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This is a continuation of the paper published in Phys. Rev. D 89, 023520 (2014). Here we investigate
how the luminosity distance–redshift relation DLðzÞ of the ΛCDM model is duplicated in the Lemaître-
Tolman (L-T) model with Λ ¼ 0, constant bang-time function tB and the energy function EðrÞ mimicking
accelerated expansion on the observer’s past light cone (r is a uniquely defined comoving radial
coordinate). Numerical experiments show that E > 0 necessarily. The functions zðrÞ and EðrÞ are
numerically calculated from the initial point at the observer’s position, then backward from the initial point
at the apparent horizon (AH). Reconciling the results of the two calculations allows one to determine the
values of E=r2 at r ¼ 0 and at the AH. The problems connected with continuing the calculation through
the AH are discussed in detail and solved. Then zðrÞ and EðrÞ are continued beyond the AH, up to the
numerical crash that signals the contact of the light cone with the big bang. Similarly, the light cone of the
L-T model is calculated by proceeding from the two initial points, and compared with theΛCDM light cone.
The model constructed here contains shell crossings, but they can be removed by matching the L-T region
to a Friedmann background, without causing any conflict with the type Ia supernovae observations. The
mechanism of imitating the accelerated expansion by the EðrÞ function is explained in a descriptive way.
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I. INTRODUCTION

It is shown here how the luminosity distance–redshift
relation DLðzÞ of the ΛCDM model is duplicated in the
Lemaître- [1] Tolman [2] (L-T) model with Λ ¼ 0, constant
bang-time function tB and the energy function EðrÞ
mimicking accelerated expansion on the observer’s past
light cone. In such an L-T model, there is no accelerated
expansion—the DLðzÞ function results from a suitable
inhomogeneous distribution of matter in space.
This paper is a continuation of Ref. [3], where the

duplication of DLðzÞ was achieved using an L-T model
with Λ ¼ 0, constant E=r2 ¼ −k, and tB mimicking the
accelerated expansion. The studies in Ref. [3] and here
were motivated by the paper by Iguchi, Nakamura and
Nakao [4], and are its extensions. In Ref. [4], just the
numerical proof of existence of such L-T models was
given, but their geometry was not discussed. The main
purpose of this paper, along with Ref. [3], is a deeper
understanding of geometrical relations between the two
types of L-T models and the ΛCDMmodel, in particular, of
the relation between their light cones.
As in Ref. [3], emphasis is put on analytical calculations;

numerical computations are postponed as much as possible.
Formulae for the limits of several quantities at z → 0 are
found; to a lesser extent this is also possible for the limits
at the apparent horizon (AH). This allows one to verify the
precision of some numerical calculations by carrying them

out from the initial point at z ¼ 0, from the initial point at
the AH, and comparing the results.
The motivation and historical background were

explained in Ref. [3]. Section II provides the basic formulae
for reference. Its subsections are condensed versions of
Secs. II, III, and VIII–X of Ref. [3]. In Sec. III, the set of
differential equations defining zðrÞ and EðrÞ for the L-T
model is derived. In Secs. IV and V, the limits of various
quantities at z → 0 and at the AH are calculated. In
Secs. VI–VII the equations for zðrÞ and EðrÞ are reformu-
lated so as to minimize the numerical instabilities in the
vicinity of r ¼ 0. In Sec. VIII, it is shown that the equations
cannot be solved with E ≤ 0.
In Sec. IX, the equations are numerically solved with

E > 0 by proceeding from the initial point at z ¼ 0. In
Sec. X, the solutions are found again by proceeding
backward from the initial point at the AH, and the two
solutions are compared. The conditions that the zðrÞ and
EðrÞ curves calculated from r ¼ 0 hit the points ðr; zÞ ¼
ðrAH; zAHÞ and ðr; EÞ ¼ ðrAH; EAHÞ determine the value of
E=r2 at r ¼ 0 and a provisional value of E at r ¼ rAH (the
subscript AH denotes the value at the apparent horizon).
The condition that EðrÞ calculated from the initial point
at r ¼ rAH hits ðr; EÞ ¼ ð0; 0Þ allows us to calculate a
corrected value of E at the AH.
In Sec. XI, the zðrÞ and EðrÞ curves are extended by

proceeding forward from the initial point at the AH up
to the numerical crash that signals the contact of the light
cone with the big bang (BB). It turns out that EðrÞ becomes
decreasing at r ¼ rsc > rAH, so there are shell crossings*akr@camk.edu.pl
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at r > rsc. The region containing shell crossings can be
removed from the model by matching the L-T solution
to a Friedmann background across a hypersurface r ¼ rB ¼
constant < rsc. The redshift corresponding to rsc is
zsc ¼ 6.938073260172738, so the matching surface can
be farther from the observer than the type Ia supernovae—
see Sec. XI for more on this.
In Sec. XII, the past light cone of the central observer

in the L-T model is calculated by proceeding from r ¼ 0
and by proceeding backward from r ¼ rAH. Consistency
between these calculations is satisfactory. Then, the cal-
culation is continued up to the BB. The L-T light cone is
compared with that of the ΛCDM model.
In Sec. XIII, the imitation of the accelerated expansion

by the EðrÞ function is explained in a descriptive way, and
the conclusions are presented. One of them is that the value
of k ¼ limr→0ð−2E=r2Þ is fixed by the values of r and z at
the AH, which, in turn, are fixed by the observationally
determined parameters of the ΛCDM model: the Hubble
constant H0 and the density and cosmological constant
parameters Ωm and ΩΛ. Consequently, k cannot be treated
as a free parameter to be adjusted to observations, as was
done in some of the earlier papers.

II. BASIC FORMULAE

A. An introduction to the L-T models

This is a summary of basic facts about the L-T model.
For extended expositions see Refs. [5,6]. Its metric is

ds2 ¼ dt2 −
R;r

2

1þ 2EðrÞ dr
2 − R2ðt; rÞðdϑ2 þ sin2ϑdφ2Þ;

ð2:1Þ

where EðrÞ is an arbitrary function, and Rðt; rÞ is deter-
mined by the integral of the Einstein equations:

R;t
2 ¼ 2EðrÞ þ 2MðrÞ=R −

1

3
ΛR2; ð2:2Þ

MðrÞ being another arbitrary function and Λ being the
cosmological constant. Note that E must obey

2Eþ 1 ≥ 0 ð2:3Þ

in order that the signature of (2.1) is ðþ − −−Þ.
In the case Λ ¼ 0, the solutions of (2.2) are
(1) When EðrÞ < 0:

Rðt; rÞ ¼ −
M
2E

ð1 − cos ηÞ;

η − sin η ¼ ð−2EÞ3=2
M

½t − tBðrÞ�: ð2:4Þ

(2) When EðrÞ ¼ 0:

Rðt; rÞ ¼
�
9

2
MðrÞ½t − tBðrÞ�2

�
1=3

: ð2:5Þ

(3) When EðrÞ > 0:

Rðt; rÞ ¼ M
2E

ðcosh η − 1Þ;

sinh η − η ¼ ð2EÞ3=2
M

½t − tBðrÞ�: ð2:6Þ

The case EðrÞ ¼ 0 can occur either in a four-dimensional
region or on a three-dimensional boundary between the
E > 0 and E < 0 regions, at a single value of r—but it will
not occur in this paper.
The pressure is zero, so the matter (dust) particles move

on geodesics. The mass density is

κρ ¼ 2M;r

R2R;r
; κ¼def 8πG

c2
: ð2:7Þ

The coordinate r in (2.1) is determined up to arbitrary
transformations of the form r ¼ fðr0Þ. This freedom allows
us to give one of the functions ðM;E; tBÞ a handpicked
form (under suitable assumptions that guarantee unique-
ness of the transformation). We make r unique by assuming
M;r > 0 and choosing r as follows:

M ¼ M0r3; ð2:8Þ

with M0 ¼ 1. This value of M0 can be obtained by the
transformation r ¼ Cr0, C ¼ constant. Choosing a value
for M0 is equivalent to choosing a unit of mass [3].
A past radial null geodesic is given by the equation

dt
dr

¼ −
R;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðrÞp ; ð2:9Þ

and its solution is denoted t ¼ tngðrÞ. The redshift zðrÞ
along tngðrÞ is given by [5,7]

1

1þ z
dz
dr

¼
�

R;trffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
ng
: ð2:10Þ

Given tngðrÞ and zðrÞ, the luminosity distance DLðzÞ of a
light source from the central observer is [8]

DLðzÞ ¼ ð1þ zÞ2Rjng: ð2:11Þ
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B. The Friedmann limit of the L-T model,
the ΛCDM model

The Friedmann limit of (2.1) follows whenM=r3 ¼ M0,
2E=r2 ¼ −k and tB are constant, where k is the Friedmann
curvature index. Then (2.4)–(2.6) imply R ¼ rSðtÞ, and the
limiting metric is

ds2 ¼ dt2 − S2ðtÞ
�

1

1 − kr2
dr2 þ r2ðdϑ2 þ sin2ϑdφ2Þ

�
:

ð2:12Þ

Equation (2.10) is easily integrated to give

1þ z ¼ SðtoÞ=SðteÞ; ð2:13Þ

where to and te are the instants of, respectively, the
observation and emission of the light ray.
The ΛCDM model is a solution of Einstein’s equations

for the metric (2.12) with dust source and k ¼ 0 > Λ [3]:

SðtÞ ¼
�
−
6M0

Λ

�
1=3

sinh2=3
� ffiffiffiffiffiffiffiffiffi

−3Λ
p

2
ðt − tBΛÞ

�
; ð2:14Þ

where t ¼ tBΛ is the instant of the BB. The DLðzÞ formula
in this model can be represented as follows:

DLðzÞ ¼
1þ z
H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p ; ð2:15Þ

where H0 is the Hubble parameter at to,

H0 ¼ S;t =Sjt¼to ð2:16Þ

and the two dimensionless parameters

ðΩm;ΩΛÞ¼def
1

3H0
2

�
8πGρ0
c2

;−Λ
�����

t¼to

ð2:17Þ

obey Ωm þ ΩΛ ≡ 1; ρ0 is the present mean mass density in
the Universe. Equation (2.15) follows by combining (2.11)
with (2.9) and (2.2) in the ΛCDM limit, where E ¼ k ¼ 0.
The Hubble parameter H0 in (2.16) is related to the

Hubble constant H0 ¼ 67.1 km=ðs × MpcÞ [9] by

H0 ¼ H0=c: ð2:18Þ

C. Regularity conditions

Two kinds of singularity may occur in the L-T models
apart from the BB: shell crossings [10,5] and a permanent
central singularity [5].
With the assumptionsM;r > 0 and tB;r ¼ 0 adopted here,

the necessary and sufficient conditions for the absence of
shell crossings are [10]

M;r
M

>
3E;r
2E

; when E < 0; ð2:19Þ

E;r > 0; when E > 0: ð2:20Þ

To avoid a permanent central singularity, the function E
must have the form [5]

2E ¼ r2ð−kþ F ðrÞÞ; ð2:21Þ

where k ¼ constant (possibly 0) and

lim
r→0

F ¼ 0: ð2:22Þ

D. Apparent horizons in the L-T and Friedmannmodels

The AH of the central observer is a locus where R,
calculated along a past-directed null geodesic given by
(2.9), changes from increasing to decreasing, i.e., where

d
dr

RðtngðrÞ; rÞ ¼ 0: ð2:23Þ

This locus is given by [11]

2M=R − 1 −
1

3
ΛR2 ¼ 0: ð2:24Þ

Equation (2.24) has a unique R > 0 solution for every value
of Λ (see Appendix A of Ref. [3]). Thus, the AH exists
independently of the value of Λ. The same applies to the
Friedmann models [12].
From now on, Λ ¼ 0 will be assumed for the L-T model,

so the AH will be at

R ¼ 2M ¼ 2M0r3: ð2:25Þ

E. Duplicating the luminosity distance–redshift
relation using the L-T model with Λ ¼ 0

To duplicate (2.15) using the Λ ¼ 0 L-T model means, in
view of (2.11), to require that

RðtngðrÞ; rÞ ¼
1

H0ð1þ zÞ
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p
ð2:26Þ

holds along the past light cone of the central observer,
where H0, Ωm and ΩΛ have the values determined by
current observations [9], tngðrÞ is the function determined
by (2.9) and zðrÞ is determined by (2.10). Let

DðzÞ¼def
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p : ð2:27Þ
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Note that Dð0Þ ¼ 0, DðzÞ > 0 at all z > 0 and D;z > 0 at
all z ≥ 0, but limz→∞DðzÞ is finite.
Light emitted at the BB of a L-T model is, in general,

infinitely blueshifted, i.e., zBB ¼ −1, except when tB;r ¼ 0
at the emission point [13,14,5]. Since we here consider the
L-T model with constant tB, all light emitted at the BB will
be infinitely redshifted, just as in the Robertson-Walker
(RW) models. This is seen from (2.26): since 0 < D < ∞
for all z > 0 and R ¼ 0 at the BB, z → ∞ must hold at
the BB.

F. Locating the apparent horizon

Differentiating (2.26) by r and using (2.23), one obtains

A1jAH ¼ 0; ð2:28Þ

where

A1¼defD −
1þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þ ΩΛ

p : ð2:29Þ

Equation (2.25) may be written, using (2.26), (2.27) and
(2.8), also as

rAH ¼
�

D
2M0H0ð1þ zÞ

�
1=3

AH
: ð2:30Þ

Note that (2.28) does not refer to the parameters of the
L-T model. So, with Ωm and ΩΛ given, it can be numeri-
cally solved for zAH already at this stage, and the corre-
sponding DAH and rAH can be calculated from (2.27) and
(2.30). The solutions are the same as in Ref. [3]1:

zAH ¼ 1.582430687623614; ð2:31Þ

DAH ¼ 1.037876401742206; ð2:32Þ

rAH ¼ 0.3105427968086945: ð2:33Þ

G. The numerical units

The following values are assumed here:

ðΩm;ΩΛ; H0;M0Þ ¼ ð0.32; 0.68; 6.71; 1Þ; ð2:34Þ

the first two after Ref. [9]. The H0 is 1=10 of the
observationally determined value of the Hubble
constant [9]

H0 ¼ cH0 ¼ 67.1 km=ðs × MpcÞ: ð2:35Þ

It follows that H0 is measured in 1=Mpc. Consequently,
choosing a value for H0 amounts to defining a numerical
length unit (NLU). With (2.34), and assuming
c ≈ 3 × 105 km=s, we have

1 NLU ¼ 3 × 104 Mpc: ð2:36Þ
Our time coordinate is t ¼ cτ, where τ is measured in

time units, so t is measured in length units. So it is natural to
take the NLU defined in (2.36) also as the numerical time
unit (NTU). Taking the following approximate values for
the conversion factors [15]:

1 pc ¼ 3.086 × 1013 km;

1y ¼ 3.156 × 107 s; ð2:37Þ

the following relations result from (2.36):

1 NTU ¼ 1 NLU ¼ 9.26 × 1023 km ¼ 9.8 × 1010 y:

ð2:38Þ
For the observationally determined age of the Universe [9]
we have

T ¼ 13.819 × 109 y ¼ 0.141 NTU: ð2:39Þ
The mass associated to M0 ¼ 1 NLU in (2.34) is

m0 ≈ 1054 kg, but it will appear only via M0.

III. THE L-TMODELWITH tB ¼CONSTANT THAT
DUPLICATES THE DLðzÞ OF (2.15)

The functional shape of tB might be determined by tying
it to an additional observable quantity, as was done in
Ref. [16]. However, then the equations defining tB and E
are coupled, and numerical handling becomes instantly
necessary. To keep things transparent, we follow the
approach of Ref. [4] and consider separately the two
complementary cases when EðrÞ and tBðrÞ have their
Friedmann forms, −2E=r2 ¼ k ¼ constant and tB ¼
constant, respectively. The first case was investigated in
Ref. [3]. Here, we consider the second case,

tB ¼ constant. ð3:1Þ
The M is chosen as in (2.8). Using (3.1), we
have [11]

R;r¼
�
M;r
M

−
E;r
E

�
Rþ

�
3

2

E;r
E

−
M;r
M

�
ðt − tBÞR;t : ð3:2Þ

The cases E > 0 and E < 0 have to be considered
separately. Since we assumed constant tB, the case (2.5)
will not occur with E≡ 0 because this would be
the k ¼ 0 Friedmann model. The equality E ¼ 0 might,
in principle, occur at isolated values of r that define

1The numbers calculated for this paper by FORTRAN 90 are
all at double precision—to minimize misalignments in the
graphs.
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boundaries between the E > 0 and E < 0 regions, but
E ≤ 0 will not occur in this paper—see Sec. VIII.

A. E > 0

We write (2.6) in the form

t − tB ¼ M

ð2EÞ3=2 ðsinh η − ηÞ; ð3:3Þ

and take it along a null geodesic, i.e., assume that the t
above is the tðrÞ obeying (2.9). There is a subtle point here:
(3.3) will be differentiated along the null geodesic, so η, and
R defined by η via (2.6), will be taken on the geodesic
before they are differentiated. In particular, R will be
replaced by (2.26) before differentiation. However, the
R;r on the right-hand side of (2.9) is calculated before being
taken along the null geodesic, so it will be replaced by
(3.2), and (2.26) will be used only after that.
The following formulae, derived from (2.6), will be

helpful:

sinh η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ER
M

þ 1

�
2

− 1

s

≡
ffiffiffiffiffiffi
2E

p
R

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2M

R

r
≡

ffiffiffiffiffiffi
2E

p
R

M
R;t ; ð3:4Þ

dηng
dr

¼ 1

sinh ηng

�
2E
M

D
H0ð1þ zÞ

�
;r : ð3:5Þ

We also introduce the following symbols, using (2.21):

U¼def 2ERng

M
þ 1≡ Dð−kþ F Þ

M0H0rð1þ zÞ þ 1≡ cosh ηng; ð3:6Þ

so that

ηng ¼ ln
	
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − 1

p 

; ð3:7Þ

and further,

B1¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2M

Rng

s
≡r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ F þ 2M0H0rð1þ zÞ

D

r

≡ R;t jng ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðU þ 1Þ

Rng

s
; ð3:8Þ

B2¼def1 −
B1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ð3:9Þ

≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2M0H0r3ð1þ zÞ=D

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ð3:10Þ

≡ 1 − 2M0H0r3ð1þ zÞ=D
1þ 2Eþ B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ; ð3:11Þ

B3¼defB1

3M0H0ð1þ zÞ
2ð−kþ F Þ3=2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − 1

p
− ln ðU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − 1

p
Þ
i
:

ð3:12Þ

The three forms of B2 are equivalent, but each of them is
useful in a different situation. For example, (3.11) gives the
best precision close to the AH, where B2 ¼ 0—see the
remark under (7.8).
Now we differentiate (3.3) along a radial null geodesic

and use (2.8), (3.4)–(3.7), (2.26) and (2.27), obtaining

dt
dr

����
ng

¼ 1

H0ð1þ zÞB1

�
B3

�
2

r
−
E;r
E

�

þD
�
E;r
E

−
3

r

�
−
A1z;r
1þ z

�
: ð3:13Þ

On the other hand, from (2.9), using (3.2), (2.6), (2.8),
(3.4), (3.7), (2.26), (2.27), (2.2) and (3.8), we have

dt
dr

����
ng

¼ 1

H0ð1þ zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
B3

�
2

r
−
E;r
E

�

þD
�
E;r
E

−
3

r

��
: ð3:14Þ

Equating (3.13) to (3.14) and using (3.9) we obtain

B2

�
D − B3

E
dE
dr

þ 2B3 − 3D
r

�
¼ A1

1þ z
dz
dr

: ð3:15Þ

Now, from (2.10), using (3.2), (2.2), (3.8) and (3.12):

1

1þ z
dz
dr

¼ 1

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
B1

2
−
M0H0r3ð1þ zÞB3

D2B1

�
dE
dr

þ 2M0H0r2ð1þ zÞB3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
D2B1

: ð3:16Þ

Solving (3.15) and (3.16) for dz=dr and dE=dr we obtain

1

E
dE
dr

¼ B5

B4

; ð3:17Þ

1

1þ z
dz
dr

¼ 3B1
2ðB3 −DÞ − 2EB3

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
B1B4

; ð3:18Þ

where
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B4¼def
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

B2

�
B1

2
−
M0H0r3ð1þ zÞB3

D2B1

�
þ B3 −D;

ð3:19Þ

B5¼def
2B3 − 3D

r
−
A1

B2

2M0H0r2ð1þ zÞB3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
D2B1

: ð3:20Þ

Note that at the AH we have A1 ¼ B2 ¼ 0, so dE=dr and
dz=dr involve expressions that become 0=0 there.
Since Eð0Þ ¼ 0 and dE=drð0Þ ¼ 0 [by (2.21) and

(2.22)], Eq. (3.17) cannot be solved numerically as given;
E has to be replaced by F using (2.21). The result is

1

−kþ F
dF
dr

¼ B5

B4

−
2

r
≡ 1

rB4

�
−D −

A1B1

B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
:

ð3:21Þ

B. E < 0

Going through the same sequence of operations as for
E > 0, we now use

t − tB ¼ M

ð−2EÞ3=2 ðη − sin ηÞ ð3:22Þ

instead of (3.3) and

sin η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ER
M

þ 1

�
2

s

≡
ffiffiffiffiffiffiffiffiffi
−2E

p
R

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2M

R

r
≡

ffiffiffiffiffiffiffiffiffi
−2E

p
R

M
R;t ; ð3:23Þ

dηng
dr

¼ 1

sin ηng

�
−2E
M

D
H0ð1þ zÞ

�
;r ð3:24Þ

instead of (3.4) and (3.5). The final result is similar to
(3.15), except that U defined as in (3.6) now obeys

U ≡ cos ηng; ð3:25Þ

and instead of B3, the following expression appears:

~B3¼defB1

3M0H0ð1þ zÞ
2ðk − F Þ3=2

	
arccosU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2

p 

; ð3:26Þ

where U ∈ ½0; π� (the Universe is in the expansion phase).
The equations corresponding to (3.15) and (3.16) are now
of the same form, except that B3 is replaced by ~B3.
Consequently, (3.17) and (3.18) result again, but with B3

replaced by ~B3 also within B4 and B5.

IV. THE LIMITS OF (3.17) AND (3.18) AT r → 0

A. E > 0

We note that limr→0z ¼ 0 for physical reasons. Knowing
this, we find from (2.27), using Ωm þ ΩΛ ≡ 1,

lim
r→0

D
r
¼ lim

r→0

dz
dr

¼defX: ð4:1Þ

Anticipating that X ≠ 0, so that limr→0ðr3=DÞ ¼ 0,
we then find from (2.29), (3.6)–(3.12), (3.17)–(3.20),
(2.21)—(2.22)

lim
r→0

U ¼ 1 −
kX

M0H0

¼def U0; ð4:2Þ

−lim
r→0

A1 ¼ lim
r→0

B2 ¼ 1; ð4:3Þ

lim
r→0

B1 ¼ lim
r→0

B3 ¼ lim
r→0

B4 ¼ 0; ð4:4Þ

lim
r→0

B3

B1

¼def
�
B3

B1

�
0

¼ 3M0H0

2ð−kÞ3=2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U0
2 − 1

q
− ln

	
U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

2 − 1

q 
i
;

ð4:5Þ

lim
r→0

B1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
; ð4:6Þ

lim
r→0

B3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r �
B3

B1

�
0

; ð4:7Þ

lim
r→0

B5 ¼ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
þM0H0

X2

��
B3

B1

�
0

− 3X;

ð4:8Þ

lim
r→0

B4

r
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
þM0H0

X2

��
B3

B1

�
0

− X −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
: ð4:9Þ

Using the above, the limit of (3.16) at r → 0 yields

lim
r→0

dz
dr

≡ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
; ð4:10Þ

see Appendix A for a proof. This is equivalent to

X3 þ kX − 2M0H0 ¼ 0; ð4:11Þ
the same equation as in Ref. [3]. It is shown in Appendix C
of Ref. [3] that (4.11) has a unique solution for X > 0.
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Taking the limit of (3.21) at r → 0 we obtain

lim
r→0

dF
dr

¼ −
k

limr→0ðB4=rÞ

× lim
r→0

�
1

r2

�
−D −

A1B1

B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
��

: ð4:12Þ

Since, from (4.3) and (2.21), limr→0ðB2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2E

p Þ¼1,
Eq. (4.12), using (4.1), (3.10), (4.6) and (4.10), can be
written as

lim
r→0

dF
dr

¼ kX
limr→0ðB4=rÞ

×

�
−X þ lim

r→0

�
1

r
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p þ A1B1=DÞ

��
:

ð4:13Þ

Calculating this limit is tricky, so the derivation is presented
in Appendix B. The result is

lim
r→0

dF
dr

¼ k
ð3
2
Ωm − 1ÞX2 −M0H0=X

2ðX þM0H0=X2ÞðB3=B1Þ0 − 3X
: ð4:14Þ

B. E < 0

Equation (4.5) in the case E < 0 is replaced by

lim
r→0

~B3

B1

¼def
�
~B3

B1

�
0

¼ 3M0H0

2k3=2

	
arccosU0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U0

2

q 

:

ð4:15Þ

In Eqs. (4.4), (4.7)–(4.9) and (4.14), B3 must be replaced by
~B3; the other equations in the set (4.3)–(4.14) apply
unchanged to the case E < 0.

V. THE LIMITS OF (3.17) AND (3.18)
AT r → rAH

Equations (2.27), (2.28) and (2.30) provide explicit
values of r, z and D at the AH, but it is not possible to
calculate an explicit expression for E at r ¼ rAH, and the
value of EðrAHÞ emerges only when (3.21) is actually
solved. Since (3.21) and (3.18) depend on E, the expres-
sions for dz=dr and dE=dr at the AH cannot be calculated
in advance, either.
As already mentioned below (3.18) we have

A1jAH ¼ B2jAH ¼ 0; ð5:1Þ

so the only term in (3.17), (3.18) and (3.21) that behaves
like 0=0 at the AH is A1=B2, and we obtain, using (2.29)
and (2.30),

lim
r→rAH

A1

B2

¼ −Ωm lim
r→rAH

�
rð1þ 2EÞD3

dz
dr

�
: ð5:2Þ

Using (5.2) in (3.18), and taking into account that
½B1�AH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p jAH, one obtains

α

�
dz
dr

�
2

þ β
dz
dr

þ γ ¼ 0; ð5:3Þ

where

α ¼ fΩmr2ð1þ 2EÞD3½1þ 2E − B3=D�gAH; ð5:4Þ

β ¼ f−2rð1þ 2EÞðB3 −DÞgAH; ð5:5Þ

γ ¼ fð1þ zÞ½3ð1þ 2EÞðB3 −DÞ − 2EB3�gAH: ð5:6Þ

Equation (5.3) can be solved once the numerical value
of EðrAHÞ is known. It will be calculated in Sec. X. With
that value, β2 − 4αγ > 0, so (5.3) has two real solutions.
One of them is negative, and the other one is given
by (10.2).
With EðrAHÞ known, one more quantity can be calcu-

lated. From (2.25) and (2.6), we have when E > 0

cosh ηjAH ¼ 1þ 4EðrAHÞ¼defY; ð5:7Þ

ðt − tBÞAH ¼
�
M0r3

ð2EÞ3=2
�
AH

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

Y2 − 1
p

− ln
	
Y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 − 1

p 
i
: ð5:8Þ

For E < 0 we have, from (2.25) and (2.4),

cos ηjAH ¼ 1þ 4EðrAHÞ≡ Y; ð5:9Þ

ðt − tBÞAH ¼
�

M0r3

ð−2EÞ3=2
�
AH

	
arccosY −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p 

;

ð5:10Þ

where 0 ≤ η ≤ π (the Universe is in the expanding phase).
The past null geodesic of the central observer must pass

through the point ðt; rÞ ¼ ðtAH; rAHÞ, where rAH is given by
(2.33) and tAH is given by (5.8) or (5.10). The numerical
value of tAH can be calculated once the value of EðrAHÞ is
known; it is given by (10.3).

VI. DETERMINING X AND k

The values of k and X are connected by (4.11) and an
equation derived from (2.4) (for k > 0) or (2.6) (for k < 0),
see below. Writing (2.6) in the form

ACCELERATING EXPANSION OR … PHYSICAL REVIEW D 90, 023524 (2014)

023524-7



t − tB ¼ M

ð2EÞ3=2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 − 1
p

− ln
	
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − 1

p 
i
;

ð6:1Þ

where U is given by (3.6), we use (2.8) and (2.21) and take
the limit of this at r → 0. The result is

T− ¼def lim
r→0

ðt − tBÞ

¼ M0

ð−kÞ3=2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U0
2 − 1

q
− ln

	
U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

2 − 1

q 
i
; ð6:2Þ

with U0 given by (4.2) (the subscript “minus” refers to
k < 0, which is equivalent to X3 > 2M0H0). We have
dT−=dX > 0 at all X > ð2M0H0Þ1=3; see Appendix C. If t
is the present instant, then T− is the age of the Universe in
this model.
For k > 0 (i.e., X3 < 2M0H0 and E < 0 in a neighbor-

hood of r ¼ 0), (6.1) and (6.2) are replaced by

t − tB ¼ M

ð−2EÞ3=2
	
arccosU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2

p 

; ð6:3Þ

Tþ¼def lim
r→0

ðt − tBÞ ¼
M0

k3=2

	
arccosU0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U0

2

q 

: ð6:4Þ

Appendix C contains the proof that dTþ=dX > 0 for
0 < X3 < 2M0H0 (i.e., 0 < k < ∞).
It is tempting to assume T− ¼ T or Tþ ¼ T, where T is

given by (2.39), and then solve the set {(6.2), (4.11)} or,
respectively, {(6.4), (4.11)} to find the values of X and k.
However, at this point, T− and Tþ are not free parameters.
The reason is that the functions zðrÞ and EðrÞ are fully
determined by the first-order equations (3.18) and (3.17)
and by the initial values zð0Þ ¼ 0, Eð0Þ ¼ 0. Consequently,
when zðrÞ is to have the right value at rAH, given by (2.33)
and (2.31), a limitation on k follows. In fact, k will be
determined by trial and error while solving (3.18), so as to
ensure that zðrAHÞ ¼ zAH.

2 With k given, T− or Tþ are
fixed by (6.2) or (6.4), and cannot be independently
adapted to observations.
For k ¼ 0 we have X3 ¼ 2M0H0 and

T0¼def lim
X3→2M0H0

T− ¼ 2

3H0

¼ 0.099 NTU: ð6:5Þ

For k → −∞ we have X → ∞ and

T∞¼def lim
X→∞

T− ¼ 1

H0

¼ 0.149 NTU: ð6:6Þ

For the case k ≥ 0, we use (6.4) instead of (6.2) to
calculate Tþ and obtain

lim
X3→2M0H0

Tþ ¼ lim
X3→2M0H0

T− ¼ 0.099 NTU: ð6:7Þ

See Appendix D for the comparison of the results of this
section to those of Iguchi et al. [4].

VII. THE EQUATIONS THAT DETERMINE zðrÞ,
F ðrÞ AND EðrÞ

To avoid numerical instabilities at r → 0 caused by
expressions that become 0=0, we define

Dr¼defD=r; ð7:1Þ

β1¼def
B1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ F þ 2M0H0ð1þ zÞ=Dr

p
; ð7:2Þ

β3¼def
B3

B1

¼ 3

2

M0H0ð1þ zÞ
ð−kþ F Þ3=2

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 − 1
p

− ln
	
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − 1

p 
i
; ð7:3Þ

β4¼def
B4

r
¼ A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

B2

�
β1
2
−
M0H0ð1þ zÞβ3

Dr
2

�
þ β1β3 −Dr; ð7:4Þ

and rewrite (3.20) and (3.21) in the form

B5 ¼ 2β1β3 − 3Dr − 2
A1

B2

β3
Dr

2

M0H0ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ; ð7:5Þ

dF
dr

¼ −kþ F
r

A1

A2

; ð7:6Þ

where

A1¼def −Dr
B2

A1

−
β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p ; ð7:7Þ

A2¼def
B2

A1

β4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�
β1
2
−
M0H0ð1þ zÞβ3

Dr
2

�

þ B2

A1

ðβ1β3 −DrÞ; ð7:8Þ

and B2 is in the form (3.11). The quantities β1, β3 and
β4 have well-defined values at r ¼ 0, while Dr behaves
in a controllable way at small r. The form (3.11) of B2

makes the numerical calculation of the locus of B2 ¼ 0
independent of the precision in calculating EðrAHÞ.
Equation (3.18), even with the substitutions listed above,

results in a function zðrÞ that does not hit the point ðr; zÞ ¼
ðrAH; zAHÞ with a satisfactory precision. To improve the
precision, (3.18) had to be rewritten as

2The parameter k enters (3.18) via E—see (2.21), and E enters
all the quantities in (3.6)–(3.18).

ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 90, 023524 (2014)

023524-8



dr
dz

¼ 2β4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

ð1þ zÞ½3β12β3 − 3β1Dr þ ðk − F Þβ3�
: ð7:9Þ

In this form, it was possible to use the tabulated values of
the function DðzÞ—see Ref. [3].

VIII. INTEGRATION OF THE SET {(7.6), (7.9)}
FOR k > 0

The numerical integration of the set {(7.6), (7.9)} was
first attempted with k > 0. From (2.21) and (2.22) it then
follows that there is a range 0 < r < r0 in which E < 0. As
explained in Sec. IV B, handling E < 0 requires replacing
B3 with the ~B3 given by (3.26). Consequently, β3 has to be
replaced with

~β3¼def
~B3

B1

¼ 3

2

M0H0ð1þ zÞ
ðk − F Þ3=2

	
arccosU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − U2

p 

: ð8:1Þ

The functions rðzÞ and EðrÞ were calculated for the
following values of k:

kj ¼ j; ki ¼ 10−i; ð8:2Þ

with 1 ≤ j ≤ 10 and 1 ≤ i ≤ 16 being integer. Taking
i > 16 led to zðrÞ curves identical to that for i ¼ 16.
Taking k ¼ 0 caused an immediate breakdown of the
calculation—the limit k → 0 of the formulae is too tricky
for a numerical program. The other results were the
following:
For all 1 ≤ j ≤ 10, for i ≤ 4 and i ¼ 6, the whole zðrÞ

curve lies below its tangent at r ¼ 0, except for wild
numerical fluctuations at the right end that in some cases
go above the tangent. The tangent passes under the point
ðrAH; zAHÞ in all these cases. A typical example is the graph
for i ¼ 3 shown in the left panel of Fig. 1. All zðrÞ curves
of this collection end far below z ¼ zAH.
For i ¼ 5, numerical instabilities kill the calculation

already at step 2.

For i ¼ 7, the zðrÞ curve goes off from r ¼ 0 very nearly
along its tangent, but the calculation ends in a numerical
crash already at step 695, with r ≈ 0.004592.
For each i ≥ 8, the zðrÞ curve lies above its tangent at

r ¼ 0, but goes around the point ðrAH; zAHÞ at large
distance. With i ≥ 8, the zðrÞ curves look similar to each
other, except for the shape of the instabilities at the right
end. For i ≥ 16, even the instabilities have identical shapes.
A typical example of the i ≥ 8 collection is the graph for
i ¼ 16 shown in the right panel of Fig. 1.
With E < 0, the inequality 2E > −1 must be obeyed at

all r > 0, see (2.3) and the remark below it. It is obeyed
indeed, except at the last step before the numerical crash, in
those cases, where it occurred. The last value of E yet
calculated is El < −1=2 in all j cases, and with i ¼ 2; 3; 6,
and going through E ¼ −1=2 may have been the reason of
the crash. The exceptions are the cases i ¼ 4 and i ¼ 7,
where the last E is positive, but these are the end points of
wildly fluctuating segments—and here, going through
E ¼ 0 may have been the reason of the final crash. For
all i ≥ 8, E stays very close to 0, is negative at all r > 0, and
the calculation does not crash up to zAH, although there are
wild fluctuations in both zðrÞ and EðrÞ close to r ¼ rAH.
Thus, the conclusion is that the curve zðrÞ will never hit

the point ðr; zÞ ¼ ðrAH; zAHÞ when k ≥ 0. Consequently,
from now on we will consider only k < 0.

IX. INTEGRATION OF THE SET {(7.6), (7.9)}
FOR k < 0

The best-fit value of k was found experimentally while
numerically integrating the set {(7.9), (7.6)}; it is

k ¼ −21.916458: ð9:1Þ

This is the curvature index of the Friedmann model that
evolves by the same law as the central particle in our L-T
model. The corresponding X was found from (4.11):

X ¼ 4.961958808006444: ð9:2Þ

The age of the Universe in this model is found from (4.2)
and (6.2) to be

Tmodel ¼ 0.1329433206844743 NTU ≈ 13.03 × 109 y:

ð9:3Þ

Assuming that the vertex of the light cone is at
ðt; rÞ ¼ ð0; 0Þ, we see from (6.2) and (9.3) that

tB ¼ −Tmodel ¼ −0.1329433206844743 NTU: ð9:4Þ

Figures 2 and 4 show the results of integration of the set
{(7.9), (7.6)} for r ∈ ½0; rAH�. Figures 3 and 5 show close-
up views of characteristic regions of the main graphs.
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FIG. 1 (color online). Typical graphs of the function zðrÞ for
two ranges of k > 0. The cross marks the point of coordinates
ðr; zÞ ¼ ðr; zÞAH, given by (2.33) and (2.31). The straight lines
are the tangents to zðrÞ at r ¼ 0, found by solving (4.11). Left
panel: k ¼ 10−3. Right panel: k ¼ 10−16.

ACCELERATING EXPANSION OR … PHYSICAL REVIEW D 90, 023524 (2014)

023524-9



The end point of zðrÞ misses the point ðrAH; zAHÞ in
Fig. 3 in consequence of numerical errors, but this is the
best precision that could be achieved. Below the order 10−6,
zðrÞ in the vicinity of rAH becomes “quantized”: a change
of k at the level of 10−7 causes no effect, while a change at
the level of 10−6 causes a jump of the end point that leads
to a greater error than the one in the figure. This happens
because, for numerical integration, the segment ½0; rAH�
was divided into 105 parts, so Δr ≈ 0.31 × 10−5 is the limit
of numerical accuracy.
The straight line is the tangent to zðrÞ at r ¼ rAH given

by (10.2). The same numerical errors cause that zðrÞ does
not have the right slope close to r ¼ rAH.

The errors in computing zðrÞ caused errors in EðrÞ—the
latter curve also failed to reach r ¼ rAH, as shown in Fig. 5.
But the precise value of E at rAH must be known in order
to calculate the tangents to zðrÞ and EðrÞ at rAH, as seen
from (5.3)–(5.6), which are needed to continue the inte-
gration of (3.18) and (7.6) beyond r ¼ rAH. This difficulty
was solved as described below.
The segment of the EðrÞ curve in Fig. 5 between the

values ~E1 ¼ 0.1771 and ~E2 ¼ 0.179 is very nearly straight.
Consequently, it was assumed that it is actually straight.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIG. 2 (color online). Graph of zðrÞ for 0 ≤ r ≤ rAH.
The cross marks the point of coordinates ðr; zÞ ¼ ðr; zÞAH,
given by (2.33) and (2.31). The dotted straight lines are the
tangents to zðrÞ at r ¼ 0 [given by (9.2)] and at r ¼ rAH
[given by (10.2)].
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FIG. 3 (color online). Left panel: Close-up view of the vicinity
of r ¼ 0 in Fig. 2. The horizontal axis goes from r ¼ 0 to
r ¼ 0.01, the tics on it are separated by Δr ¼ 0.002. Right panel:
Close-up view of the vicinity of r ¼ rAH in Fig. 2. The cross
marks the point ðr; zÞ ¼ ðrAH; zAHÞ, given by (2.33) and (2.31).
The straight line is the theoretical tangent to zðrÞ at r ¼ rAH
given by (10.2). This mismatch is the best accuracy achieved
in FORTRAN 90 at double precision. The leftmost tic on the
horizontal axis is at r ¼ 0.3085, the rightmost one is at
r ¼ 0.3115, the tics are separated by Δr ¼ 0.0005.
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FIG. 5 (color online). Graph of the function EðrÞ in the vicinity
of rAH. The straight line nearly coincides with EðrÞ for
0.1771 < E < 0.179. The larger cross marks the point of coor-
dinates ðrAH; ~EAHÞ, where ~EAH is given by (9.7). The leftmost
tic on the horizontal axis is at r ¼ 0.304, the rightmost one is
at r ¼ 0.311, the tics are separated by Δr ¼ 0.001. See text for
more explanation.
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FIG. 4 (color online). Main panel: Graph of the function EðrÞ
for 0 ≤ r ≤ rAH. An instability is seen near r ¼ rAH—see Fig. 5.
Inset: Close-up view of the vicinity of r ¼ 0. There are no
instabilities in this range. The horizontal axis goes from r ¼ 0 to
r ¼ 10−4, the tics are separated by Δr ¼ 2 × 10−5.
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The r1 corresponding to the first E after ~E1 (call it E1) and
the r2 corresponding to the first E after ~E2 (call it E2) were
read out from the table representing the numerically
calculated EðrÞ, and a straight line was drawn through
the points ðr1; E1Þ and ðr2; E2Þ. The two points are shown
in Fig. 5: The first one coincides with the lower-left corner,
the second one is marked with the small cross. Their
coordinates are

�
r1
E1

�
¼

�
0.3030042702756812

0.1771007383202457

�
; ð9:5Þ

�
r2
E2

�
¼

�
0.3065701986604748

0.1790011442990486

�
: ð9:6Þ

The intersection of this line with r ¼ rAH occurs at

E ¼ ~EAH ¼ 0.18111827859273: ð9:7Þ

Since the EðrÞ curve is as unstable for r → rAH as
Fig. 5 shows, the construction that led to (9.7) could not
be precise. The ~EAH of (9.7) was taken as the starting point
of the fitting procedure that resulted in the EðrAHÞ ¼ EAH
given by (10.1). The point ðrAH; ~EAHÞ is marked by the
larger cross in Fig. 5; the corrected point ðrAH; EAHÞ is at
this scale indistinguishable from the one shown.

X. VERIFYING THE RESULTS OF SEC. IX

The computations reported in Sec. IX were verified by
integrating (7.9) and (7.6) backward from the initial point at
r ¼ rAH, with zAH given by (2.31). The value of ~EAH given
by (9.7) was corrected by trial and error so as to ensure
that the curve EðrÞ integrated backward from r ¼ rAH hits

the point ðr; EÞ ¼ ð0; 0Þ with the maximal precision. The
corrected value that emerged is

EAH ¼ 0.181078: ð10:1Þ

With EAH now known, we can calculate from
(5.3)–(5.6) �

dz
dr

�
AH

¼ 7.29532880561771; ð10:2Þ

and from (5.7)–(5.8) using (9.4)

tAH ¼ −0.0966669255756665 NTU: ð10:3Þ

With (10.1) and (10.2), the zðrÞ and EðrÞ curves integrated
backward from r ¼ rAH are, at the scale of Figs. 2 and 4,
indistinguishable from the curves shown there. The pre-
cision of coincidence is shown in Figs. 6–8.
The left panel of Fig. 6 is at a scale approximately 10

times larger than the right panel of Fig. 3 and shows a
dramatic improvement of precision—no instabilities are
seen [if the scale were the same, the zðrÞ curve would now
be indistinguishable from its tangent]. The right panel
shows a magnified view of the neighborhood of ðr; zÞ ¼
ðrAH; zAHÞ. The errors in r are seen3 only at the level of
Δr ¼ 10−6. Both panels include the continuation of zðrÞ to
r > rAH, calculated as described in Sec. XI. Numerical
fluctuations are seen in the right panel both in the back-
ward-integrated segment and in the forward-integrated
segment, where they are a few times smaller and not, in
fact, visible in the figure.
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FIG. 6 (color online). Left panel: Close-up view of the vicinity
of r ¼ rAH on the curve zðrÞ obtained by integrating (7.9)
backward and forward from the initial point at r ¼ rAH (for
information on the forward part see Sec. XI). The lower line in the
left half is the tangent to zðrÞ at rAH given by (10.2). Right panel:
A magnified view of the vicinity of r ¼ rAH. The leftmost tic on
the horizontal axis is at r ¼ 0.310535, the rightmost one is at
r ¼ 0.31055, the tics are separated by Δr ¼ 5 × 10−6. The errors
in r show up at the level of 10−6 in the backward-integrated
segment; in the forward-integrated segment they are a few times
smaller. The cross marks the point ðrAH; zAHÞ.
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FIG. 7 (color online). A comparison of the two EðrÞ curves.
Left panel: In a neighborhood of r ¼ 0 the backward-integrated
EðrÞ is, at this scale and at all smaller scales, indistinguishable
from the forward-integrated one. The left margin of the figure is
at r ¼ 0, the right one at r ¼ 0.001, the tics on the horizontal axis
are separated by Δr ¼ 0.0002. Right panel: Around r ¼ 0.15, the
two curves differ by ΔE ¼ 5 × 10−6. The backward-integrated
EðrÞ is the upper curve. The left margin of the figure is at
r ¼ 0.14998, the right margin is at r ¼ 0.15002, the tics on the
horizontal axis are separated by Δr ¼ 5 × 10−6.

3Since the curve zðrÞ shown in Fig. 6 was obtained by
integrating (7.9), the solution is, in fact, the function rðzÞ. Thus,
the numerically generated errors affect r, not z.

ACCELERATING EXPANSION OR … PHYSICAL REVIEW D 90, 023524 (2014)

023524-11



Close to r ¼ 0, the curves calculated in the two ways are
indistinguishable even at the smallest scales. In the segment
around r ¼ 0.15, they differ by Δz ≈ 4 × 10−6.
Figures 7 and 8 show a comparison of the EðrÞ curves

calculated in the two ways.
Figure 8 shows close-up views of the function EðrÞ in the

neighborhood of r ¼ rAH at two scales. The curve found
by integrating (7.6) forward from r ¼ 0 goes off the right
course already at r ≈ 0.309 and does not reach rAH. The
curve found by integrating (7.6) forward and backward
from r ¼ rAH seems to be smooth at this scale. The right
panel shows the neighborhood of r ¼ rAH magnified ≈ 100
times with respect to the left panel. At this scale, fluctua-
tions in the backward-integrated curve are ΔE ≈ 10−5,
those in the forward-integrated curve are at the level
of 10−6.

XI. CONTINUING THE INTEGRATION OF (3.18)
AND (3.21) BEYOND THE AH

Since by integrating backward from r ¼ rAH (see
Sec. X) the functions zðrÞ and EðrÞ behave controllably
in a neighborhood of the AH, the calculation of these
functions into the range r > rAH could be undertaken.
The independent variable was r and the step in r was
Δr ¼ rAH=ð1.5 × 105Þ. The corrected value of EAH given
by (10.1) was used in all computations and graphs.
Figures 9 and 10 show the results (pieces of those graphs
have already been used in Figs. 6 and 8).
The thicker curves in Fig. 9 are the graphs of zðrÞ.

The calculation went up to r ¼ rmax, achieved at step
n ¼ 355; 012 beyond rAH, with z ¼ zmax, where�

rmax

zmax

�
¼

�
1.045516839812362

9.1148372886058313 × 10225

�
: ð11:1Þ

Then, z became too large to handle by FORTRAN. The
main panel in Fig. 9 shows the range z ∈ ½0; 10�, the inset
shows the range z ∈ ½0; 1100�. The end point of
this range corresponds to the redshift at last scattering,
which is [17]

zls ≈ 1089: ð11:2Þ

The rmax is the approximate value of r, at which the past
light cone of the observer reaches the BB set.
This behavior at approaching the BB is similar to that

found in Ref. [3]. There, the maximal value of z
was 1.6236973619875722 × 10229.
The thinner curves in Fig. 9 are the graphs of zðrÞ for the

ΛCDM model. There is a subtle point about comparing the
ΛCDM and L-T models, namely, the r coordinates in them
have to be made compatible. This point was not handled
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FIG. 8 (color online). The EðrÞ curve in the neighborhood of
r ¼ rAH, marked by the vertical stroke in both panels. Left panel:
The curve that bends up is EðrÞ integrated forward from r ¼ 0.
The other line is EðrÞ integrated backward and forward from
r ¼ rAH. The leftmost tic on the horizontal axis is at r ¼ 0.309,
the rightmost one is at 0.3115, the tics are separated by
Δr ¼ 5 × 10−4. Right panel: The neighborhood of r ¼ rAH
magnified ≈ 100 times. The leftmost tic on the horizontal axis
is at r ¼ 0.310525, the rightmost one is at r ¼ 0.31056, the tics
are separated by Δr ¼ 5 × 10−6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

FIG. 9 (color online). Main panel: The continuous curve is the
graph of zðrÞ for z ∈ ½0; 10�. The dotted curve is zðrÞ for the
ΛCDM model—see text for explanations. The straight line is
the tangent to zðrÞ at r ¼ rAH, the vertical stroke marks r ¼ rAH.
Inset: The graph of zðrÞ for z ∈ ½0; 1100�. The curve at right is for
the L-T model, the curve at left is for the ΛCDM model.
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FIG. 10 (color online). The function EðrÞ extended into the
range r > rAH. The vertical stroke is at r ¼ rAH. Since EðrÞ
becomes decreasing at r ¼ rsc given by (11.3), there are shell
crossings in the region r > rsc.
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correctly in Ref. [3]; it is explained in Appendix E. As
shown there, when the r coordinates are compatible, the
ðr; zÞ coordinates of the AH must be the same in both
models. Indeed, the two graphs of zðrÞ in Fig. 9 intersect at
ðr; zÞ ¼ ðrAH; zAHÞ to better than 10−6 in each direction.
At all r < rAH, the zðrÞ is smaller in the ΛCDM model;
at r > rAH, the zðrÞ is larger in the ΛCDM model. The BB
in the ΛCDM model, as seen from the inset, corresponds
to smaller r.
Figure 10 shows the function EðrÞ extended into the

range r > rAH. It is increasing up to

r ¼ rsc ¼ 0.6293128978680214 ð11:3Þ

and then begins to decrease. Hence, there are shell
crossings in the region r > rsc, see (2.20). The redshift
corresponding to rsc is zsc ¼ 6.938073260172738. For
comparison, the two original projects investigated super-
novae of type Ia having redshifts in the range 0.16 ≤ z ≤
0.62 [18] and 0.18 ≤ z ≤ 0.83 [19], and the recently
discovered most distant Ia supernova has redshift
z ¼ 1.914 [20]. Hence, to do away with the shell crossing,
our model should be matched to a background (Friedmann,
for example) at r corresponding to the redshifts in the range
1.914 < z < zsc, i.e., 0.3525778644179596 < r < rsc, and
this will not compromise its applicability to the type Ia
supernovae observations.

XII. CALCULATING THE PAST LIGHT CONE OF
THE CENTRAL OBSERVER

At this point, all data needed to numerically solve (2.9)
are available. Curiously, the solution turned out to be
extremely sensitive to changes of the algebraic form of the
data. For example, a different tðrÞ curve resulted when
(3.13) was combined with (3.14) to produce

dt
dr

¼ A1

B2H0ð1þ zÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dz
dr

; ð12:1Þ

and then dz=dr was replaced by (3.18), and still a different
curve when (3.17) and (3.21) were used in (3.14) to
eliminate ðdr=dEÞ=E, and the result reparametrized by
(7.1)–(7.3), to produce

dt
dr

¼ W1

W2

; where

W1¼def
rðDr − β1β3Þ

−kþ F
dF
dr

−Dr;

W2¼defH0ð1þ zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
: ð12:2Þ

When (12.1) was applied in the range r > rAH,
the curve zðrÞ failed to reach the BB time given by (9.4).
The most reliable results were obtained when (12.1)

was used for the integration from r ¼ 0 to r ¼ rAH, and

(12.2) was used for integration from r ¼ rAH both ways.
These results are presented in Fig. 11. The tðrÞ curve
found by integrating (12.1) forward from r ¼ 0 failed to
reach the point with the coordinates ðrAH; tAHÞ given by
(2.33) and (10.3). The gap δr ≈ 0.0005 is invisible at the
scale of the main figure; it is shown in the inset. The
dotted lines in Fig. 11 are the ΛCDM light cone found
by integrating dt=dr ¼ −SðtÞ, with S given by (2.14),
and the ΛCDM big bang time given by (2.39). The same
subtle point about comparing the ΛCDM and L-T
models that was mentioned below (11.3) has to be
observed also here; see Appendix E.
As seen from the graphs, the ΛCDM model universe

is older than its L-T counterpart considered here. For
the qualitative description of mimicking the accelerated
expansion in the L-T model see Sec. XIII.
The light cone tðrÞ integrated backward and forward

from the initial point ðr; tÞ ¼ ðrAH; tAHÞ, at the scale of the
main graph in Fig. 11, coincides with the curve shown.
Detailed comparisons of the results of the two integrations
are shown in Fig. 12. The backward-integrated tðrÞ misses
the point ðr; tÞ ¼ ð0; 0Þ by

Δt1 ≈ 1.9 × 10−5 NTU ≈ 1.86 × 105 y: ð12:3Þ
At r ¼ rAH, the backward branch goes off with fluctuations
in dz=dr caused by jumps in rðzÞ. These could be reduced
by increasing the number of grid points above the current
105. The tðrÞ curve overshoots the BB by

Δt2 ≈ 10−6 NTU ≈ 9.8 × 104 y: ð12:4Þ

Now comes the final test of precision of our numerical
calculations. The right-hand side of (2.26)
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FIG. 11 (color online). The light cone profile obtained by
integrating (12.1) from r ¼ 0 to r ¼ rAH and then integrating
(12.2) beyond rAH with the initial values of r ¼ rAH and
t ¼ tAH given by (2.33) and (10.3). The upper horizontal
line is the t ¼ tB given by (9.4). The cross marks the point
ðrAH; tAHÞ. The dotted lines are the ΛCDM light cone and the
ΛCDM bang time. Inset: Close-up view of the neighborhood
of r ¼ rAH. The gap in the tðrÞ curve is δr ≈ 0.0005. The tics
on the horizontal axis are separated by Δr ¼ 0.0005, the
leftmost one is at r ¼ 0.309, the rightmost one is at r ¼ 0.312.
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FrðrÞ ¼def D=½H0ð1þ zÞ� ð12:5Þ

comes directly from the input data, via (2.27). The left-hand
side of (2.26)

FlðrÞ ¼def RðtngðrÞ; rÞ ð12:6Þ

results from the chain of numerical calculations performed
in order to find zðrÞ, EðrÞ and tngðrÞ before RðtngðrÞ; rÞ is
calculated. By (2.26), the two functions should be identical,
so the difference between them is a measure of precision of
the calculation.
Figure 13 shows the comparison of FrðrÞ with FlðrÞ,

calculated backward and forward from the initial point
at r ¼ rAH. At the scale of the upper panel of Fig. 13, the
two curves are indistinguishable, but close-up views (not
shown) reveal the differences listed in Table I.
The lower panel in Fig. 13 shows the more complicated

situation in the vicinity of r ¼ rAH. The upper curves on
both sides of the jump are the FrðrÞ, the other curves are
the FlðrÞ. The jump ΔFr ¼ 2.45 × 10−7 at the AH is a
consequence of the way in which DAH was calculated and
D tabulated.4 There is a numerical instability on each side
of the AH that caused a fluctuation in Fl of the order of
5 × 10−9 in the first step of integration. However, at the
second step, the two branches of Fl have the same value on
both sides of the AH down to scales smaller than 10−9. The
difference between Fr and Fl is 6.25 × 10−9 for r > rAH
and 2.45 × 10−7 for r < rAH. This precision could be
improved by increasing the number of grid points above
the 105 used throughout this paper.
The consistency between FlðrÞ and FrðrÞ is somewhat

worse if we take the tðrÞ integrated forward from r ¼ 0 as
the basis. Then the two curves agree perfectly at r ¼ 0, but
at r ¼ rAH they differ by 2.5 × 10−5.
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FIG. 12 (color online). Close-up views of key segments of tðrÞ
integrated in the two ways described in the text. The cross marks
the point ðrAH; tAHÞ. Upper-left panel: The neighborhood of
ðr; tÞ ¼ ðrAH; tAHÞ. The right end of tðrÞ integrated forward from
r ¼ 0 is seen at left. Upper-right panel: The neighborhood of
ðr; tÞ ¼ ðrAH; tAHÞ magnified 100 times with respect to the left
panel. The leftmost tic on the horizontal axis is at r ¼ 0.310535,
the rightmost one is at r ¼ 0.31055, the tics are separated by
Δr ¼ 5 × 10−6. Lower-left panel: The neighborhood of r ¼ 0.
The forward-integrated tðrÞ is the lower curve. The two curves
differ by Δt1 ≈ 1.9 × 10−5 NTU ≈ 1.86 × 105 y. Lower-right
panel: The end point of tðrÞ misses the BB time by
Δt2 ≈ 10−6 NTU ≈ 9.8 × 104 y. The left end of the horizontal
axis is at r ¼ 1.02, the right end is at r ¼ 1.05, the tics are
separated by Δr ¼ 0.005.

0 0.2 0.4 0.6 0.8 1

0.0598952
0.0598953
0.0598954
0.0598955
0.0598956
0.0598957
0.0598958

0.31 0.3105 0.311 0.3115

0
0.01
0.02
0.03
0.04
0.05
0.06

FIG. 13 (color online). Comparison of the function RðtðrÞ; rÞ
along the past light cone calculated from (2.26) with the same
function calculated by substituting tðrÞ, the solution of (12.2),
into Rðt; rÞ. At the scale of the upper panel, the two functions
seem to coincide. The differences between them are listed in
Table I. The lower panel shows the neighborhood of r ¼ rAH—
see the text for an explanation. The inset in the upper panel shows
the numerical instability in Fl at the AH described in the text. The
tics on the horizontal axis are separated by Δr ¼ 5 × 10−6, the
depth of the dip is ΔFl ¼ 5 × 10−9.

TABLE I. Discrepancies between (12.5) and (12.6).

At r ¼ the difference between the two curves is

0, 2 × 10−5

and 0.15
0 (invisible for Gnuplot at scales
down to Δr ¼ 10−6)

0.25 2 × 10−7

0.6 1.97 × 10−6

1 5 × 10−5

4See Ref. [3] for a description. In brief, an upper bound
Z > zAH was first estimated approximately, and then the interval
½0; Z� was divided into 109 segments in order to calculate zAH and
DAH exactly. However, using 109 points for each of the many
calculations would make the progress prohibitively slow. So, the
table of values of DðzÞ for z ∈ ½0; zAH� was calculated only for
105 intermediate points. The cumulative numerical error caused
the jump between the ð105 − 1Þst value of D and DAH, of the
order of ΔD ≈ 10−6; its consequences are seen in Fig. 13.
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XIII. CONCLUSIONS

Since the function EðrÞ calculated here generates the
same relation DLðzÞ as that found in the ΛCDM model, it
imitates the accelerated expansion. Here is a descriptive
explanation of how it happens. The Friedmann limit of our
model is achieved when−2E=r2 ¼def kF is constant, as stated
under (2.11). This kF is the curvature index of the limiting
Friedmann metric. SinceE=r2 is not constant, the kF will be
different at every r. This means that the evolution of each
r ¼ constant shell of matter in the L-T model coincides
with the evolution of a different Friedmannmodel. Figure 14
shows the function jkFðrÞj≡ j − kþ F j. It is decreasing
all the way to that r, at which the light cone touches the
BB set. Thus, shells of matter closer to the observer evolve
by a Friedmann equation corresponding to larger jkj.
Consequently, they are ejected from the BB with a larger
value of dS=dt than farther shells, and so intersect the
observer’s past light cone with a larger velocity than a
Friedmann shell would. Thus, accelerated expansion is
imitated—without introducing “dark energy” or any other
exotic matter.
Recall that the L-T model duplicating the ΛCDM DLðzÞ

that was obtained in Ref. [3] was rather exceptional: the
present observer’s past light cone was the first one that had
an infinite redshift at the intersection with the BB set. All
earlier light cones of the central observer had an infinite
blueshift at BB. In the L-T model presented here, all past
light cones of the central observer have infinite redshift at
the BB because tB ¼ constant. The present model neces-
sarily has shell crossings in the region r > rsc, where rsc is
given by (11.3). However, the r ≥ rsc region can be cut out
of the manifold by matching the L-T model to a Friedmann
background, and this will not harm the applicability of
our model to the Ia supernovae observations, see the final
remark in Sec. XI.

The shell crossings are not necessarily present when
both tBðrÞ and EðrÞ are allowed to have non-Friedmannian
forms. Examples are the configurations considered
in Ref. [16].
In the L-T model with E=r2 ¼ constant and variable tB,

considered in Ref. [3], the differential equation defining
zðrÞ was uncoupled from the one that defines tBðrÞ, so it
could be integrated independently. In the present paper, the
equations defining zðrÞ and EðrÞ, (7.9) and (7.6) with
(2.21), are coupled and have to be integrated simultane-
ously. This had no pronounced influence on the precision
in calculating the light cone—see (12.3) and (12.4), and the
test FlðrÞ ¼ FrðrÞ shown in Fig. 13 came out even better
than the one in Ref. [3]. The precision could be further
improved by increasing the number of grid points above the
105 used in all programs here.
The present paper revealed the details of geometry of

the L-T model that imitates accelerated expansion of the
Universe using EðrÞ alone, and the relation of its light
cone to that of the ΛCDM model. It is complementary to
Ref. [3], where the same was done for imitating accelerated
expansion with tBðrÞ alone. The two papers together are
an extension and complement to Ref. [4], in which only
a numerical proof of existence of such L-T models was
given. Moreover, in Ref. [4], the numerical integration of
the equations corresponding to our (2.9), (2.10) and (2.27)
was carried out only up to the AH, where the numerics
broke down. Consequently, those authors had no chance to
discover the shell crossing because rsc > rAH, see (11.3)
and (2.33).
As was shown in Sec. IX, the value of k ¼

limr→0ð−2E=r2Þ is fixed by the requirement that the
zðrÞ curve passes through the points ðr; zÞ ¼ ð0; 0Þ and
ðr; zÞ ¼ ðrAH; zAHÞ. The values of rAH and zAH are, in
turn, fixed by the values H0, Ωm and ΩΛ, as seen from
(2.27)–(2.30). These are taken from observations [9].
Consequently, it is not correct to treat k as a free parameter
to be determined by observations. Unfortunately, this con-
clusion seems to have been unknown to other authors—
exactly this approach was applied in Refs. [4] and [21];
the latter considered a problem equivalent to the present
paper by a different method. The value of k given by our
(9.1) is not in the collection considered in the two papers.
See Appendices D and F for the comparison of our results
with those of Refs. [4] and [21].
The L-T model obtained in this paper is the same as the

one investigated in Refs. [22] and [23]. Those authors took
into account the conditions imposed on the solutions of
equations by the relations at the AH by a method different
in technical detail, but equivalent to the one employed here,
and calculated other functions for the resulting L-T model.
Their radial coordinate is different from ours, it is defined
so that the equation of the observer’s past light cone is
t − tobs ¼ −r. Consequently, no straightforward compari-
son of the results is possible. But they also found that the
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FIG. 14 (color online). Graph of the function
jkFðrÞj≡ j − kþ F j. It is decreasing all the way to that r, at
which the past light cone reaches the BB. Thus, shells of matter
closer to the observer evolve by the Friedmann equation
corresponding to larger jkFj. See text for the interpretation.
The vertical stroke is at r ¼ rAH.
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parameters of the ΛCDMmodel uniquely define the energy
and mass functions in the associated L-T model with
tB ¼ constant.
The idea of drawing useful information from the values

of various quantities at the apparent horizon was first
published by Hellaby [24]. It was applied here and in
Ref. [3] to several new examples. The results might provide
inspiration for investigations of less special models.

APPENDIX A: DERIVATION OF (4.10)

1. E > 0

In this case, k < 0 and U0 > 1.
The direct result of taking the limit r → 0 in (3.16) is,

with use of (3.17) and (4.6)–(4.9) and after simplifying

F1F2 ¼ 0; ðA1Þ
where

F1¼defX −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r
; ðA2Þ

F2¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M0H0

X

r �
B3

B1

�
0

− X: ðA3Þ

The equation F1 ¼ 0 leads to (4.10), so it has to be verified
that F2 cannot be zero.
We substitute for ðB3=B1Þ0 from (4.5) and rewrite (4.4)

in the form

−k ¼ M0H0

X
ðU0 − 1Þ: ðA4Þ

With (A4), the equation F2 ¼ 0 becomes

X

�
3

2

ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p
ðy− 1Þ3=2

h ffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
− ln

	
yþ

ffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q 
i
− 1

�
¼ 0;

ðA5Þ

where y ¼def U0. The solution X ¼ 0 was excluded by
assumption—see under (4.1). The second factor in (A5)
being zero is equivalent to

gðyÞ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
− ln

	
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q 

−
2

3

ðy − 1Þ3=2ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p ¼ 0:

ðA6Þ

We have gð1Þ ¼ 0 and

dg
dy

¼ 1

3

�
y − 1

yþ 1

�
3=2

; ðA7Þ

so, obviously, dg=dy > 0 for all y > 1, and, consequently,
gðyÞ > 0 for y > 1. Thus, (A6) has no other solutions than

y ¼ 1. However, note that y > 1 must hold, from (4.2)
(because k < 0 and X > 0). Consequently, (4.10) remains
as the only acceptable consequence of (A1). ▪

2. E < 0

In this case, 0 < k < ∞, 0 < X3 < 2M0H0,
−1 < U0 < þ1, and ðB3=B1Þ0 has to be replaced by
ð ~B3=B1Þ0 given by (4.15). So, using (A4) in the new F2,
we obtain instead of (A6),

g2ðyÞ¼def arccos y −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
−
2

3

ð1 − yÞ3=2ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p ¼ 0: ðA8Þ

We have g2ð−1Þ ¼ −∞, g2ðþ1Þ ¼ 0, and

dg2
dy

¼ 1

3

�
1 − y
1þ y

�
3=2

; ðA9Þ

so dg2=dy > 0 for all y ∈ ½−1;þ1Þ. Hence, (A8) has no
other solutions for −1 ≤ y ≤ þ1 than y ¼ þ1. But y ¼ þ1
implies, via (4.2), kX ¼ 0, which is impossible when
k > 0 and X > 0. So, again, (4.10) is the only acceptable
consequence of (A1). ▪

APPENDIX B: DERIVATION OF (4.14)

We apply the de l’Hôpital rule to the last term in (4.13),
then use (2.21), (3.8), (2.29), (2.27), (4.1), (4.6) and (4.10).
In the resulting expression, several terms can be readily
calculated. Only one nontrivial limit remains:

lim
r→0

�
1

r
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p þ A1B1=DÞ

�

¼ 3

2
ΩmX −

M0H0

X2
−

1

2X2
lim
r→0

dF
dr

þ
�
1

X
þM0H0

X4

�

× lim
r→0

�
1

r

�
dz=drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þΩΛ

p −
D
r

��
: ðB1Þ

Now we substitute (B1) in (4.13) and solve the result for
limr→0dF=dr:�
1

k

�
X þM0H0

X2

��
B3

B1

�
0

−
3X
2k

þ 1

2X

�
lim
r→0

dF
dr

¼
�
3

2
Ωm − 1

�
X2 −

M0H0

X
þ
�
1þM0H0

X3

�

× lim
r→0

�
1

r

�
dz=drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þ ΩΛ

p −
D
r

��
: ðB2Þ

In the last term above we substitute for dz=dr from (3.16),
then for E from (2.21). Several terms can again be readily
calculated. In the remaining limit we use (2.29) to eliminate
the large square root. The result is
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lim
r→0

�
1

r

�
dz=drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þ ΩΛ

p −
D
r

��

¼ X2 þ 1

k

�
−
X
2
þM0H0

X2

�
B3

B1

�
0

�
lim
r→0

dF
dr

− lim
r→0

�
1

r

�
A1B1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þD
r

��
: ðB3Þ

Here, using (3.8) for B1 and (2.21) for E, we again apply
the de l’Hôpital rule to calculate

lim
r→0

�
1

r

�
A1B1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þD
r

��

¼ 3

2
ΩmX2 −

M0H0

X
−

1

2X
lim
r→0

dF
dr

þ
�
1þM0H0

X3

�
lim
r→0

�
1

r

�
dz=drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þ ΩΛ

p −
D
r

��
:

ðB4Þ

Substituting (B4) in (B3), we get�
M0H0

kX2

�
B3

B1

�
0

−
X
2k

þ 1

2X

�
lim
r→0

dF
dr

¼
�
3

2
Ωm − 1

�
X2 −

M0H0

X
þ
�
2þM0H0

X3

�

× lim
r→0

�
1

r

�
dz=drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þ ΩΛ

p −
D
r

��
: ðB5Þ

Equations (B2) and (B5) determine limr→0dF=dr as in
(4.14), using (4.10) and (4.11). ▪

APPENDIX C: PROOF THAT dT=dX > 0
FOR X > 0 IN SEC. VI

We substitute in (6.2) for U0 from (4.2) and

k ¼ 2M0H0=X − X2 ðC1Þ
from (4.11), and calculate

dT−

dX
¼ 3M0ðX þM0H0=X2Þ

ðX2 − 2M0H0=XÞ5=2
FðXÞ; ðC2Þ

where

FðXÞ¼def ln
	
U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

2 − 1

q 

− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − 2M0H0=X

p
X þM0H0=X2

;

ðC3Þ
with

U0 ¼
X3

M0H0

− 1: ðC4Þ

We have

Fðð2M0H0Þ1=3Þ ¼ 0; ðC5Þ

lim
X3→2M0H0

dT−

dX
¼ 22=3M0

5ðM0H0Þ4=3
; ðC6Þ

dF
dX

¼ 3ðX2 − 2M0H0=XÞ3=2
X2ðX þM0H0=X2Þ2 ; ðC7Þ

so dF=dX > 0 for all X > ð2M0H0Þ1=3. Equations (C7)
and (C5) show that F > 0 for all X > ð2M0H0Þ1=3, and
then (C2) shows that dT−=dX > 0 in the same range.
Doing analogous operations in (6.4) we obtain

dTþ
dX

¼ 3M0ðX þM0H0=X2Þ
ð2M0H0=X − X2Þ5=2 GðXÞ; ðC8Þ

GðXÞ ¼def arccosU0 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0H0=X − X2

p
X þM0H0=X2

; ðC9Þ

lim
X3→2M0H0

dTþ
dX

¼ 22=3M0

5ðM0H0Þ4=3
; ðC10Þ

dG
dX

¼ −
3ð2M0H0=X − X2Þ3=2
X2ðX þM0H0=X2Þ2 ; ðC11Þ

so dG=dX < 0 for 0 < X < ð2M0H0Þ1=3. We also have

Gð0Þ ¼ arccosð−1Þ ¼ π; ðC12Þ

Gðð2M0H0Þ1=3Þ ¼ 0: ðC13Þ

This means that for 0 < X < ð2M0H0Þ1=3 the function
GðXÞ uniformly decreases from π to zero, so GðXÞ > 0
in this whole interval. Consequently, in (C8), dTþ=dX > 0
in this interval. Then, from (6.7) and Tþð0Þ ¼ 0, it follows
that in this interval Tþ is everywhere smaller than the T0

from (6.5). ▪

APPENDIX D: COMPARISON OF (6.2)–(6.4) TO
THE RESULT OF IGUCHI ET AL. [4]

Iguchi et al. used different units and did not refer directly
to the age of the model universe T− or Tþ. Instead, they
referred to Ω0—the ratio of the central density to the RW
critical density, which determines the age of the model via
an equation that can be solved only numerically. So, the
comparison cannot be done by directly comparing
numbers.
Our numerical time unit (2.36) followed from assuming

H0 ¼ 6.71 in (2.35). They assumed H0 ¼ 1, so their
numerical time unit is
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1NTUIguchi ¼ c=67.1 ¼ 0.447094 × 104 Mpc

¼ 0.149 NTUKras ≡ ð1=6.71ÞNTUKras: ðD1Þ

They calculated numerically the functions EðzÞ for
different values of Ω0. [Our k is their −2Eð0Þ, see their
(2.1) vs our (2.1) and (2.21).] Thus, in effect, they treated the
age of the model universe as a free parameter and did the
numerical calculations for different assumed values of T−.
The highest value used in their paper, Ω0 ¼ 1.0, means that
the central density is equal to critical. Consequently, in this
case, theirEð0Þ ¼ 0, so our k ¼ 0. Fromour (4.11) it follows
that then X ¼ ð2M0H0Þ1=3, and our (6.7) implies that the
age of the model universe is T− ¼ 0.0993541977 NTU.
Calculating the corresponding k from (6.2) using (4.2) and
(4.11) we obtain k ¼ −1.392464 × 10−3, which is as close
to zero as the numerical precision allows [note, from (6.2),
that calculating k given T− in a neighborhood of k ¼ 0
requires evaluating an expression of the form 0=0].
The smallest Ω0 used in Ref. [4] is 0.1. Figure 4 in

Ref. [4] indicates that then their Eð0Þ ≈ 0.42, which
corresponds to our k ≈ −0.84. Taking this value we
find X ¼ 2.4941229 from (4.11), and then, from
(6.2), T− ¼ 0.1022 NTU ¼ 10.0156 × 109 y.
However, as stated in the paragraph below our (6.4), the

condition zðrAHÞ ¼ zAH uniquely fixes k; the only uncer-
tainty about the value of k may come from numerical
problems. With k given, the age of the model universe, (6.2)
or (6.4), is also fixed. Consequently, it is not correct to treat
this age as a free parameter—there is just one L-T model to
be compared with ΛCDM.

APPENDIX E: COMPARING THE ΛCDM
AND L-T MODELS

Equation (2.26) applies also in theΛCDMmodel (where,
in fact, it is an identity), with Rðt; rÞ ¼ rSðtÞ; the SðtÞ is the
ΛCDM scale factor. The same is true for (2.25) at the AH.
Recall that the values of zAH and DAH, given by (2.32) and
(2.33), are determined by the right-hand side of (2.26), and
are independent of the algebraic form of R. Hence, they will
be the same in the ΛCDM and L-T models. Therefore,
(2.30) also applies in the ΛCDM limit. Consequently,
if M0 is chosen the same in the ΛCDM and L-T models,
the rAH will also have the same value in both models. The
conclusion is that if the ΛCDM metric is represented in the
form (2.12), then, by applying a linear transformation to r,
one can assure that at the AH r is the same in both models
and z is the same in both models.

The function zðrÞ in the ΛCDM model is calculated as
follows:
(1) Solve the null geodesic equation for (2.12) to find

(numerically) tðrÞ along the geodesic.
(2) Use (2.13) for zðtÞ, where to ¼ 0 is the observation

time and te is the running value of t.
(3) Use the zðtÞ function and the tðrÞ table to find the

zðrÞ table.
This zðrÞ is not guaranteed to obey zðrAHÞ ¼ zAH, where

rAH and zAH are taken from the L-T model. This is the point
that was not taken care of in Ref. [3]. It was assumed there
that the two r coordinates are the same, but they were not.
However, all the qualitative conclusions from the compari-
son of the two light cones formulated there remain correct.
In order to make the two r coordinates compatible, one

must apply the transformation r ¼ Cr0 to the r of ΛCDM
and choose the constant C so that the zðrÞ curves of the two
models both pass through the point ðr; zÞ ¼ ðrAH; zAHÞ.
This is how both panels in our Fig. 9 were constructed. The
r coordinate of the ΛCDM model was transformed in the
same way in Fig. 11.

APPENDIX F: COMPARISON OF THE RESULTS
OF ROMANO ET AL. [21] TO OURS

Similar to Ref. [4], the authors of Ref. [21] treated k as a
free parameter to be adjusted to observations. The relations
between their parameters and ours are the following. Their
H0 coincides with our H0, except for the units. Their r, E
and R coincide with ours. From their (7), (21), and (23) it
follows that their

a0 ¼ lim
r→0

ðR=rÞ: ðF1Þ

From our (2.26), (2.27) and (4.1) it follows that

their a0 ¼ ourX=H0: ðF2Þ

Then, from their (7), (21), (27) and (32) it follows that

their ðk0; K0Þ ¼ our ðk; k=XÞ: ðF3Þ

So, our k and X given by (9.1) and (9.2) translate to
their K0 ≈ −4.4169. But this value is not in the set
K0 ∈ f−0.9376;−0.91g, for which graphs were drawn
in Ref. [21]. Hence, there is no common subset of our
results and theirs.
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