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We carry out a comprehensive analysis of the simplest curvaton model, which is based on two
noninteracting massive fields. Our analysis encompasses cases where the inflaton and curvaton both
contribute to observable perturbations, and where the curvaton itself drives a second period of inflation. We
consider both power spectrum and non-Gaussianity observables, and focus on presenting constraints in
model parameter space. The fully curvaton-dominated regime is in some tension with observational data,
while an admixture of inflaton-generated perturbations improves the fit. The inflating curvaton regime
mimics the predictions of Nflation. Some parts of parameter space permitted by power spectrum data
are excluded by non-Gaussianity constraints. The recent BICEP2 results [P. A. R. Ade et al. (BICEP2
Collaboration), Phys. Rev. Lett. 112, 241101 (2014)], if confirmed as of predominantly primordial origin,
require that the inflaton perturbations provide a significant fraction of the total perturbation, ruling out the
usual curvaton scenario in which the inflaton perturbations are negligible, though not the admixture regime
where both inflaton and curvaton contribute to the spectrum.
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I. INTRODUCTION

While observational results, including recent ones from
the Planck mission [1,2] and from BICEP2 [3], continue to
strongly support inflation as the origin of cosmic structure,
it remains an open issue whether the observed perturbations
arise from fluctuations in the field driving inflation or from
a different degree of freedom. A particular example of the
latter class is the curvaton model [4], and there have been
several reports on the status of those models in the light of
Planck satellite results [5–9]. In this work we carry out an
analysis of the simplest curvaton model [10], aiming at an
exhaustive study of parameter space while minimizing the
set of usual assumptions.
Our analysis is principally analytical. We consider wide

regimes of relative inflaton/curvaton contribution to the
curvature perturbation and energy densities. We extend the
existing literature in several directions. We impose simul-
taneous constraints from the full set of observables in the
model parameter space. We provide a detailed modeling of
the number of e-foldings corresponding to observable
scales—the so-called “pivot” scale [11]—and allow it to
respond to the change in inflationary energy scale in
different parts of parameter space. We include the effect
of the curvaton mass on perturbations generated via the
curvaton, and we consider the region of parameter space
where the curvaton may itself drive a second period of
inflation.
After ensuring that the accurately observed perturbation

amplitude is reproduced, and once a reheating model is

selected, the model reduces to three parameters which can
be taken as the masses of the inflaton and curvaton and the
value of the curvaton when the pivot scale crosses the
horizon. Each observable depends on at most two of these,
but in different combinations. Allowing for arbitrary decay
times of both fields extends the parameter space, which
we parametrize by the number of matterlike e-foldings.
This is due to the pressureless equation of state while a
field oscillates in a quadratic potential. We do not make
assumptions for the time of curvaton decay, nor the relative
size of field masses. Extending the analysis of Ref. [5], we
show that the curvaton mass can be comparable but not
significantly greater than the inflaton mass.

II. CURVATON MODELS

In early papers [4], the curvaton was assumed to be a
second, light, scalar field present during inflation which
(1) has a subdominant energy density compared to the

inflaton’s, while the inflaton drives inflation,
(2) is long-lived (i.e. it decays later than the

inflaton), and
(3) generates the entire primordial curvature

perturbation.
In common with many other papers, we will abandon
assumption 3 to include the mixed inflaton-curvaton
scenario. We later discuss the case where the curvaton
itself drives a short period of inflation [12–15], which is
permitted by the above assumptions though this possibility
is often ignored.
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Throughout we denote the inflaton field by ϕ defined as
the field which dominates the energy density when observ-
able scales first cross outside the horizon, and the curvaton
field by σ (though in some parameter regimes the curvaton
can contribute a late-stage era of inflation). We focus on the
simplest curvaton model [10] featuring two massive non-
interacting fields with potential

Vðϕ; σÞ ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

σσ
2: ð1Þ

The number of e-foldings of inflation from field values ϕ
and σ is given by

N ¼ 2π
ϕ2 þ σ2

m2
Pl

; ð2Þ

where mPl is the (nonreduced) Planck mass and we have
neglected the small contributions from the field values at
the end of inflation.
Like the authors of Ref. [5], we consider the full range

from negligible to full curvaton contribution to the total
power spectrum given by

Ptotal
ζ ¼ Pϕ

ζ þ Pσ
ζ : ð3Þ

We can parametrize the inflaton contribution to the total
power spectrum as

Pϕ
ζ ¼ m2

ϕ

m2
single

Ptotal
ζ : ð4Þ

Here msingle is the mass that the inflaton would need if it
were to give the correct amplitude of perturbations in the
single-field case; in a scenario where both fields contribute
this is an upper limit to the actual inflaton mass mϕ. It is
determined by

Psingle ¼
8Vsingle

3m4
Plϵsingle

�
�
�
�
�

ð5Þ

¼ 4m2
singleϕ

2
single

3m4
Pl

2N

�
�
�
�
�
; ð6Þ

where * refers to the parameter value when observable
scales crossed the Hubble radius during inflation,
Vsingle ¼ m2

singleϕ
2
single=2, and

ϵsingle ≡ m2
Pl

16π

�
V 0

V

�
2

¼ 1

2N�
ð7Þ

in the single-field model. Taking the observed amplitude
as [16,17]

Pobs
ζ ∼ 2.2 × 10−9; ð8Þ

we obtain

m2
single

m2
Pl

¼ 5.2 × 10−9
1

N2�
: ð9Þ

The ratio m2
ϕ=m

2
single will appear throughout in our expres-

sions as a measure of the relative contribution of the
inflaton to the power spectrum in each model.
The curvaton contribution to the power spectrum is

determined by the ratio of curvaton to background
energy density at the time the curvaton decays into the
thermal bath:

rdec ≡ 3ρσ
4ργ þ 3ρσ

�
�
�
�
decay

; ð10Þ

where we assumed that the inflaton has fully decayed into
radiation before the curvaton decays.
Equation (10) is defined so as to provide a unified

expression for the curvaton perturbation in the regimes of
radiation and curvaton domination at the time of decay,
which is [18]

Pσ
ζ ¼

r2dec
9π2

H2�
σ2�

: ð11Þ

We use the normalization amplitude Eq. (8) to fix the ratio
r2decH

2�=σ2� and obtain

r2dec ¼ 5.9 × 10−7
�

1 −
m2

ϕ

m2
single

�
σ2�

2m2
ϕN�

; ð12Þ

where henceforth N� is the e-foldings number at which the
Planck normalization scale 0.05 Mpc−1 crosses the Hubble
radius during inflation. Evaluating Eq. (10) requires knowl-
edge of the full curvaton evolution, but in practice we will
only use rdec via Eq. (12) as a constraint on model
parameters by requiring that it takes the physically realiz-
able values 0 < rdec < 1; in Sec. IV B we will see that the
lower bound is tightened by the constraint on local fNL. We
may apply this constraint even if the curvaton rolls
significantly during inflation, i.e. if mσ ≃mϕ [19].

III. PARAMETRIZATION OF THE NUMBER
OF e-FOLDINGS

To impose accurate constraints we need to identify the
correct number of e-foldings corresponding to the pivot
scale at which observables are evaluated. The number of
e-foldings that occurred after exit of the current Hubble
scale is given by [20]
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Nhor ¼ 63þ 1

4
ln ϵþ 1

4
ln
Vhor

ρend
þ 1

12
ln
ρreh
ρend

; ð13Þ

where all quantities are as in single-field models. We
parametrize observables as a function of the number of
e-folds before the end of inflation, when the corresponding
scale left the horizon, and so Eq. (13) gets a correction to
account for the difference between the Hubble length
for which it holds, and the observable scale we measure at.
For the Planck pivot k ¼ 0.05 Mpc−1 we get

N� ≅ Nhor − 5: ð14Þ
We also parametrize the total amount of reheating
e-foldings given by the last term of Eq. (13), as Nmatter
which includes the reheating of both the inflaton and the
curvaton, obtaining

1

12
ln
ρreh
ρend

¼ −
1

4
Nmatter: ð15Þ

For the quadratic inflaton, the middle two terms in Eq. (13)
combine into a term which measures the inflaton mass
relative to the single-field limit (i.e. those terms cancel in
the single-field case), giving

N� ¼ 58þ 1

2
ln

mϕ

msingle
−
1

4
Nmatter: ð16Þ

We note that this relation sets a firm upper limit of 58 as the
number of e-foldings corresponding to the Planck pivot
scale. This seems to contradict some values quoted
in Ref. [7].
Instead of parametrizing the uncertainty in associating a

pivot scale by Γϕ or N�, we take the number of matterlike
e-foldings from the end of inflation to the decay of the
curvaton, denoted Nmatter. This parameter has quite a wide
plausible range, for instance Nmatter ¼ 0 implies instant
reheating and no curvaton domination, while positive
values allow for both the period of reheating after inflation
and any subsequent period of curvaton domination.
Nmatter > 16 would ensure reheating at less than
1011 GeV to evade overproduction of gravitinos, while
Nmatter ≲ 40 is necessary to ensure reheating before electro-
weak symmetry breaking. For our main results we take a
central value of Nmatter ¼ 20, which in the single-field case
gives N� ¼ 53 with a plausible modeling uncertainty of 5
in either direction, in keeping with usual estimates.
If the BICEP2 detection of r is confirmed, then mϕ

cannot be significantly below the single-field value, and the
relevant term in Eq. (16) is negligible. If we do not impose a
lower bound on r, then this term may become large, but
reducing the energy scale of inflation also reduces the
maximum permitted number of matter e-foldings, partially
canceling this effect. In the most extreme case, when
inflation ends as late as possible and the curvaton decays

shortly before nucleosynthesis, we estimate that it is
possible to reduce the e-foldings further to N� ≃ 44.

IV. OBSERVABLES AND MODEL CONSTRAINTS

A. Linear power spectrum

We can now make predictions for model observables:
the spectral index nS, tensor-to-scalar ratio r, and non-
Gaussianity parameter fNL. The slow-roll parameters are
defined by

ϵ ¼ −
_H
H2

≃ 1

2

�
Vϕ

3H2

�
2

; ηϕ ¼ Vϕϕ

3H2
; ησ ¼

Vσσ

3H2
:

ð17Þ

If there is a single period of inflation, ϵ≃ ηϕ ≃ 1=2N�.
The predicted deviation from scale invariance is [21]

nS − 1 ¼
�

1 −
m2

ϕ

m2
single

�

ð−2ϵþ 2ησÞ

þ m2
ϕ

m2
single

ð−6ϵþ 2ηϕÞ: ð18Þ

This expression allows for ready distinction between the
contribution of the inflaton versus curvaton for each
model spectrum, as a function of the inflaton mass, mϕ.
It reduces to each of these two regimes for mϕ ∼msingle and
mϕ ≪ msingle respectively. We further note that nS has no
dependence on σ�. Lastly, Eq. (18) has an implicit
dependence on the number of e-foldings and the chosen
pivot scale, which we presented in Sec. III.
The tensor-to-scalar ratio r is readily obtainable by

r ¼ 16ϵ
m2

ϕ

m2
single

; ð19Þ

also parametrized by the relative contribution of the
inflaton mass, and without further dependence on curvaton
parameters. As mϕ is varied from zero to msingle, the
prediction in the nS-r plane interpolates linearly between
the curvaton-dominated and inflaton-dominated regimes.
In Fig. 1 we show the prediction for nS given by Eq. (18),

across two different ranges of field masses. Given that nS
has no dependence on σ�, the space of model parameters is
two dimensional. The right edge is the inflaton-dominated
regime with nS ≃ 0.96, while the large flat area at
nS ≃ 0.98 is the region which is curvaton-dominated and
in which the curvaton has a negligible mass. This is more
or less where the 95% upper limit on nS lies according to
data compilations including Planck results [2], and hence
whether these models can be considered allowed or
excluded at this level is sensitive to precise data compi-
lation choice, to the choice of parameters varied in the
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cosmological fits, and to the modeling of N�. For large
enough mσ the spectral index rises due to the curvaton
mass, crossing nS ¼ 1 at mσ ≃mϕ (since for this inflaton
potential ϵ≃ ηϕ).
Figure 2 shows the difference between the nS prediction

from our method of parametrizing N� in terms of a fixed
value of Nmatter, as opposed to choosing a fixed N�. The
differences are not large, but neither are they completely
negligible at the current observational precision.

B. Non-Gaussianity

The curvaton scenario generates non-Gaussianity with
the local shape parametrized by the usual fNL parameter
whose value is [5,18,19]

fNL ¼ 5

12

�

1 −
m2

ϕ

m2
single

�2� 3

rdec
− 4 − 2rdec

�

: ð20Þ

Note that this expression is independent of the curvaton
mass, which does not appear in the expression for rdec. The
non-Gaussianity predictions hence also depend on only two
model parameters, but in a plane orthogonal to the two that
determine nS.
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FIG. 3 (color online). Requiring the fraction of curvaton energy
density at decay to be physical (0 < rdec < 1) excludes the region
of small inflaton mass and large initial curvaton field.
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FIG. 1 (color online). The prediction for nS shown for two
different ranges of parameters, and cut off where nS goes above
one. This figure takes Nmatter ¼ 20.
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FIG. 2 (color online). The difference in nS arising from taking
Nmatter ¼ 20 rather than N� ¼ 53. By design they agree at the
inflaton limit.
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FIG. 4 (color online). Values of fNL showing also the region cut
off by the physical requirement rdec ≤ 1 as in Fig. 3. The contour
corresponds to the 95% confidence upper limit from Planck.
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In the limit of mϕ ≪ msingle this reduces to the standard
curvaton result, while the value is suppressed if the (nearly)
Gaussian inflaton perturbations also contribute to the
total power spectrum; see Ref. [5] and Eq. (4). If the
perturbations from both fields are important then fNL will
have a slow-roll suppressed scale dependence [22], while
in the curvaton limit where one may neglect the inflaton
perturbations, fNL is a constant. This difference is poten-
tially observable [23,24]. However if the curvaton has

self-interactions, fNL may be strongly scale dependent even
in the curvaton limit [25,26].
In Fig. 3 we show the region of parameter space required

by 0 < rdec < 1. Viable models do not exist outside this
region as it is impossible to generate a power spectrum of
sufficient amplitude. In Fig. 4 we plot fNL given by Eq. (20),
with the unphysical region rdec > 1 cut off. The red contour
marks the 95% confidence upper limit on fNL from Planck
[27]; the parameter region above this line is excluded.
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FIG. 5 (color online). Combined constraints on model space for the fiducial value Nmatter ¼ 20 (top) and extremal values Nmatter ¼ 0
(bottom left) and Nmatter ¼ 40 (bottom right) with limits shown at 95% confidence for fNL ¼ 14, nS ¼ 0.98, and we take r ¼ 0.05 as an
indicative lower bound from BICEP2 [3]. Labels are shown to the side of the surface for which they apply. The allowed region lies
between the two mostly vertical planes (non-Gaussianity on the left, physically allowed value of rdec on the right), and above the plane of
constant spectral index, for large values ofmσ , and above the plane of r ¼ 0.05 for small curvaton mass. The upper surfaces of the cubes
correspond to the inflaton limit mϕ ¼ msingle which is the maximum permitted in the model.
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Probably the only way to rule out the quadratic curvaton
model entirely and independently of the inflationary
potential (which may be tuned in order to match any
observed value of nS and r), is to detect non-Gaussianity of
the local shape satisfying fNL < −5=4. This would even
rule out models with two quadratic curvatons [28].

C. Combined constraints

Figure 5 shows the allowed region of the full three-
dimensional model space fmϕ; mσ; σ�g obtained by com-
bining all constraints on nS, fNL and including an indicative
lower bound on r > 0.05 from the new BICEP2 result (the
precise value chosen for this makes little difference). We
take a fiducial value for Nmatter ¼ 20 in the middle panel
and show the effect of varying Nmatter away from this
fiducial to the two extremes of 0 (left) and 40 (right).
Because the present location of the 95% limit on nS more or
less coincides with the curvaton-dominated regime’s pre-
diction, the location of this constraint is extremely sensitive
to the exact value chosen, and hence depends on both the
choice of data combination used and the assumptions in
determining N�. Inclusion of the BICEP2 bound super-
sedes the nS constraint in the low mσ curvaton regime.
Given these uncertainties, it would thus be premature to

say that the strongly curvaton-dominated regime of the
model is excluded by constraints on the spectral index
alone, but very modest tightening of the constraint on nS
would make this conclusion secure. By contrast, the
BICEP2 results act strongly against the curvaton-
dominated regime throughout its parameter space.1

V. THE INFLATING CURVATON

We have so far assumed that the curvaton field does not
lead to a second phase of inflation after the inflaton has
decayed. This was enforced by choosing σ� ≪ mPl, since
σ� ≳mPl=

ffiffiffiffiffiffi

4π
p

is required in order to drive a second period
of inflation. This condition does not depend on the mass of
the curvaton. However, a small vacuum expectation value
(VEV) is not always a requirement to call σ a curvaton.
If the curvaton mass is much smaller than the inflaton

mass, then assumption 1 may hold even if the curvaton
VEV is as large as the inflaton’s. This leads to the inflating
curvaton scenario, in which the inflaton drives inflation for
N1 e-folds, then oscillates and decays. The curvaton is still
frozen high in its potential, and so it leads to a second phase
of inflation for N2 e-folds before it also decays. In this
scenario, rdec is always unity. We denote the amount of
inflation corresponding to the pivot scale of observables
by N� ¼ N1 þ N2.

Any modes which reenter the horizon during the gap
between the two inflationary periods, and then reexit during
the second inflationary period, will have an strongly
oscillatory pattern imprinted [30]. We will require that
all such modes are on smaller scales than we can obser-
vationally probe. We hence require N1 to be at least 10, and
potentially significantly more if a large range of scales
reenter the horizon during the break between inflationary
periods. The gap between the two periods of inflation will
last while the Hubble parameter decreases from H1end ≃
mϕ until the curvaton’s energy density becomes dominant,
H2;start ≃mσσ�=mPl. The range of scales reentering during
this break also depends on whether the background energy
density is dominated by radiation or matter. Regardless of
how many scales reenter the horizon during this gap, the
total number of e-foldings is still required to be roughly
between 50 and 60. This is because the total number of e-
foldings corresponding to a given comoving scale depends
only on the energy scale of the first inflationary period and
how long the matter- and radiation-dominated epochs last,
and not on the order in which they take place, see Sec. III
and Ref. [20].
Following the results of Langlois and Vernizzi [12] and

Vernizzi and Wands [33], one finds

ϵ� ≃ ϵϕ� ≃ m2
Pl

4πϕ2�
≃ 1

2N1

; ð21Þ

∂N
∂ϕ ¼ 4πϕ�

m2
Pl

¼
ffiffiffiffiffiffiffiffiffiffiffi
8πN1

p
mPl

; ð22Þ

∂N
∂σ ¼ 4πσ�

m2
Pl

≃
ffiffiffiffiffiffiffiffiffiffiffi
8πN2

p
mPl

; ð23Þ

Pσ
ζ

Pϕ
ζ

¼
�
σ�
ϕ�

�
2

; ð24Þ

r ¼ 4m2
Pl

πðϕ2� þ σ2�Þ
¼ 8

N�
¼ rsingle; ð25Þ

nS − 1 ¼ −2ϵ�
�

1þ m2
ϕ

m2
single

�

≃ −
1

N1

−
1

N�

≤ nS;single − 1; ð26Þ

and fNL is small [31,32]. Since the δN coefficients
Eqs. (22) and (23) are the same as in two-field quadratic
inflation [33], the observational predictions are the same
and match those of Nflation [34–36]. We see from Eq. (24)
that the perturbations from the curvaton could be dominant
if N2 is big enough, though not by a wide margin. These
results are valid for σ� ≳mPl=2, while for σ� ≲mPl=10 the
standard curvaton results are valid [12]. These limits barely
depend on the curvaton mass, provided that it is much less

1Though see Ref. [29] for a means by which a curvaton model
with a large and negative running spectral index can alleviate the
tension between BICEP2 and Planck.
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than the inflaton’s mass. The intermediate regime was
investigated numerically in Ref. [12].
The conclusion is that the inflating curvaton predicts the

same tensor-to-scalar ratio as single-field inflation, and has
a redder spectral index and negligible non-Gaussianity.
This is in agreement with the predictions of Nflation
[35–37], and hence may be considered as a special, two-
field case of that scenario. It is also the same as the
predictions of inflation driven by two quadratic fields
which decay at the same time [9,33,38]. Finally, note that
if one took an equal prior range for ϕ� and σ� then the
inflating curvaton would be much more common than the
standard curvaton scenario, since it can occur for a much
larger range of initial σ� values.

VI. CONCLUSIONS

In Fig. 6 we show the locations occupied by curvaton
models in the nS-r plane in all the regimes we have
explored. The simplest curvaton model is in some tension
with the Planck data for all parameter values, primarily due
to the observed redness of the spectral index. However the
model is not ruled out by these data, and the observational
statistical errors are now small enough that any systematic
shifts in the spectral index constraints are now important,
see e.g. Ref. [39]. Despite the stringent constraint on local
non-Gaussianity that the deviations from Gaussianity of
curvature perturbation must be less than one part in a
thousand, this does not strongly constrain the curvaton
scenario. In the curvaton limit, which maximizes fNL, the
constraint requires that the fraction of the curvaton’s energy
density at the decay time must satisfy rdec > 0.15 at 95%
confidence [27]. This constraint is weakened if the inflaton
perturbations are not negligible, mϕ ≃msingle.
By contrast, the new BICEP2 results indicating r ≳ 0.1

will, if confirmed, convincingly rule out the pure curvaton
limit. They require that the energy scale of inflation
is similar to that of quadratic inflation, which requires
mϕ ∼msingle and hence that the inflaton perturbations
must be comparable to or dominant over the curvaton
perturbations. A significant suppression of r in the curvaton

limit is generic for all curvaton models, suggesting that this
result has ruled out the curvaton limit (i.e. the original
curvaton scenario assumption 3) regardless of the choice of
inflaton and curvaton potentials.
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