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We point out that the relative Heisenberg uncertainty relations vanish for noncompact spaces in
homogeneous loop quantum cosmology. As a consequence, for sharply peaked states quantum fluctuations
in the scale factor never become important, even near the bounce point. This shows why quantum
backreaction effects remain negligible and explains the surprising accuracy of the effective equations in
describing the dynamics of sharply peaked wave packets. This also underlines the fact that minisuperspace
models—where it is global variables that are quantized—do not capture the local quantum fluctuations of
the geometry.
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I. INTRODUCTION

The loop quantum cosmology (LQC) effective equations
provide quantum-gravity corrections to the classical sol-
utions of the Friedmann cosmologies [1,2], but they are
expected to break down when quantum-gravity effects
become stronger. This expectation arises since quantum
fluctuations of the geometry are expected to become
important as the space-time curvature nears the Planck
scale, and when quantum fluctuations become large,
quantum backreaction could become important [3].
However, despite this expectation, numerical evidence
shows that the effective equations (even when neglecting
all quantum backreaction effects) provide an excellent
approximation to the full dynamics of sharply peaked
states, including at the bounce point where quantum-
gravity effects are strongest [4,5]. In this sense, the effective
equations are surprisingly accurate in the Planck regime.
Why is quantum backreaction negligible in the effective
dynamics?
A closely related question concerns the magnitude of

quantum fluctuations of the geometry at the bounce.
Naively, one could expect classical space-time to become
ill defined at the bounce, because of the dominance of
quantum-gravity effects that may cause large quantum
fluctuations. But this is not necessarily the case: LQC
predicts bouncing geometries where quantum fluctuations
of the scale factor at the bounce can be arbitrarily small.
How is this possible?
In this paper we offer an explanation of these facts,

which we believe may shed some light on the foundations
of LQC (and minisuperspace quantum cosmology in
general). For the sake of simplicity we focus on the case
of a flat Friedmann-Lemaître-Robertson-Walker (FLRW)

universe with a perfect fluid of constant equation of state. It
is easy to generalize the discussion to other matter fields
and also to other homogeneous cosmologies. We consider
states which, far away from the Planck regime, admit a
clear semiclassical interpretation, i.e., states that are
sharply peaked in both the configuration and momentum
variables.

II. HAMILTONIAN FORMULATION
OF COSMOLOGY

In loop quantum cosmology, the fundamental variables
are taken to be the Ashtekar-Barbero connection Ai

a and the
densitized triad Ea

i , which in the flat FLRW space-time can
be parametrized as [6]

Ai
a ¼ ~cðdxiÞa; Ea

i ¼ ~p
ffiffiffi
q
∘

q � ∂
∂xi

�
a
; ð1Þ

where ~p ¼ aðtÞ2, with aðtÞ being the usual scale factor in
the FLRW model (and ignoring a possible sign factor due
to the orientation of the triads), and xi are Cartesian
coordinates on the spatial manifold defining a fiducial
spatial metric

ds
∘2 ¼ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2; ð2Þ

with determinant q
∘ ¼ 1.

It is possible to rescale the fiducial coordinates by a
factor α, xi → αxi in which case q

∘
→ α6q

∘
and

~c → α−1 ~c; ~p → α−2 ~p; ð3Þ

so that Ai
a and Ea

i remain invariant.
Fix a space-time region V, called the fiducial cell, with

fiducial-metric volume Vo ¼
R
V

ffiffiffi
q
∘q
. Inserting the form (1)

for the variables Ai
a and Ea

i , the Holst action [7] for this
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region is given by the constraints plus the “symplectic”
term

1

8πGγ

Z
V

_Ai
aEa

i d
3x ¼ 3Vo

8πGγ
_~c ~p; ð4Þ

where γ is the Immirzi parameter. Notice that if space is
noncompact, for the theory to be well defined, it is
necessary to introduce the fiducial cell V in order to avoid
the divergence of this integral (and also the integrals that
appear in the constraint functions). In this sense, V acts as
an infrared regulator.
It follows that the fundamental Poisson bracket in the

gravitational sector is

f~c; ~pg ¼ 8πGγ
3Vo

: ð5Þ

This Poisson bracket is invariant under the rescaling (3), but
it does depend on the choice of the fiducial cell V, as
emphasized in [8]. This dependence does not affect the
classical dynamics, but it does play a very important
(though subtle) role in the quantum theory.
The dynamics is given by the Hamiltonian constraint CH.

Taking the lapse N ¼ 1, and in the presence of a massless
scalar field ~ϕ whose Poisson bracket with its conjugate
momentum is f ~ϕ; ~πϕg ¼ V−1

o , CH is [4]

CH ¼
Z
V
NH ¼ −

3Vo
ffiffiffiffi
~p

p
~c2

8πGγ2
þ Vo

~π2ϕ
2 ~p3=2 ≈ 0: ð6Þ

From _O ¼ fO; CHg, it follows that the classical dynamics
is independent from the fiducial cell: Vo appears linearly in
the Hamiltonian constraint and is canceled by the 1=Vo
factor in the Poisson bracket (5).
Since the classical dynamics is independent of the choice

of the fiducial cell, there is no need to remove the infrared
regulator provided by the choice of the cell. In other words,
the removal of the regulator in the classical theory is trivial
since the dynamics is not affected by the choice of V.

III. QUANTUM COSMOLOGY

In the quantum theory, the Poisson brackets are replaced
by commutators and the variables become operators. In
order to gain some intuition, we shall start by considering
Wheeler-DeWitt (WDW) quantum cosmology as an exam-
ple. In WDW theory, the basic commutator is given by

½ ~̂c; ~̂p� ¼ i
8πGℏγ
3Vo

; ð7Þ

and, at first sight, it seems as though the quantum theory
could also be independent from the choice of V since in the
Heisenberg picture

dÔ
dt

¼ ½Ô;cCH�; ð8Þ

and again the numerical factors of Vo cancel out.
But the quantum theory does more than just give the

dynamics: it also determines the quantum fluctuations of
the classical variables. The commutation relation (7)
implies the uncertainty relation

Δ~c · Δ ~p ≥
4πGℏγ
3Vo

: ð9Þ

This time nothing cancels the Vo factor. Therefore the
choice of the quantization region, i.e., of the fiducial cell,
affects the quantum theory. (Another way to see that the
quantum theory is not invariant under a rescaling of the
fiducial cell is by explicitly determining how the expect-
ation values of a given state change for different choices
of Vo [8].)
In fact, by taking Vo to be arbitrarily large, the right-hand

side of the Heisenberg uncertainty relations (9) vanishes.
Clearly, the quantum fluctuations can then become arbi-
trarily small. This does not mean that all states must have
small quantum fluctuations, but it means that it is possible
to construct states with arbitrarily small uncertainties in ~c as
well ~p.
The minimum possible amplitude of quantum fluctua-

tions is a physical quantity. If we require it to be
independent of the fiducial cell, because we want to view
V just as an infrared regulator, we can take the limit of
Vo → ∞. This is routinely done in quantum cosmology.
This gives

lim
Vo→∞

Δ~cΔ ~p ≥ 0; ð10Þ

showing that there is no minimal nonzero amplitude for
quantum fluctuations in quantum cosmology, at least for
noncompact homogeneous spaces. Thus, it is possible
to build states whose quantum fluctuations are always
arbitrarily small.
It is clear that since the classical symplectic structure in

LQC is the same as for WDW quantum cosmology, similar
arguments will apply for LQC as well, and this explains
why the effective equations of LQC are so accurate. Even
more, it is possible to go further and show that, for large Vo,
states (in the Schrödinger picture) whose quantum fluctua-
tions are small at one time continue to have small quantum
fluctuations at all times, including at the bounce point.
This result implies (for large Vo) that, since the quantum
fluctuations remain small, the effective Hamiltonian is
expected to give an excellent approximation to the full
quantum dynamics at all times, including the bounce point.
In order to show this in LQC, it is convenient to change

variables to [9]
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~β ¼ ~cffiffiffiffi
~p

p ; ~V ¼ ~p3=2; ð11Þ

whose Poisson bracket, in the classical theory as well as the
effective theory, is

f ~β; ~Vg ¼ 4πGγ
Vo

: ð12Þ

In LQC, all expressions that contain the connection must
be expressed in terms of holonomies. Because of this, there
is no operator corresponding to ~β; rather the operators of
interest are complex exponentials (or trigonometric func-
tions) of l ~β, which correspond to holonomies of the
Ashtekar-Barbero connection along edges of physical
length equal to l. In particular, in the Hamiltonian con-
straint operator the field strength operator is expressed in
terms of holonomies around a minimal area loop with
l ¼ λ, where λ2 ∼ l2

Pl is the area gap, the smallest nonzero
eigenvalue of the area operator in loop quantum gravity [4].
As shall be seen below, this input appears in the resulting
LQC effective theory.
Now we shall briefly recall the main ingredients of LQC

that will be necessary here; for more details see [4,9].
A convenient basis for the LQC of the flat FLRW space-
time are eigenstates of the volume operator,

~̂Vj ~Vi ¼ ~Vj ~Vi; with h ~V1j ~V2i ¼ δ ~V1; ~V2
: ð13Þ

The other basic operators in the gravitational sector of LQC
are the holonomy (also called shift) and inverse volume
operators, defined as

d
e−il ~βj ~Vi ¼ j ~V þ 4πGℏγl=Voi; ð14Þ

d~V−1j ~Vi ¼
�
0 if ~V ¼ 0;
~V−1j ~Vi otherwise:

ð15Þ

Note that there exists a large number of ambiguities in the
definition of inverse volume operators (see e.g. Sec. IV in
[10] for a more detailed discussion on this point); here we
choose (15) both for its simplicity and because it is the only
known inverse volume operator in LQC that does not
depend on the choice of the fiducial cell.
From (13) and (14), it follows that the basic commutator

in LQC is

½ ~̂V; de−il ~β� ¼ 4πGℏγl
Vo

d
e−il ~β: ð16Þ

At this point, it is possible to define the Hamiltonian
constraint operator in LQC and then study the resulting
quantum dynamics; see for example [4,9].

Instead, here we shall use the effective equations and,
assuming a state that is initially sharply peaked in both its
configuration and momentum variables, determine when
quantum fluctuations become comparable to expectation
values. It is at this point that quantum backreaction will
become important and the effective theory can no longer be
trusted. Thus, the effective theory itself will tell where it
breaks down.
In the ð ~V; ~βÞ variables, the LQC effective theory is

determined by the effective Hamiltonian constraint [1]

CH ¼ −
3Vo

~V
8πGγ2λ2

sin2ðλ ~βÞ þ Vo
~Vρ ≈ 0; ð17Þ

for a generic perfect fluid. The continuity equation is
unchanged in the effective theory of LQC (recall ~V ¼ a3),

dρ
dt

þ 1

~V

d ~V
dt

ðρþ PÞ ¼ 0: ð18Þ

Assuming a constant equation of state P ¼ ωρ with
−1 ≤ ω ≤ 1,

ρ ¼ ~ρo
~Vn ; 0 ≤ n ≤ 2; ð19Þ

with n ¼ 1þ ω. Note that since ρ is independent of Vo, ~ρo
is as well.
The commutator (16) implies the uncertainty relation

Δ ~V · Δ
�
sin λ ~β
λ

�
≥
2πGℏγ
Vo

· jhcos λ ~βij; ð20Þ

and from this relation it is possible to calculate when
quantum fluctuations become important. The constraint
(17) determines the value of ~V when the bounce occurs in
the effective theory and so it is possible to check whether
the quantum fluctuations become important before the
bounce occurs or not.
Hamilton’s equation for ~V from (17) is

d ~V
dt

¼ 3 ~V
γλ

sin ðλ ~βÞ cos ðλ ~βÞ; ð21Þ

this equation of motion can be solved by squaring it and
then using the constraint equation CH ¼ 0, giving

~VðtÞ ¼
�
6πG~ρon2ðt − toÞ2 þ

~ρo
ρc

�
1=n

; ð22Þ

where the critical energy density is ρc ¼ 3=ð8πGγ2λ2Þ. The
resulting ~Vbounce is independent of Vo,
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~Vbounce ¼
�
~ρo
ρc

�
1=n

: ð23Þ

Now let us determine the volume where initially small
quantum fluctuations become important. CH ¼ 0 implies

sin λ ~β
λ

¼
ffiffiffiffiffi
~ρo

p
λ

ffiffiffiffiffi
ρc

p ·
1

~Vn=2 : ð24Þ

Then, as Δ½fðxÞ� ¼ ΔðxÞ · j∂xfðxÞj for small Δx, we find
that1

Δ
�
sin λ ~β
λ

�
¼ n

ffiffiffiffiffi
~ρo

p
2λ

ffiffiffiffiffi
ρc

p Δ ~V
~Vn=2þ1

: ð25Þ

Note that here we are only considering states that are
initially sharply peaked, by which we mean that initially the
relative uncertainties Δ ~V= ~V andΔðsin λ ~βÞ= sin λ ~β are small
compared to 1, and that the higher-order moments are
smaller still.
Assuming that the uncertainty relation (20) is nearly

saturated and using (25), we find

ðΔ ~VÞ2
~Vn=2þ1

∼
4πGℏγλ
nVo

ffiffiffiffiffi
ρc
~ρo

r
j cos λ ~βj: ð26Þ

Quantum fluctuations become important when ~V ∼ Δ ~V,
which occurs for

~Vqf ∼
�
4πGℏγλ
nVo

ffiffiffiffiffi
ρc
~ρo

r
j cos λ ~βj

� 2
2−n
; ð27Þ

and we immediately see that, for large Vo,

~Vbounce ≫ ~Vqf : ð28Þ

An analogous calculation can be performed to determine
sinðλ ~βÞbounce and sinðλ ~βÞqf ; this gives

sinðλ ~βÞbounce ¼ 1; ð29Þ

and

sinðλ ~βÞqf ∼ V
n

2−n
o ; ð30Þ

where we have only written the Vo dependence for
sinðλ ~βÞqf . Clearly, as 2 − n ≥ 0, it is impossible for

sinðλ ~βÞqf to be reached if Vo is taken to be suffi-
ciently large.

Thus, it is clear that, for large Vo, states that are initially
sharply peaked will remain sharply peaked throughout
their evolution as they bounce before quantum fluctuations
have a chance to become important, and the effective
Hamiltonian will provide an excellent approximation to the
full quantum dynamics at all times.
Of course, it is important to keep in mind that, for states

that are not sharply peaked, the effective equations are not a
good approximation as can be seen explicitly in [11]. In
addition, for small Vo, we see that ~Vqf may be larger than
~Vbounce in which case the effective dynamics generated by
the effective Hamiltonian (17) cannot be trusted for
~V ≲ ~Vqf . Thus, the effective equations may fail for states
that are not sharply peaked, or where Vo is small.
Very similar calculations yield the same results for

compact models: the effective equations provide an excel-
lent approximation to the full quantum dynamics for
sharply peaked states so long as Vo is sufficiently large.
[One difference in the calculation is that, in a compact
space, it is not necessary to introduce a fiducial cell as the
integrals (4) and (6) are bounded and so do not diverge.
Then Vo corresponds to the volume of the entire space with
respect to q

∘
ab and therefore Vo is no longer a free parameter

but rather is fixed. Another point is that other inverse triad
operators than (15) may be chosen in compact spaces;
while this would complicate the calculations, the qualitative
results should remain unchanged. Other than these points,
the calculation for the compact space is essentially identical
to the one given here for a noncompact space.] Thus, we
expect sharply peaked states in compact spaces to also
remain sharply peaked at all times, including at the bounce
point, so long as Vo is sufficiently large. On the other
hand, for small Vo, quantum fluctuations are expected to
become important before the bounce occurs, in which case
the effective equations may no longer provide a good
approximation to the full quantum dynamics.
Now it is clear why the effective equations are so

accurate, even in the deep Planck regime: in order to build
a semiclassical state, fluctuations must be small in the
classical limit. Since there is no lower bound on the
amplitude of quantum fluctuations in the theory, it is
possible to choose states where the quantum fluctuations
are arbitrarily small, and so never become important, even
at the bounce point.
It has been pointed out that, in general, quantum back-

reaction from higher-order moments must be included in
the effective equations [3], but quantum backreaction can
safely be ignored so long as quantum fluctuations are
negligible. As we have seen here, there exists a large
family of solutions (i.e., solutions with initially small
fluctuations and sufficiently large Vo) where ignoring
quantum backreaction is a valid approximation.
This is also why the fluctuations in the scale factor and

other large-scale observables can be negligible: for non-
compact spaces in LQC (and alsoWDWand other quantum

1Here we are neglecting the fluctuations in the matter field.
This is because the matter field is typically used as a relational
clock in LQC and so acts as a parameter with respect to which
other observables are measured. Note that the qualititative result
of this calculation is not affected if we include matter fluctuations
as well.
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cosmology minisuperspace models) it is always possible,
in the limit Vo → ∞, for the fluctuations to be arbitrar-
ily small.
These considerations answer the two questions we asked

in the introduction. Still, the answer is a little disconcerting.
What is the sense of a quantum theory where fluctuations
can always be reduced to zero? Isn’t this in contradiction
with standard quantum theory ideas, and the irreducibility
of the Heisenberg relations?

IV. WHERE ARE THE FLUCTUATIONS?

A source of confusion in searching for a description of
the quantum fluctuations in cosmology is a common
misinterpretation of the theory. When we restrict the space
of the solutions of the classical theory to the homogenous
fields (11), and we consider only their dynamics, we are
effectively disregarding the quantum theory of all of the
higher modes of the field. The commutation relations (7)
show that the larger modes behave effectively as averages
of local variables.
An analogy of this situation is provided by the following

example. Consider a material formed by N atoms, each
having unit mass. Let the position xn and momentum
pn ¼ _xn of each atom satisfy standard commutation rela-
tions ½xn; _xn� ¼ iℏ. The center of mass of the system

X ¼ 1

N

X
n

xn ð31Þ

and its velocity _X satisfy the commutation relation

½X; _X� ¼ iℏ
N
; ð32Þ

which goes to zero as N goes to infinity. Thus the center of
mass effectively behaves classically when there are many
particles. On physical grounds, this obviously does not
imply that the quantum fluctuations of the individual atoms
go to zero in the largeN limit. It only implies that the center
of mass is blind to these. A more general discussion on the
classical limit of macroscopic (large N) observables can be
found in [12].
A moment of reflection shows that the mathematics of

quantum cosmology is analogous. The homogenous var-
iables are the lowest modes in a Fourier expansion and are
therefore like averages of the local variables, namely the
fields at a point. As before, the fact that the commutation
relations (7) vanish in the large Vo limit does not imply at
all that the quantum fluctuation of the fields at a point goes
to zero. It only shows that ~β and ~V are blind to these. In
other words, homogeneous quantum cosmology is blind to
the local quantum fluctuations of the gravitational field.
The theory with a given fiducial cell V, in other words,

describes only the quantum effects on the modes of the size
of V, and not the smaller modes. Different choices of V do
not lead to a mathematical lack of definiteness: they

correspond to analyzing different modes of the theory.
For example, in order to study the dynamics of the large-
scale structure of the Universe, it is appropriate to choose a
very large fiducial cell, in which case quantum fluctuations
will be negligible for sharply peaked states. On the other
hand, we do expect quantum fluctuations to necessarily be
important for the physics at trans-Planckian scales. We will
discuss this last point further in Sec. V.
To know how the geometry fluctuates at short scales, we

can simply take V to be small rather than large. It is this that
provides a description of local quantum fluctuations. Let us
sketch here what this implies.
To do this calculation, it is convenient to use the variables

V ¼ Vo
~V; β ¼ ~β; ð33Þ

where V corresponds to the physical volume of the fiducial
cell [4,9].
As an aside, note that this rescaling is akin to using the

center of mass momentum P ¼ N _X in (32) rather than the
velocity. In this case the basic commutator is ½X;P� ¼ iℏ,
which is independent of N. Of course, using different
variables does not change the underlying physics in the
many-body example (or in LQC) and the center of mass
variable effectively behaves classically for largeN, whether
one uses the variable _X or P.
Similarly, the Poisson bracket in the new variables is

given by fV; βg ¼ 4πGγ and therefore the uncertainty
relations in the quantum theory are independent of Vo.
Nonetheless, we can easily show that the same result
holds. The basic uncertainty relation in terms of the new
variables is

ΔV · Δðsin λβÞ ≥ 2πGℏγλ cos λβ: ð34Þ
In order to bound the relative uncertainties, we divide both
sides by V sin λβ, and on the right-hand side use the relation
sin λβ ¼ ffiffiffiffiffiffiffiffiffiffi

ρ=ρc
p

given in (24),

ΔV
V

·
Δðsin λβÞ
sin λβ

≥ 2πGℏγλ
ffiffiffiffiffi
ρc

p
cos λβffiffiffiffiffi

ρo
p

Vð2−nÞ=2 ; ð35Þ

where ρo ¼ Vn
o ~ρo. It is easy to check that while the left-

hand side of (35) is independent of V, the right-hand side
goes as 1=Vo.
Furthermore, dropping the cos λβ term which is at most

of order 1, the strongest lower bound on the relative
uncertainties occurs for the smallest value of V that is
reached, which is the volume of the fiducial cell at the
bounce Vbounce. At the bounce point, the effective theory
predicts that ρ ¼ ρc, which implies that ρo ¼ ρc · Vn

bounce.
Therefore the strongest lower bound on the relative
uncertainties is

ΔV
V

·
Δðsin λβÞ
sin λβ

≥
2πGℏγλ
Vbounce

: ð36Þ
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This shows that so long as the physical volume of the
fiducial cell at the bounce point is significantly larger than
the Planck volume, the relative uncertainties will never
become large for an initially sharply peaked state. Note
however that if one chooses a fiducial cell so that Vbounce ≥
2πγl2

Plλ (recall λ ∼ lPl), then quantum fluctuations will
become important when V ∼ 2πγl2

Plλ at which point the
effective equations will no longer be reliable.
Furthermore, it is also clear how this result generalizes to

compact space-times: so long as the physical volume of the
spatial slice remains much larger than the Planck volume,
the relative uncertainties will not become important and the
effective equations will be accurate.

V. CONCLUSIONS

We have concentrated on the flat FLRW model, but the
results presented here can easily be generalized to other
homogeneous cosmologies, whether the spatial manifold is
compact or noncompact. This indicates that, for sharply
peaked states, quantum backreaction effects are negligible
and the effective equations derived for the loop quantum
cosmology of the Bianchi space-times and the Kantowski-
Sachs space-times should be an excellent approximation to
the quantum dynamics, so long as all length scales in the
space-time remain much larger than the Planck length at
all times.
These results can also be applied to cosmological

perturbation theory. One way to study perturbations
(up to some minimal wavelength) is by dividing the spatial
manifold into a lattice of cells, where each cell is taken to
be homogeneous. As the gravitational and matter fields
vary from cell to cell, the fields are inhomogeneous at
scales larger than the size of the cells. If the fields from one
cell to another vary slightly around some mean value
(which is taken to be the homogeneous background), then
this setting can be used to study cosmological perturbations
[13]. Since each cell is assumed to be homogeneous, the
arguments given here indicate that effective equations can

be trusted (again assuming sharply peaked states) so long as
the physical volume of each cell remains significantly
larger than the Planck volume. As the minimal wavelength
captured by this lattice is given by (twice) the cube root of
the volume of each cell, this corresponds to modes whose
wavelengths are much larger than the Planck length at all
times. Therefore, the effective equations will be valid for
such modes; however, they cannot be expected to be a good
approximation for trans-Planckian modes where quantum
fluctuations will necessarily be important.
This example further emphasizes that the choice of the

fiducial cell must be made by taking into account the
physics of interest. If one wishes to study the dynamics of
the scale factor, the mean space-time curvature, the mean
energy density and other large-scale observables that are
typically of interest in minisuperspace models, it is appro-
priate to choose a very large fiducial cell and, for non-
compact spaces, even take the limit of Vo → ∞. On the
other hand, this analysis has also shown that quantum
fluctuations will necessarily be important for trans-
Planckian physics, and we do not expect effective equations
to be reliable in that setting.
In short, local quantum fluctuations of the metric are not

captured by minisuperspace models. The scale factor is a
global quantity where the local quantum fluctuations are
largely averaged out. This is why, for states that are initially
sharply peaked, and so long as the volume of the region
under consideration remains much larger than l3

Pl, quantum
fluctuations can be arbitrarily small in minisuperspace
models such as LQC.
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