eigenvectors jν; ni is given by8>><

>>:
J0jν; ni ¼ ð−jþ nÞjν; ni;
J−jν; ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð−2jþ n − 1Þp jν; n − 1i;

Jþjν; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þð−2jþ nÞp jν; nþ 1i;

ð44Þ

where j ≔ −ðνþ 1Þ=2 < 0 denotes the Bargmann index of
the dynamical group. The corresponding Casimir operator
can be calculated as

�
J2 ≔ J0ðJ0 − 1Þ − JþJ−;

J2jν; ni ¼ jðjþ 1Þjν; ni; ð45Þ

with well-known properties

½J2; J�� ¼ 0; ½J2; J0� ¼ 0: ð46Þ

Hence, a representation of suð1; 1Þ is determined by the
Bargmann index and the eigenvectors of the Casimir and
J0. In addition, we find that the Hamiltonian (12) could be
written as [20]

H ¼ 72π4αMPl½JþJ− − ð2jþ 1ÞJ0�
− 3π2αMPlðjþ 1Þð2jþ 1Þ − E; ð47Þ

from which we can conclude that the Casimir operator (45)
and J0 commute with the Hamiltonian

½J2; H� ¼ ½J0; H� ¼ 0: ð48Þ

Therefore, J2 and J0 leave the physical Hilbert space
invariant and we choose them as physical operators of
the model.

IV. HOLOGRAPHIC PRINCIPLE AND THE
MINIMAL AREA

Let us first concentrate on a radiation dominated very
early universe, ðM ¼ 0Þ. In this case, comparing Eq. (5)
and (30) gives

N γ ¼
�
nþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ36π4α4

p
þ6π2α2

�
n2þnþ1

2

�
: ð49Þ

Moreover, according to Eq. (7),N γ is related to the entropy
of the radiation fluid. Hence, Eqs. (7), (49) and from

the definition of ν, (29), lead us to extract the corresponding
entropy of the radiation, SðγÞn (in terms of a minimal
surface) as

SðγÞn ¼
�
4π7g
45

�1
4

�
Amin

4G

�3
4ðn2 þ 2nνþ νÞ34; ð50Þ

where Amin ¼ 4Δx2min ¼ 4α2L2
Pl is the minimal surface

[21]. Therefore, according to Eqs. (44) and (48), the
entropy of radiation is a Dirac observable. To obtain a
relation between the entropy of radiation and the surface of
the apparent horizon, let us retrieve the expectation value
of the square of the scale factor. Using relations (3),
(17), (23) and (39), we obtain aðtÞ ¼ x ¼ iαLPl

d
dz ¼

iαLPl
2

ðTA − A†T†Þ. Hence, the expectation value of the
square of the scale factor reads

ha2i ¼ hx2i

¼ α2L2
Pl

4
hν; njðTAA†T† þ A†AÞjν; ni

¼ Amin

8

�
n2 þ 2nνþ νþ n −

1

2

�
; ð51Þ

where we have used (41). In the presence of the minimum
length, from relation (29), we get ν≃ 1. Hence for large
values of the quantum number, n, we find ha2i≃
Aminn2=8. On the other hand, the apparent horizon of a
FLRW model for the radiation case is given [22] by

Rah ¼ ðH2 þ 1=a2Þ−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
6π2M2

Pl
N

q
a2. Inserting this result

into Eq. (50), we find, for large values of n, that

SðγÞn ≃
�
2048π7g

45

�1
4

�
Aah

4G

�3
4

; ð52Þ

where Aah ≔ 4πhRahi2 denotes the area of the apparent
horizon. The above equation is in the form as conjectured
by ’t Hooft [4]: assuming that the matter occupies a specific
volume, then the entropy of that matter will be SðγÞ ∝
ð4GÞ−3=4A3=4 [4], where A denotes the area of the con-
taining volume.
We now turn to a universe filled with only dust fluid,

ðN γ ¼ 0Þ. In this case, comparing Eqs. (5) and (30), we get

M2 ¼ 144π4α2M2
Plðn2 þ 2nνþ νÞ: ð53Þ

In addition, let us discuss the total entropy of the dust
content of the universe, by means of investigating the
following expression [23] for the entropy of an ideal gas,
which consists of N ideal particles in a volume V, namely,

SðidealÞ ¼ N ln

�
V
N

�
mT
2π

�3
2

e
5
2

�
; ð54Þ
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where m is the mass of the particles. For the case of a
continuous fluid, let us rewrite (54). To this end, we
consider an ideal gas contained within a small volume
element dV. The number of particles inside dV is

dN ¼ ρ

m
dV: ð55Þ

Inserting this expression into Eq. (54), the entropy asso-
ciated with the volume element, in terms of the density of
the fluid, can be written as

dSðdustÞ ¼ ρm
m

ln

�
KT

3
2

ρ

�
dV; ð56Þ

where K ¼ ðm5e5
2π Þ1=2 [24]. For a dust dominated universe

where ρ¼ρ0ða=a0Þ−3 and T¼T0ða=a0Þ−2, we get SðdustÞ ¼
lnðKT3=2

0 =ρ0ÞN. Let us use the simple approximation

SðdustÞ ≃ N ¼ M
m

: ð57Þ

Therefore, from Eqs. (53) and (57), we obtain

SðdustÞn ≃ 12π2α
MPl

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2nνþ ν

p
: ð58Þ

For this dust universe, the apparent horizon [22] is

R2
ah ¼ 6π2M2

Pl
M a3. Employing the relation associated to the

variable x from (3) and reminding the reader that the
expectation values of odd powers of x vanish, i.e.,
hxi ¼ hx3i ¼ 0, we obtain ha3i ¼ −x0½3hx2i þ x20�. Now,
substituting the relation for x0, which is defined as in (3),
gives ha3i ¼ M

12π2M2
Pl
½3hx2i þ x20�. The terms inside the

brackets can be replaced by the expectation value of x2

from (51) and an expression for x20 as

x20 ¼
Amin

4
ðn2 þ 2nνþ νÞ; ð59Þ

where we have used (3), α2 ¼ ðAminM2
PlÞ=4 and the

quantization condition (53). Consequently, using Eqs. (51)
and (59) in the last expression associated to the ha3i, and
finally substituting it into the relation of the apparent
horizon, we find

hR2
ahi ¼

1

2
½3hx2i þ x20�

¼ Amin

16

�
5ðn2 þ 2nνþ νÞ þ 3

�
n −

1

2

��
: ð60Þ

Therefore, at the presence of minimal length and for large
values of the quantum number n, by comparing (58) and
(60) we obtain

SðdustÞ ¼ 12πffiffiffiffiffi
10

p MPl

m

�
Aah

4G

�1
2

; ð61Þ

which implies that the ’t Hooft holographic conjecture is
satisfied for a universe filled with a dust fluid. Let us, in
particular, consider the specific case where primordial
black holes (PBHs) constitute the sole content of the dust
fluid [25]. In this case, Eq. (53) gives us the total entropy of
the PBHs: if we assume each PBH to have the same mass,
mbh, then we have M ¼ Zmbh, where Z denotes the total
number of PBHs. The area of the event horizon of a
Schwarzschild black hole is given byAeh ¼ 16πG2m2

bh and
consequently we obtain M2 ¼ 4πZ2AehM4

Pl, assuming
each PBH to be of a Schwarzschild type. Therefore, from
Eq. (53) we can obtain the following relations between the
PBH event horizon area and the minimal surface area:

Aeh ≃ 9π3

Z2
Aminðn2 þ 2nνþ νÞ: ð62Þ

Hence, the event horizons of PBHs are Dirac observables,
with the event horizon being related to the quantum number
n. Using the Bekenstein-Hawking formula SðbhÞ ¼ Aeh

4G , we
obtain the total entropy of the PBHs, ðZSðbhÞÞ, as

SðPBHsÞn ¼ 9π3

Z
Amin

4G
ðn2 þ 2nνþ νÞ: ð63Þ

Therefore, for large values of quantum number n, using
(60) we obtain

SðPBHsÞ ¼ 81π3

7Z

�
Aah

4G

�
; ð64Þ

which is in agreement with ’t Hooft holographic
conjecture [4].

V. CONCLUSIONS

In this paper we studied the effects of a deformed
Heisenberg algebra in terms of a MLUR in a closed
quantum FRLW model, whose matter is either a fluid of
radiation or dust. Quantum cosmologies with a perfect fluid
matter content were investigated, e.g., in [26]. In particular,
the case of a dust or radiation dominated quantum universe
was studied in [27].
Ourmain result is that the extended dynamical group of the

model, suð1; 1Þ, admits a minimal area retrieved from a
MLUR, in the form of a Dirac observable. It reasonably
agrees with the cosmological holographic principle, in the
case of a large quantum number, n. We are aware that our
results are obtained within a very simple as well as restricted
setting.Nevertheless,we think they are intriguing andprovide
motivation for subsequent research works. Possible exten-
sions to test the relation among a GUP, a minimal surface
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being subsequently obtained (constitutingaDirac observable)
and the cosmological holography may include

(i) Considering other perfect fluids besides radiation
and dust.

(ii) Including instead, e.g., scalar fields.
(iii) Considering a Bianchi IX geometry.
(iv) Exploring string features by means of a broader

gravitational sector.
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