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The recently released BICEP2 data detected the primordial B-mode polarization in the cosmic
microwave background (CMB) map which strongly supports for a large tensor-to-scalar ratio, and, thus,
is found to be in tension with the Planck experiment with no evidence of primordial gravitational waves.
Such an observational tension, if confirmed by forthcoming measurements, would bring a theoretical
challenge for the very early Universe models. To address this issue, we revisit a single field inflation model
proposed by Wang et al. [Int. J. Mod. Phys. D 14, 1347 (2005)] and Feng et al. [Phys. Rev. D 68, 103511
(2003)] which includes a modulated potential. We show that this inflation model can give rise to a sizable
negative running behavior for the spectral index of primordial curvature perturbation and a large tensor-to-
scalar ratio. Applying these properties, our model can nicely explain the combined Planck and BICEP2
observations. To examine the validity of analytic calculations, we numerically confront the predicted
temperature and B-mode power spectra with the latest CMB observations and explicitly show that our
model is consistent with the current data.
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I. INTRODUCTION

The inflationary hypothesis of the very early Universe,
since it was proposed in the early 1980s [1–3] (see also
[4–6] for early works), has become the dominant paradigm
for understanding the initial conditions for the hot big bang
cosmology. Within this context, a well-established picture
of causally generating cosmological perturbations in the
primordial epoch has been greatly developed theoretically
and observationally in the past decades. In particular, a
significant prediction of nearly scale-invariant power spec-
tra of primordial density perturbations based on the infla-
tionary paradigm has been verified to high precision by the
cosmic microwave background (CMB) observations in
recent years [7,8]. Inflationary cosmology also predicted
a nearly scale-invariant power spectrum of primordial
tensor perturbations [9], which can give rise to the CMB
B-mode polarization as detected by the BICEP2 collabo-
ration [10]. Assuming that all polarization signals were
contributed by inflationary gravitational waves, the
BICEP2 experiment implies that a nonzero value of the
ratio between the spectra of tensor and scalar modes,
dubbed as the tensor-to-scalar ratio r, has been discovered
at more than 5σ confidence level (CL) with a tight
constraint as r ¼ 0.20þ0.07

−0.05 at 68% CL (r ¼ 0.16þ0.06
−0.05 with

foreground subtracted). This observation, if eventually
verified by other ongoing experiments, implies a large

amplitude of primordial gravitational waves and hence has
significant theoretical implications on various early
Universe models.
Such a large amplitude of primordial tensor spectrum as

indicated by the BICEP2, however, is in certain tension
with another CMB experiment, the Planck result with
r < 0.11 at 95% CL. Thus, the combination of these
two data sets leads to a critical challenge for theoretical
models of the very early Universe. In the literature, there are
some discussions of this issue from either the perspective of
new physics beyond the inflationary ΛCDM paradigm, see,
e.g., [11–19], or from the propagations of photons after
decoupling; see, e.g., [20]. However, it remains interesting
to investigate the possibility of resolving such an obser-
vational challenge within the framework of single field
inflation.
In order to address the issue of observational tension, we

take a close look at prior assumptions made by Planck and
BICEP2. Planck Collaboration obtains a result of r < 0.11
by assuming a constant spectral index of primordial
curvature perturbations. As was pointed out in [7,10,21],
however, if a nonzero running of the spectral index is
allowed in the data analysis, there exist reasonable degen-
eracies among the spectral index ns, the running of the
spectral index αs, and the tensor-to-scalar ratio r. For
example, an allowance of the running spectral index can at
most enhance the upper bound of the tensor-to-scalar ratio
of the Planck data to r < 0.3 at 95% CL [7,10,22] (see also
[23] for theoretical discussions). Accordingly, a possibly
existing running of the spectral index can efficiently
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circumvent the tension issue between the Planck and
BICEP2 data. This phenomenological scenario, however,
is not easy achieve in usual single field slow-roll inflation
models. Therefore, we present a notable mechanism of
generating a negative running behavior for the spectral
index of primordial curvature perturbations. In particular,
we analyze a model of single field inflation as proposed in
[24,25], of which the inflaton field has a modulated
potential. We will show that this model gives rise to a
negative value of αs and also yields a relatively large value
of r. Therefore, our model can provide a theoretical
interpretation in reconciling the tension issue existing
between the Planck and BICEP2 measurements.
The paper is organized as follows. In Sec. II we briefly

review the single field inflation model with modulated
potential and discuss its theoretical motivation from the
physics of extra dimensions. Then, in Sec. III, we perform
analytic and numerical calculations on the background
dynamics as well as theoretical predictions on primordial
power spectra, respectively. We show that this model
generally produces a large amplitude of tensor-to-scalar
ratio and a negative running spectral index. Afterwards, we
confront the theoretical predictions of this model with the
combined Planck and BICEP2 data under a class of fixed
parameter values in Sec. IV. Our numerical computation
nicely demonstrating the model can explain these obser-
vations consistently. We conclude in Sec. V with a general
discussion.

II. SINGLE FIELD INFLATION MODEL WITH
MODULATED POTENTIAL

The single field inflation model with modulated potential
was first proposed in Refs. [24,25]. In these earliest papers,
the modulation acts as a rapid oscillating term added to the
so-called natural inflation potential [26], which can help
generate a large running spectral index. In this section, we
will first take a brief review of the development of this kind
of model.
Natural inflation model was motivated by the idea to

connect cosmic inflation and particle physics, where the
inflaton is considered as a pseudo-Nambu–Goldstone
boson (PNGB) from the spontaneous breaking of a global
symmetry [26]. In this model, shift symmetry has been
introduced to make the inflaton potential flat and stable,
and to maintain sufficient e-folding numbers [27]. Similar
to the axion [28], the inflaton potential has the form

VðϕÞ ¼ Λ4

�
1 − cos

ϕ

f

�
; ð1Þ

where f is the scale of spontaneous symmetry breaking and
the cosine term is thought to be produced by some
nonperturbative effects which break the symmetry explic-
itly at a relative low scale Λ. So the inflaton has the mass at
the order of m ∼ Λ2=f. However, the flatness condition of

the inflaton potential requires the scale of spontaneous
symmetry breaking f to be larger than the Planck scale and
it is expected that at such a high scale the global symmetries
are violated explicitly by the quantum gravity effects
[29,30]. These effects introduce a modulation to the
potential, which was considered in [24] from the viewpoint
of effective field theory. By considering the higher dimen-
sional operators without derivatives (due to the global
symmetry breaking atMp), the model proposed in [24] has
the potential

VðϕÞ ¼ Λ4

�
1 − cos

ϕ

f
− δ cos

�
Nϕ

f
þ β

��
; ð2Þ

where δ is a small number and N is large; the phase β is
physicallyunrelevant andcanbe set to zero. It is alsopossible
to add a constant to the above potential tomake its minimum
vanish. A large N will modulate the potential with rapid
oscillations and superimpose a series of bumps into the
otherwise featureless potential. But, for sufficiently small δ,
the amplitude of the oscillations can be controlled to be small
to protect the overall picture of inflation. Though the slow-
roll conditions can be violated mildly, the predicted scalar
power spectrum has strong oscillations with sizeable run-
ning, it still allowedby the observations, as shown in [24,31].
Another prediction of this model is the enhanced wiggles in
the matter power spectrum. These features are possible to be
detected by future experiments [32].
In 2003, Arkani-Hamed et al. proposed the extradimen-

sional version of natural inflation(extranatural inflation)
[33], where a five-dimensional Abelian gauge field is
considered and the fifth dimension is compactified on a
circle of radius R. The extra component A5 propagating in
the bulk is considered as a scalar field from the four-
dimensional view and the inflaton is identified as the
gauge-invariant Wilson loop θ ¼ g5

H
dx5A5, with a five-

dimensional gauge coupling constant g5. The four-
dimensional effective Lagrangian at energies below 1=R
can be written as

L ¼ 1

2g24ð2πRÞ2
ð∂θÞ2 − VðθÞ; ð3Þ

with g24 ¼ g25=ð2πRÞ being the four-dimensional effective
gauge coupling constant. The nonlocal potential VðθÞ is
generated in the presence of fields charged under the
Abelian symmetry in the bulk [34,35]; for a massless field
with charge q the potential for the Wilson loop is

VðθÞ ¼ � 3

64π6R4
cosðq1θÞ; ð4Þ

where the “þ” and “−” represent the bosonic and fermionic
fields respectively and we have neglected higher power
terms. By defining ϕ ¼ feffθ and adding a constant term,
the potential has almost the same form with the natural
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inflation (1) and the effective decay constant is (we have
assumed q is of order unity) feff ¼ 1=ð2πg4RÞ. There are
some advantages of this model compared with the old
natural inflation based on the four-dimensional PNGB,
such as that the effective decay constant feff can be
naturally greater than Mp for a sufficiently small coupling
constant g4, and gravity-induced higher dimensional oper-
ators are generally exponentially suppressed as long as the
extra dimension is larger than the Planck length due to the
extra dimension nature. However, as in the natural inflation,
this model predicts a scalar spectrum with negligible
running of the spectral index. In order to have a large
running index, in Ref. [25] the authors generalized this
model to the case including multiple charged fields under
the Abelian symmetry. If we simply consider one massless
and one massive field coupled to A5 gauge field, i.e.,
M1 ¼ 0 and M2 > R, as studied in detail in [25], the
effective potential for the inflaton then becomes

VðϕÞ ¼ 3

64π6R4

�
1 − cos

�
q1ϕ
feff

�
− σ cos

�
q2ϕ
feff

��
; ð5Þ

where again we have neglected higher power terms,
q1; q2 are the charges of these two fields, and σ is related
to M2 as

σ ¼ ð−1ÞF2e−2πRM2

�
4

3
π2R2M2

2 þ 2πRM2 þ 1

�
; ð6Þ

where the constant F2 ¼ 0; 1 for the bosonic and fermionic
fields respectively. For a large mass M2, σ has a small
value. If the ratio of these two charges q2=q1 ≫ 1, we get
the same potential as the model (2) mentioned above. It was
found in [25] that this model can produce a scalar spectrum
with negative running as large as 10−2.
In all, the model with modulations (2) or (5) is well

motivated, and unlike the simplest slow-roll inflation
models, it produces an oscillating scalar spectrum with
significant running. However, the tensor-to-scalar ratio r
produced in [25] is very small which cannot be consistent
with the BICEP2 data. In this paper we will investigate
whether this model can produce a large r suggested by
BICEP2 and at the same time a sizeable running to alleviate
the tension between the Planck and BICEP2 data. Note that
some related studies have been done in Ref. [36], and here
we will revisit this problem in more detail.

III. INFLATIONARY DYNAMICS
WITH NONVANISHING RUNNING

SPECTRAL INDEX

In this section we perform the analytical and numerical
analyses of the inflationary solution described by this
model. In particular, we analyze the dynamics of the
slow-roll parameters during inflation. Consider a canonical
scalar field with the potential given by (5).

The inflationary dynamics can be characterized by a
series of slow-roll parameters, of which the expressions are
given by

ϵ≡M2
p

2

�
Vϕ

V

�
2

¼ μ2

2

ðsin ~θ þ σκ sin κ ~θÞ2
ð1 − cos ~θ − σ cos κ ~θÞ2 ;

η≡M2
p
Vϕϕ

V
¼ μ2

cos ~θ þ σκ2 cos κ ~θ

1 − cos ~θ − σ cos κ ~θ
;

ξ≡M4
p
VϕVϕϕϕ

V2

¼ −μ4
ðsin ~θ þ σκ sin κ ~θÞðsin ~θ þ σκ3 sin κ ~θÞ

ð1 − cos ~θ − σ cos κ ~θÞ2 ; ð7Þ

where we have introduced

μ ¼ q1Mp=feff ; κ ¼ q2=q1; ~θ ¼ q1θ: ð8Þ
Note that inflation requires the above slow-roll param-

eters to be much less than unity. Accordingly, the infla-
tionary e-folding number follows:

N ≡
Z

te

ti

Hdt≃ −
1

M2
p

Z
ϕe

ϕi

V
Vϕ

dϕ;

¼ −μ−2
Z ~θe

~θi

ð1 − cos ~θ − σ cos κ ~θÞ
ðsin ~θ þ σκ sin κ ~θÞ d~θ; ð9Þ

where we have applied the approximation _ϕ2 ≪ 2V.
Following the standard procedure of inflationary perturba-
tion theory [37,38], the power spectra of primordial
curvature and tensor perturbations of this model can be
expressed as

PS ¼ VðϕÞ
24π2M4

pϵ

����
k¼aH

; PT ¼ 2VðϕÞ
3π2M4

p

����
k¼aH

; ð10Þ

and, correspondingly, the tensor-to-scalar ratio is defined as

r≡ PT

PS
¼ 16ϵ: ð11Þ

Moreover, one can define the spectral index of primordial
curvature perturbations and the associated running spectral
index as follows:

ns − 1≡ d lnPS

d ln k
≈ −6ϵþ 2η; ð12Þ

αs ≡ dns
d ln k

≈ 16ϵη − 24ϵ2 − 2ξ: ð13Þ

In regular inflation models, the slow-roll parameters
scale as ϵ; η ∼ N−1 and ξ ∼ N−2 during inflation. Moreover,
the spectral index ns − 1 is of order ϵ and αs is of order ϵ2.
Thus, a large running behavior of the spectral index is
difficult to achieve due to the suppression effect by N−2.
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However, it is interesting to notice that, in the model under
consideration, the slow-roll approximations can be slightly
broken for a short while due to the inclusion of the rapid
oscillating term in the potential.
In our model, inflation ceases when ϕ reaches ϕe with

ϵ ¼ 1, and one can have the initial value for the inflaton to
be the value at the moment of Hubble-crossing. Near the
Hubble-crossing, one can get the expressions for the
slow-roll parameters approximately;

ϵ≃ 2μ2

~θ2
; η≃ 2μ2

~θ2
ð1þ σκ2 cos κ ~θÞ;

ξ≃ −
4μ4

~θ3
σκ3 sin κ ~θ; ð14Þ

in which we have taken the following conditions:

jμj ≤ j~θj; σ ≪ 1; κ ≫ 1;

σκ ≪ 1; σκ2 ∼Oð1Þ: ð15Þ

From the above approximation one can get the value of ξ in
the same order of ϵ and η, and hence a relatively large
running behavior can be obtained.
In the following we perform the numerical calculation of

our model. In Fig. 1 we plot the evolutions of the slow-roll
parameters ϵ, η, and ξ with respect to the e-folding number
N. In our figure plot, inflation begins from the right side
where the slow-roll parameters are small, and ends at the
left side where they present some oscillatory behavior with
their amplitude approaching 1. The pivot scale, which
corresponds to k ≈ 0.05 Mpc−1, crosses the Hubble radius
at the time when N ≈ 50, marked with a black dotted line.

The numerical results depend only on three parameters in
the model, namely μ, σ, and κ. In the numerical calculation,
we take three groups of parameter choices (see the caption),
and, in order to have a comparison, we also plot the cases of
natural inflation model. One could see that at the pivot scale
ξ is almost of the same order as ϵ and η (to help see more
clearly, we also plot the zoomed-in figures around the pivot
scale, with the vertical coordinates of the same range) in our
model, while it is negligible in natural inflation model.
Therefore, as has been analyzed above, one can observe a
considerable running behavior of the spectral index around
this point.
One can directly relate the slow-roll parameters with the

perturbation variables of a canonical single field inflation
model. In Fig. 2 we plot the evolution of the spectral index
of scalar perturbation ns, the running of the spectral index
αs, and the tensor-to-scalar ratio r. In the plot, we take the k
range from 1.0 × 10−5 Mpc−1 to 1.0 Mpc−1 which is able
to cover the l range (2 ≤ l ≤ 2500) used in Planck and
BICEP2 paper. We also marked with a vertical dotted line
the pivot scale, k� ≃ 0.05 Mpc−1, which re-enters the
Hubble radius and eventually can be observed by today’s
experiments. From the plot we can see that both our model
and natural inflation can give a large r, as needed by the
BICEP2 data. However, one obvious difference between
the two models is that our model is able to yield a negative
running spectral index for the power spectrum of scalar
perturbations, roughly of the order −0.03 ∼ −0.01 that can
be applied to reconcile the Planck and BICEP2 data [8,10],
while the running behavior from the model of natural
inflation is negligible. Such a considerable running behav-
ior obtained in our model arises from a large-valued
parameter κ, which brings ξ to the same order of ϵ and

FIG. 1 (color online). Right: Numerical plot of the slow-roll parameters ϵ, η, and ξ in our model (solid lines) and the natural inflation
model (dashed lines). The horizontal axis represents the e-folding number N and N ¼ 0 means the end of inflation. The parameters in
our model are chosen as follows: μ ¼ 0.034, σ ¼ 1.3 × 10−3, κ ¼ 51 (cyan); μ ¼ 0.037, σ ¼ 5.0 × 10−4, κ ¼ 68 (red); μ ¼ 0.040,
σ ¼ 1.8 × 10−3, κ ¼ 40 (green). The parameters in natural inflation model are chosen as follows: f ¼ 2 (magenta); f ¼ 5 (yellow);
f ¼ 10 (pink). The dotted-black lines are associated with the pivot scale, which is chosen as k� ¼ 0.05 Mpc−1. Left: This is taken from
the right plot, to show the slow-roll parameter value when perturbation wavelength is around the pivot scale.
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η so that it has dominant contribution to the expression (13)
of αs in comparison with the other two terms.
A sizable negative running has the possibility to make

the spectral index ns vary efficiently with scales, e.g., from
blue tilt to red tilt. This could lead to some observable
features on the power spectrum PS, namely, a bump would
appear on the PS − k plot, or the amplitude on the small l
region might get suppressed, which can be useful in the
explanation of the small l anomaly. In Fig. 3 we plot the

amplitudes of scalar perturbations under various parameter
choices. We can see that, although at the pivot scale the
amplitudes in these cases are almost the same, which is
consistent with the data, they can be very different at small
l regions.

IV. FITTING THE COSMOLOGICAL DATA

With the analyses performed in the above section, we
have shown that our model can indeed have a sizable
negative running αs as well as a large r. In this section, we
directly confront our model to the observational data to see
how it reconciles the Planck and BICEP2 data.
In Fig. 4 we present our results in ns − r plot. We plot

our model with two groups of parameter choices (blue and
red), which can both fit the Planckþ BICEP2 data very
well. For each choice, we consider two cases in which
inflation continues for 60 (solid lines) and 50 e-foldings
(dashed lines). For a comparison, we also plot natural
inflation models with N ¼ 50 and N ¼ 60, presented with
magenta lines. The lines grow as feff grows, making its
prediction of ns and r more and more close to our model,
and also more and more close to the allowed space by the
contour. In this plot, we have chosen the pivot scale
as k� ¼ 0.05 Mpc−1.
We have also showed the temperature autocorrelation

power spectrum (TT spectrum) and the polarization
B-mode autocorrelation power spectrum (BB spectrum)
in Figs. 5 and 6, with all the color lines having the same
parameter correspondence as in Fig. 2. We see that on the
large l region all the lines glue together, indicating a
degeneracy of the parameters, and fit the data very well.
On small l regions, the lines deviate from each other, but

FIG. 2 (color online). Numerical plot of the spectrum index ns,
tensor-to-scalar ratio r, and running of the spectral index αs of our
model (solid lines) and the natural inflation model (dashed lines).
The horizontal axis represents the comoving wave numbers k.
The model parameters are the same as those provided in Fig. 1.

FIG. 3 (color online). Numerical plot of the power spectrum of
primordial scalar perturbations as a function of the comoving
wave number k. The model parameters are the same as those
provided in Fig. 1.

ns

r 0.
05

0.9 0.92 0.94 0.96 0.98 1 1.02
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FIG. 4 (color online). The ns − r constraint of inflation models.
The dark and light blue shadow regions represent the 1σ and 2σ
contours from the combined Planckþ BICEP2 data [22], re-
spectively. The solid and dashed lines denote our model with 60
and 50 e-folding numbers, respectively. The model parameters
are chosen as μ ¼ 0.04, σ ¼ 1.0 × 10−3 with κ varying from 46 to
57 (blue), and μ ¼ 0.04, σ ¼ 5.0 × 10−4 with κ varying from 50
to 62 (red). The magenta lines denote natural inflation model,
with f changing from 0.5 to 10.
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since the error bars on this region are quite large, the lines
are still in consistency with the data. However, one might
also notice that when the line best fits the Planck temper-
ature spectrum, i.e., the cyan one, it gives smaller BB
autocorrelation compared with BICEP2’s data. Conversely,
the line which fits BICEP2’s data much better (the green
one) gives larger temperature power spectrum which fails
to explain the small l anomaly. This phenomenon can be
easily understood: the scalar and tensor spectrums are
linked by tensor-to-scalar ratio r, which will not change too
much with k in our model, as can be seen in Fig. 2.
Therefore, a raising/lowering of scalar spectrum at large
scales corresponds to the same behavior of tensor spectrum.
Furthermore, we also plot the red line as an intermediate
case, which will not deviate too much from the data points
in either TT or BB spectrum. We hope the global fitting of
full parameter space can provide us a better parameter

choice for both Planck TT spectrum and BICEP2 BB
spectrum, which we will leave for future investigations.
Although we have got parameters’ value, which can lead

to large negative running and can fit both Planck and
BICEP2’s results well, we still need to go back to the
original extradimensional model to see if their parameters’
value make sense. After simple calculation, we find that for
the parameters’ value in Fig. 1 we have RM2 ∼Oð1Þ
(1.6753, 1.8559, 1.6130 separately), and κ ¼ q2=q1 ∼
Oð10Þ (68, 40, 51 separately). Since we have taken the
natural unit system, one can see that the mass of M2 ∼
R−1Oð1Þ should be given by some fundamental theories.

V. CONCLUSIONS

The BICEP2 group has released the results of the CMB
polarization measurement, which strongly hints to an
existence of a large amplitude of primordial gravitational
waves. This result, however, is in tension with the Planck
data released last year when they are interpreted by the
standard six-parameter ΛCDM (without r) model. One
simple approach to alleviate this tension is to take into
account the running of the spectral index of the curvature
perturbations, which in our paper is characterized by αs.
The inclusion of this parameter can greatly relax the
observational constraint on the tensor-to-scalar ratio due
to its degeneracy [21]. Recently, a numerical global
simulation of the ΛCDMþ rþ αs model reveals that the
combined Planck and BICEP2 data favor a negatively
valued running spectral index of −0.03 ∼ −0.01 [22].
This observational implication, while putting forward a

challenge to slow-roll inflation models, can be nicely
implemented by a single field inflation with modulated
potential [24,25] as demonstrated in the present paper,
where we treat the modulation as a rapid oscillating term.
This is because, although the whole inflationary dynamics
is dominated by the regular slow-roll part of the potential,
this rapid oscillating term can relatively violate the slow-
roll approximation during some local evolutions. In the
specific model considered, we explicitly show that the
parameter ξ which is associated with the running and a
higher order slow-roll parameter in the normal slow-roll
inflation model, can be enhanced to the value as large as the
first order slow-roll parameters ϵ and η. Therefore this
model can give rise to a considerable and negative running
spectral index. In this paper, we performed the numerical
calculation of the model in detail by solving the dynamics
of slow-roll parameters and perturbation variables, and then
fitted them to the combined Planck and BICEP2 data. From
the numerical results, one can easily see that, with a large-
valued parameter ξ near the pivot scale, the spectrum index
ns can be changed from a value larger than 1 to a value
smaller than 1 performing a negative running feature. Due
to this running behavior, the power spectrum can be
suppressed at the small l region. At the same time this
model can also produce gravitational waves of large

FIG. 5 (color online). Numerical comparison of the temperature
power spectrum of our model with the Planck data. The model
parameters are the same as those provided in Fig. 1.

FIG. 6 (color online). The BB power spectrum of our model
with the BICEP2 data. The model parameters are the same as
those provided in Fig. 1.
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amplitudes as long as the effective decay constant is large
enough. Hence the inflation model under consideration
provides a consistent interpretation of the combined Planck
and BICEP2 data.
The present model has further implications for the

observations. As we have mentioned the modulation of
the rapid oscillating term could amplify the wiggles of the
CMB temperature spectrum [31] and the matter power
spectrum and thus is of observable interest to the future
experiments [32]. Although this model is motivated by
observational phenomena, it deserves mentioning that it has
interesting connections with other inflation models. For
example, we have mentioned that our model can reduce to a
natural inflation model when the modulation term is small
enough. The extranatural inflation including higher power
terms has been recently investigated in [39]. The axion-
monodromy inflation with modulations was studied in
[40,41], while its supergravity version was discussed in
[42]. In the literature, there are other studies on deriving a
large running of the spectral index from various
approaches, for instance, see [43–63].
Additionally, the wiggles in power spectrum can induce

features on non-Gaussianities, especially of the squeezed
shape, since from the consistency relation we roughly have
hRk1Rk2Rk3ik3≪k1;k2 ∼fsqueezednl P2

S ∼ ðns−1ÞPSðk1ÞPSðk3Þ
[64], where wiggles in ns may affect fsqueezednl [65]. The

features on non-Gaussianities are expected to be detected
by the future observations. We will discuss these issues as a
sequence of this work in a future project.
As a final remark, note that there may be other

approaches of reconciling the tension between the
Planck and BICEP2 data within the framework of infla-
tionary cosmology, such as to suppress the scalar spectrum
at large scales by a double field inflation model [45] or
using a steplike process [59]. The existence of a nontrivial
tensor spectral index nT may also work, which needs to be
accompanied by simulation of ΛCDMþ rþ nT model. To
address this issue, we would like to numerically scan the
full parameter space and check all available regions
allowed by observations, which will be the future topic.
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