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We discuss the general structure and observational consequences of some of the simplest versions of
chaotic inflation in supergravity in relation to the data by Planck 2013 and BICEP2. We show that minimal
modifications to the simplest quadratic potential are sufficient to provide a controllable tensor mode signal
and a suppression of CMB power at large angular scales.
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I. CHAOTIC INFLATION: THE DEFINITION

In this paper we will discuss the simplest versions of the
chaotic inflation scenario in supergravity and compare their
predictions with the data from Planck 2013 [1] and BICEP2
[2]. But before discussing this issue, we would like to
clarify the definition of “chaotic inflation,” following the
original papers and the book on this scenario [3,4]. Indeed,
some authors incorrectly identify chaotic inflation with the
theories with monomial potentials ϕn. But there is nothing
chaotic about monomial potentials, so what does this
strange name refer to?
The name of this broad class of inflationary theories

is related to the observation that inflation can be realized
even in the theories where the inflaton potential does not
have any special features such as local minima or maxima
with extraordinary small curvature, and even if the
Universe was not born in the hot big bang. To put it to
a proper context, one should compare it to other approaches
to inflation.
The first version of a theory of inflationary type was

proposed by Starobinsky [5]. Instead of attempting to solve
the homogeneity and isotropy problems, he assumed that
the universe was homogeneous and isotropic from the very
beginning, and emphasized that his scenario was “the
extreme opposite of Misner’s initial chaos” [5]. Thus the
main goals of this model were different from the goals of
inflation. The goal was to solve the singularity problem by
starting the evolution in a nonsingular dS state. However,
dS state in his scenario was unstable, with a finite decay
time [6], and therefore it could not exist at t → −∞.
Old and new inflation assumed that the universe initially

was in a state of thermal equilibrium at an extremely high
temperature, and then it supercooled and inflated in a state
close to the top of the potential VðϕÞ [7–9]. However, old
inflation did not quite work, as pointed out by its author
[10]. New inflation resolved most of the problems of old
inflation, but it was also ruled out a year later, for many
reasons discussed in [4]. As Hawking said back in 1988,
“the new inflationary model is now dead as a scientific

theory, although a lot of people do not seem to have heard
about its demise and write papers as if it were viable” [11].
The chaotic inflation scenario [3] was proposed as an

alternative to new inflation, after it was realized that the
assumption of the hot big bang, high temperature phase
transitions and supercooling did not help to formulate a
successful inflationary scenario. In fact, in most cases these
assumptions, which constituted the standard trademark of
old and new inflation, made inflation much more difficult to
implement. If, instead, one simply considers the Universe
with different initial conditions in its different parts (or
different universes with different values of fields in each of
them), one finds that in many of them inflation may occur.
It makes these parts exponentially large, thus producing
exponentially large islands of order from the primordial
chaos. Hence the name: chaotic inflation.
An important feature of this scenario is its versatility and

the broad variety of models where it can be implemented.
Examples of chaotic inflation models proposed in 1983–
1985 include models with monomial and polynomial
potentials, and any other models where the slow roll regime
was possible. This regime is possible in small field models,
but it is especially easy to achieve in large field models,
where one could make simple estimates V 00 ∼ V=ϕ2 and
V 0 ∼ V=ϕ. Therefore it was argued that in such models the
slow-roll conditions can be easily satisfied for ϕ ≫ 1 [3].
One notable example of such models has the Higgs-like
potential ∼λðϕ2 − v2Þ2 with v ≫ 1 [12]. Models of this
type were later called “hilltop inflation” [13]. Another
example was the supergravity-based version of chaotic
inflation with the potential V ∼ að1 − e−bϕÞ [14]. Such
models have become quite popular lately. In 1983–1985,
the Starobinsky model [5] experienced significant mod-
ifications. It was reformulated as a theory Rþ aR2, and
initial conditions for inflation in this theory were formu-
lated along the lines of the chaotic inflation scenario
[15,16]. This resolved the problem with initial conditions
of the original version of this model. In the natural inflation
scenario, the authors said that “our model is closest in spirit
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to chaotic inflation” [17]. The hybrid inflation scenario [18]
was introduced as a specific version of the chaotic inflation
scenario. Step by step, chaotic inflation replaced new
inflation in its role as the main inflationary paradigm.
Rather than describing some particular subset of infla-
tionary models, it describes the most general approach to
inflationary cosmology, which can easily incorporate ideas
of quantum cosmology, eternal inflation, inflationary multi-
verse, and string theory landscape [19–32].
But this did not happen overnight. Chaotic inflation was

so much different from old and new inflation that for a
while it was psychologically difficult to accept. Even now,
30 years since the demise of new inflation, most of the
college books on physics and astrophysics still describe
inflation as exponential expansion in the false vacuum state
during cosmological phase transitions with supercooling in
grand unified theories. That is why a significant part of the
first book on inflation [4] was devoted to the discussion of
new inflation versus chaotic inflation.
By now, this discussion is over, but we have a different

kind of problem. Every new model belonging to the general
class of chaotic inflation is introduced with its own name.
That is why some authors invented a different classification
of models and say that chaotic inflation describes only
models with monomial potentials, in opposition to, e.g.,
hilltop inflation, natural inflation, and hybrid inflation. In
this paper we will use the original definition of chaotic
inflation following [3,4].

II. CHAOTIC INFLATION IN SUPERGRAVITY

Historically, the first attempts at building inflationary
models were associated with grand unified theories [7–9].
Chaotic inflation [3,4] made this relation unnecessary.
Planck results [1] are consistent with a broad range of
theories with the energy scale well below the GUT scale.
But if the results of BICEP2 and their interpretation in [2]
are confirmed, it will imply that the energy density 60
e-foldings from the end of inflation was ρ ∼ ð1016 GeVÞ4.
It could suggest, once again, that inflation is somehow
related to GUTs. However, the most probable interpretation
of the BICEP2 results involves large field inflation [33].
For example, if one considers the simplest model of chaotic
inflation with a quadratic potential, this number appears
as a product of the square of the inflaton mass
m ∼ 1.5 × 1013 GeV, and the square of the inflaton field,
which was ∼3 × 1019 GeV. None of these parameters is
close to the GUT scale. Moreover, during the last 60
e-foldings of inflation, the energy density of the inflaton
field in this model dropped 60 times. Which one of these
values of energy density, if any, should we associate with
the GUT energy density?
Another popular idea is to associate inflation with

supergravity. However, for a very long time it seemed
very difficult to do it. The best attempts were associated
with F-term [34] and D-term hybrid inflation [35], but the

simplest versions of these models lead to an excessively
large cosmic strings contribution to perturbations of metric,
and too small value of tensor modes. It is possible to resolve
these problems, but it is not easy.
Before we proceed with the main topic of this paper,

inflation in supergravity interacting with chiral matter
multiplets, we would like to briefly discuss the new class
of supergravity models discovered recently in [36] and called
“minimal supergravity models of inflation.” As different
from the standard Einstein frame supergravity models well
known to cosmologists and codified by the Kähler potential
Kðz; z̄Þ and a holomorphic superpotential WðzÞ, depending
on chiral superfields, these new models have a linear matter
multiplet, describing massive vector or tensor multiplets.
These models do not have a problem of moduli stabilization,
due to the fact that these models have only one real scalar
field and are characterized by one real function J ðϕÞ
describing the Jordan frame function corresponding to a
superconformal model. In these models, one can obtain the
inflaton potential of nearly arbitrary shape, and long as it
monotonically grows away from the minimum. For
example, the superconformal version of these models with
the coupling e−

1
3
J ðϕÞR, where J ¼ − 1

2
ϕ2, provides a very

simple supersymmetric embedding of the ϕ2 chaotic infla-
tion [36]. This class of supergravity cosmological models
deserves further investigation as it was discovered only
recently. In this paper we will study more familiar cosmo-
logical models in supergravity where there are chiral matter
superfields and where the inflaton field is one of the scalar
fields in chiral multiplets.
The main problem with inflation in supergravity was that

the F-term potential in the models with the simplest Kähler
potential ΦΦ̄ contained the exponential factor eΦ

2

, which
typically made the potentials too steep. The real progress in
this direction began with Ref. [37], where the simplest
model of chaotic inflation with a quadratic potential was
introduced. The basic idea is that instead of considering a
minimal Kähler potentialΦΦ̄ for the inflaton field, one may
consider the potential ðΦþ Φ̄Þ2=2. This potential has shift
symmetry: It does not depend on the field combination
Φ − Φ̄. Therefore the dangerous term eK in the F-term
potential, which often makes the inflationary potential too
steep, is also independent of Φ − Φ̄. This makes the
potential flat and suitable for chaotic inflation, with the
field Φ − Φ̄ playing the role of the inflaton. The flatness of
the potential is broken only by the superpotential mSΦ,
where S is an additional scalar field, which vanishes along
the inflationary trajectory. As a result, the potential in the
direction Φ − Φ̄ becomes quadratic, as in the simplest
version of chaotic inflation. Similarly, one can use the
Kähler potential ðΦ − Φ̄Þ2=2, with the field Φþ Φ̄ playing
the role of the inflaton.
This scenario was substantially generalized in [38,39].

The generalized scenario describes two scalar fields, S and
Φ, with the superpotential
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W ¼ SfðΦÞ; ð1Þ

where fðΦÞ is a real holomorphic function such that
f̄ðΦÞ ¼ fðΦÞ. Any function which can be represented
by Taylor series with real coefficients has this property.
The Kähler potential can be chosen to have functional form

K ¼ KððΦ − Φ̄Þ2; SS̄Þ: ð2Þ

In this case, the Kähler potential does not depend
on ReΦ. Under certain conditions on the Kähler potential,
inflation occurs along the direction S ¼ ImΦ ¼ 0. For
Φ ¼ ðϕþ iχÞ= ffiffiffi

2
p

, the field ϕ plays the role of the
canonically normalized inflaton field with the potential

VðϕÞ ¼ jfðϕ=
ffiffiffi
2

p
Þj2: ð3Þ

All scalar fields have canonical kinetic terms along the
inflationary trajectory S ¼ ImΦ ¼ 0.
An alternative formulation of this class of models has the

Kähler potential

K ¼ KððΦþ Φ̄Þ2; SS̄Þ: ð4Þ

In this class of models, the Kähler potential does not
depend on ImΦ. The role of the inflaton field is played by
the canonically normalized field χ with the potential

VðχÞ ¼ jfðχ=
ffiffiffi
2

p
Þj2: ð5Þ

One should also make sure that the real part of this field
vanishes during inflation. The simplest way to find a class
of functions fðΦÞ which lead to the desirable result is to
consider any real holomorphic function fðΦÞ ¼ P

ncnΦ
n,

and then make the change of variables Φ → −iΦ there.
Obviously, in the theory with K ¼ KððΦ − Φ̄Þ2; SS̄Þ it is

easier to formulate the required conditions for the function
f. However, as long as we do not consider interactions of
the field Φ to vector fields, which are different for scalars
and pseudoscalars, the two approaches give identical
results. For example, the theory with K ¼ −ðΦ − Φ̄Þ2=
2þ SS̄Þ and f ¼ Φþ cΦ2 leads to the same inflationary
scenario as the theory with K ¼ ðΦþ Φ̄Þ2=2þ SS̄Þ and
f ¼ −iΦ − cΦ2. Alternatively, one may consider the func-
tion f ¼ Φ − icΦ2, obtained from the previous one by
multiplication by i.

III. ON MODULI STABILIZATION IN
SUPERGRAVITY AND SUPERSTRING THEORY

It is widely accepted that moduli stabilization in super-
symmetric theories of gravity often presents a challenge for
inflationary model building. At present, the observational
predictions for ns and r from string theory and from
supergravity, associated with inflationary models, require

an increasing level of precision due to gradually improving
flow of experimental data.
It is therefore instructive to revisit the issue of moduli

stabilization in general, in view of the fact that in the section
above we have described a special class of supergravity
models, which admits stabilization of moduli for all scalars
except the inflaton. This class of models therefore allows an
embedding into a supergravity of a rather general set of
bosonic inflationary models, where only one scalar, the
inflaton, is light and the rest is heavy during inflation and
these heavy fields do not affect the evolution.
In contrast to these models, let us bring an example of the

better racetrack inflationary models [40] with two moduli
T1 and T2, where the Kähler potential has a shift symmetry

K ¼ −2 lnððT1 þ T̄1Þ3=2 − ðT2 þ T̄2Þ3=2Þ; ð6Þ

and the superpotential has a standard KKLT form,

W ¼ W0 þ Ae−aT1 þ Be−bT2 : ð7Þ

If instead of solving the four-scalar evolution equations for
this model one would consider the slice of it at ReT1, ReT2

being constant, as was recently done by many authors, we
would obtain a version of natural inflation due to cos-type
dependence on axions ImT1, ImT2 in the models with
KKLT potentials for fixed ReTi. In this case it would be
possible to find models of that type with significant level of
gravity waves r ∼ 0.1.
However, a detailed investigation in [40] shows that to

achieve inflation in these models it is necessary to study
numerically a simultaneous evolution of all 4 scalars, two
dilatons, ReTi and 2 axions, ImT1, ImT2. Consequently,
this inflationary string theory model associated with the
certain orientifold of string theory predicts ns ≈ 0.95 and
tiny level of gravity waves, r < 10−5.
Thus we see in this example, that a conjecture about

moduli stabilization and or about uplifting in each case
has to be supported so that predictions of a given model do
not change the value of r on many orders of magnitude,
depending on whether such a moduli stabilization con-
jecture is actually correct for a given choice of a model.
The issue of moduli stabilization is especially important

for large field inflation in string theory. For example, in
accordance with BICEP2, the Hubble constant at a certain
stage of inflation wasH ∼ 1014 GeV. According to [41,42],
in the simplest KKLT version of the moduli stabilization
this implies that the gravitino mass must be greater than
1014 GeV, and in the models with large volume stabiliza-
tion the corresponding bound would be m3=2 ≥
3 × 1015 GeV [43]. This would be at odds with the
standard assumptions of SUSY phenomenology. The sim-
plest way to avoid this problem is to use a modification of
the KKLT procedure with strong moduli stabilization
described in [41], which allows us to implement inflation
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in string theory compatible with the BICEP2 data [44,45],
using the general class of inflationary models of [38,39].
For other approaches to this problem see e.g. [46].

IV. FLAT DIRECTIONS AND
NONMINIMAL COUPLING

Now that we know how to avoid the problems related
to the term eK in the potential and find flat directions
which can be used for inflation, we would like to take a step
back and interpret these results from a slightly unusual
perspective.
Part of the recent progress in developing new classes of

inflationary models in supergravity can be traced back to
revisiting and further development of the superconformal
approach to supergravity, and to reformulation of the
standard supergravity models in terms of the Jordan frame.
Indeed, standard supergravity models with an arbitrary
Kähler potential Kðz; z̄Þ and a superpotential WðzÞ can be
presented in the Jordan frame, where the scalar curvature
dependent term in the action is

1

2
Ωðz; z̄ÞRJ ¼

1

2
e−

1
3
Kðz;z̄ÞRJ: ð8Þ

In this form the frame function Ωðz; z̄ÞRJ displaying the
nonminimal couplings of scalars to curvature is related to
the Kähler potential. This was explained in [47] where the
complete action of supergravity in Jordan frame (8) was
presented. We present a short summary of it relevant to
cosmology, as well as some new results, in the Appendix of
this paper.
Note, that the term 1

2
e−

1
3
Kðz;z̄ÞRJ represents the non-

minimal coupling of the scalar fields to gravity in the
Jordan frame. The significance of this fact becomes
apparent if we remember that the same Kähler potential
Kðz; z̄Þ, which represents the nonminimal coupling to
gravity in the Jordan frame, re-appears in the Einstein
frame in the coefficient eKðz;z̄Þ in the expression for the
F-term potential. It is exactly the term that was responsible
for the appearance of the dangerous coefficient eΦ

2

pre-
venting chaotic inflation in the theories with the simplest
Kähler potential ΦΦ̄.
In the previous section we described the way to use flat

directions of the Kähler potential for constructing simple
versions of chaotic inflation models. Now we have a
translation of these rules to another language: Flat direc-
tions in the Kähler potential correspond to the fields that are
minimally coupled to gravity in the Jordan frame.
This does not mean that minimal coupling to gravity is

necessary for inflation. In particular, the supersymmetric
version of the Higgs inflation developed in [47] corre-
sponds to the situation where the inflaton field has strongly
nonminimal coupling to gravity. There are many other
interesting models where this may happen, but most of the
recent efforts have been concentrated on the models

with the simplest nonminimal coupling of the type
Ωðz; z̄Þ ¼ 1þ ξfðzz̄Þ, which is equivalently described by
the logarithmic Kähler potential, see e.g. [48,49]. In the
Appendix of this paper we will study the relation between
general Kähler potentials and the nonminimal coupling of
the general type Ωðz; z̄ÞRJ. In particular, we will relate the
case of the polynomial Kähler potentials to nonminimally
coupled supergravity models. In earlier papers, see for
example [50], we have studied this relation only in the case
of the logarithmic Kähler potentials. In discussing practical
applications, in this paper we will concentrate on the
simplest case of the minimal coupling, but in the end of
the paper we will briefly discuss what may happen in our
models from the point of view of their observational
consequences if we deviate from this rule.

V. EXAMPLES

The generality of the functional form of the inflationary
potential VðϕÞ allows one to describe any combination of
the parameters ns and r. Indeed, the potential depends only
on the function fðΦÞ. One can always Taylor expand it,
with real coefficients, in a vicinity of the point correspond-
ing to N ∼ 60 of e-folds, so that the square of this function
will fit any desirable function VðϕÞ with an arbitrary
accuracy. In fact, one can show that there are many different
choices of fðΦÞ which lead to the same values of ns and r.
Thus, this rather simple class of models may describe any
set of observational data which can be expressed in terms
of these two parameters by an appropriate choice of the
function fðΦÞ in the superpotential.
The simplest example of such theory has fðΦÞ ¼ mΦ,

which leads, in the context of the theory with the Kähler
potential K ¼ −ðΦ − Φ̄Þ2=2þ SS̄, to the simplest para-
bolic potential m

2

2
ϕ2 [37]. It is interesting to analyze various

generalizations of this model.
As a first step, one may add to the function fðΦÞ ¼ mΦ a

small higher order correction,

fðΦÞ ¼ mΦð1 − aΦÞ ð9Þ

with a ≪ 1. This function, upon the change of
variables Φ → ~Φþ 1

2a, is equivalent to the function f ¼
−mað ~Φ2 − 1

ð2aÞ2Þ used previously in [38,48]. Representing
~Φ as ðϕþ iχÞ= ffiffiffi

2
p

, one finally obtains the Higgs-type
inflationary potential

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2; ð10Þ

where λ ¼ m2a2 and v ¼ 1ffiffi
2

p
a
. For v > 1, there is an

inflationary regime when the field ϕ rolls from the
maximum of the potential at ϕ ¼ 0, as in new inflation
scenario. Natural initial conditions for inflation in this
model are easily set by tunneling from nothing into a
universe with spatial topology T3, see e.g. [24] and the
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discussion in [51]. The results of investigation of the
observational consequences of this model [38,42,48] are
described by the green area in Fig. 1. Predictions of this
model are in good agreement with observational data for a
certain range of values of the parameter a ≪ 1.
However, this does not mean that absolutely any poten-

tial VðϕÞ can be obtained in this simple context, or that one
has a full freedom of choice of the functions fðΦÞ. It is
important to understand the significance of the restrictions
on the form of the Kähler potential and superpotential
described above. According to [39], in the theory with the
Kähler potentialK ¼ KððΦ − Φ̄Þ2; SS̄Þ the symmetry of the
Kähler potential Φ → �Φ̄, as well as the condition that
fðΦÞ is a real holomorphic function are required to ensure
that the inflationary trajectory, along which the Kähler
potential vanishes is an extremum of the potential in the
direction orthogonal to the inflationary trajectory
S ¼ ImΦ ¼ 0. After that, the proper choice of the
Kähler potential can make it not only an extremum, but
a minimum, thus stabilizing the inflationary regime
[38,39,44].
The requirement that fðΦÞ is a real holomorphic function

does not affect much the flexibility of choice of the inflaton
potential: One can take any positively defined potential
VðϕÞ, take a square root of it, make its Taylor series
expansion and thus construct a real holomorphic function
which approximate VðϕÞ with great accuracy. However,
one should be careful to obey the rules of the game as
formulated above.

For example, suppose one wants to obtain a fourth
degree polynomial potential of the type of VðϕÞ¼
m2ϕ2

2
ð1þaϕþbϕ2Þ in supergravity. One may try to do it

by taking K ¼ ðΦþ Φ̄Þ2=2þ SS̄Þ and fðΦÞ ¼ mΦð1þ
ceiθΦÞ [52]. For general θ, this choice violates our
conditions for fðΦÞ. In this case, the potential will be a
fourth degree polynomial with respect to ImΦ if ReΦ ¼ 0.
However, in this model the flat direction of the potential
VðΦÞ (and, correspondingly, the inflationary trajectory)
deviate from ReΦ ¼ 0. (Also, in addition to the minimum
at Φ ¼ 0, the potential will develop an extra minimum at
Φ ¼ −c−1e−iθ.) As a result, the potential along the infla-
tionary trajectory is not exactly polynomial, contrary to the
expectations of [52,53]. Moreover, the kinetic terms of the
fields will be noncanonical and non-diagonal.
This may not be a big problem, since the potential in the

direction orthogonal to the inflationary trajectory is expo-
nentially steep. Therefore the deviation of this field from
ReΦ ¼ 0 will not be large, and for sufficiently large values
of the inflaton field χ the potential will be approximately
given by the simple polynomial expression jfðχ= ffiffiffi

2
p Þj2.

But in order to make a full investigation of inflation in such
models one would need to study evolution of all fields
numerically, and make sure that all stability conditions are
satisfied. An advantage of the methods developed in
[38,39] is that all fields but one vanish during inflation,
all kinetic terms are canonical and diagonal along the
inflationary trajectory, and investigation of stability is
straightforward.
Fortunately, one can obtain an exactly polynomial

potential VðϕÞ in the theories with K ¼ KððΦ − Φ̄Þ2; SS̄Þ
using the methods of [38,39], if the polynomial can be
represented as a square of a polynomial function fðϕÞ with
real coefficients. As a simplest example, one may consider
fðΦÞ ¼ mΦð1 − cΦþ dΦ2Þ. The resulting potential of the
inflaton field can be represented as

VðϕÞ ¼ m2ϕ2

2
ð1 − aϕþ a2bϕ2Þ2: ð11Þ

Here a ¼ c=
ffiffiffi
2

p
and a2b ¼ d=2. We use the parametriza-

tion in terms of a and b because it allows us to see what
happens with the potential if one changes a: If one
decreases a, the overall shape of the potential does not
change, but it becomes stretched. The same potential
can be also obtained in supergravity with vector or tensor
multiplets [36].
Inflation in this theory may begin under the same initial

conditions as in the simplest large field chaotic inflation
models ϕn. The difference is that in the small a limit, the
last 60 e-foldings of inflation are described by the theory
ϕ2. Meanwhile for large a one has the same regime as in the
theory ϕ6, but at some intermediate values of a the last 60
e-foldings of inflation occurs near the point where the
potential bends and becomes concave, see Fig. 2. As a

FIG. 1 (color online). The green area describes observational
consequences of inflation in the Higgs model (10) with v ≫ 1
(a ≪ 1), for the inflationary regime when the field rolls down
from the maximum of the potential. The continuation of this area
upwards corresponds to the prediction of inflation which begins
when the field ϕ initially is at the slope of the potential at
jv − ϕj ≫ v. In the limit v → ∞, which corresponds to a → 0,
the predictions coincide with the predictions of the simplest
chaotic inflation model with a quadratic potential m2

2
ϕ2.

CHAOTIC INFLATION IN SUPERGRAVITY AFTER … PHYSICAL REVIEW D 90, 023534 (2014)

023534-5



result, for b ¼ 0.34 and 0.03≲ a ≲ 0.13 the observational
predictions of this model are in perfect agreement with the
Planck data, see Fig. 3. Agreement with the Planck data
can be achieved, for a certain range of a, for each of the
potentials shown in Fig. 2.
We can extend this analysis to a 2-dimensional scan of a

and b. For a given value of b we saw that plotting
ðrðaÞ; nsðaÞÞ will give a curve in the ðr; nsÞ-plane with a
certain segments inside the 1- or 2-σ contours, respectively.
For this purpose, we approximate the blue-shaded 1- and
2-σ contours of the joint PLANCKþWPþ BAO exclu-
sion limits on ns and r from [1] (see Fig. 1) with a simple
polynomial approximation function which is fit to repro-
duce position, width, height and asymmetric tilt of the
PLANCKþWPþ BAO exclusion contours. The same
way, we approximate the 1- and 2-σ contours of the
PLANCKþWPþ highLþ BICEP2 constraints on ns
and r [2] by slightly asymmetric and rotated ellipses fitting
the overall rotation, semi-axes and slight asymmetry of
the joint PLANCKþWPþ highLþ BICEP2 regions.
Overlaying these approximated contours with plots of
ðrðaÞ; nsðaÞÞ for a set of values of b in ½0.334…5� gives
us Fig. 3. Each curve has a running from 0.001 to 0.2.
Conversely, using the approximate representation of

the PLANCKþWPþ BAO exclusion contours, we can
numerically solve for the segments of all curves sitting
inside the 1- or 2-σ contours, respectively. This produces
68% and 95% confidence level exclusion contours for the
microscopic parameters ða; bÞ, conditioned on m chosen to
keep COBE normalization of the curvature perturbation
power. We see the resulting exclusion contours in Fig. 4.

Clearly, compatibility with the data leaves a large fraction
of the microscopic parameter space of the model viable,
alleviating any perceived need for fine-tuning.
As we see, a slight modification of the simplest chaotic

inflation model with a quadratic potential leads to a model
consistent with the results of Planck 2013. These results
provide us with 3 main data points: The amplitude of the
perturbations As, the slope of the spectrum ns and the ratio
of tensor to scalar perturbations r. The potential of the
model (11) also depends on 3 parameters which are
required to fit the data. Thus we are not talking about
fine-tuning where a special combination of many param-
eters is required to account for a small number of data
points; we are trying to fit three data points, As, ns, and r,
by a proper choice of three parameters, m, a, and b. The
values of ns and r do not depend on the overall scale of V;
they are fully controlled by the parameters a and b. One can
show that by fixing a proper combination of a and b with a
few percent accuracy, one can cover the main part of the
area in the ns − r plane allowed by Planck 2013 and
BICEP2. After fixing these two parameters, one can
determine the value of m ∼ 10−5 which is required to fit
the observed value of As ∼ 2.2 × 10−9.
This is very similar to what happens in the standard

model of electroweak interactions, which requires about
20 parameters, which differ from each other substantially.
For example, the Higgs coupling to the electron is about
2 × 10−6. This smallness is required to account for the
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FIG. 2 (color online). The potential VðϕÞ ¼ m2ϕ2

2
ð1 − aϕþ

a2bϕ2ÞÞ2 for a ¼ 0.1 and b ¼ 0.36 (upper curve), 0.35 (middle)
and 0.34 (lower curve). The potential is shown in units ofm, with
ϕ in Planckian units. For each of these potentials, there is a range
of values of the parameter a such that the observational
predictions of the model are in the region of ns and r preferred
by Planck 2013. For b ¼ 0.34, the value of the field ϕ at the
moment corresponding to 60 e-foldings from the end of inflation
is ϕ ≈ 8.2. Change of the parameter a stretches the potentials
horizontally without changing their shape.
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FIG. 3 (color online). Predictions for nsðaÞ and rðaÞ in at 55
e-folds the model with VðϕÞ ¼ m2ϕ2

2
ð1 − aϕþ a2bϕ2ÞÞ2 for

various values of b ¼ 0.334…5. All curves have a running from
0.001 to 0.2. The red (b ¼ 0.34) and green (b ¼ 5) balls
correspond to a ¼ 0.01…0.13 in steps of 0.01 from the joint
start point a ¼ 0.001 outward. For a ¼ 0 one recovers
the predictions for the simplest chaotic inflation model with a
quadratic potential for all b, while for b ¼ 0.34 and a ¼ 0.13
the predictions almost exactly coincide with the predictions
of the Starobinsky model and the Higgs inflation model (red
balls). Conversely for b≳ 1 and moderately small a our
model nicely traverses the BICEP2 constraints within the
1-σ area (green balls).
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anomalously small mass of the electron. Meanwhile the
Higgs coupling toW and Z bosons and to the top quark are
Oð1Þ. The cosmological models discussed above are
much simpler than the theory of elementary particles.
Nevertheless, it would be very nice to identify some
possible reasons why the data by WMAP and Planck
gradually zoom to some particular area of ns and r.
Let us now shortly discuss the effect of theΦ3 term in the

superpotential. For models fitting the CMB data this term is
small for field values corresponding to the observable last
50–60 e-folds of inflation. Conversely, the Φ3 term is the
dominant source of shift symmetry breaking inW and thus
in the scalar potential at large field values, giving rise to a
relatively steep potential ∼Φ6. Therefore parameter choice
a; b giving a good fit to the data will generically consist of
an approximately linear or quadratic potential regime up to
at least the 60 e-fold value ϕ60 and then steepen into a
sextic potential beyond that point. As mentioned in the
conclusions of [1], a similar behavior already observable
for a quartic polynomial potential can provide a viable
suppression of CMB two-point function power at large

angular scales (low l of l < 40), for which the PLANCK
data provides a hint at about 2.5–3σ [54], or including the
r ¼ 0.2 tensor mode contribution [2], at about 3–3.8σ [55].
The same situation arises for our model. Generically,

sources of shift symmetry breaking which are subdominant
during the observable amount of 50–60 e-folds of inflation,
but lead to rapid steepening of the scalar potential beyond a
certain field value, can lead to suppressed CMB power
at low l. This was discussed in general terms already in
[56–58], and more recently in the context of string-inspired
models in [55,59–65]. A more general discussion of the
effects in the large-angular power spectrum of the CMB
caused by a generic preinflationary phase immediately
preceding the observable 50–60 e-folds of inflation will be
presented in forthcoming work [66].

VI. EFFECTS OF NONMINIMAL COUPLING
TO GRAVITY

There are two sources of steepening due to shift
symmetry breaking in our class of models. One, as
mentioned, is the cubic term in the superpotential, leading
to a steep potential ∼Φ6 beyond certain field values. If
instead of the superpotential with fðΦÞ ¼ mΦð1 − cΦþ
dΦ2Þ one considers a potential with higher powers of Φ,
one can achieve a much stronger steepening of the
potential. The second possibility of breaking the shift
symmetry (as it is already broken in W to get inflation
in the first place) arises from giving the inflaton real scalar
field a small negative nonminimal coupling ξ in the Kähler
potential. For example, ξ < 0 modifies the power-law
Kähler potential K ¼ −ðΦ − Φ̄Þ2=2þ SS̄ into

K ¼ −ðΦ − Φ̄Þ2=2þ SS̄ − 3ξðΦ2 þ Φ̄2Þ; ð12Þ

see Eq. (A24). For ξ < 0, this correction to K provides a
source of exponentially rapid steeping e3jξjϕ2

, which
becomes very sharp and pronounced when ϕ2 exceeds
1=ð3jξjÞ, see Eqs. (A25) and (A26). For the simplest
quadratic potential, this effect was studied in [67], without
relating it to the nonminimal coupling. We performed a
similar investigation for the polynomial model (11). The
results are presented in Fig. 5. As one can see, the results
provide a good fit to observational data, with suppressed
CMB power at low l.
Finally we should mention another possibility, which

was studied in detail in [48]. If one considers the simplest
chaotic inflation model with V ¼ m2

2
ϕ2 with nonminimal

coupling Ω ¼ 1þ ξϕ2, which is described by a super-
gravity theory with a logarithmic Kähler potential, the
predictions of the theory dramatically change even for
minuscule deviations of ξ from zero, see Fig. 6. For ξ > 0,
the value of r becomes sharply lower than at ξ ¼ 0, whereas
a continuation of ξ to the domain of ξ < 0 leads to a sharp
increase of r while ξ decreases beyond −Oð10−3Þ [48].
This demonstrates that nonminimal coupling to gravity is a

FIG. 4 (color online). Grey: Exclusion contours for the
microscopic parameters ða; bÞ in the model with VðϕÞ ¼
m2ϕ2

2
ð1 − aϕþ a2bϕ2ÞÞ2 from the PLANCKþWPþ BAO ap-

proximated exclusion limits on ns; r. Dark grey and light grey
denote the 68% and 95% confidence level exclusion contour plot
for the microscopic parameters ða; bÞ, respectively, conditioned
on m chosen to keep COBE normalization of the curvature
perturbation power. Blue-striped: Exclusion contours for the
microscopic parameters ða; bÞ in the same model from the
BICEP2þ PLANCK þWPþ highL approximated exclusion
limits on ns; r. Dark blue and light blue denote the 68% and
95% confidence level exclusion contour plot for the microscopic
parameters ða; bÞ, respectively, conditioned on m chosen to keep
COBE normalization of the curvature perturbation power.
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very powerful tool to control the observational predictions
of the theories. In this context, we should mention a broad
class of models with strong nonminimal coupling to gravity
[49], which have the observational predictions continu-
ously interpolating between the predictions of the
Starobinsky model with r ∼ 0.004 and the predictions of
the simplest models of chaotic inflation with a broad rangle
of values of r ¼ Oð10−1Þ. Further investigation of these
possibilities in application to the BICEP2 results is in order.

VII. CONCLUSIONS

In this paper we studied the observational consequences
of simplest versions of chaotic inflation in supergravity.

As a starting point, we discussed the simplest model with a
quadratic potential. We can describe this model by the
superpotential W ¼ SΦ. Then we perform a very minor
modification to this theory by adding to fðΦÞ a tiny term
−aΦ2 with a ≪ 1. The predictions of the model change,
as the potential becomes Higgs-type, see Eq. (10). The
observational predictions well match Planck data for
inflation starting from the top of the potential, and they
match BICEP2 data for inflation starting at very large ϕ. In
the limit a → 0, the results coincide with the predictions of
the original model with the quadratic potential. Adding yet
another term bΦ3 allows us to match Planck/BICEP2 data
for various choices of the parameters a and b. Finally,
adding a small nonminimal coupling to gravity allows us to
make the potential sharply rising at large ϕ, which may
suppress CMB power at low l.
These are the simplest modifications to the potential that

can be consistently implemented in supergravity. As we
already mentioned, the methods developed in [38,39] allow
us to obtain chaotic inflation in supergravity with infla-
tionary potentials having arbitrary functional shape. A recent
example, which contains the supergravity realization of
natural inflation, is given in [68]. For many years, developing
a supergravity version of natural inflation with all noninfla-
tionary moduli stabilized remained a challenging problem. It
was partially resolved in [69,70] under the assumption that
one can make the uplifting of the potential in the context of
supergravity without perturbing the inflaton potential. The
issues of uplifting and moduli stabilization in such models
are highly nontrivial. For example, one could expect, naively,
that the racetrack inflation [40] should lead to a string theory
realization of natural inflation. However, it exhibits an
entirely different cosmological dynamics when the evolution
of all moduli is taken into account.
Fortunately, using the supergravity theories of the gen-

eral class developed in [38,39] and in the present paper, one
can stabilize all moduli of the natural inflation scenario and
realize it without any need for uplifting [68]. Ref. [68] also
describes supergravity versions of chaotic inflation with
arbitrary potentials modulated by sinusoidal oscillations,
similar to the potentials associated with axion monodromy
inflation [71–73] (see also recent work [74]). Other super-
gravity models, which can continuously interpolate
between the predictions of Planck and BICEP2, can be
found in [48,49,75]. These examples show that super-
gravity offers a flexible approach to chaotic inflation which
allows us to match a very broad class of recent observa-
tional data.
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APPENDIX: INFLATON POTENTIALS IN
SUPERGRAVITY AND UNDERLYING

SUPERCONFORMAL MODELS

The superconformal models underlying supergravity
models, are defined by the real Kähler potential of the
embedding space N ðX; X̄Þ and by the holomorphic super-
conformal superpotential WðXÞ, see for example the text-
book [76]. The nþ 1 chiral superfields X include all matter
superfields as well as a compensator superfield which
makes the local superconformal symmetry possible. In
application to cosmology these superconformal models
were developed in [77] and described recently in a lecture
[50]. When the part of the superconformal symmetry which
does not belong to supergravity symmetries is spontane-
ously broken, or gauge fixed, the relevant supergravity
models with Kähler potential and holomorphic superpo-
tential are derived, both depending on n chiral superfields
z; z̄. In this way a generic Jordan frame supergravity is
described. This is useful since the nonminimal coupling
to gravity plays an interesting role in inflationary models.
A superconformal model has the following coupling of
scalars to curvature:

eN ðX; X̄ÞR: ðA1Þ

Depending on the choice of the gauge-fixing one derives a
Jordan frame supergravity where matter superfields couple
to curvature via the so-called frame function Ωðz; z̄Þ

1

2
Ωðz; z̄ÞRJ: ðA2Þ

The corresponding supergravity model in the Einstein
frame has the Kähler potential related to the frame function1

K ¼ −3 logΩðz; z̄Þ; Ωðz; z̄Þ ¼ expð−K=3Þ: ðA3Þ

There is also a corresponding relation between the super-
potential and potential of the superconformal model and
that of supergravity. These kind of relations are not unique
and reflect that fact that in supergravity there is a Kähler
invariance, when the change in the Kähler potential
Kðz; z̄Þ → Kðz; z̄Þ þ gðzÞ þ ḡðz̄Þ is compensated by the
change of the superpotential WðzÞ → WðzÞe−gðzÞ.

Here we will describe examples of superconformal
models underlying supergravities which are useful for
cosmology.

1. General case, polynomial and exponential
frame functions

Jordan frame supergravity defined by a frame function
Ω has the following kinetic term for the scalar fields2

ffiffiffiffiffiffiffiffi
−gJ

p
3Ωαβ̄∂μzα∂νz̄β̄g

μν
J ; ðA4Þ

where

Ωαβ̄ ≡ ∂2Ωðz; z̄Þ
∂zα∂z̄β̄ : ðA5Þ

The inverse matrix Ωαβ̄ which one needs to construct the
potential is defined as follows: Ωαβ̄Ωβ̄γ ¼ δαγ .
In our cosmological models [38], [39] we have two fields

z ¼ ðS;ΦÞ. The potential in the case ofWðz; z̄Þ ¼ SfðΦÞ in
the Jordan frame, when S ¼ 0 is the minimum,3 is given by
the following expression:

VJ ¼ ΩSS̄jfðΦÞj2: ðA6Þ

In this case the potential in the Einstein frame at S ¼ 0 is

VEjS¼0 ¼
VJ

Ω2
¼ eKðΦ−Φ̄;ΦþΦ̄ÞjfðΦÞj2; ðA7Þ

and at Φ ¼ Φ̄

VEjS¼0;Φ¼Φ̄ ¼ VJ

Ω2
¼ eKð0;2ΦÞjfðΦÞj2: ðA8Þ

In this case one finds a nonminimal coupling to curvature to
the inflaton Φ ¼ ϕ=

ffiffiffi
2

p
in the form

1

2
e−

1
3
Kð0; ffiffi

2
p

ϕÞRJ: ðA9Þ

2. Polynomial frame function, logarithmic Kähler

This case was studied in earlier papers [38], [39] in
detail, namely for the choice

Ωpol ¼ 1 −
1

3
ðδαβ̄zαz̄β̄ þ JðzÞ þ J̄ðz̄ÞÞ; ðA10Þ

where JðzÞ is a holomorphic function of scalars, one has
3Ωαβ̄ ¼ −δαβ̄, which means canonical kinetic terms in
Jordan frame. This explains why according to Eq. (A3),

1The case of a frame function not related to the Kähler
potential was also described in [77], however, the models
satisfying (A2) are simplest and therefore often studied.

2There is also an extra kinetic term for scalars from the
auxiliary vector fields, which vanishes when scalars are either
real or imaginary.

3Additional S-dependent terms are required for stability at
S ¼ 0, they are described in details in [38], [39]
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we get a logarithmic Kähler, when starting with a poly-
nomial frame function.

Klog ¼ −3 log
�
1 −

1

3
ðδαβ̄zαz̄β̄ þ JðzÞ þ J̄ðz̄ÞÞ

�
: ðA11Þ

For our models with two fields S;Φ the holomorphic
function is

JðzÞ ¼ −
3χ

4
Φ2: ðA12Þ

At χ ¼ 0 the embedding Kähler manifold defined by the
frame function (A10) is canonical. We also define a related
nonminimal coupling parameter:

ξ ¼ −
1

6
þ χ

4
: ðA13Þ

Thus we find

Ωpol ¼ 1 −
1

3
SS̄þ 1

6
ð1þ 3ξÞðΦ − Φ̄Þ2 þ 1

2
ξðΦþ Φ̄Þ2;

ðA14Þ
corresponding to

Klog ¼ −3 log
�
1 −

1

3
SS̄þ 1

6
ð1þ 3ξÞðΦ − Φ̄Þ2

þ 1

2
ξðΦþ Φ̄Þ2

�
: ðA15Þ

For cosmological applications the minimum of the
potential is at S ¼ 0 and Φ ¼ Φ̄ ¼ ϕffiffi

2
p . Thus during infla-

tion the corresponding superconformal model in the Jordan
frame has a negative nonminimal coupling of the inflaton to
the curvature,

1

2
ΩpolðϕÞRJ ¼

1

2
ð1 − ξϕ2ÞRJ; ðA16Þ

which explains the meaning of the parameter ξ as related to
nonminimal coupling of the inflaton to curvature, − ξ

2
ϕ2R.

In [38], [39] we have studied mostly cosmological
models with logarithmic Kähler potentials with ξ ¼ 0
where the inflaton does not have a nonminimal coupling
to the curvature and where K and W and the potential VE
describing the Einstein frame model are

Klog ¼ −3 log
�
1 −

1

3
SS̄þ 1

6
ðΦ − Φ̄Þ2

�
; ðA17Þ

W ¼ SfðϕÞ; VEjS¼0;Φ¼Φ̄ ¼ jfðΦÞj2: ðA18Þ

By comparing with (A15) we note that the shift symmetry
of the Kähler potential in (A17) is a consequence of the
condition of the minimal coupling of the inflaton to
curvature in the underlying superconformal theory, since at

χ ¼ 2

3
; ξ ¼ 0; ðA19Þ

we see in Eq. (A16) that the inflaton is not coupled to
curvature.

3. Exponential frame function, polynomial Kähler

In [38], [39] we have also studied supergravity models
which have a polynomial Kähler potential and a shift
symmetry. Here we would like to explain the supercon-
formal origin of a large class of supergravities which have a
polynomial Kähler, rather than logarithmic. We choose the
exponential frame function

Ωexp ¼ e−
1
3
ðδαβ̄zα z̄β̄þJðzÞþJ̄ðz̄ÞÞ ¼ expð−K=3Þ; ðA20Þ

which means that now

Kpol ¼ −3 logΩexp ¼ δαβ̄z
αz̄β̄ þ JðzÞ þ J̄ðz̄Þ: ðA21Þ

Here again we focus on the case with two fields S;Φ and
JðzÞ ¼ − 3χ

4
Φ2. This means that

Ωexp ¼ e−
1
3
SS̄þ1

6
ð1þ3ξÞðΦ−Φ̄Þ2þ1

2
ξðΦþΦ̄Þ2 ; ðA22Þ

and

Kpol ¼ ðΦΦ̄þ SS̄Þ − 3χ

4
ðΦ2 þ Φ̄2Þ; ðA23Þ

or, using (A13) we find

Kpol ¼ SS̄ −
1

2
ðΦ − Φ̄Þ2 − 3ξðΦ2 þ Φ̄2Þ: ðA24Þ

The inflaton potential in the Einstein frame is

VEjS¼0;Φ¼Φ̄ ¼ eKpol jfðΦÞj2 ¼ e−6ξΦ
2 jfðΦÞj2: ðA25Þ

In terms of Φ ¼ Φ̄ ¼ ϕffiffi
2

p it becomes

VEjS¼0;Φ¼Φ̄¼ ϕffiffi
2

p ¼ e−3ξϕ
2 jfðϕ=

ffiffiffi
2

p
Þj2; ðA26Þ

as shown in Eq. (22) of [38]. In this class of models we
find that the nonminimal coupling of the inflaton to
curvature at S ¼ 0 and Φ ¼ Φ̄ ¼ ϕffiffi

2
p is given by the

following expression:

1

2
ΩexpRJ ¼

1

2
e−ξϕ

2

RJ: ðA27Þ

Thus, in this case in the relevant Jordan frame the inflaton is
coupled to curvature exponentially. The deviation of ξ from
zero leads to a breaking of the shift symmetry in Kähler
potential in (A24).
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