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We study the effects of a generalized uncertainty principle on the classical and quantum cosmology of a
closed Friedmann universe whose matter content is either a dust or a radiation fluid. More concretely,
assuming the existence of a minimal length, we show that the entropy will constitute a Dirac observable.
In addition, 't Hooft conjecture on the cosmological holographic principle is also investigated. We describe
how this holographic principle is satisfied for large values of a quantum number, n. This occurs when the

entropy is computed in terms of the minimal area.
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I. INTRODUCTION

It has been pointed out that our existing theories will break
down when applied to small distances or very high energies.
In particular, the geometrical continuum beyond a certain
limit will no longer be valid. This suggested the development
of a scenario based on indivisible units of length. In recent
years, the concept of minimal length has been described
through algebraic methods, by means of a generalized
uncertainty principle, which could be induced by gravita-
tional effects, first proposed by Mead [1]. Moreover, a
generalized uncertainty principle (GUP), as presented in
theories such as string theory and doubly special relativity,
conveys the prediction of a minimal measurable length [2]. A
similar feature appears in the polymer quantization in terms
of a mass scale [3]. The concept of a subsequent minimal
area can, thus, be considered. This then raises the question of
whether it can be used in discussions about entropy, namely,
involving the holographic principle.

The holographic principle in quantum gravity was first
suggested by 't Hooft [4] and later extended to string theory
by Susskind [5]. The most radical part of this principle
proposes that the degrees of freedom of a spatial region
reside not in the bulk but in the boundary. Furthermore, the
number of boundary degrees of freedom per Planck area
should not be larger than 1. In this context, it is worth
reminding the reader of the general assumption that the
Bekenstein-Hawking area law applies universally to all
cosmic or black hole horizons. On the other hand, it has
been shown recently (in Ref. [6]), that there is a derivation
for the holographic/conformal-anomaly Friedmann equation.
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This is of interest because that derivation was obtained by
assuming that the effect of GUP on the entropy from the
apparent horizon admits a constraint which relates the
anomaly coefficient and the GUP parameter.

In this paper we investigate the quantum cosmology of a
closed Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe, filled with either radiation or dust. Our aim in this
scenario, by assuming a minimal length, is to determine
whether a corresponding minimal area will be of relevance in
discussing the holographic principle. The paper is organized
as follows. In Sec. I we present the classical setting in the
presence of a GUP. Section III provides the quantum
cosmological description of our model. Section IV conveys
how our model can be used to discuss holographic features. In
Sec. V, we summarize our results.

II. CLASSICAL MODEL WITH GUP

Let us start with the line element of the closed homo-
geneous and isotropic FLRW geometry

ds* = =N*(n)di + a*(1)dQ). (1)

where N(n) is the lapse function, a(n) is the scale factor
and dQé) is the standard line element for a unit three-

sphere. The action functional corresponding to the line
element (1) displays in the gravitational and matter sectors
(with the latter as perfect fluid) [7]

S—M—‘%‘/ VSR
/ \/7Kd3x—/ V—gpd*x

_671'2M}2)1/<—%+Na>d11 272 /Na pdn, (2)
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in which M}, = gl= (where G is the Newton gravitational
constant) is the reduced Planck’s mass squared in natural
units, M = I x 3 is the spacetime manifold, OM = §3, R
is the Ricci scalar associated to the metric g,, whose
determinant has been denoted by g, p is the energy density,
K is the trace of the extrinsic curvature of the spacetime
boundary and an overdot denotes differentiation with
respect to 7.

For a radiation fluid (p, = % p, where the p, and p, are
the energy density and pressure associated to the radiation
fluid, respectively), redefining the scale factor and lapse
function as

a =X %::x—x s
{ (71) (’7) + 1272 M2, 0 (3)

N(n) = 12”2Mpla(’7)N,

the total Lagrangian, if we further add a dust fluid that does
not interact with the radiation, will be

1 N g
L = ——Mpx* +—Mpw*x* — EN, 4
N Pl 5 M (4)

where we have employed

{5:%+ 122N, My, )
w = 127T2Mp1.
Moreover, we introduce M and N , as
{ M = fBM \/ g<3)p0magd3x, (©)
N, = faM \ 9<3)/’0y“3d3x-

In the above definition, M denotes the total mass of the dust
matter. In addition, N , could be related to the total entropy
of radiation as follows: the energy density p,, the number
density n,, the entropy density s, and the scale factor are

related to temperature, T, via p, = % gT?, n, = %gﬁ,
s, = %”% and a(n) ~ % [8]. Consequently, we find
5% 35\ 1/3 "
N, = (M) (S0P, )

where S() denotes the corresponding total entropy [9].

The momenta conjugate to x and the primary constraint,
which are necessary to construct the Hamiltonian of the
model, are given by

— 0L _ _ N j
{Hx—ax— Mp

0L _

(8)

Therefore, the Hamiltonian corresponding to (4) becomes
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H: —N|: 1 Hﬁ—l—lMpla)zxz—E]. (9)

2Mp, 2

From (8) we see that the momentum conjugate to N
vanishes, i.e., the Lagrangian of the system is singular.
Thus, we have to add it to the Hamiltonian (9) and construct
the total Hamiltonian as

~ 1
Hr = —N[ 12 4 - Mpw*x? — E] + Ay, (10)

2Mp 2
where 1 is a Lagrange multiplier.

During the evolution of the system, the primary con-
straint should hold; namely, we should have

which leads to the secondary (Hamiltonian) constraint as

1 1
H := I + ~ Mpw’x* — £~ 0. 12
) MP] X + ) P~ X ( )
We should note that a gauge-fixing condition is required for
the constraint (12), in which N = const. can be a possibil-
ity. Thus, by choosing the gauge as N =1/w, and
reminding the reader that the canonical variables satisfy

the Poisson algebra {x,II,} =1, we get the following
Hamilton equations of motion:

v 1
{x — 7 oMy L. (13)
ﬁx = a)Mplx.

Employing the Hamiltonian constraint (12), it easily leads
us to the well-known solution for a closed universe as

a(n) = 7 [1 —sec ¢ cos(n + @),

1
—_ M 26 )2
AMax ™= o2z T (Mp,wz) ’ (14)
M
cos ¢ == — M
¢ \/2EMp

where ay,, represents the maximum radius of the closed
universe and we have assumed that the initial singularity
occurs at 7 = 0.

Let us now investigate the effects, at a classical level, of a
deformed Poisson algebra in the presence of a minimal
length. We write [10]

x,x} ={I1,,IL.} =0,
{{ead = ) 05
{x. I} =14+ 2L 113,
where « is a dimensionless constant and Lp; denotes
Planck’s length in the natural units. It is normally assumed
that a is to be of order unity. In this case, the deformation
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will contribute only to the Planck regime of the Universe,
and for this reason, the quantum cosmology of the model
will be studied in the next section. A physical length of the
order aLp, is yet unobserved so it cannot exceed the
electroweak scale [11], which implies \/% <a <107,
As a consequence of the above deformation with
Hamiltonian (9), the Hamilton equations become

{x = =g (1 + LY IR)IL,, (16)
ﬁx = N(UZMPI(I + azL%IH)ZC)X.

To solve these equations, we relate the Il, to the new
variable y as

1
I, = ataH(O’LPl)’), (17)

which, using the Hamiltonian constraint (12) and the gauge
N = 1/w, gives

a(n) = (1

B:=1+Q'\/1 + 202LpEcosep sec .

_ Acos(Qn+¢) )
\/1 +2Ea? Lycos® (Qn+¢)/

A = secpy/1 + 2a*LpEcosep, (18)
Q:=+/1+ 25(12LP1,
cos ¢ = \/21‘;7 (1 +247%°N,) 7,

Pl

and ayy,, 1s similar to the nondeformed case defined in (14).
If we take the limit & — 0, we find solution (14) which
shows that the canonical behavior is recovered in this limit.
We immediately obtain from (18) that the Universe reaches

its maximum radius at # = ”g_l‘/’, and it terminates in the

big-crunch singularity at 7 = @

III. QUANTUM COSMOLOGY WITH

MINIMAL LENGTH

At the quantum level, the deformed Poisson algebra (15)
is replaced by the following commutation relation between
the phase space variables of the minisuperspace:

[x, IL,] = i(1 + L3 112). (19)

Commutation relation (19) provides the minimal length
uncertainty relation (MLUR) [12]

1/ 1
Ax > 5 (AHx + ale%lAHx) (20)
This MLUR implies the existence of a minimal length

Axmm = aLPl, (21)
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which indicates it is impossible to consider any physical state
as the eigenstate of the position operator [ 13]. Consequently,
working with the position representation | x) is impossible. In
the presence of GUP, in order to recover the information on
the spatial distribution of the quantum system, we would
introduce a quasiposition representation, which consists of
the projection of the states onto a set of maximally localized
states |1//g” ) [14]. These states are the proper physical states
around a position & with property (w7'|x[y?!) = ¢ and
(Ax)\w'g’> = AXpin. Thus, the quasiposition wave function
will be

L _tan~! (aLpTl,)

o dI1,.er n

(&) =/ . —v(L),  (22)
o (1 +a’LyIR):

which is a generalization of the Fourier transformation. The

Hilbert space, in the quasiposition representation, is the space

of functions with the usual [L?> norm. On a dense domain of the

Hilbert space, the position and momentum operators obeying

relation (19) could be represented in momentum space as [ 15]
I, =

s eram 4 )

x =i(l + a*LIL3) 7T -

Hence, the inner product between two arbitrary states on a
dense domain will be

I -

————¢*(Il I1,). 24
e ). ()

Therefore, the modified Wheeler-DeWitt (WDW) equationin
the presence of MLUR (20) is given by

d \? 1
—Mpa*| (1 2[2T12) — — T2y = &y.
{ p@ (( +a'Lg ) de> +2MP1 xi|l// Ey

(25)
We now proceed using the transformation (17). Hence, the

above WDW equation will be changed to the trigonometric
Pochl-Teller (TPT) equation

d Z;(zz) n <€ - cos‘z/(z>>"’(z) =0, (26)

where z = aLpy and

| 28 4 1
{ €= (127[211)2 <Mp1 + (12) ’ (27)

— 1
V= (127%a%)* *

The normalized eigenfunctions of the TPT equation are given
by [16]
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vlntvalngoe ()Y (sin(z)),  (28)

wa(z) = 2°T'(v) 271 (n+2v)

where 7 is an integer, C% is the Gegenbauer polynomial and

| I
= (114 ). 2
g 2< * +367t4a4) (29)

Moreover, the corresponding eigenvalue of the WDW
equation is given by

N\ /m—————5
(C/'n = 127[2MP]{ <n + E) 1 + 367T4a4

1
+ 6720 <n2 +n +§> }

= 127*a®>Mp (n® + 2nv +v). (30)

Let us now obtain the Dirac observables of the model.
According to Dirac [17], the observables of a theory are
those quantities which have vanishing commutators with
the constraints of theory. In order to retrieve them, we start
by finding the symmetries of the WDW equation in the
form given by (26). Considering the infinite number of
bound states of Eq. (26), the underlying Lie algebra could
be expected as its spectrum generating algebra. The low-
ering and raising operators for the WDW equation in (26)
can be built using a factorization type method [18]. To do
this, let us start with the WDW Eq. (26), and rewrite it as a
bound state stationary Schrodinger equation

hy, = €w,,
{ (1)

h=— j’—; + U(z).
where U(z):=V/cos?*(z) =v(v—1)/cos*(z). Introducing

the following first order differential operators [18]

d
+ . - . 2
a’ :Fdz + W(zv), (32)

where W(z;v) = vtan(z) is the superpotential, we obtain
the first supersymmetric partner Hamiltonian

hy =aja; =h—e, (33)

where €, = 17 is the ground state energy eigenvalue. The
second supersymmetric partner Hamiltonian is given by

h_:=ajaf. (34)

The Hamiltonians %, have the same energy spectrum
except the ground state of A

{ hoy! = afayyl = (e, — )y, (35)

n o = N _ 2\, 1
h—WI/ =a,aqay l//y—] - (€n -V )ll/y—]’
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We see that changing the order of operators a;” and aj
simply leads to the shift of the value of v. This symmetry is
called shape-invariance symmetry [18]. Using shape-
invariance symmetry, we can show that ywj and y_,
are proportional to a; y”_, and a;y}, respectively. The
shape-invariance condition (35) can be rewritten as

aya = ayag, +Rw), (36)
where R(v) =2v + 1 is independent of z. According to
[19], we assume that replacing v with v+ 1 in a given
operator, say ,, can be achieved with a similarity
transformation 7',:

TUOD(Z)TZI = Owr] (Z),
{ (37)

T, :==exp (%)

The shape-invariant potentials are easy to deal with, if
lowering and raising operators are employed, developed
originally for the harmonic oscillator. However, as the
commutator |[a,,a; ] does not yield a constant value,
namely,

R 2u
@y, al] = 5 Bk (38)

the choice of a; does not work. To establish a suitable
algebraic structure, we introduce the following operators
[19]:

A:=T'ay, 39
AT :=afT, (39)

which lead to
[A,AT] =1-20. (40)

The action of these factor operators on normalized
eigenfunctions will be

{Aun)—\/n(21/+2+n)|l/+2,n—1>, (1)

Afly,n) =/ (n+1)2v—1+n)lv-2,n+1).

It can be verified that these operators, together with

Alv,n) = (1/2 = v)|v, n), obey the su(2) Lie algebra

[A,A] = A, [A, AT = AT [A,AT] = —24. (42)

Also, based on recursion relations of Gegenbauer poly-
nomials, we can introduce the following three operators
[20] associated with the dynamical group su(1,1) of the
WDW equation (26):
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1+N+v
(N+v)(N+20)°

J_ = [cos(z) d% + sin(z) (N + ”)]\/%’ 43)

J = [—cos(z) £ + sin(z)(N + v)]

where N denotes the number operator with the property

Nlv, n) = n|v, n). The action of the above generators on a
set of basis eigenvectors |v, n) is given by

Jolv,n) = (=j + n)lv, n),

J_lv.n) = /n(=2j+n-1Dp,n=1),  (44)

Jilv.n) = /(n+ 1)(=2j + n)v.n + 1),

where j := —(v + 1)/2 < 0 denotes the Bargmann index of
the dynamical group. The corresponding Casimir operator
can be calculated as

J2e=Jy(Jo=1)=J, J_,
===, us)
Plv,n) = j(j+ 1w, n),
with well-known properties
20 =0,  [J%Jg] =0. (40)

Hence, a representation of su(1, 1) is determined by the
Bargmann index and the eigenvectors of the Casimir and
Jo. In addition, we find that the Hamiltonian (12) could be
written as [20]

H =T2r%aMp[J J_ — (2j + 1)J)
= 37%aMp(j + 1)(2j + 1) = €, (47)

from which we can conclude that the Casimir operator (45)
and J, commute with the Hamiltonian

[J2,H] = [Jo,H] = 0. (48)

Therefore, J> and J, leave the physical Hilbert space
invariant and we choose them as physical operators of
the model.

IV. HOLOGRAPHIC PRINCIPLE AND THE
MINIMAL AREA

Let us first concentrate on a radiation dominated very
early universe, (M = 0). In this case, comparing Eq. (5)
and (30) gives

1 1
N, = <n +§> V14 36xta* + 672 <n2 +n +§> . (49)

Moreover, according to Eq. (7), N , is related to the entropy
of the radiation fluid. Hence, Egs. (7), (49) and from

PHYSICAL REVIEW D 90, 023541 (2014)

the definition of v, (29), lead us to extract the corresponding
entropy of the radiation, S,/’ (in terms of a minimal
surface) as

477 g\t [ Apin \ 3
s — (%) (%)4(#—{-2111/—{-1/)%, (50)

where Ay, = 4Ax2, = 4a’L3, is the minimal surface
[21]. Therefore, according to Eqs. (44) and (48), the
entropy of radiation is a Dirac observable. To obtain a
relation between the entropy of radiation and the surface of
the apparent horizon, let us retrieve the expectation value
of the square of the scale factor. Using relations (3),
(17), (23) and (39), we obtain a(?) :x:iaLpld%:
“ale (TA — ATTY). Hence, the expectation value of the
square of the scale factor reads

(@®) = (x*)
2L2
=Z 2 (v n|(TAATT" + ATA)|v. )
Amin 2 1
— Lmin 2 —= 1
2 < +2nv+v+n 2), (51)

where we have used (41). In the presence of the minimum
length, from relation (29), we get v = 1. Hence for large
values of the quantum number, n, we find (a?)=
Apin?/8. On the other hand, the apparent horizon of a
FLRW model for the radiation case is given [22] by

Ry = (H* +1/a?)71V? = \/%az. Inserting this result
into Eq. (50), we find, for large values of n, that

() _ (204877 g\ 1 [ Ay
S ( 45 4G )’ (52)

where Ay, = 47(R,,)* denotes the area of the apparent
horizon. The above equation is in the form as conjectured
by "t Hooft [4]: assuming that the matter occupies a specific
volume, then the entropy of that matter will be S)
(4G)=3/* A3/* [4], where A denotes the area of the con-
taining volume.

We now turn to a universe filled with only dust fluid,
(N, = 0). In this case, comparing Eqs. (5) and (30), we get

M? = 1447 M3, (n* + 2nv + v). (53)

In addition, let us discuss the total entropy of the dust
content of the universe, by means of investigating the
following expression [23] for the entropy of an ideal gas,
which consists of N ideal particles in a volume V, namely,

V (mT\3
S(ideaty = N In <ﬁ <§> €%>, (54)
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where m is the mass of the particles. For the case of a
continuous fluid, let us rewrite (54). To this end, we
consider an ideal gas contained within a small volume
element dV. The number of particles inside dV is

an =L av. (55)
m
Inserting this expression into Eq. (54), the entropy asso-
ciated with the volume element, in terms of the density of
the fluid, can be written as

3
sty —Pm (KT2> v, (56)
m p

where K = (%;S)l/ 2 [24]. For a dust dominated universe
dust) _

where p=py(a/ay)™> and T=Ty(a/ay) 2, we get S
In(K Tg/ 2 po)N. Let us use the simple approximation

M
sldus) — = 22 (57)
m

Therefore, from Egs. (53) and (57), we obtain

N M
S ~ 122202 /02 + 200 + 1. (58)
m

For this dust universe, the apparent horizon [22] is

2 67‘[2M]2,] 3 . . .
Ry, = —;%a’. Employing the relation associated to the

variable x from (3) and reminding the reader that the
expectation values of odd powers of x wvanish, i.e.,
(x) = (x3) = 0, we obtain (a’) = —xo[3(x?) + x3]. Now,
substituting the relation for x(, which is defined as in (3),

gives (a’) = 720 [3(x*) + xg]. The terms inside the
Pl

brackets can be replaced by the expectation value of x>
from (51) and an expression for x% as

Amin
x%:T( 24 2nw+v), (59)

where we have used (3), & = (ApninM3,)/4 and the
quantization condition (53). Consequently, using Egs. (51)
and (59) in the last expression associated to the (@), and
finally substituting it into the relation of the apparent
horizon, we find

(RE) =3 [362) + )

_Amin 2 1

Therefore, at the presence of minimal length and for large
values of the quantum number n, by comparing (58) and
(60) we obtain
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which implies that the ’t Hooft holographic conjecture is
satisfied for a universe filled with a dust fluid. Let us, in
particular, consider the specific case where primordial
black holes (PBHs) constitute the sole content of the dust
fluid [25]. In this case, Eq. (53) gives us the total entropy of
the PBHs: if we assume each PBH to have the same mass,
myy, then we have M = Zmy,, where Z denotes the total
number of PBHs. The area of the event horizon of a
Schwarzschild black hole is given by A, = 167rG2m%h and
consequently we obtain M? = 4zZ> A4 M3,, assuming
each PBH to be of a Schwarzschild type. Therefore, from
Eq. (53) we can obtain the following relations between the
PBH event horizon area and the minimal surface area:

S(dust) —

, (61)

973

Aeh = _2-’4min(n2 +2nv + V)' (62)

Hence, the event horizons of PBHs are Dirac observables,
with the event horizon being related to the quantum number
n. Using the Bekenstein-Hawking formula S®h = %, we

obtain the total entropy of the PBHs, (ZS®"), as

S(PBHS) o 9_”'-3Amin

2
n = 2 .
7 AG (n* +2nv +v) (63)

Therefore, for large values of quantum number n, using
(60) we obtain

. 817 (A,
SR = =7 ( 4é‘>, (64)

which is in agreement with
conjecture [4].

’t Hooft holographic

V. CONCLUSIONS

In this paper we studied the effects of a deformed
Heisenberg algebra in terms of a MLUR in a closed
quantum FRLW model, whose matter is either a fluid of
radiation or dust. Quantum cosmologies with a perfect fluid
matter content were investigated, e.g., in [26]. In particular,
the case of a dust or radiation dominated quantum universe
was studied in [27].

Our main result is that the extended dynamical group of the
model, su(1,1), admits a minimal area retrieved from a
MLUR, in the form of a Dirac observable. It reasonably
agrees with the cosmological holographic principle, in the
case of a large quantum number, n. We are aware that our
results are obtained within a very simple as well as restricted
setting. Nevertheless, we think they are intriguing and provide
motivation for subsequent research works. Possible exten-
sions to test the relation among a GUP, a minimal surface
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being subsequently obtained (constituting a Dirac observable)
and the cosmological holography may include
(i) Considering other perfect fluids besides radiation
and dust.
(i1) Including instead, e.g., scalar fields.
(iii) Considering a Bianchi IX geometry.
(iv) Exploring string features by means of a broader
gravitational sector.
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