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Effective field theory provides a perturbative framework to study the evolution of cosmological large-
scale structure. We investigate the underpinnings of this approach, and suggest new ways to compute
correlation functions of cosmological observables. We find that, in contrast with quantum field theory, the
appropriate effective theory of classical cosmological perturbations involves interactions that are nonlocal
in time. We describe an alternative to the usual approach of smoothing the perturbations, based on a path-
integral formulation of the renormalization group equations. This technique allows for improved handling
of short-distance modes that are perturbatively generated by long-distance interactions.

DOI: 10.1103/PhysRevD.90.023518 PACS numbers: 95.35.+d, 11.10.-z, 98.65.Dx, 98.80.-k

I. INTRODUCTION

Effective field theory (EFT) has been successful in a
wide variety of contexts. It allows a faithful description of
physics at the length scales one is interested in measuring,
without requiring detailed knowledge of dynamics at
shorter distances. Instead the theory is formulated with
an explicit length scale, the cutoff scale Λ−1, below which
modes can be nonlinear. The effects of short-wavelength
physics appear only through parameters of the long-
wavelength equations. The precise value of the cutoff scale
is arbitrary and is chosen out of convenience, so physical
quantities like correlation functions should not depend on
it. Since Λ enters calculations at intermediate stages, the
requirement that the physics be Λ independent nontrivially
constrains the resulting long-wavelength theory.
Recently [1–7], the principles of EFT have been applied

to the problem of large scale structure (LSS), the distribu-
tion of matter in the observable universe. Traditionally,
standard perturbation theory ([8–13], reviewed in [14]) has
been used to compute the LSS correlation functions, but as
has been emphasized in [1,2], this is not a reliable basis for
the theory. The problem is that for comoving wave numbers
k > kNL ∼ ð10 MpcÞ−1 the perturbations have grown large
enough that they become nonlinear. Standard perturbation
theory (SPT), however, is only strictly valid when all modes
remain linear, even those with k > kNL where we know
perturbation theory no longer applies. Starting at second
order, SPT includes backreaction due to the propagation of
modes of all wave numbers. So even for long-wavelength
modes that have remained linear to a very good approxi-
mation, we should not trust the results of SPT at or beyond
this order.
The alternative is to use EFT. The natural cutoff scale,

Λ ∼ kNL, is precisely the point where SPT breaks down.

EFT treats modes with k < kNL perturbatively, but does not
attempt to make predictions about modes with k > kNL.
Instead, within the EFT there are several additional
parameters (beyond those found in SPT) whose values
encode the effects that the nonlinear modes have on the
linear modes. These parameters are not calculable within
the EFT itself; they can be measured by experiment or
extracted from N-body simulations, or (in principle) they
may be calculated analytically from the full theory, which
describes the behavior at all scales.1

To formulate an EFT, one needs to have a model of the
long-distance physics with parameters that can be adjusted
to encode the effects of the unknown short-distance
physics. For the problem of LSS, the full theory consists
of a set of classical equations of motion which govern the
evolution of the perturbations, together with a probability
distribution over possible initial conditions at an early time
τin. Given this data, we are tasked with computing the
correlation functions of the long-wavelength perturbations
at some arbitrary later time τ, averaged over the ensemble
of initial conditions. As we perform our analysis, we will
work in as general a context as possible in order to clarify
and extract the core concepts, so our perturbations will
consist of an arbitrary number of fields and we will specify
as little about the dynamics as possible.
In this paper we analyze carefully the derivation of the

EFT of LSS. Along the way we uncover subtleties that
distinguish this classical cosmological problem from the
familiar context of quantum field theory. Unlike QFT,
where loop diagrams arise from virtual particles, here they
arise from integration over the probability distribution that
specifies initial conditions. This distinction leads to impor-
tant differences between the two problems.
We employ two separate methods of attack. First, we

follow a line of previous work [1–4] in which the equations
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1Of course, if we could perform such calculations, we would
not need to do perturbation theory at all.
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of motion are directly smoothed in order to extract the
effective long-distance evolution equations. Our strategy is
to separate the long-wavelength and short-wavelength parts
of the field, formally solve the short-wavelength equations
of motion, and then plug the solution in to the long-
wavelength equations of motion. This technique has been
advocated in the previous works on the EFT of LSS cited
above, but we carry out the procedure more completely and
in greater generality.
Our second technique is novel, based on a path-integral

approach to the renormalization group. After expressing the
sought-after correlation functions in terms of a partition
function (a functional integral over initial configurations
of the field), we use a modified version of Polchinski’s
renormalization group equations [15] to deduce the structure
of the correlation functions of the long-wavelength modes.
We summarize our main results as follows:
(i) In the smoothed-field approach, the effective

equations of motion contain interactions which are
nonlocal in time. We show that, at each order in
perturbation theory, one can represent the effect of
these nonlocal interactions in terms of local ones.

(ii) Smoothing the field does more than eliminate the
nonlinear modes from the description: short-distance
modes which are created perturbatively and remain
small are also removed from the theory, leading to
formal complications that will become numerically
important at higher loop level if not properly
accounted for.

(iii) The path integral approach, however, keeps the
short-distance-yet-perturbative modes in the theory,
allowing simpler formulas for the perturbative cor-
relation functions. This makes this approach an
attractive option for future development.

The rest of the paper is organized as follows. First, we
briefly explain in Sec. II the notation we will use for the
remainder of the paper. In Sec. III we use the smoothing
technique to extract the long-wavelength equations of
motion from the full equations. We show how one can
formally remove the short-distance field from the equations
and construct a perturbative solution for the long-wavelength
field alone. We identify several parameters in the long-
wavelength effective theory which must be extracted from
experiment. In Sec. IV, we use path integrals to solve the
same problem in a new way. Polchinski’s renormalization
group is used to consistently determine the structure of
the theory in terms of a set of integration kernels. In this
formulation of the problem, these kernels represent the
unknown parameters to be measured. We conclude and
discuss future work in Sec. V. To provide a concrete
example of our techniques, in Appendix A we perform
explicit calculations in the theory of LSS for an Einstein–de
Sitter universe.
While this work was being completed, Ref. [7] appeared

which contains some overlapping discussion. In particular,

its authors also discovered the need for interactions that are
nonlocal in time.

II. NOTATION

In this section we introduce the notation of the paper. Our
main example is the theory of large-scale structure in a
homogeneous FRW universe, for which the equations of
motion are those of a pressureless fluid with a Newtonian
gravitational interaction:

0 ¼ ∂τδþ ∂jðð1þ δÞvjÞ; ð2:1Þ

0 ¼ ∂τvi þHvi þ ∂iΨþ vj∂jvi: ð2:2Þ

Here the dynamical fields are the density perturbation δ≡
δρ=ρ and the velocity vi. We work in conformal time τ
with scale factor aðτÞ and conformal Hubble parameter
H ¼ ð∂τaÞ=a. The potential Ψ is related to δ through the
Poisson equation, so it yields an interaction linear in δ.
These equations are approximate in the sense that they
assume only a single matter component (namely pressure-
less dark matter), contain no relativistic corrections, and are
valid on scales much smaller than the horizon. We note
that, even to the extent that these assumptions are valid,
(2.1)–(2.2) do not truly describe the behavior of physical
dark matter. The reason is that dark matter is particulate in
nature, so the fluid approximation itself must break down at
some scale. (Initial work on the EFTof LSS [1] showed that
the Boltzmann hierarchy is truncated when the dark matter
is cold and hence nonrelativistic, but again this is only valid
in the large-distance limit.)
We immediately move to a set of equations general

enough to account for all of these corrections:

Di
jϕ

j −
1

2
Mi

jkϕ
jϕk −

1

3!
Ni

jklϕ
iϕjϕl þ � � � ¼ 0: ð2:3Þ

We have collected all of our fields into a single object. In
the particular case of standard perturbation theory, this is

ϕiðτÞ ¼
�
δðkÞ
θðkÞ

�
; ð2:4Þ

where θ ¼ ∂ivi. (To the order at which we will work,
vorticity can be ignored, so only the divergence of the
velocity matters; our notation is sufficiently flexible that
extension to more perturbation variables is immediate.) The
Latin index labels both the species (in SPT, δ or θ) and the
wave number of the field, so (2.3) should be thought of as
an equation in momentum space, obtained as the Fourier
transform of the position space equation, and contraction
of Latin indices denotes both a sum over species and an
integral over wave number.
We require that the linear operator D contains within it

derivatives with respect to time of no higher than first order,
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but it can also contain nonderivative terms. Conservation
of momentum (when it holds) is the statement that all
interaction terms are proportional to δ functions:

Mi
jk ∝ δð3Þðki − kj − kkÞ: ð2:5Þ

Other restrictions on the form of the coefficients will
be imposed by rotational invariance or other symmetries
of the problem. While this is an important aspect of the
analysis, we will not focus on it here and so do not make
special assumptions about the form of the interactions.
Additionally, the interaction coefficients will in general be
time-dependent, though we will often suppress this in the
notation for simplicity. Note that the form of (2.3) guar-
antees that all interaction coefficients such as Mi

jk and Ni
jkl

are symmetric in their lower indices.
In order to simplify the discussion, we will truncate the

interactions at second order in the fields, so that

Di
jϕ

j −
1

2
Mi

jkϕ
jϕk ¼ 0: ð2:6Þ

This is not a fundamental limitation of our formalism,
but a simplification made purely for clarity and notational
convenience. It is trivial to extend our techniques and
results to arbitrarily high-order interactions.2 We emphasize
again that (2.3) is far more general than the specific
example (2.1)–(2.2) of the EFT of LSS. In particular, we
need not even make the assumption that the particle content
can be described by a fluid approximation with a truncated
Boltzmann hierarchy, although calculation will become
far more complex in this case. Indeed, with an appropriate
choice of fields ϕi, (2.3) becomes a Boltzmann equation
describing the dynamics of collisionless dark matter particles.
To illustrate our techniques, we perform explicit calcu-

lations, which should clarify the meaning of the notation, in
Appendix A.

III. THE SMOOTHING APPROACH

In this sectionwe carefully smooth the equations ofmotion
to extract dynamics for the long-wavelength parts of the
fields. The short-wavelength dynamics are formally solved
(“integrated out") and plugged back into the long-wavelength
equations. We formulate a perturbative expansion of the
result, then use it to calculate correlation functions.

A. Standard perturbation theory

The equations of motion that serve as our starting point
are

Di
jϕ

j −
1

2
Mi

jkϕ
jϕk ¼ 0: ð3:1Þ

Standard perturbation theory (SPT) calculates a perturba-
tive expansion as a series in a formal parameter ϵ,

ϕi
SPT ≡ ϵϕi

ð1Þ þ ϵ2ϕi
ð2Þ þ ϵ3ϕi

ð3Þ þ � � � ; ð3:2Þ

then solves the equations of motion order by order in ϵ.
We are making a distinction here between the field ϕ and
the formal series ϕSPT. The intention of SPT is to calculate
ϕ by assuming that it is well approximated by ϕSPT, but, as
discussed in the introduction, the approximation breaks
down immediately for short-wavelength modes and at
higher orders for long-wavelength modes (once backreac-
tion is included). Ultimately we will argue that it is more
appropriate to find a theory that is explicitly written purely
in terms of the long-wavelength modes ϕL; the correspond-
ing perturbation expansion appears in Eq. (3.18).
For completeness and future reference, we record here

the equations of motion and solutions for SPT quantities up
to Oðϵ3Þ:

OðϵÞ∶ Di
jϕ

j
ð1Þ ¼ 0; ϕi

ð1ÞðτÞ ¼ Gi
jðτ; τinÞϕj

in; ð3:3Þ

Oðϵ2Þ∶ Di
jϕ

j
ð2Þ ¼

1

2
Mi

jkϕ
j
ð1Þϕ

k
ð1Þ;

ϕi
ð2ÞðτÞ ¼

1

2

Z
τ

τin

dτ0Gi
jðτ; τ0ÞMj

klðτ0Þϕk
ð1Þðτ0Þϕl

ð1Þðτ0Þ;

ð3:4Þ

Oðϵ3Þ∶ Di
jϕ

j
ð3Þ ¼ Mi

jkϕ
j
ð1Þϕ

k
ð2Þ;

ϕi
ð3ÞðτÞ ¼

Z
τ

τin

dτ0Gi
jðτ; τ0ÞMj

klðτ0Þϕk
ð1Þðτ0Þϕl

ð2Þðτ0Þ:

ð3:5Þ

Here Gi
j represents the usual retarded Green function,

which solves

Di
jG

j
kðτ; τinÞ ¼ δikδðτ − τinÞ: ð3:6Þ

These solutions can be represented diagrammatically, as
shown in Fig. 1.
Now we can compute correlation functions of the fields

perturbatively by substituting the power series expansion
(3.2). For the two-point function in particular, we have

hϕi
SPTϕ

j
SPTi¼ϵ2hϕi

ð1Þϕ
j
ð1Þi

þϵ4½hϕi
ð1Þϕ

j
ð3Þiþhϕi

ð3Þϕ
j
ð1Þiþhϕi

ð2Þϕ
j
ð2Þi�þ���:

ð3:7Þ

Terms of order ϵn are expressed in terms of the n-point
function of the initial conditions, which are specified at the

2Note that we can incorporate higher-order time derivatives by
increasing the number of fields (explicitly adding the velocity as
an additional component of ϕ, with an equation of motion setting
it equal to the time derivative of the position, for example).
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initial time τin. For large scale structure, the initial time is
usually taken as the time of matter-radiation equality so
that matter domination can be assumed in the expression
for the scale factor (which appears in the explicit form of
the equations of motion). This is not important for us here,
but it should be noted that τin does not have to be “the
beginning” in any fundamental sense; it is merely the time
at which we will begin calculating. We have set all odd-
point functions of the initial conditions to zero under

the assumption that their distribution is Gaussian. This is
only an approximation, since primordial non-Gaussianity
as well as nonlinear effects prior to τin will create non-
Gaussianity at τin. However, it should be a numerically
good approximation to ignore such effects, and in any case
corrections of this type are easily incorporated into the
formalism.
For illustration, we will compute one of the terms

in (3.7):

hϕi
ð1Þϕ

j
ð3Þi ¼ hϕi

ð1ÞðτÞ
Z

τ

τin

dτ0Gj
kðτ; τ0ÞMk

lmðτ0Þϕl
ð1Þðτ0Þϕm

ð2Þðτ0Þi

¼ 1

2

Z
τ

τin

dτ0
Z

τ0

τin

dτ00Gj
kðτ; τ0ÞMk

lmðτ0ÞGm
n ðτ0; τ00ÞMn

opðτ00Þ × hϕi
ð1ÞðτÞϕl

ð1Þðτ0Þϕo
ð1Þðτ00Þϕp

ð1Þðτ00Þi: ð3:8Þ

Assuming Gaussianity, Wick’s theorem can be used to
evaluate the four-point function appearing here. Momentum
conservation together with the explicit form of the interaction
coefficientsM leads to some simplifications. As discussed in

Appendix A, there are two nonvanishing Wick contractions
which contribute to this correlation function, and they give
equal contributions to the total. In slightly expanded notation,
the result is given in (A15), reproduced here:

hϕi
ð1Þϕ

j
ð3Þi ¼ ð2πÞ3δð3Þðki þ kjÞ

Z
τ

τin

dτ0
Z

τ0

τin

dτ00
Z

d3q
ð2πÞ3 G

j
kðτ; τ0ÞMk

lmðkj;q;kj − qÞ

× Gm
n ðτ0; τ00ÞMn

opðkj − q;−q;kjÞPip
ð11Þðτ; τ00jkiÞPlo

ð11Þðτ0; τ00jqÞ: ð3:9Þ

This is shown diagrammatically in Fig. 2. Here we have
made use of the linear power spectrum Pij

ð11Þ, defined
through the equation

hϕi
ð1Þðτ1Þϕj

ð1Þðτ2Þi ¼ Gi
lðτ1; τinÞGj

mðτ2; τinÞhϕl
inϕ

m
ini

≡ Pij
ð11Þðτ1; τ2jkiÞð2πÞ3δð3Þðki þ kjÞ:

ð3:10Þ
This is a one-loop expression, where the name comes from
the loop which appears in its diagrammatic representation.
After momentum conservation is imposed at each vertex,
a single integration over momentum remains (q in our
formula). That is the loop momentum.
At the end of the calculation, ϵ is set equal to one to

obtain the actual solution, and the justification for the

expansion is that the field itself is small. Then the nonlinear
terms in the equation of motion are small compared to the
linear terms and the higher order corrections ϕðnÞ for n ≥ 2
systematically take them into account. However, even if the
initial conditions are small, it may be that the dynamics
causes the field value to grow with time. In the theory of
large scale structure, the perturbations with k > kNL have
become large by the present, and so (3.9) is no longer a
small perturbation. This is the point at which SPT
breaks down.

B. Effective equations of motion

We turn next to an effective theory which can incor-
porate the nonlinear interactions while still maintaining
perturbativity. The fields are still expanded in a power

FIG. 1. Diagrammatic representation of the solution for ϕi
ð1ÞðτÞ, ϕi

ð2ÞðτÞ, and ϕi
ð3ÞðτÞ, as given by Eqs. (3.3), (3.4), and (3.5). Notation is

as follows: vertical solid lines are associated with a Green function Gi
j. Vertices represent the interaction Mi

jk, and the position of each
vertex is integrated over time. A solid line emerging from the bottom horizontal dotted line represents an initial condition ϕj

in, and the
line reaching the upper horizontal dotted line is the quantity being calculated.
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series, but one that is conceptually different from (3.2)
of SPT.
We begin by splitting ϕ at the cutoff scale Λ, dividing it

into a long-wavelength piece, ϕL, and a short-wavelength
piece, ϕS, so that ϕ ¼ ϕL þ ϕS. The split is accomplished
using a smoothing function, WΛ, which extracts ϕL from
the fundamental field ϕ. In position space, we would
smooth the field via convolution:

ϕLðxÞ ¼
Z

d3yWΛðx − yÞϕðyÞ: ð3:11Þ

Under Fourier transform, convolution becomes multiplica-
tion. We will denote the Fourier transform of WΛ also by
WΛ, but there should be no confusion since we work almost
entirely in momentum space. Then we have

ϕi
L ¼ WΛðiÞϕi: ð3:12Þ

We have writtenWΛ as a function of the index i of the field
because it is a function of momentum, which is part of that
index. There is no implied sum on i in this formula. The
properties ofWΛ are somewhat arbitrary, but we will find it
most convenient to use WΛðkÞ ¼ ΘðΛ − jkjÞ. In Sec. IV
we will find it convenient for WΛ to be differentiable, so a
smoothed version of the Θ function is more appropriate.3

For simplicity, we will assume that the linear part of the
equation of motion,Di

j, is diagonal in momentum space (as

is the case for LSS), so that the smoothed equation of
motion is

0 ¼ Di
jϕ

j
L −

1

2
WΛðiÞMi

jkϕ
jϕk ð3:13Þ

¼ Di
jϕ

j
L −

1

2
WΛðiÞMi

jkϕ
j
Lϕ

k
L −WΛðiÞMi

jkϕ
j
Sϕ

k
L

−
1

2
WΛðiÞMi

jkϕ
j
Sϕ

k
S: ð3:14Þ

The first two terms represent interactions among long-
wavelength fields producing the long-wavelength
field, while the remaining terms are interactions of the
long-wavelength field with the short-wavelength field.
Subtracting (3.14) from (3.1) we find

Di
jϕ

j
S −

1

2
ð1 −WΛðiÞÞMi

jkϕ
j
Sϕ

k
S − ð1 −WΛðiÞÞMi

jkϕ
j
Lϕ

k
S

−
1

2
ð1 −WΛðiÞÞMi

jkϕ
j
Lϕ

k
L: ð3:15Þ

Treating ϕL formally as a background field, specified for all
times, we can solve (3.15) for the short-wavelength field as
a functional of the long-wavelength field, ϕS½ϕL�. This
result can then be substituted in for ϕS in (3.14) to obtain an
equation for ϕL alone.
More concretely, we expand the functional ϕS½ϕL� in a

Taylor series about its value when the long-wavelength
modes are set equal to zero, ϕS0 ≡ ϕS½ϕL ¼ 0�:

ϕi
SðτÞ ¼ ϕi

S0ðτÞ þ
Z

τ

τin

dτ0
∂ϕi

SðτÞ
∂ϕj

Lðτ0Þ

����
ϕL¼0

ϕj
Lðτ0Þ þ � � � :

ð3:16Þ

This formula is expressed diagrammatically in Fig. 3. The
first term is the solution of (3.15) obtained by setting
ϕL ¼ 0 for all times. The second term is the first correction
coming from the incorporation of nonzero ϕL, where we
think of ϕL as an arbitrary background specified at all
times. We stress that the functional derivative ∂ϕS=∂ϕL is
being evaluated on the configuration ϕL ¼ 0; we have
explicitly indicated this in the equation above, but for
brevity will suppress it in the rest of the paper. The limits of
integration are the time when initial conditions are speci-
fied, τin, and the time at which ϕS is being evaluated, τ;
causality requires that field values at times beyond τ do not
contribute.
Up to this point, we have assumed that the initial

conditions at τin are completely specified. For the appli-
cation to LSS, however, we have a probability distribution
over initial conditions. For now we imagine selecting one
particular initial condition from the ensemble; the average
over all possibilities is only taken at the very end of the
calculation. If instead we take the expectation value over

FIG. 2. Diagrammatic representation of the correlator
hϕi

ð1Þϕ
j
ð3Þi, as expressed in Eq. (3.9). Here we have explicitly

indicated the quantities associated with each line and vertex. The
bottom brackets represent contraction of the two lines, which is
carried out by summing with the linear power spectrum.
Momentum in the loop labeled with indices l; m; n; o is integrated
over. The other possible contraction, linking ϕo

ð1Þ and ϕp
ð1Þ,

vanishes in the theory of LSS.

3It should be noted that, unless WΛ and 1 −WΛ have disjoint
support, there is not a clear distinction between long-wavelength
and short-wavelength fields. This leads to complications that
we will ignore in this section. As long as WΛ differs from a Θ
function only in a small neighborhood around Λ (to allow for a
smooth transition between 0 and 1, if desired), the numerical error
from this approximation will be arbitrarily small. In [1] and its
successors, a Gaussian form forWΛ was assumed. This choice of
smoothing is invertible, and therefore in principle retains in-
formation about short-distance physics, contrary to the spirit of
EFT.
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the short-wavelength initial conditions at this intermediate
stage, we will miss some correlations. This effect may
become non-negligible at high orders in perturbation
theory.
Returning to (3.14), we can plug in our perturbative

expansion (3.16) to get

0¼Di
jϕ

j
L −

1

2
WΛðiÞMi

jkϕ
j
Lϕ

k
L −WΛðiÞMi

jkϕ
j
S0ϕ

k
L

−
1

2
WΛðiÞMi

jkϕ
j
S0ϕ

k
S0 −WΛðiÞMi

jkϕ
j
S0

Z
τ ∂ϕk

SðτÞ
∂ϕl

Lðτ0Þ
ϕl
Lðτ0Þ

−WΛðiÞMi
jkϕ

j
L

Z
τ ∂ϕk

SðτÞ
∂ϕl

Lðτ0Þ
ϕl
Lðτ0Þþ � � � ; ð3:17Þ

where the � � � represent terms that, as we will see below, are
higher order.
Notice that the induced interactions of the long-

wavelength field with itself are nonlocal in time. This is
a very important conceptual point. The modes we have
integrated out are short-distance modes, but depending on
the dynamics they may be long-lived. This means that the
functional derivative ∂ϕk

SðτÞ=∂ϕl
Lðτ0Þ may have significant

support even when τ and τ0 are very different. There are
different possible strategies for dealing with these terms.
We will see below how they can be systematically
accounted for in perturbation theory. These interaction
terms, and their perturbative forms, represent the new
parameters needed to define the EFT.

C. Effective perturbation theory

The next step, as in Sec. III A above, is to formally
expand ϕL in a parameter ϵ and use perturbation theory on
this new, effective equation. We will assume that some
perturbative description is valid where ϕL ≈ ϕð1Þ is still true
to leading order (for the long-wavelength modes), and so
the new terms should only give corrections to that. In order
to make progress, we need to decide how many powers
of ϵ to assign to the new terms generated by interactions
involving ϕS. This turns out to be an involved question, and
we will need to make use of some assumptions about the
dynamics. For concreteness, wewill specifically refer to the
theory of LSS.

The short-wavelength field ϕS is a complicated object.
First consider ϕS0, the solution for the short-wavelength
perturbation in the absence of long-wavelength perturba-
tions. For modes near the cutoff, the linear perturbation
theory should still be approximately valid and ϕS0 ≈ ϕð1Þ
should hold, so that ϕS0 ∼ ϵ. For the truly nonlinear modes,
we can no longer assume that ϕS0 is small. However,
because perturbation theory is still valid at long wave-
lengths, we will assume that the order of magnitude of
the effects of the modes at more nonlinear scales is well
estimated by the effects of the modes at only slightly
nonlinear scales. In other words, the scaling of the
interaction terms we get by assuming ϕS0 ∼ ϵ will be
assumed to be the correct scaling. This is an important
assumption and we have not proved it. More detailed
analyses of the order-of-magnitude of nonlinear effects
within the theory of LSS are performed in [2,3]. There it is
shown that the nonlinear effects are under control and that
this estimation is ultimately correct. However, this point
may be an important restriction on the general applicability
of EFT methods to arbitrary equations of motion.
Similar comments can be made about the functional

derivative ∂ϕS=∂ϕL. However, at the level of the second
derivative, ∂2ϕS=∂ϕ2

L, there is a new effect. Because two
long-wavelength modes can come together to make a short-
wavelength mode through the interaction M, the second
derivative ∂2ϕS=∂ϕ2

L will have a term that does not contain
any factors of ϵ. A term in ∂2ϕS=∂ϕ2

L with zero powers of ϵ
thus acts at the same order in perturbation theory as a term
in ∂ϕS=∂ϕL with a single power of ϵ. This complicates the
perturbation expansion.
In the specific case of LSS, the origin of this compli-

cation is that the smoothing procedure has removed too
many modes from the theory. A short-wavelength mode
that is created from two long-wavelength modes, produced
by the unsuppressed term in ∂2ϕS=∂ϕ2

L, is not a nonlinear
mode. The reason is that short-wavelength modes created
in this way are nearly identical to long-wavelength modes
created in the same way: they are initially small (i.e.,
linear), and grow according to a k-independent linear
growth function. Like these long-wavelength modes, we
expect short-wavelength modes generated in this way to
remain linear.

FIG. 3. Diagrammatic representation of the Taylor expansion for ϕi
S considered as a functional of ϕj

L, as expressed in Eq. (3.16).
Dashed lines represent (arbitrary numbers of) the field ϕS, and the NL blob stands for nonlinear interactions. In the second diagram we
see the effects of the background field ϕL, thought of as an external source.
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To summarize, in the expansion of ϕS there will be
two types of terms. First, there will be terms representing
short-wavelength modes which have dynamically evolved
from short-wavelength initial conditions. We will assume
that all such modes give OðϵÞ contributions to ϕS and each
of its functional derivatives. Second, there will be terms
representing short-wavelength modes which are generated
through the action of the background field ϕL alone. These
terms do not represent nonlinear physics, and it is a defect
of the formalism that they appear here as modes to be
smoothed over. We will ignore these terms completely for
now, even though they contribute non-ϵ-suppressed con-
tributions to the functional derivative. One reason why it is
possible to ignore them is because they make up only a
small portion of the phase space at low order: when only
a few long-wavelength modes combine together to make a
short-wavelength mode, the resulting wave number will
not be much greater than the cutoff Λ. At higher orders,
however, when there are more long-wavelength fields
propagating, the numerical error caused by a failure to
systematically account for these modes will be greater. We
leave incorporation of these higher-order effects into this
formalism for future work, although we will have a bit
more to say on the topic below when we discuss correlation
functions. In Sec. IV below we present an alternative
formalism that naturally takes these modes into account.
We will now expand ϕL as a power series in ϵ, as we did

with ϕ in (3.2). To make the dependence on nonlinear
effects explicit, we decompose each order in the expansion
into a “standard” piece and a piece generated by short-
distance physics. We write

ϕi
L ¼ ϵðϕi

Lð1Þ þ Δϕi
Lð1ÞÞ þ ϵ2ðϕi

Lð2Þ þ Δϕi
Lð2ÞÞ

þ ϵ3ðϕi
Lð3Þ þ Δϕi

Lð3ÞÞ þ � � � ð3:18Þ

The functions ϕLðnÞ are defined to be the same as the
ϕðnÞ as in standard perturbation theory, with the replace-
ment Mi

jk → WΛðiÞMi
jk, and using the smoothed long-

wavelength initial conditions WΛðiÞϕin instead of the
unsmoothed initial conditions. Equivalently, one could
make the replacement Gi

j → WΛðiÞGi
j, making use of the

assumption that G is diagonal in momentum. Physically,
this means that only long-wavelength fields are allowed to

propagate in the construction of the ϕLðnÞ. Diagrammatically,
all lines have their momenta cut off.
The effects of the short-wavelength interactions are

denoted by ΔϕLðnÞ. We can find equations of motion for
the ΔϕL terms by expanding the effective equation of
motion in ϵ. At OðϵÞ we find

Di
jΔϕ

j
Lð1Þ ¼ 0: ð3:19Þ

Since the initial conditions are already accounted for in
ϕLð1Þ, the solution to this equation is ΔϕLð1Þ ¼ 0. This is
just a reflection of our assumption that the effects of the
short-distance scales on the long-distance scales can be
treated perturbatively.
Using this result, we find at Oðϵ2Þ

Di
jΔϕ

j
Lð2Þ ¼ WΛðiÞMi

jkϕ
j
S0ϕ

k
Lð1Þ þ

1

2
WΛðiÞMi

jkϕ
j
S0ϕ

k
S0:

ð3:20Þ

Here we see the first effects of the short-distance physics.
We can easily write down the solution for Δϕi

Lð2Þ from this
equation:

Δϕi
Lð2ÞðτÞ ¼

Z
τ

τin

dτ0Gi
jðτ; τ0Þ

×

�
WΛðjÞMj

klϕ
k
S0ϕ

l
Lð1Þ þ

1

2
WΛðjÞMj

klϕ
k
S0ϕ

l
S0

�
:

ð3:21Þ

This solution is expressed diagrammatically in Fig. 4.
At Oðϵ3Þ we have

Di
jΔϕ

j
Lð3Þ ¼WΛðiÞMi

jkϕ
j
S0ðϕk

Lð2Þ þΔϕk
Lð2ÞÞ

þWΛðiÞMi
jkðϕj

S0þϕj
Lð1ÞÞ

Z
τ ∂ϕk

SðτÞ
∂ϕl

Lðτ0Þ
ϕl
Lð1Þðτ0Þ:

ð3:22Þ

Here at third order we find the first nonlocal-in-time
interactions. However, in the context of this perturbative
expansion it is easy to deal with them. Since we already

FIG. 4. Diagrammatic representation of the solution for Δϕi
Lð2Þ, as expressed in Eq. (3.21). Dashed lines are the short-wavelength field

ϕS0, while solid lines are the long-wavelength field ϕL. As in Fig. 3, NL blobs represent nonlinear interactions.
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know the full time dependence of ϕLð1Þ, we can factor it out
of the time integral:

Z
τ

τin

dτ0
∂ϕk

SðτÞ
∂ϕl

Lðτ0Þ
ϕl
Lð1Þðτ0Þ

¼
�Z

τ

τin

dτ0
∂ϕk

SðτÞ
∂ϕl

Lðτ0Þ
½Gðτ; τ0Þ−1�lm

�
ϕm
Lð1ÞðτÞ: ð3:23Þ

(The propagator is guaranteed to be invertible, because the
equations of motion are reversible.) Because perturbation
theory is a recursive process, this procedure can be
repeated at each order. Then perturbatively the nonlo-
cal-in-time interaction is expressed in terms of local-in-
time interactions. We can now write a simple expression
for ΔϕLð3Þ:

Δϕi
Lð3ÞðτÞ ¼

Z
τ

τin

dτ0Gi
jðτ; τ0Þ

�
WΛðjÞMj

klϕ
k
S0ðϕl

Lð2Þ þ Δϕl
Lð2ÞÞ þWΛðjÞMj

klðϕk
S0 þ ϕk

Lð1ÞÞ

×

�Z
τ0

τin

dτ00
∂ϕl

Sðτ0Þ
∂ϕm

L ðτ00Þ
½Gðτ0; τ00Þ−1�mn

�
ϕn
Lð1Þðτ0Þ

�
: ð3:24Þ

D. Correlation functions

Using the formalism above we can compute correlation
functions of the long-wavelength field ϕL. The power
spectrum in particular can be written as

hϕi
Lϕ

j
Li ¼ hϕi

Lð1Þϕ
j
Lð1Þi þ hϕi

Lð1Þϕ
j
Lð3Þi þ hϕi

Lð3Þϕ
j
Lð1Þi

þ hϕi
Lð2Þϕ

j
Lð2Þi þ hϕi

Lð1ÞΔϕ
j
Lð3ÞiþhΔϕi

Lð3Þϕ
j
ð1Þi

þ hϕi
Lð2ÞΔϕ

j
Lð2Þi þ hΔϕi

Lð2Þϕ
j
Lð2Þi

þ hΔϕi
Lð2ÞΔϕ

j
Lð2Þi þ � � � : ð3:25Þ

The first line is very similar to the 1-loop result from SPT,
except every propagating field is long-wavelength. The
second line represents corrections to that result up to the
same order. Note that the sum of both lines is meant to be Λ
independent. In practice, the Λ dependence of the Δϕ terms
is determined by this requirement since they cannot be
calculated from first principles. An example of such a
calculation is performed in Appendix A.
We note one technical point about this calculation. When

computing the SPT-like terms in the EFT expansion of the
correlation function, every single field is supposed to be
restricted to being long-wavelength. In general, this will
impose multiple different cutoffs on each loop integral
beyond those imposed by removing the short-wavelength
initial conditions, since some of the lines within the
loop carry sums of other loop momenta and the external
momentum. This technical annoyance has, as far as we are
aware, gone unnoticed in the literature. The effects of such
a restriction will be small, subleading in kexternal=Λ for low
orders in perturbation theory, but more important at higher
orders. This is related to the issue we mentioned above
regarding the contributions to ϕS which are not actually
nonlinear. Those contributions precisely correspond to
lines in the loop diagram which go over the cutoff even
when all initial conditions are long-wavelength only. It
would be preferable to have a formalism where this was

accounted for automatically, and the only cutoff that had to
be performed on the diagram was a cutoff on the initial
conditions. This is achieved by the path integral formalism
discussed in the next section.

IV. A PATH INTEGRAL APPROACH

In this section we use a statistical path integral to
incorporate the effects of the probability distribution
over initial conditions on the equations of motion. By
following the Polchinski renormalization group procedure
[15] we can deduce the structure of the effective theory.
Instead of smoothing the equations of motion, we will
demand that the coefficients in the effective action are
closed under renormalization group flow. We find general
results that agree with the analysis of the previous
section, up to the issues relating to linear portions of
ϕS discussed above, and offer new insight into the
effective theory.

A. Polchinski RG

In this section we review the usual equations of the
Polchinski RG using our condensed notation, where a Latin
index is both a discrete label for field species and also a
continuous label for momentum. Consider an action of the
form

Sðϕ;ΛÞ ¼ −
1

2
ϕi½PðΛÞ−1�ijϕj þ Sintðϕ;ΛÞ; ð4:1Þ

where PðΛÞ is a symmetric matrix which depends on the
momentum cutoff Λ.4 The partition function,

4P should be thought of as a smoothly varying function of
momentum k and the cutoff Λ which is Λ independent when
k < Λ and zero when k > Λ, and transitions rapidly between
these two phases for k ∼ Λ. In the EFT of LSS, P is the smoothed
initial power spectrum.
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Z ¼
Z

DϕeS; ð4:2Þ

is a physical object and so should be independent of Λ,
which was introduced artificially. Taking the Λ derivative
gives

dZ
dΛ

¼
Z

Dϕ

�
−
1

2
ϕj d

dΛ
½PðΛÞ−1�ijϕj þ d

dΛ
Sintðϕ;ΛÞ

�
eS:

ð4:3Þ

Then consider the quantity

∂
∂ϕi

�
dPij

dΛ
½P−1�jkϕkeS þ 1

2

dP
dΛ

ij ∂S
∂ϕj e

S

�

¼
�
dPij

dΛ
½P−1�ji þ

dPij

dΛ
½P−1�jkϕk ∂S

∂ϕi þ
1

2

dP
dΛ

ij ∂S
∂ϕj

∂S
∂ϕi þ

1

2

dP
dΛ

ij ∂2S
∂ϕi∂ϕj

�
eS

¼
�
1

2

dPij

dΛ
½P−1�ji þ

1

2
ϕi d

dΛ
½P−1�ijϕj þ 1

2

dP
dΛ

ij ∂Sint
∂ϕj

∂Sint
∂ϕi þ

1

2

dP
dΛ

ij ∂2Sint
∂ϕi∂ϕj

�
eS: ð4:4Þ

Since this is a total derivative, it will vanish when (func-
tionally) integrated with respect to ϕ. Then, up to a field-
independent but Λ-dependent shift in the action, the
partition function will be independent of Λ if

d
dΛ

Sintðϕ;ΛÞ ¼ −
1

2

�
dP
dΛ

ij ∂Sint
∂ϕj

∂Sint
∂ϕi þ

dP
dΛ

ij ∂2Sint
∂ϕi∂ϕj

�
:

ð4:5Þ

We have neglected the appearance of an external current in
the free action, but the current drops out of the final
equation if it is chosen to be orthogonal to dP=dΛ:

dPij

dΛ
Jj ¼ 0: ð4:6Þ

Since dP=dΛ only has support near the cutoff Λ, this is
usually guaranteed by choosing J to have support only at
low momentum.
We can expand the interaction as a power series:

Sint ¼
X∞
m¼0

1

m!
Vi1���imðΛÞϕi1 � � �ϕim : ð4:7Þ

Then we have the identities

∂Sint
∂ϕi ¼

X∞
m¼0

1

m!
Vii1���imðΛÞϕi1 � � �ϕim ; ð4:8Þ

∂2Sint
∂ϕi∂ϕj ¼

X∞
m¼0

1

m!
Viji1���imðΛÞϕi1 � � �ϕim : ð4:9Þ

The RG equation (4.5) can be written in terms of the V
coefficients as

d
dΛ

Vi1���imðΛÞ ¼ −
1

2

�
dP
dΛ

ij
Viji1���im

þ dP
dΛ

ijXm
k¼0

�
m
k

�
Vii1���ikVjikþ1���im

�
: ð4:10Þ

There is a simple diagrammatic interpretation to this
equation. The lhs represents a vertex with m external legs.
The first term on the rhs is a vertex with mþ 2 external
legs, and two of them are contracted with the free
propagator. The second term on the rhs takes a vertex
with kþ 1 external lines and another with m − kþ 1
external lines and connects them by contracting one line
from each vertex using a propagator.

B. A path integral for standard perturbation theory

In cosmological perturbation theory we are given initial
data ϕi

in at the initial time τin for some collection of
perturbation fields. For simplicity, we will assume that
these satisfy Gaussian statistics, meaning that their
correlation functions can be calculated using the path
integral

hϕi1
in � � �ϕin

ini ¼
Z

Dϕinϕ
i1
in � � �ϕin

in exp

�
−
1

2
ϕi
in½P−1

in �ijϕj
in

�
:

ð4:11Þ
This is a three-dimensional Euclidean path integral over
the set of all initial perturbation configurations. The matrix
Pin appearing here is the initial power spectrum. Of course,
in reality there will be a small amount of non-Gaussianity in
the statistics at τin, coming from nonlinear evolution prior
to τin in addition to possible primordial non-Gaussianity. To
account for this we can replace the exponent in (4.11) with
a more complicated functional of the ϕin, including higher
order terms.
We can use this same path integral to compute

the correlation functions of the perturbations at a later
time as well. Denote these late-time perturbations by ϕi,
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suppressing reference to the time of evaluation τ0. The
procedure is simply to write the late-time perturbations as
functionals of the initial data, ϕi ¼ ϕi½ϕin�, computed from
the equations of motion, and then plug this into the path
integral:

hϕi1 � � �ϕini ¼
Z

Dϕinϕ
i1 ½ϕin� � � �ϕin ½ϕin�eS0½ϕin�: ð4:12Þ

The “free action” S0 is just the same quantity which
appeared in the exponent of (4.11). The late-time correla-
tion functions can be collected into a generating functional
Z½J�:

Z½J� ¼
Z

Dϕin exp ðS0½ϕin� þ Jiϕi½ϕin�Þ: ð4:13Þ

Now we note that the external current term in the
exponential can be alternatively interpreted as a compli-
cated interaction term for ϕin. By solving for ϕi in
perturbation theory, we obtain a polynomial expansion
for the interactions, the vertices of which are determined by
integrating the equations of motion perturbatively. In SPT,
we have a natural expansion for ϕi:

ϕi
SPT ≡ Ki

SPTjϕ
j
in þ

1

2
Ki

SPTjkϕ
j
inϕ

k
in þ � � � : ð4:14Þ

In the notation of the previous section, we would write

ϕj
ðmÞ ¼

1

m!
Kj

SPTi1���imϕ
i1
in…ϕim

in : ð4:15Þ

Comparison to Eqs. (3.3) and (3.4) leads to explicit
formulas for Ki

SPTj and Ki
SPTjk:

Ki
SPTj ¼ Gi

jðτ0; τinÞ; ð4:16Þ

Ki
SPTjk ¼

Z
τ0

τin

dτ0Gi
nðτ0; τ0ÞMn

lmG
l
jðτ0; τinÞGm

k ðτ0; τinÞ:

ð4:17Þ

The higher order coefficients can be computed analogously.
Using these, that the m-point interaction vertex for ϕin is
given by

VSPTi1���im ≡ JjK
j
SPTi1���im : ð4:18Þ

C. RG in the effective theory

We will now introduce a cutoff to the theory.
First, we replace the initial power spectrum with the
smoothed power spectrum in the free part of the action:
Pij
in → WΛðiÞ2Pij

in ≡ Pij. For this section, WΛ is a function

which is equal to 1 for k≲ Λ, has a nonvanishing derivative
for k ∼ Λ, and then is equal to 0 for k≳ Λ. With this choice,
dP=dΛ is only nonzero over a very small range of momenta
right near the cutoff. In this way we have restricted the set of
possible initial conditions for the perturbations. Second, we
restrict the external current J to have support only for
modes k < Λ. It is important that the support of J be distinct
from the support of dP=dΛ. This corresponds to only
allowing ourselves to ask questions about long-wavelength
modes.
It is important to note the differences between this

cutoff and the smoothing scheme used in Sec. III above.
There we decomposed the fundamental field ϕ into short-
and long-wavelength pieces at every point in time. As
discussed extensively in subsection III C above, this
had the effect of smoothing over all propagating short-
wavelength fields, even the ones resulting from the
backreaction of long-wavelength modes over which we
have perturbative control. By contrast, here we are
smoothing the initial power spectrum Pij, not the fields
created at later times. Hence the techniques of this section
will not discard these perturbative short-wavelength
modes. In explicit calculations, the difference between
these approaches manifests as a difference in the con-
straints imposed on loop momenta. We exhibit this
difference explicitly in subsection A 2 of the Appendix.
Having made these restrictions, we need to include

additional Λ-dependent interaction terms which incorpo-
rate the effects of the UV modes that have been elimi-
nated. We will deduce the form of these interactions by
demanding that the full set is closed under the RG flow,
(4.10). There are three classes of new terms, two of which
we have already discussed. First, there are terms linear in
J, which represent propagation. Second, there are terms
that are J independent and represent renormalizations of
the effective initial power spectrum, as well as induced
initial non-Gaussianities. The third class of terms, which
we have not yet discussed, contains the terms nonlinear
in J. Normally, terms with higher powers of an external
current are not generated by RG evolution. This is
because the external current is chosen to have support
only over momenta for which dP=dΛ ¼ 0, and so J drops
out of the RG equations as discussed above near (4.6).
However, that is not the case here. Consider the con-
traction of the m-point interaction with dP=dΛ, as it
occurs in (4.10):

dPii1

dΛ
VSPTi1���im ¼ dPii1

dΛ
JjK

j
SPTi1���imðq1;…; qmÞ: ð4:19Þ

To make things a little more clear, we will restore explicit
momentum dependence to this equation and use con-
servation of momentum to simplify the expression. Then,
by a slight abuse of notation, we have
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dPii1

dΛ
ðq1ÞVSPTi1���imðq1;…;qmÞ

¼
Z

d3q1
ð2πÞ3

dPii1

dΛ
ðq1ÞJj

�
−
X

qi

�
Kj

SPTi1���imðq1;…;qmÞ:

ð4:20Þ

The power spectrum derivative is only nonzero when
q1 ≈ Λ, and J vanishes unless

P
qi < Λ. Except for

m ¼ 1, these requirements can be simultaneously satis-
fied. Therefore J does not drop out of the RG equations.
Hence RG evolution is nonlinear, and we will generate
terms which are nonlinear in J. These are generalized
evolution terms for ϕ; heuristically, they encode the
effects of the stochastic source terms of the precious
section.
In general, we can write a series expansion for the full

m-point interaction coefficient V:

Vi1���im ¼
X∞
n¼0

1

n!
Jj1 � � � JjnKj1���jn

i1���im : ð4:21Þ

The n ¼ 0 and n ¼ 1 terms are the renormalized initial
distribution function and standard time evolution, respec-
tively, while the n > 1 terms are the new ones. We can
expand (4.10) as a power series in J to obtain RG equations
for the K coefficients. This yields

d
dΛ

Kj1���jn
i1���im ¼ −

1

2

�
dP
dΛ

ij
Kj1���jn

iji1���im

þ dP
dΛ

ijXm
k¼0

Xn
l¼0

�
m
k

��
n
l

�
Kj1���jl

ii1���ikK
jlþ1���jn
jikþ1���im

�
:

ð4:22Þ

This equation is portrayed schematically in Fig. 5. Since the
rhs of (4.22) involves only terms with ≤ n raised indices,
the equations can be solved order-by-order in n. The
n ¼ 0 terms therefore renormalize among themselves.
We immediately learn that if all n ¼ 0 terms vanish,

nonzero terms will never be generated by the RG. This
means that a Gaussian initial distribution at all scales, and
the power spectrum is unchanged.
Now we examine the n ¼ 1 equation:

d
dΛ

Kj1
i1���im ¼ −

1

2

dP
dΛ

ij
�
Kj1

iji1���im þ
Xm
k¼0

�
m
k

�
ðKj1

ii1���ikKjikþ1���im

þ Kii1���ikK
j1
jikþ1���imÞ

�
: ð4:23Þ

If the initial perturbations are Gaussian, K coefficients with
zero upper indices vanish, so the first term on the rhs is the
only one that survives. For the special case m ¼ 1, we find

d
dΛ

Kj1
i1
¼ −

1

2

dP
dΛ

ij
Kj1

iji1
: ð4:24Þ

Since K coefficients with a single upper index correspond
to renormalized time evolution, we can write K ¼ KSPT þ
ΔK for these, where KSPT is defined above and is
independent of Λ. Then we have

d
dΛ

ΔKl
m ¼ −

1

2

dP
dΛ

ijðKl
SPTijm þ ΔKl

ijmÞ: ð4:25Þ

The ΔK factors are only nonzero because they are
generated by this equation. Therefore they are suppressed
relative to the KSPT factors by Pij. To the extent that
perturbation theory is valid, this means they are small.
The utility of this equation will be more recognizable if

we compute hϕn
ð1Þϕ

m
ð3ÞiΛ in the notation of this section,

where the subscript Λ means that we take the SPT
calculation and restrict the initial conditions to be long-
wavelength:

hϕn
ð1Þϕ

m
ð3ÞiΛ ¼ 1

6
Km

SPTjklðhϕn
ð1Þϕ

j
iniΛhϕk

inϕ
l
iniΛ

þ hϕn
ð1Þϕ

k
iniΛhϕj

inϕ
l
iniΛ

þ hϕn
ð1Þϕ

l
iniΛhϕj

inϕ
k
iniΛÞ ð4:26Þ

FIG. 5. Diagrammatic representation of the renormalization group equation (4.22). The curved bracket at the bottom represents a
contraction with a factor of dPij=dΛ. The second graph on the right stands for a sum over various ways to distribute and contract the
incoming lines.
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¼ 1

6
Km

SPTjklðhϕn
ð1Þϕ

j
iniΛPkl þ hϕn

ð1Þϕ
k
iniΛPjl

þ hϕn
ð1Þϕ

l
iniΛPjkÞ ð4:27Þ

¼ 1

2
Km

SPTjklhϕn
ð1Þϕ

l
iniΛPjk ð4:28Þ

¼ 1

2
Km

SPTjklhϕn
ð1Þϕ

l
iniPjk: ð4:29Þ

In the last equality we have used the fact that the
momentum associated with the n index is below the cutoff,
so hϕn

ð1Þϕ
l
iniΛ is actually independent of Λ. Then all of the Λ

dependence of this expression is in the Pjk factor. Taking
the Λ derivative and using (4.25) we find

d
dΛ

hϕn
ð1Þϕ

m
ð3ÞiΛ ¼ 1

2
Km

SPTjklhϕn
ð1Þϕ

l
ini
dP
dΛ

jk
ð4:30Þ

¼ −hϕn
ð1Þϕ

l
ini
�

d
dΛ

ΔKm
l þ dP

dΛ

jk 1

2
ΔKm

jkl

�
ð4:31Þ

¼ −
d
dΛ

ðhϕn
ð1ÞΔK

m
l ϕ

l
iniÞ −

1

2
ΔKm

jklhϕn
ð1Þϕ

l
ini
dP
dΛ

jk
: ð4:32Þ

Since the ΔK terms are small in perturbation theory, the
second term on the rhs can be dropped as it is subdominant
compared to the first term. Then this equation says that the
Λ dependence of hϕn

ð1Þϕ
m
ð3Þi is canceled by Λ dependence of

hϕn
ð1ÞΔϕ

m
ð3Þi, where Δϕm

ð3Þ ¼ ΔKm
l ϕ

l
in. We can think of this

as a renormalization of the propagation of ϕ.
It is tempting to identify this correction withΔϕLð3Þ from

Sec. III, but they are not the same. Recall that ΔϕLð3Þ
was defined as the correction to ϕLð3Þ, which was related
to ϕð3Þ be restricting every propagating state to be long-
wavelength. Here we are not doing that. We are only
restricting the initial conditions to be long-wavelength, but
these may generate short-wavelength states spontaneously.
The spontaneously generated short-wavelength states
remain linear, as discussed in Sec. III, and so they are
automatically incorporated in SPT. The correction Δϕð3Þ of
the present section is the correction to the SPT result (with
restricted initial conditions), and so does not include these
particular modes.
Now we turn to the n ¼ 2 equation, which represents the

simplest type of generalized evolution. In that case we have

d
dΛ

Kj1j2
i1���im ¼ −

1

2

�
dP
dΛ

ij
Kj1j2

iji1���im

þ dP
dΛ

ijXm
k¼0

X2
l¼0

�
m
k

��
2

l

�
Kj1���jl

ii1���ikK
jlþ1���j2
jikþ1���im

�
:

ð4:33Þ

The first term on the rhs is a generalized evolution term, and
so will be subleading compared to terms in the sum which
are not suppressed by the power spectrum. If the initial
perturbations are Gaussian, the l ¼ 0 and l ¼ 2 terms in the
sum on the rhs vanish. The remaining sum over k vanishes
for m ¼ 0 and m ¼ 1 by momentum conservation and
orthogonality of J and dP=dΛ. The simplest nontrivial case
is m ¼ 2, where we find the equation reduces to

d
dΛ

Kj1j2
i1i2

¼ −
1

2

�
dP
dΛ

ij
Kj1j2

iji1i2
þ 4

dP
dΛ

ij
Kj1

ii1
Kj2

ji2

�
: ð4:34Þ

To leading order in perturbation theory, this equation is

d
dΛ

Kj1j2
i1i2

¼ −2
dP
dΛ

ij
Kj1

SPTii1
Kj2

SPTji2
: ð4:35Þ

The meaning of this equation can be illuminated by
considering hϕn

ð2Þϕ
m
ð2ÞiΛ:

hϕn
ð2Þϕ

m
ð2ÞiΛ ¼ 1

4
Kn

SPTijK
m
SPTklðhϕi

inϕ
j
iniΛhϕk

inϕ
l
iniΛ

þ hϕi
inϕ

k
iniΛhϕj

inϕ
l
iniΛ þ hϕi

inϕ
l
iniΛhϕk

inϕ
j
iniΛÞ
ð4:36Þ

¼ 1

4
Kn

SPTijK
m
SPTklðPijPkl þ PikPjl þ PilPkjÞ ð4:37Þ

¼ 1

2
Kn

SPTijK
m
SPTklP

ikPjl þ hϕn
ð2ÞiΛhϕm

ð2ÞiΛ: ð4:38Þ

The second term vanishes in the theory of LSS based on the
explicit form of KSPT, which we can see in Appendix A. To
leading order in perturbation theory, the Λ derivative of the
first term is

d
dΛ

hϕn
ð2Þϕ

m
ð2ÞiΛ ¼ Kn

SPTijK
m
SPTklP

ikdP
dΛ

jl
ð4:39Þ

¼ −
1

2
Pik d

dΛ
Knm

ik ð4:40Þ

¼ −
1

2

d
dΛ

ðPikKnm
ik Þ þ 1

2

dP
dΛ

ik
Knm

ik ð4:41Þ

¼ −
1

2

d
dΛ

ðPikKnm
ik þ 2KnmÞ: ð4:42Þ

In the last line we have used another of the RG equations.
Notice that the hϕð2Þϕð2ÞiΛ contribution to the correlation
function has its Λ dependence canceled by new types
of terms not present in the classical theory. The second
term, in particular, is strange because it has no lowered
indices. That means it comes from a field-independent (but
J-dependent) interaction in the effective action.
Let us take a moment to examine the RG equation

associated with such terms:
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d
dΛ

Kj1���jn ¼ −
1

2

�
dP
dΛ

ij
Kj1���jn

ij

þ dP
dΛ

ijXn
l¼0

�
n
l

�
Kj1���jl

i Kjlþ1���jn
j

�
: ð4:43Þ

We will restrict our attention to n ¼ 1 and n ¼ 2, since
those are the terms which are relevant for the one- and
two-point functions, and for simplicity we continue to
assume a Gaussian initial power spectrum. For n ¼ 1, the
equation becomes

d
dΛ

Kj1 ¼ −
1

2

dP
dΛ

ij
Kj1

ij : ð4:44Þ

We can once more write Kj1
ij ¼ Kj1

SPTij þ ΔKj1
ij . In the

theory of LSS, the term with KSPT vanishes due to
momentum conservation and the explicit form of KSPT.
Therefore the only contribution is from ΔKj1

ij . So Kj1 is
suppressed by two powers of Pij.
Now we turn to n ¼ 2:

d
dΛ

Kj1j2 ¼ −
1

2

�
dP
dΛ

ij
Kj1j2

ij þ 2
dP
dΛ

ij
Kj1

i K
j2
j

�
: ð4:45Þ

The second term actually vanishes by momentum con-
servation and the orthogonality of dP=dΛ and J. ThenKj1j2

is also generated at second order in P.

D. Renormalization of the one-point function
and power spectrum

We can use the above formalism to compute the one-
point function and two-point function by taking derivatives
of Z. The first derivative of Z is

∂Z
∂Ji ¼ Z½J�

X∞
m¼0

X∞
n¼0

1

m!n!
Jj1 � � � JjnKij1���jn

i1���im hϕi1
in � � �ϕim

in iJΛ;

ð4:46Þ
where h� � �iJΛ denotes the expectation value in the presence
of nonzero J (as well as the cutoff Λ). This means that the
expectation value of ϕ is

hϕiiΛ ¼ 1

Z½0�
∂Z
∂Ji
����
J¼0

¼
X∞
m¼0

1

m!
Ki

i1���imhϕ
i1
in � � �ϕim

in iΛ:

ð4:47Þ
None of the nonlinear terms in J are involved in this
computation. Generally speaking, the n-point function
requires knowledge of the Jk terms in the action for
k ≤ n. So the one-point function is based purely on the
renormalized evolution defined by the interaction terms
linear in J. Also note that all of these expectation values are
taken with J ¼ 0, so that they are Gaussian expectation
values if the initial distribution is Gaussian, using the

cut-off initial power spectrum WΛðiÞ2Pij
in. In this special

case, only the even terms in (4.47) are nonvanishing.
To compute the two-point function, we take another

derivative of (4.46), divide by Z, and set J ¼ 0:

hϕiϕjiΛ ¼ 1

Z½0�
∂2Z

∂Ji∂Jj
����
J¼0

¼
X∞
m¼0

Xm
k¼0

1

m!

�
m
k

�
Ki

i1���ikK
j
ikþ1���imhϕ

i1
in � � �ϕim

in iΛ

þ
X∞
m¼0

1

m!
Kij

i1���imhϕ
i1
in � � �ϕim

in iΛ þ hϕiiΛhϕjiΛ:

ð4:48Þ

The third term is the disconnected piece, and the first term
is the answer one would expect if the effective theory
simply consisted of renormalized classical propagation
of ϕ, while the second term is the generalized evolution.
For simplicity, let us set the disconnected piece to zero

and assume Gaussian initial perturbations. Then up to
second order in Pij we have

hϕiϕji¼hϕi
ð1Þϕ

j
ð1Þiþ½hϕi

ð1Þϕ
j
ð3ÞiΛþhϕi

ð1ÞΔK
j
kϕ

k
iniΛþði↔jÞ�

þ½hϕi
ð2Þϕ

j
ð2ÞiΛþKijþ1

2
Kij

i1i2
Pi1i2 �: ð4:49Þ

The first term is the linear evolution, and is Λ independent.
The bracketed collections of terms are each Λ independent
at this order in perturbation theory based on the analysis
above. This expression can be compared with (3.7) in
standard perturbation theory, or (3.25) in the smoothing
formalism.
Our analysis of the path integral has been fairly formal,

but nevertheless extremely instructive. This approach to
cosmological perturbation theory reveals which collections
of terms must have vanishing Λ dependence, as well as
indicating what kinds of structures are generated by
renormalization. It is also able to automatically incorporate
the effects of short-wavelength modes that are generated
by interactions of the long-wavelength modes (and are
therefore in the linear regime). The appearance of integra-
tion kernels K with multiple upper indices is novel,
representing effects directly attributable to these generated
short-wavelength modes. It would be interesting to connect
these with the statistics of a stochastic source term in the
equations of motion.

V. CONCLUSIONS AND FURTHER DIRECTIONS

The application of effective field theory ideas to the
evolution of large-scale structure involves a number of
subtle issues. Unlike in quantum field theory, here the
underlying model is a classical field theory with probabi-
listic initial conditions, in which modes at all wavelengths
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can propagate over large distances. Fortunately, in the real
world it is short-wavelength modes that are nonlinear,
allowing us to construct a perturbation theory for the long-
wavelength modes.
In this paper we analyzed two methods of deriving such

a theory. The first approach, which proceeds by smooth-
ing the fields, most closely resembles previous work in
the subject. We were able to carefully derive consistent
expressions for the long-wavelength modes by first
expressing the short-wavelength parts as a Taylor expan-
sion in the long-wavelength background. This makes the
dependence on nonlinear effects very explicit. There is a
technical speed bump inherent in this technique, however,
due to the ability of interactions between long-wavelength
modes to create perturbative short-wavelength modes,
which the smoothing procedure automatically squelches.
Our other method starts with a path integral over initial

perturbations, and uses the renormalization group to derive
conditions obeyed by correlation functions. This approach is
quite general and flexible, and naturally accounts for the
effects of perturbative short-wavelength modes. Further
investigation will be required to see how practical this
technique is for calculations beyond what is shown in
Appendix A (althoughwe see no reason why it shouldn’t be).
The main open question is that of predictivity. In both

methods a huge number of effective interactions are gen-
erated. Much of the power of EFT as used in quantum field
theory comes from the reduction of the possible number of
terms due to symmetries. It has been argued in [2,3] that only
a certain collection of terms are present in the effective
theory. However, it is not yet clear in the formalisms we
discuss precisely how the symmetries act to simplify the
equations. In particular, the nonlocal-in-time interactions of
the smoothed picture are qualitatively different from the
types of interactions we are used to considering, and further
study may illuminate some unexpected properties.
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APPENDIX: EXPLICIT CALCULATIONS

In this appendix we perform some explicit calculations in
both SPT and the EFT of LSS in a simple setting. We will
use a single-component, nonrelativistic, rotation-free dark
matter fluid moving in an Einstein–de Sitter background,
subject to Newtonian gravitational attraction. Extensions
to multicomponent fluids and the full theory of general
relativity are straightforward, but distracting. All of the

fundamental conceptual issues are present already in this
simple calculation.

1. Standard perturbation theory

In an Einstein–de Sitter cosmology—that is, a flat,
matter-dominated FRW universe—the scale factor is
given by aðτÞ ¼ ðτ=τ0Þ2, the conformal Hubble factor is
H ¼ a−1da=dτ ¼ 2=τ, and the equations of motion for a
dark matter fluid simplify to

0 ¼ ∂τδðτ;kÞ þ θðτ;kÞ þ
Z

d3q
ð2πÞ3

k · q
q2

δðτ;k − qÞθðτ;qÞ;

ðA1Þ

0 ¼ ∂τθðτ;kÞ þHθðτ;kÞ þ 3

2
H2δðτ;kÞ

þ
Z

d3q
ð2πÞ3

k2q · ðk − qÞ
2q2ðk − qÞ2 θðτ;k − qÞθðτ;qÞ: ðA2Þ

At first order, we drop the nonlinear terms and solve the
linearized equations using a Green function:

�
δð1Þðτ;kÞ
θð1Þðτ;kÞ

�
¼ Gðτ; τinÞ

�
δinðkÞ
θinðkÞ

�
: ðA3Þ

Here δin and θin are initial conditions at the initial time τin,
and Gðτ; τinÞ is a retarded Green function for the linearized
system:

Gðτ1; τ2Þ ¼

0
B@

3τ5
1
þ2τ5

2

5τ3
1
τ2
2

−τ5
1
þτ5

2

5τ3
1
τ2

− 6ðτ5
1
−τ5

2
Þ

5τ4
1
τ2
2

2τ5
1
þ3τ5

2

5τ4
1
τ2

1
CAΘðτ1 − τ2Þ: ðA4Þ

Note that for τ ≫ τin we have δð1Þ ∝ τ2 ∝ a, which is the
dominant growth function behavior familiar from standard
perturbation theory. By keeping careful track of both θ
and δ we are effectively including the subdominant mode
as well.
The method of SPT is to incorporate nonlinearities

perturbatively by substituting the linear solution into the
nonlinear terms and treating them as a source for the
second-order terms. Then we have

�
δð2Þðτ;kÞ
θð2Þðτ;kÞ

�
¼ −

Z
τ

τin

dτ0
Z

d3q
ð2πÞ3Gðτ; τ

0Þ

×

 k·q
q2 δð1Þðτ0;k − qÞθð1Þðτ0;qÞ

k2q·ðk−qÞ
2q2ðk−qÞ2 θð1Þðτ0;k − qÞθð1Þðτ0;qÞ

!
:

ðA5Þ

This procedure can be repeated to compute higher-order
perturbations. For instance, at the next order we have
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�
δð3Þðτ;kÞ
θð3Þðτ;kÞ

�
¼ −

Z
τ

τin

dτ0
Z

d3q
ð2πÞ3 Gðτ; τ

0Þ ×
0
@ k·q

q2 ½δð1Þðτ0;k − qÞθð2Þðτ0;qÞ þ δð2Þðτ0;k − qÞθð1Þðτ0;qÞ�
k2q·ðk−qÞ
q2ðk−qÞ2 θð1Þðτ0;k − qÞθð2Þðτ0;qÞ

1
A: ðA6Þ

The expansion is tedious but straightforward to compute.
Before continuing, it will be useful to make contact with

the notation of the body of the paper. The perturbations δ
and θ are regarded as components of the perturbation field
ϕi, where i ¼ δ or i ¼ θ (for added clarity we label the
momentum separately, and not as part of the Latin index).
Then (A3) can be replaced by

ϕi
ð1Þðτ;kÞ ¼ Gi

jðτ; τinÞϕj
inðkÞ: ðA7Þ

The nonlinear terms in the equations of motion can be
incorporated into the pair of matrices

Mδ
ijðk1;k2;k3Þ ¼

0
@ 0 − k1·k3

k2
3

− k1·k2

k2
2

0

1
A; ðA8Þ

Mθ
ijðk1;k2;k3Þ ¼

 
0 0

0 − k2
1
ðk2·k3Þ
k2
2
k2
3

!
; ðA9Þ

so that (A5) and (A6) become, respectively,

ϕi
ð2Þðτ;kÞ ¼

1

2

Z
τ

τin

dτ0
Z

d3q
ð2πÞ3 G

i
jðτ; τ0ÞMj

lm

× ðk;k − q;qÞϕl
ð1Þðτ0;k − qÞϕm

ð1Þðτ0;qÞ;
ðA10Þ

and

ϕi
ð3Þðτ;kÞ ¼

Z
τ

τin

dτ0
Z

d3q
ð2πÞ3G

i
jðτ; τ0ÞMj

lm

× ðk;k − q;qÞϕl
ð1Þðτ0;k − qÞϕm

ð2Þðτ0;qÞ:
ðA11Þ

The correlation function we will use as our example is

hϕi
ð1Þðτ1;k1Þϕj

ð3Þðτ2;k2Þi; ðA12Þ

which occurs in the SPT expansion of

hϕiðτ1;k1Þϕjðτ2;k2Þi: ðA13Þ

We just have to multiply ϕð1Þ and ϕð3Þ above and take the
expectation value using Wick’s theorem (assuming
Gaussian initial conditions). The result will depend on
the linear power spectrum

hϕi
ð1Þðτ1;k1Þϕj

ð1Þðτ2;k2Þi
≡ Pij

ð11Þðτ1; τ2jk1Þð2πÞ3δð3Þðk1 þ k2Þ: ðA14Þ

The presence of the Dirac δ function is a result of trans-
lation invariance, and in addition rotational invariance
implies that Pij

ð11ÞðkÞ is a function only of k2. These results
produce numerous simplifications, in particular that
hϕi

ð2Þi ¼ 0. Doing a little algebra, we find that

hϕi
ð1Þðτ1;k1Þϕj

ð3Þðτ2;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2Þ
Z

τ2

τin

dτ0
Z

τ0

τin

dτ00
Z

d3q
ð2πÞ3G

j
kðτ2; τ0Þ

Mk
lmðk2;q;k2 − qÞGm

n ðτ0; τ00ÞMn
opðk2 − q;−q;k2ÞPip

ð11Þðτ1; τ00jk1ÞPlo
ð11Þðτ0; τ00jqÞ: ðA15Þ

The overall factor of ð2πÞ3δð3Þðk1 þ k2Þ is present because translation invariance is respected at each order in perturbation
theory. Here q is the loop momentum, which still must be integrated over.

2. Accounting for the cutoff

Now we will discuss the two approaches to regulating hϕð1Þϕð3Þi, before discussing how the Λ dependence of the result is
canceled by new interactions. First, the smoothing method of Sec. III demands that we replace ϕð1Þ and ϕð3Þ with ϕLð1Þ and
ϕLð3Þ. The result is

hϕi
Lð1Þðτ1;k1Þϕj

Lð3Þðτ2;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2Þ

×
Z

τ2

τin

dτ0
Z

τ0

τin

dτ00
Z

d3q
ð2πÞ3 ½G

j
kðτ2; τ0ÞWΛðk2ÞMk

lmðk2;q;k2 − qÞGm
n ðτ0; τ00Þ

×WΛðjk2 − qjÞMn
opðk2 − q;−q;k2ÞWΛðk1Þ2Pip

ð11Þðτ1; τ00jk1ÞWΛðqÞ2Plo
ð11Þðτ0; τ00jqÞ�: ðA16Þ
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Notice that there are two nontrivial constraints on the loop
integral. The two constraints jk2 − qj < Λ and q < Λ are
awkward to satisfy simultaneously. However, if we ignore
the constraint on jk2 − qj then we only make an error of
order k2=Λ, which is small for us.

The alternative approach is the RG path integral of
Sec. IV. There we are instructed to only place a cutoff on
the initial conditions:

hϕi
ð1Þðτ1;k1Þϕj

ð3Þðτ2;k2ÞiΛ ¼ ð2πÞ3δð3Þðk1 þ k2Þ

×
Z

τ2

τin

dτ0
Z

τ0

τin

dτ00
Z

d3q
ð2πÞ3 ½G

j
kðτ2; τ0ÞMk

lmðk2;q;k2 − qÞGm
n ðτ0; τ00Þ

×Mn
opðk2 − q;−q;k2ÞWΛðk1Þ2Pip

ð11Þðτ1; τ00jk1ÞWΛðqÞ2Plo
ð11Þðτ0; τ00jqÞ�: ðA17Þ

Unlike the smoothing prescription, here do not place a
bound on jk2 − qj. The other difference is a missing factor
of WΛðk2Þ, but this factor is redundant since k2 is an
external momentum which must be small. This integral is
more straightforward to compute, but, as mentioned above,
until we are ready to compute to the level of k2=Λ precision
there is no real difference. Either computation is well-
approximated by (A15) with a hard momentum cutoff at
q ¼ Λ.
We continue the calculation be performing the angular

part of the integral over q in (A15). Defining the matrix
Σ by

Σk
pðτ0; τ00jkÞ ¼

Z
d3q
ð2πÞ3M

k
lmðk;q;k − qÞGm

n ðτ0; τ00ÞMn
op

× ðk − q;−q;kÞPlo
ð11Þðτ0; τ00jqÞ; ðA18Þ

we have

Σk
pðτ0; τ00jkÞ ¼

k3

4π

Z
dr

�
−
2

3
Pθθ
ð11Þðτ0; τ00jkrÞGk

pðτ0; τ00Þ

þ 1

2
Gθ

δðτ0; τ00ÞΠk
p

�
; ðA19Þ

where q≡ kr. The entries of the Π matrix are

Πδ
δ ¼

�
1þ r2 þ 1

4r
ð1 − r2Þ2 log ð1 − rÞ2

ð1þ rÞ2
�
Pδθ
ð11Þðτ0; τ00jkrÞ;

ðA20Þ

Πδ
θ ¼ −

�
−
5

3
r2 þ r4 þ r

4
ð1 − r2Þ2 log ð1 − rÞ2

ð1þ rÞ2
�

× Pδδ
ð11Þðτ0; τ00jkrÞ; ðA21Þ

Πθ
δ ¼

�
r−2 −

5

3
þ 1

4r3
ð1− r2Þ2 log ð1− rÞ2

ð1þ rÞ2
�
Pθθ
ð11Þðτ0; τ00jkrÞ;

ðA22Þ

Πθ
θ ¼ −

�
1þ r2 þ 1

4r
ð1− r2Þ2 log ð1− rÞ2

ð1þ rÞ2
�
Pθδ
ð11Þðτ0; τ00jkrÞ:

ðA23Þ
Hence (A15) can be rewritten succinctly as

hϕi
ð1Þðτ1;kÞϕj

ð3Þðτ2;−kÞi0

¼
Z

τ

τin

dτ0
Z

τ0

τin

dτ00Gj
kðτ2; τ0ÞΣk

pðτ0; τ00jkÞPip
ð11Þðτ1; τ00jkÞ:

ðA24Þ

Here the 0 means that we have dropped the overall δ
function. In an Einstein–de Sitter universe, we can use (A4)
to do the time integrations analytically. The result is simple
in the limit τ1 ¼ τ2 ≡ τ ≫ τin if we also isolate the large r
part of (A20)–(A23). We find that

hϕi
ð1Þðτ;kÞϕj

ð3Þðτ;−kÞi0

≈
1

5

k2

4π2

�− 61
63

61
63
H

3H −3H2

�
Pδδ
ð11Þðτ;τjkÞ

Z
q≫k

dqPδδ
ð11Þðτ;τjqÞ:

ðA25Þ

It is at this point that we introduce a cutoff Λ in the integral
over q. Approximating this integral by the contribution for
q near Λ is valid up to corrections of order k=Λ.
The Λ dependence of this correlation function needs

to be canceled against the Λ dependence of either
hϕi

Lð1ÞΔϕ
j
Lð3Þi or hϕi

ð1ÞΔK
j
kϕ

k
iniΛ, depending on which

approach we use. In this case, to the level of approximation
to which we are working, they are the same. We will use the
smoothing picture here because it gives us more informa-
tion. The formal expression for Δϕi

Lð3Þ is (3.24), which has
several terms featuring different combinations of short- and
long-wavelength fields.
When we look at the expectation value hϕi

Lð1ÞΔϕ
j
Lð3Þi

there are some simplifications due to momentum conser-
vation and Gaussian statistics. Because of Gaussian
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statistics, the expectation value reduces to a sum of
products of pairs of expectation values. Because of
momentum conservation, the long-wavelength fields can
only be paired with the long-wavelength fields. Therefore
terms with an odd number of ϕLð1Þ factors when fully
expanded will vanish. After some algebra, this leaves us
with

hϕi
Lð1ÞΔϕ

j
Lð3Þi ¼ hϕi

ð1ÞΔK
j
kϕ

k
iniΛ; ðA26Þ

where

ΔKj
k ¼

Z
τ

τin

dτ0
Z

τ0

τin

dτ00Gj
pðτ; τ0ÞMp

lmϕ
l
S0

×

�
Gm

n ðτ0; τ00ÞMn
opϕ

p
S0 þ

∂ϕm
S ðτ0Þ

∂ϕo
Lðτ″Þ

�
Go

kðτ00; τinÞ:

ðA27Þ

We see that the form of the correction is identical to
what was expected based on the analysis from Sec. IV.
Alternatively, we can write this correction as

hϕi
Lð1ÞΔϕ

j
Lð3Þi0 ¼

Z
τ

τin

dτ0Gj
kðτ; τ0ÞCk

l ðτ0jkÞPil
ð11Þðτ; τ0jkÞ;

ðA28Þ
with

Ck
l ðτ0jkÞ¼

Z
τ0

τin

dτ00Mk
qmϕ

q
S0

�
Gm

n ðτ0;τ00ÞMn
opϕ

p
S0þ

∂ϕm
S ðτ0Þ

∂ϕo
Lðτ00Þ

�
× ½Gðτ0;τ00Þ−1�ol : ðA29Þ

In perturbation theory, this is same result as one would have
gotten from a term,

Ck
l ðτ0jkÞϕlðkÞ; ðA30Þ

added to the equation of motion for ϕ.
In the theory of LSS, it has been argued [1,2] that the

terms one should add to the equations of motion represent
the parameters of an imperfect fluid. In particular, to lowest
order in k=Λ, the coefficients of the C matrix determine the
sound speed, viscosity, and heat conduction coefficients in
the fluid:

CðτjkÞ ¼
�

χδ χθ

k2c2s −k2 c2v
H

�
: ðA31Þ

These four coefficients are expected on the basis of
thermodynamic considerations. We should note that the
Λ dependence of (A25) cannot be fully accounted for with
the sound speed and viscosity coefficients, c2s and c2v alone.
Nonzero heat conduction terms are also required. This
agrees with the recent result of [6].
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