
Cosmological model with variable vacuum pressure

L. L. Jenkovszky,1,* V. I. Zhdanov,2,† and E. J. Stukalo3
1Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine

2Astronomical Observatory, Taras Shevchenko National University of Kyiv, Kiev 04053, Ukraine
3Physical Faculty, Taras Shevchenko National University of Kyiv, Kiev 03022, Ukraine

(Received 10 February 2014; published 22 July 2014)

Scenarios of the cosmological evolution are studied by using an equation of state (EoS) having points
where the specific enthalpy of the cosmological fluid vanishes. A large class of barotropic equations of state
admits, depending upon initial conditions, analogues of the “Big Rip” [R. R. Caldwell, M. Kamionkowski,
and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)], as well as solutions describing exponential
inflation followed by usual matter dominance; their classification is proposed. We discuss extensions to a
more general two-parametric EoS dealing with a preinflationary evolution and yielding stages with both
increasing and decreasing energy density as a function of time. Possible cosmological scenarios with
transitions from collapse to an expanding Universe or a closed oscillating one, without reaching a
singularity, are included.
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I. INTRODUCTION

The standard cold dark matter cosmological model with
Λ ≠ 0 (ΛCDM model) describes a huge amount of obser-
vational data [1,2] that determine the cosmological fraction
of the baryonic matter, the cold dark matter, and the dark
energy. On the other hand, the ΛCDM model leads to the
well-known problems of horizon and of spatial flatness
(see, e.g., [3,4]). These problems are currently resolved
by introducing the inflationary period [5] in the early
Universe, leading to a high degree of isotropy of the cosmic
microwave background and spatial flatness. This can be
achieved either within modifications of general relativity or
by taking into account some additional physical fields
[4,6], which are manifest at cosmological scales.
Traditionally, the bulk of matter in the Universe is

represented by a sum of baryonic matter, unknown dark
matter (DM) with zero (or very small) pressure, and dark
energy (DE). In the hydrodynamical picture, the total
pressure is a sum p ¼ pB þ pDM þ pDE. This picture
can be complemented by introducing a cosmological
(e.g., scalar) field. On the other hand, at present there
are no theoretical arguments that could single out a unique
scalar field potential, a Lagrangian of a modified gravita-
tion theory, etc. In this situation, qualitative considerations
of cosmological scenarios often use a phenomenological
equation of state (EoS) describing on the average the whole
matter in terms of the local frame energy density e and
other thermodynamical parameters (see [7] and references
therein). A widely accepted model for the dark energy is a
homogeneous perfect fluid with p ¼ we. Cosmic accel-
eration requires that w < −1=3; recent WMAP and Planck

results [1,2] are consistent with the value w ≈ −1; however,
“phantom DE,” for which w < −1 [8], is not completely
ruled out [9].
A number of generalizations exist dealing with either

explicit forms of EoS or having a parametric form [7]. In this
paper, we use an EoS containing a contribution from
ordinary matter with a linear part p ¼ we, w ¼ const
(e.g., due to “hot” matter with w ¼ 1=3) and a nonlinear
term depending on the total energy density e. This EoS is
formally analogous to the well-known bag models of the
quark-hadron (de)confinement phase transition when quarks
and gluons coagulate to form hadrons (see, e.g., [10–12]).
These models involve the so-called “bag” pressure constant
B̄ that can be interpreted as the effect of the quantum-
chromodynamical vacuum. A generalization in which the
constant B̄ is replaced by an increasing function of temper-
ature T was suggested by Källman [13]. This modification of
the EoS was rederived and its hydrodynamical and cosmo-
logical consequences have been discussed in a number of
papers (see [11,12,14] and references therein). The possibil-
ity that a small fraction of colored objects escape hadroni-
zation, surviving as islands of free colored particles called
quark nuggets, was studied, e.g., in Ref. [15].
Various modifications of the cosmological constant

depending on temperature T or energy density e were
discussed, e.g., in Ref. [16]. Of interest is the connection of
these modifications with an additional term to the EoS,
which may be interpreted as a state-dependent vacuum
contribution. Below we extend the idea of the variable
vacuum pressure B to very early times of the Universe,
although we do not exclude that the nonlinear part of the
equation of state can have a different origin. We assume
that B may be a function of e. This is applied to equations
of the homogeneous isotropic Universe (Sec. II) dealing
with a barotropic EoS. In Sec. III we discuss more general
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equations of state that involve two thermodynamical
parameters, namely, the energy density and the specific
volume. The results are summarized in Sec. IV.

II. HYDRODYNAMICAL MODELS OF
COSMOLOGICAL EVOLUTION

A. Preliminaries: Homogeneous isotropic cosmology

Let us write the Friedmann equations for a homogeneous
and isotropic Universe for the Friedmann-Lemaître-
Robertson-Walker metric

ds2 ¼ dt2 − a2ðtÞ½dχ2 þ F2ðχÞdO2�; ð1Þ
where aðtÞ is the scale factor, dO is the distance element on
the unit sphere, FðxÞ ¼ sinðxÞ for the closed Universe,
FðxÞ ¼ sinhðxÞ for the open one, and FðxÞ ¼ x for
spatially flat models; correspondingly, in what follows,
k ¼ 1, −1, 0.
The Friedmann equations for the scale factor are

d2a
dt2

¼ −
4π

3
aðeþ 3pÞ; ð2Þ

where in the case of hydrodynamical cosmological models,
e stands for the energy density of all kinds of matter in the
Universe and p is the effective pressure,1

H2 ¼ 8π

3
e −

k
a2

; ð3Þ

where H ¼ a−1da=dt. Here we do not introduce explicitly
the cosmological constant, because it can be incorporated
into e and p as “dark energy” with the EoS pDE ¼ −eDE;
we recall that the present-day value of Λ (from the ΛCDM
cosmological model) can be neglected for the redshifts
z ∼ 10 or greater. For our purposes it is sufficient to use
only Eq. (3) as we further use the hydrodynamical equation

de
dt

þ 3ðeþ pÞH ¼ 0 ð4Þ

or

de
dX

¼ −3h ¼ 0; ð5Þ

where X ¼ ln a and h ¼ eþ p is the specific enthalpy.
While accounting for (3), we have

de
dt

¼ −3Sðeþ pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
e −

k
a2

r
; ð6Þ

where S ¼ 1 in the case of the expanding Universe and
S ¼ −1 in the case of the contracting one. In what follows,
we assume S ¼ 1 for k ¼ 0, −1.

B. Barotropic equation of state

The above equations must be complemented by an EoS.
We use the analogy with the quark bag model, where the
bag pressure can be interpreted as the effect of the quantum-
chromodynamical vacuum. Similarly, for energy densities at
very early stages of the cosmological evolution, we assume
that there was a strong negative bag pressure inherent of the
cosmological vacuum for all physical interactions.
In generalizations of the quark bag model [11,13], the bag

constant B̄ is replaced by a function of temperature T, so that
pðTÞ ¼ AqgT4 − BðTÞ, whereAqg is related to the number of
degrees of freedom of some quasiparticle excitations. In the
standard bag model, the first term of this equation describes
the ultrarelativistic gas. Introduction of temperature as an
independent variable is preferable in the case of thermody-
namical equilibrium, because it enables us to characterize
different components of the cosmological fluid by the same
parameter T. On the other hand, in qualitative considerations
of cosmological problems it is more convenient to introduce
an effective EoS in terms of energy density e.
Let us start with the barotropic EoS

pðeÞ ¼ we − BðeÞ; ð7Þ
where we assume that w > −1 and the corresponding term
represents an input of an “ordinary” matter, e.g., w ¼ 1=3
for the hot matter (ultrarelativistic gas). We write the
“vacuum pressure” as BðeÞ ¼ fðeÞe, and we assume that
fðeÞ is a monotonically increasing function. We suppose,
for simplicity, that fð0Þ ¼ 0, so that for small densities the
effect of the vacuum pressure is negligible.2 Equation (4)
then assumes the form

de
dX

¼−3e½1þw−fðeÞ�; a> 0; X¼ lna: ð8Þ

The crucial point is the existence of some value e0 where
the specific enthalpy vanishes, i.e., e0∶fðe0Þ ¼ 1þ w; this
will be assumed in what follows. We see from (8) that the
behavior of the trajectories in the a-e plane near e0 do not
depend on the choice of k. However, contrary to the cases
of k ¼ 0 and k ¼ −1, for k ¼ 1 the trajectories cannot
always be extended to all positive values of a, and this
requires additional considerations (see below).
By using (4) and (3), we get the equation

de
dt

¼ −3Se½1þ w − fðeÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
e −

k
a2

r
: ð9Þ

We now describe types of the qualitative behavior of
solutions eðtÞ, aðtÞ of Eq. (8) in more detail. For k ¼ 0,
they are illustrated in Fig. 1 in the case of the expansion
(S ¼ 1) of the spatially flat Universe.

1We use the system of units in which G ¼ 1 and c ¼ 1.

2Consistency with the ΛCDM cosmological model for small
densities (e.g., for the present era) requires the addition of a
positive constant to fðeÞ.
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A1: Decreasing solutions. These solutions are repre-
sented by the lower curve in Fig. 1 lying completely in the
domain of variables ðe; XÞ such that e ∈ ð0; e0Þ. For
X → −∞ ða → 0Þ, we have e → e0, H ≈ const > 0, and
this corresponds to a long period of exponential inflation.
As t increases, the energy density decreases, and the
contribution of the vacuum pressure becomes negligible.
This is, however, the consequence of condition fð0Þ ¼ 0,
and it can be easily corrected if wewant to take into account
the present value of Λ ≠ 0.
A2: Increasing solutions. The solutions are represented

by the curve lying in the second region, e > e0, between
the other curves in Fig. 1. For such a solution, eðXÞ is
defined for all X; this function is monotonically increasing
up to infinity, and aðtÞ and eðtÞ are defined for all
t > 0. This scenario takes place, e.g., in the case of a
bounded fðeÞ.
A3: Big Rip solutions. The solutions are represented by

the top curve in Fig. 1 lying in the region e > e0, with a
“runaway” behavior like that of the Big Rip [8]. A solution
of this type blows up at some finite time, and it cannot be
extended for all X and/or all t. Such a behavior3 occurs,
e.g., if we suppose that fðyÞ grows faster than ∼yϵ, ϵ > 0
for large y.
An example with explicit EoS and analytic solutions is

given in Appendix A.
For k ¼ −1 we always have 8πe=3 − k=a2 > 0; there-

fore, the qualitative situation is analogous to the previous
case. For X ¼ ln a → −∞ (a → 0) we have the same
dependence eðXÞ described by Fig. 1 because Eqs. (5)
and (8) do not contain k. A1, A2, or A3 can be possible
cases for eðXÞ, though they can yield different asymptotical
behavior for aðtÞ and eðtÞ for t → 0 or t → ∞.
It is easy to see, in virtue of (3), that since e → e0

as t → 0, we have aðtÞ ≈ t. In the region e ∈ ð0; e0Þ,

all the solutions eðtÞ → 0 are monotonically decreasing
functions and aðtÞ → ∞ for t → ∞. In the case of a fine-
tuning, if at some t0 we have eðt0Þ sufficiently close to e0,
this closeness will remain during a long time; then in virtue
of (3) _X > q, where q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πe0=3

p
, whence aðtÞ >

aðt0Þexp½qðt − t0Þ�. In the second region, e > e0, the
situation is also the same as for k ¼ 0: we have either
the runaway solutions A3 or solutions A2.
In both cases, k ¼ 0 and k ¼ −1, the line e ¼ e0 is a

solution; other solutions (either from the region e < e0 or
from the region e > e0) cannot cross this line.

4

k ¼ 1: Since the right-hand side of Eq. (3) must be
positive, the trajectories are located to the right of the curve
Ξðe; XÞ≡ 8πe=3 − expð−2XÞ ¼ 0. The intersections of
solutions eðXÞ of Eq. (8) with this curve typically corre-
spond to simple zeros5 of function ΞðeðXÞ; XÞ; therefore,
they describe turning points of solutions aðtÞ to Eq. (3) that
can be rewritten as�

dX
dt

�
2

¼ ΞðeðXÞ; XÞ; X ¼ ln a: ð10Þ

Any turning point in its neighborhood relates two branches
of the cosmological evolution with different signs of S:
from a contracting (S ¼ −1) to an expanding (S ¼ 1)
Universe. The mutual arrangement of the trajectories
of (8) in the e-X plane (Fig. 2) shows that there must be
at least one intersection of any trajectory with the curve of
turning points Ξðe; XÞ ¼ 0. Correspondingly, possible
types of solutions are as follows.
A4: Oscillating XðtÞ. These solutions pass in domain

e < e0 for w > −1=3. On account of fðeÞ → 0 as a → ∞,
due to Eq. (8), we have e ∼ a−3ð1þwÞ. Therefore, for a
solution that starts, e.g., at the turning point b of the
solution XðtÞ, there is necessarily another turning point (a)
(see Fig. 2). There is then an oscillating solution of
(S ¼ �1) described by the curve between points a and
b; in this model, eðtÞ oscillates without reaching any
singularity.
For w ∈ ð−1;−1=3Þ, depending on initial conditions,

one can also have an oscillatory behavior like A4. On the
other hand, in this case an alternative version with an ever-
expanding Universe is possible.
A5: Decreasing eðXÞ with a turning point for XðtÞ.

There may be situations with monotonically decreasing
solutions eðXÞ, such as those starting from the turning point
c in Fig. 2 and existing for all X to the right of the turning
point c. Here a contraction (S ¼ −1) is followed by
expansion [S¼1, XðtÞ→∞ as t → ∞]; the singularity is
not reached and e remains finite for any time.

FIG. 1. Qualitative behavior of solutions of Eq. (8) for
k ¼ 0 and k ¼ −1; X ¼ ln a, S ¼ þ1, and monotonically in-
creasing fðeÞ. The trivial solution e ¼ e0 is shown by a
dashed line. The types of qualitative behavior from bottom to
top are A1, A2, A3.

3To save space, we show the trajectories corresponding to
different kinds of fðeÞ in the same figure.

4It would contradict the uniqueness of the solution of (8) with
initial condition e ¼ e0 at some initial point.

5This is a simple zero unless at this point eþ 3p ¼ 0, i.e.,
d2a=dt2 ¼ 0 simultaneously with da=dt ¼ 0. In the latter case,
the solution spends an infinite time near this point.
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In the region e > e0 we have a monotonically increasing
solution eðXÞ of Eq. (8). Similarly to A2 and A3, we have
two possibilities.
A6: Increasing eðXÞ for unbound X with a turning point

for XðtÞ. These solutions are represented by trajectories that
have a turning point (like d in Fig. 2) and tend to infinity as
X → ∞. For eðtÞ and aðtÞ, as functions of t, we have
transition from contraction to expansion at d.
A7: Big Rip solutions that correspond to increasing

eðXÞ with a turning point for XðtÞ. These solutions describe
a transition from contraction to expansion at some turning
point (f in Fig. 2, upper curve); these solutions blow up at
some finite X.
Ending this section, we note that if we have two zero

points of enthalpy,6 i.e., e0 and e1 such that fðe0Þ ¼ 1þ w
and fðe1Þ ¼ 1þ w, consequently we get a family of
solutions with e → e0 for a → 0 and e → e1 for a → ∞.
In this case e1 can be interpreted as a modern value of the
dark energy density described by Λ ≠ 0.

C. Monotonically decreasing f ðeÞ
For completeness, we consider also the case of mono-

tonically decreasing function fðeÞ with the same relation
for h ¼ e½1þ w − fðeÞ�; we suppose that there exists e0
such that fðe0Þ ¼ 1þ w and therefore hðe0Þ ¼ 0. Then in
the domain fðe;XÞ∶e>e0g, we have de=dX < 0 along the
trajectories, and for e ∈ ð0; e0Þ we have de=dX > 0. The
behavior of the trajectories is shown in Figs. 3 and 4.
The qualitative types of the solutions of (8) are as follows.

B1: Increasing eðXÞ for all X (k ¼ 0;−1). These
solutions pass in the domain fðe; XÞ∶e < e0g: eðXÞ,
eðXÞ is defined on ð−∞;∞Þ, eðXÞ → 0 for X → −∞,
and eðXÞ → e0 for X → ∞.
B2: Decreasing eðXÞ (k ¼ 0;−1). These solutions are

defined on ð−∞;∞Þ and we have eðXÞ → ∞ for X → −∞,
and eðXÞ → e0 for X → ∞. This is possible, e.g., in case of
a bounded fðeÞ; for 3½1þ w − fð∞Þ� > 2 we have the
same asymptotic behavior of aðtÞ, t → 0 both for k ¼ 0 and
k ¼ �1. This kind of behavior is appropriate for the
classical ΛCDM cosmological models with p ¼ 0 or p ¼
e=3 (see, e.g., [3,17]).
B3: Decreasing eðXÞ with the Big Rip in the past

(k ¼ 0;−1). Here eðXÞ is defined for ∞<X1<
X<∞, where eðXÞ → ∞ as X → X1 þ 0 (Big Rip in the
past, upper curve in Fig. 3). For k ¼ 0, −1 this type is
possible, e.g., if fðyÞ < 0 for y → ∞ and jfðyÞj grows
faster than ∼yϵ, ϵ > 0. For X → ∞ we have eðXÞ → e0.
The next six types of solutions of (8), shown in Fig. 4,

deal with the closed Universe (k ¼ 1);B4,B5,B6 describe
solutions with bounded energy density (Fig. 4, left panel)

FIG. 2. Qualitative behavior of solutions of (8) for k ¼ 1,
w ∈ ð−1;−1=3Þ, with monotonically increasing fðeÞ. The
dashed line corresponds to solution e ¼ e0; the dotted curve is
defined by equation Ξðe; XÞ ¼ 0. The possible types of trajecto-
ries are (from the bottom to the top) A4 (oscillating between a,
b), and A5, A6, A7 with turning points c, d, f of XðtÞ,
correspondingly. The arrows near the trajectories starting at c,
d, f indicate two possible directions of motion along these
trajectories; here, contraction (S ¼ −1) is followed by expansion
(S ¼ þ1).

FIG. 3. Types of solutions of (8) for k ¼ 0 and k ¼ −1;
X ¼ ln a, S ¼ þ1, monotonically decreasing fðeÞ. The dashed
line is e ¼ e0. From bottom to top, we have solutions B1,
B2, B3.

FIG. 4. Types of solutions of (8) for k ¼ 1; X ¼ ln a, mono-
tonically decreasing fðeÞ. The dashed line corresponds to e ¼ e0;
the dotted curve is defined by relation Ξðe; XÞ ¼ 0. The left panel
represents trajectories (B4–B6) with bounded energy density,
and the right panel those with unbounded ones (B7–B9).

6Provided we do not assume fðeÞ to be monotonic.
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and B7, B8, B9 are solutions with unbounded e (Fig. 4,
right panel).
B4: Increasing eðXÞ with a turning point of XðtÞ.

(k ¼ 1). There is monotonically increasing eðXÞ in the
domain e < e0 with turning point (a).
B5: Oscillating XðtÞ (k ¼ 1). It is possible to have

oscillating XðtÞ between two turning points (b and c, the
left panel of Fig. 4).
B6: Decreasing eðXÞ with a turning point for XðtÞ

(k ¼ 1). There is monotonically decreasing eðXÞ in the
domain e > e0 with turning point (d).
In Fig. 4, right panel, we have the following.
B7: Decreasing eðXÞ with the turning point (k ¼ 1).

There exist a type of solutions describing unbounded
monotonically decreasing eðXÞ in the domain e > e0 with
turning point a; eðXÞ → ∞ as X → −∞. The Universe
starts with infinite e, whereupon expansion is replaced by
contraction after passing the turning point a.
B8: Decreasing eðXÞ for all X (k ¼ 1). In this case

unbounded monotonically decreasing eðXÞ in the domain
e>e0, is defined for all X; eðXÞ → ∞ as X → −∞; eðXÞ →
e0 as X → ∞.
B9: Unbounded eðXÞ with the Big Rip in the past

(k ¼ 1). In this case monotonically decreasing eðXÞ passes
in the domain e > e0, is defined for X>X1>−∞; eðXÞ→
∞ as X → X1 þ 0; eðXÞ → e0 as X → ∞.
Note that one can easily extend the results of Secs. II B

and II C to the case of negative fðeÞ and 1þw<0. In this
case we have the same types of trajectories as those shown
in Figs. 1–4.

III. GENERALIZATION: TWO-PARAMETRIC EOS

In the preceding section we have used the fact that the
solution eðxÞ of the first order differential equation (8)
cannot cross the line e≡ e0, since this is also a solution of
(8). However, it is interesting to consider scenarios when
the sign of de=da ¼ 0may change during the cosmological
evolution. To this end we relax the conditions of the
preceding section and assume that the EoS depends on
two independent thermodynamical variables. On the other
hand, one can expect that, if the dependence of the pressure
on the additional variable, besides e, is weak, the cosmo-
logical evolution will be very close to that of the preceding
section and a solution that crosses zero points of h will
spend a considerable time near these points (and thus can
invoke a kind of the exponential inflation).
In this section, instead of Eq. (8), we prefer to deal directly

with Eq. (5), where p ¼ pðe; vÞ, h ¼ hðe; vÞ, v ¼ 1=n, and
n is the proper frame baryon number density. Due to baryon
conservation, in the case of metric (1), we have

v ¼ v0ða=a0Þ3; ð11Þ
where v0; a0 are the values at some t0.

Instead of the straight line e ¼ e0, we suppose that there
is (only) one curve e ¼ EðXÞ > 0 where the specific
enthalpy hðe; XÞ vanishes. Obviously, in the general case,
the function e ¼ EðXÞ does not satisfy (5) and some
trajectories of solutions can cross this curve. The most
simple extension of the corresponding assumptions of
Sec. II B is that the function EðXÞ is defined for all X
and it is a monotonic function. The trajectories slightly
differ for different signs of monotonicity. There are four
possibilities: (C1) EðXÞ is monotonically increasing,
hðe; XÞ < 0 for e > EðXÞ; (C2) we have the same sign
of monotonicity, but hðe; XÞ > 0 for e > EðXÞ; (C3) EðXÞ
is monotonically decreasing, hðe; XÞ < 0 for e > EðXÞ;
(C4) we have the same sign of monotonicity as in (C3), but
hðe; XÞ > 0 for e > EðXÞ.
Possible trajectories of the system (3)–(5) that do not

cross the curve e ¼ EðXÞ are qualitatively the same as those
of Sec. II, so we concentrate on types of trajectories for
which the sign of de=dX changes, as shown schematically
in Fig. 5. These scenarios of cosmological evolution differ
considerably from the standard pictures described in the
textbooks (see, e.g., [17], Fig. 23.1). The trajectories that do
not cross the curve h ¼ 0 are not shown in Fig. 5; for
example, in the case of C1, k ¼ 0, −1 there may be infinite
solutions that move to the area above the curve h ¼ 0.
In any case, for k ¼ 0,−1 the initially expandingUniverse

will expand forever. In the case of the closed Universe
(k ¼ 1), for some solutions, there is a possibility of return to
a contraction; there can be also periodic solutions and
solutions with return from contraction to expansion.
It is interesting to note that there are scenarios when eðtÞ

increases and then decreases either to zero or to some
constant value (see Fig. 5,C1 andC4). Any more complete
description may be obtained only if more information about
hðe; XÞ is provided. Two concrete examples with types C1
and C4 are presented in Appendix B.

FIG. 5. Solutions of Eq. (5), that change the sign of de=dX:
possible qualitative behavior in e − X plane. On dashed curve,
de=dX ¼ 0. On the upper panel trajectories in case of k ¼ 0, −1,
S ¼ þ1 are shown. On the lower panel (k ¼ 1, closed Universe),
small circles on the dotted curve indicate turning points
Ξðe; XÞ ¼ 0 similar to those of the previous section.
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IV. CONCLUSIONS

Wehave investigated a class of nonlinear equations of state
that have points of zero enthalpy; to do so, we used general
qualitative properties known from the theory of ordinary
differential equations. In the case of the barotropic EoS
occurrence, such a point leads to the possibility of a period
of rapid expansion with almost constant energy density.
Under appropriate initial conditions, this period can last as
long as needed to provide the necessary size of the causally
connected regions in future, ensuring, e.g., an adequate
solution to the well-known problem of horizon, etc.
Under general assumptions, we have classified possible

cosmological scenarios, including a number of those with-
out the cosmological singularity. In the case of open and
spatially flat metrics, the Universe expands either forever or
undergoes a Big Rip. In case of the closed Universe there
can be also transitions from collapse to expansion or vice
versa. A closed oscillating Universe without reaching a
singularity is also possible.
Our findings deal with simple EoS, allowing us to

discuss different scenarios of the early cosmological
evolution. Nevertheless, if we assume that these consid-
erations have relevance to reality, one can speculate on why
our Universe starts with small deviations from the state with
zero enthalpy, for example, due to quantum fluctuations
near this state. These fluctuations can start either
“phantom” cosmological evolution, leading to a kind of
the Big Rip, or “normal” expansion with a transition to the
standard ΛCDM model described in textbooks (see, e.g.,
[3]). To have a sufficiently long period of inflation, a kind
of fine-tuning is required (e.g., approach to the point
h ¼ 0), compelling us to invoke a sort of the anthropic
principle. However, such a tuning is not more restrictive
than, e.g., the use of equation of state p ¼ wewith w ¼ −1.
The above-mentioned requirement of the fine-tuning is

relaxed if we consider a two-parametric EoS. In this case,
an infinity of solutions crossing states with zero enthalpy
may exist; and there is an immense freedom in choosing the
evolution as the scale factor a → 0. In the case of a
sufficiently weak dependence of pðe; vÞ on v, it is natural
to assume that the behavior of trajectories near points of
zero enthalpy will be similar to that of Sec. II B. In this case
there is a sufficiently long period of inflation.
Furthermore, one may speculate about a multicomponent

fluid. We know that at present some form of DE dominates,
but moving back in time its fraction becomes negligible
(within the framework of the ΛCDM model). On the other
hand, for very early (post-Planckian) times, the other form
of DE must have dominated to provide inflation. Within
such a scenario, one may have different inflation epochs
corresponding to the domination of different DE compo-
nents (cf. multiple stages of inflation in Ref. [18]). This is
consonantwith the idea of the existence of a “mini-inflation”
due to the existence of metastable states in strongly
interacting matter [11,12]; see also [10]. However, any

smooth interpolation between these different inflation
epochs remains a challenge for the theory.
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APPENDIX A: “EQUIVALENT” SCALAR
FIELD POTENTIAL

It is important to have a scalar field analogue of the
hydrodynamical models in question. Here we present an
analytic example dealing with a special form of the EoS and
an “equivalent” scalar field description yielding the same
evolution of the scaling factor.
It is well known that in the case of homogeneous

isotropic cosmology, one can find a scalar field
Lagrangian that mimics the hydrodynamical evolution
(see, e.g., [19–21] and references therein). Here we con-
sider the scalar field equations giving the same evolution of
the “observable” space-time geometry, i.e., the same depend-
ence aðtÞ, as that following from EoSp ¼ pðe; vÞ. Consider
the scalar field Lagrangian with the standard kinetic term

L ¼ 1

2
gμνφμφν − VðφÞ: ðA1Þ

The corresponding energy-momentum tensor is

Tμν ¼ φμφν − gμνLðφÞ: ðA2Þ

In case of a homogeneous isotropic cosmology with the
metric (1), it has the form of the hydrodynamical energy-
momentum tensor with the following energy density and
pressure:

e ¼ 1

2
_φ2 þ V; p ¼ 1

2
_φ2 − V; → _φ2 ¼ eþ p;

V ¼ 1

2
ðe − pÞ: ðA3Þ

Combining Eqs. (A3) with Eqs. (2), (3), we obtain a
parametric representation of the equivalent scalar field
potential:

V ¼ 1

4π

�
H2 þ 1

2a
d2a
dt2

þ k
a2

�
; ðA4Þ
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φ ¼ �
Z �

1

4π

�
H2 −

1

a
d2a
dt2

þ k
a2

��
1=2

dt: ðA5Þ

In the case of barotropic EoS, such as (7), and a spatially
flat Universe (k ¼ 0), it is more convenient to look for a
parametric representation of the form V ¼ VðeÞ, φ ¼ φðeÞ.
Combining dφ=dt with Eq. (4), we get dφ=de whence

φ ¼ �
Z

deffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πeðeþ pÞp ; ðA6Þ

yielding the potential VðφÞ in a parametric form.
There is a number of analytic examples describing the

cosmological evolution in various dynamical DE models
(see, e.g., [7,19,20]). Below we use particular examples to
illustrate the general statements of the previous sections.
In the case of fðξÞ ∼ ξμ, μ > 0, we have an EoS of the

form

pðeÞ ¼ e½w − ð1þ wÞðe=e0Þμ�: ðA7Þ
In this case, Eq. (8) with the initial condition e ¼ e1 for
a ¼ a1 can be easily integrated:

e¼e0

�
1þA

�
a
a1

�
3μð1þwÞ�−1=μ

; A¼
�
e0
e1

�
μ

−1: ðA8Þ

It is also possible to find an analytic form of VðφÞ.
Equation (A6) yields

φ ¼ � 1

½6πð1þ wÞ�1=2μ ln ðξþ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
Þ þ φ0;

ξ ¼ ðe0=eÞμ=2 ðA9Þ

where φ0 is an integration constant. The inverse function
e ¼ eðφÞ is

e ¼ e0½coshð�ΦÞ�−2=μ; Φ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πð1þ wÞ

p
ðφ − φ0Þ:

Substitution into (A3) yields

VðϕÞ ¼ e0
ðcoshΦÞ2ð1þ1=μÞ

�
1þ 1 − w

2
sinh2Φ

�
: ðA10Þ

This is the potential that ensures the same dependence of
the scale factor aðtÞ as the EoS (A7).

APPENDIX B: TWO EXAMPLES

Lacking reliable knowledge about the equation of state in
the very early epoch, below we consider, for illustration
purposes, simple examples of C1 and C4 types, k ¼ 0;−1.
The solutions for k ¼ 1 can be easily analyzed using
these pictures by superimposing the line Ξðe; XÞ ¼ 0 onto
the graph and taking into account the turning points.

Assuming Eq. (7), we set Bðe; vÞ ¼ b0ðeÞ þ b1ðeÞ=v.
Then hðe; XÞ ¼ ð1þ wÞe − b0ðeÞ − b1ðeÞ expð−3XÞ. The
solutions eðXÞ of Eq. (5) are calculated for most simple
cases: (i) f0 ¼ const > 0, b1 ¼ βe; β ¼ const > 0 (Fig. 6);
(ii) b0 ¼ 0, b1ðeÞ ¼ βe3=2 (Fig. 7). On the figures we show
only those trajectories that cross the line hðe; XÞ ¼ 0where
de=dX changes its sign.
In the case of (i), all solutions eðXÞ crossing the curve

EðXÞ tend to Eð∞Þ ¼ b0=ð1þ wÞ for X → ∞. Besides,
there are monotonically increasing solutions (not shown
in Fig. 6) below the curve with the same asymptotic
behavior for X → ∞. For large negative X, the solutions
lead to nonphysical values e < 0.
In the case of (ii), all solutions eðXÞ after crossing the

curve EðXÞ tend to zero for X → �∞. However, there are
also solutions (not shown in Fig. 7) to the left of the curve
tending to infinity for X → X1 − 0 at some finite X1.

FIG. 7. Solutions of (5) corresponding to (ii), crossing the line
de=dX ¼ 0. The dashed line is EðXÞ ¼ ð1þ wÞ2=β2 · expð6XÞ,
β ¼ 1, w ¼ 1=3.

FIG. 6. Solutions of (5) corresponding to (i) crossing the line
de=dX ¼ 0. The choice of the constants is w ¼ 1=3, f0 ¼ 1,
β ¼ 0.01. The dashed line is EðXÞ ¼ b0=½1þ w − β expð−3XÞ�.
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