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We investigate large-scale structure formation of collisionless dark matter in the phase space description
based on the Vlasov (or collisionless Boltzmann) equation whose nonlinearity is induced solely by
gravitational interaction according to the Poisson equation. Determining the time evolution of density and
peculiar velocity demands solving the full Vlasov hierarchy for the moments of the phase space distribution
function. In the presence of long-range interaction no consistent truncation of the hierarchy is known apart
from the pressureless fluid (dust) model, which is incapable of describing virialization due to the
occurrence of shell-crossing singularities and the inability to generate vorticity and higher cumulants like
velocity dispersion. Our goal is to find a simple ansatz for the phase space distribution function that
approximates the full Vlasov distribution function without pathologies in a controlled way and therefore
can serve as theoretical N-body double and as a replacement for the dust model. We argue that the coarse-
grained Wigner probability distribution obtained from a wave function fulfilling the Schrödinger-Poisson
equation (SPE) is the sought-after function. We show that its evolution equation approximates the Vlasov
equation and therefore also the dust fluid equations before shell crossing, but cures the shell-crossing
singularities and is able to describe regions of multistreaming and virialization. This feature was already
employed in cosmological simulations of large-scale structure formation by Widrow and Kaiser (1993).
The coarse-grained Wigner ansatz allows us to calculate all higher moments from density and velocity
analytically, thereby incorporating nonzero higher cumulants in a self-consistent manner. On this basis we
are able to show that the Schrödinger method automatically closes the corresponding hierarchy such that it
suffices to solve the SPE in order to directly determine density and velocity and all higher cumulants.
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I. INTRODUCTION

The standard model of large-scale structure (LSS)
formation and halo formation is based on collisionless
cold dark matter (CDM), a yet unknown particle species
that for purposes of LSS and larger halos can be assumed
to interact only gravitationally and to be cold or initially
single-streaming. We are therefore interested in the dynam-
ics of a large collection of identical point particles that via
gravitational instability evolve from initially small density
perturbations into eventually bound structures, like halos
that are distributed along the loosely bound LSS composed
of superclusters, sheets, and filaments [1–3]. All these
structures depend on cosmological parameters, in particular
the background energy density of CDM and the cosmo-
logical constant. We therefore require accurate modeling
and theoretical understanding of CDM dynamics to extract
those cosmological parameters from observations. While
the shape of the LSS can be reasonably well described
by modeling the CDM as a pressureless fluid (dust), it

necessarily fails at small scales where multiple streams
form. Multistreaming is especially important for halo
formation (virialization), but already affects LSS and its
observation in redshift space.
On sub-Hubble scales and for nonrelativistic velocities

the Newtonian limit of the Einstein equations is sufficient
to describe the time evolution of structures within the
Universe [4–6]. Furthermore the large number of particles
under consideration suppresses collisions such that the
phase space dynamics is only affected by the smooth
Newtonian potential [7]. Therefore the time-evolution of
the phase space distribution function fðt; x; pÞ is governed
by the Vlasov (or collisionless Boltzmann) equation whose
nonlinearity is induced by the gravitational force obtained
from the Poisson equation sourced by

R
d3pfðt; x; pÞ.

Even though this model seems to be quite simple from a
conceptual point of view, no general solution is known and
one usually has to resort to N-body simulations which
tackle the problem of solving the dynamical equations
numerically, see [2,8–12]. From the analytical point of
view, different methods to describe LSS formation based on
the dust model have been developed. The dust model
describes CDM as a pressureless fluid using hydrodynamic
equations [1], and is studied especially in the context of
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perturbation theory. Among them the two most commonly
used methods are the Eulerian framework describing the
dynamics of density and velocity fields, see [13], and the
Lagrangian description following the field of trajectories
of particles [14]. The dust model is an exact solution to
the Vlasov equation which describes absolutely cold dark
matter and works quite well in the linear and quasi-linear
regime of LSS formation. But the dust model not only
fails to catch the dynamics when multiple streams occur in
the N-body dynamics, but actually runs into so called
“shell-crossing” singularities or caustics forming at the
smallest scales. One might therefore say that the dust model
is UV incomplete.
A possibility to circumvent the formation of singularities

and to restore agreement with simulations in the weakly
nonlinear regime is to introduce an artificial viscosity term
in the pressureless fluid equations which is effective only in
regions where the dust evolution would predict a singu-
larity. This phenomenological model proposed in [15] is
known as adhesion approximation and was shown to be
able to reproduce the skeleton of the cosmic web in [16].
However, such ad hoc constructions remain quite unsatis-
fying from a conceptual point of view; for example, the size
of formed structures directly depends on the viscosity
parameter rather then the initial conditions and it is unclear
how well the Vlasov equation is approximated.
A more general reasoning was pursued in the direction

of coarse-grained perturbation theory which led to models
that were argued to incorporate adhesive features. When the
dynamical evolution of a many-body system is described
by means of a continuous phase space distribution one has
to consider coarse-grained or macroscopic quantities,
thereby neglecting detailed information about the micro-
scopic degrees of freedom. Although at a first glance this
might seem inconvenient, it is indeed an advantageous point
of view, especially when comparing to data inferred from
observations or simulations, that are fundamentally coarse-
grained. Therefore the dynamical evolution of smoothed
density and velocity fields relevant for cosmological struc-
ture formation has been under investigation, see for example
[17,18], where it was argued that coarse-graining may lead
automatically to adhesive behavior. Furthermore it was
shown in [19] that for averaged fields the correspondence
between the occurrence of velocity dispersion and multi-
streaming phenomena due to shell crossing breaks down.
This is due to the fact that the coarse-graining introduces
a nonzero velocity dispersion between the particles within
each coarse-graining cell which mimics microscopic veloc-
ity dispersion connected to genuine multistreaming.
Solving the Vlasov equation is equivalent to solving the

infinite coupled hierarchy of equations for the cumulants of
the distribution function f with respect to momentum p.
This means that in order to determine the time evolution of
the zeroth and first cumulants, related to density and velocity,
all higher cumulants starting with velocity dispersion are

relevant, see [20]. Only neglecting them entirely is consistent
[20]; in this case one is lead to the popular dust model [1].
Gravity is the dominant force on cosmological scales
and in the early stages of gravitational instability matter is
distributed very smoothly with nearly single-valued veloc-
ities. Therefore the dust model has proven quite successful
in describing the evolution as long as the collective motion
of particles is well described by this coherent flow. However,
as soon as the density contrast becomes nonlinear, multiple
streams form and become relevant in the Vlasov dynamics
while caustics—called shell-crossing singularities—are
developed indicating that the underlying approximations
are no longer justified and themodel looses its predictability.
The problem of developing singularities and failure of being
a good description afterwards, also occurs in the first order
Lagrangian solution, called Zel’dovich approximation [21],
which is the exact solution in the plane-parallel collapse
studied in Sec. IV.
The Schrödinger method (ScM), originally proposed in

[22,23] as a numerical technique for following the evolu-
tion of CDM, models CDM as a complex scalar field
obeying the coupled Schrödinger-Poisson equations (SPE)
[24–26] in which ℏ merely is a free parameter that can be
chosen at will and determines the phase space resolution.
The ScM is comprised of two parts: (1) solving the SPEwith
desired initial conditions and (2) taking the Husimi trans-
form [27] to construct a phase space distribution from the
wave function. The correspondence between distribution
functions in classical mechanics and phase space represen-
tations of quantummechanics has been investigated in detail
by [28], both analytically as well as by means of numerical
examples. It turned out that the Wigner function, obtained
from a wave function fulfilling the SPE, corresponds poorly
to classical dynamics. In contrast, the coarse-grainedWigner
or Husimi distributionwas shown to be indeed a goodmodel
for coarse-grained classical mechanics [22,28].
The SPE can be seen as the nonrelativistic limit of the

Klein-Gordon-Einstein equations [29,30]. From this per-
spective the physical interpretation (ifℏ takes the value of the
Planck constant) is that CDM is actually a noninteracting and
nonrelativistic Bose-Einstein condensate in which case the
SPE can be interpreted as a special Gross-Pitaevskii equation
(see [31] for a review). In plasma and solid state physics
as well as mathematical physics the equation is known as
Choquard equation [32,33]. In the context of gravitational
state reduction this equation, denoted by Schrödinger-
Newton equation, was studied e.g. in [34]. There have also
been investigations on the connection between general fluid
dynamics and wave mechanics [35,36].
The similarity between the SPE and the dust model has

been also employed in the context of wave mechanics.
There the so-called “free-particle approximation” (based on
the free-particle Schrödinger equation, see [37]) was shown
to closely resemble the Zel’dovich approximation [24,25]
while avoiding singularities. In someworks a modified SPE
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system with an added quantum pressure term was consid-
ered, [38,39] which then is equivalent to the usual fluid
system. Clearly this approach is not advantageous since the
fluid description is known to break down at shell-crossing.
This had lead to the claim in [38] that also the Schrödinger
method breaks down. In [40] perturbation theory based on
the SPE in the limit ℏ → 0 was considered where it was
emphasized that shell-crossing singularities are avoided.
However their calculations assumed ℏ ¼ 0 identically,
which leads to results equivalent to standard perturbation
theory (SPT) based on a dust fluid, without solving the
shell-crossing problem.
That the ScM is a viable model for cosmological

structure formation and in particular capable of describing
multistreaming was exemplarily demonstrated by means
of numerical examples in [22,23,41]. However, the bulk
of these investigations were aimed at replacing N-body
simulations by a numerical solution to the SPE. Therefore
the methods applied therein are unsuitable and inconven-
ient for the genuine analytical approach we want to
establish. In [22,23] a superposition of N Gaussian wave
packets was used as initial wave function, thereby closely
resembling the N particles in an N-body simulation. In [41]
CDM was modeled by N wave functions coupled via the
Poisson equation. We will study the case of a single wave
function on an expanding background with nearly cold
initial conditions. The result suggests that indeed the
ScM is a substantially better suited analytical tool to study
CDM dynamics than the dust model: in the single-stream
regime they stay arbitrarily close to each other, but while
dust fails and stops when multistreaming should occur, the
Schrödinger wave function continues without any pathol-
ogies and behaves like multistreaming CDM when inter-
preted in a coarse-grained sense. Although it was already
observed in [24] that the wave function does not run into
singularities, it was claimed that it still cannot describe
multistreaming or virialization. Indeed, our numerical
example closely resembling that of [24], but generalized
to an expanding background, proves the contrary. Fig. 1
shows the dynamics of the Husimi function fH using the
ScM: the density remains finite at shell crossing, fH forms
multistream regions and ultimately virializes. None of these
features necessary for a full description of LSS and halo
formation are accessible with the dust model.
Goal.—The aim of this paper is to present the

Schrödinger method, already investigated in the context
of cosmological simulations, as a theoretical N-body
double for the phase space distribution function f. We
show that phase space density fH obtained from the
ScM solves the Vlasov equation approximately but in a
controlled manner. We demonstrate that fH closes the
hierarchy of moments automatically but yet allows for
multistreaming and virialization. We give explicit analytic
expressions for higher order nonvanishing cumulants, like
velocity dispersion, in terms of the wave function and in

terms of the macroscopic physical density and velocity
fields. This constitutes a new approach to tackle the closure
problem of the Vlasov hierarchy apart from truncation or
restricting oneself to the dust model and its limitations.
We shed light on the physical interpretation by means of a
numerical study of pancake formation. In summary this
means that the ScM models CDM in a well-behaved
manner with initial conditions and single-stream dynamics
arbitrarily close to dust. Unlike dust, the ScM captures all
relevant physics for describing CDM dynamics even in the
deeply nonlinear regime and does not fail on the smallest
scales, therefore providing a UV-completion of dust.
Structure.—This paper is organized as follows: In Sec. II

we review the phase space description of cold dark matter
and explain how one is lead to the Vlasov equation on an
expanding background. After introducing the dust model

FIG. 1 (color online). Collapse of a pancake (plane-parallel)
density profile on a Einstein–de Sitter background as seen in
phase space using the ScM. blue contours: Phase space density
fH calculated from Eqs. (13), (23) at four moments in time.
Red dotted line: the Zel’dovich solution of Eq. (B3) is the exact
dust solution, valid until a ¼ 1. Only the first panel of the four
characteristic moments can be described by dust. Shell crossing
(2nd panel), multistreaming (3rd panel) and viralization
(4th panel) are accessible with the ScM but not with dust. That
the dynamics corresponds to CDM is proven in Sec. II D. How to
obtain cumulants without constructing fH is shown in Sec. III C.
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we re-derive the coarse-grained Vlasov equation. We then
introduce the Wigner function as an ansatz for the phase
space distribution and explain its connection to the dust
model. We derive the corresponding Wigner-Vlasov equa-
tion as well as its coarse-grained version and discuss their
relations to the Vlasov equation and the coarse-grained
Vlasov equation, respectively. In Sec. III we determine the
moments of the three different phase space distributions–
the dust model, the Wigner function and the coarse-grained
Wigner or Husimi distribution. In Sec. IV we investigate
the pancake collapse to illustrate that the dynamics of the
complex scalar field is free from the pathologies of the dust
fluid and serves therefore both as a theoretical N-body
double and as a UV completion of dust. On this basis we
explain how the closure of the hierarchy of moments can be
achieved and finally discuss the implications. In Sec. V we
make suggestions about possible future research based on
ScM and conclude in Sec. VI.

II. PHASE-SPACE DESCRIPTION
OF COLD DARK MATTER

A. From the Klimontovich to the Vlasov equation

The exact one-particle (Klimontovich) phase space
density fK of N identical particles following trajectories
fxiðtÞ; piðtÞg, i ∈ 1;…; N, in phase space is given by a sum
of δ functions,

fKðt; x; pÞ ¼
1

N

XN
i¼1

δDðx − xiðtÞÞδDðp − piðtÞÞ: ð1Þ

We use comoving coordinates x with associated conjugate
momentum p ¼ a2mdx=dt, where a is the scale factor
satisfying the Friedmann equation of a ΛCDM or Einstein–
de Sitter universe.1 For convenience we will in general
suppress the t-dependence of the distribution function in the
following. This phase space density obeys theKlimontovich
equation [42] encoding phase space density conservation
along phase space trajectories

DfK
dt

¼ ∂fK
∂t þ dx

dt
·
∂fK
∂x þ dp

dt
·
∂fK
∂p ¼ 0: ð2Þ

Upon using the equations of motion for nonrelativistic
particles with trajectories fxiðtÞ; piðtÞg one arrives at

∂tfK ¼ −
p

a2m
· ∇xfK þm∇xV · ∇pfK: ð3aÞ

The nonlinearity in (3a) is induced by the fact that the
Newtonian potential V describes gravitational interaction
and therefore depends through the Poisson equation on the
density field given by the integral of the distribution function
over momentum

ΔV ¼ 4πGρ0
a

�Z
d3pfK − 1

�
; ð3bÞ

where ρ0 is the (constant) comoving matter background
density such that fK has a background value or spatial
average value hR d3pfKivol ¼ 1. When symbols like ∇ or
Δ ¼ ∇ ·∇ are used without subscripts they refer to spatial
derivatives ∇x or Δx, respectively.
Retaining all details concerning the microstate of a

system, the spiky Klimontovich density is not really of
practical use. Rather, one is interested in the statistical
average taken over an ensemble of different realizations of
the distribution of the N particles. This information is
contained within the smooth one-particle phase space
density f1 given by

f1ðt; x; pÞ ¼ hfKðt; x; pÞi; ð4Þ
where angle brackets denote the ensemble average of
microstates fK that lead to the same coarse-grained phase
space density. If V was a specified external potential,
f1 would obey the same equation as fK. However, since V
is the gravitational potential computed self-consistently
from the particles via (3b), the ∇xV ·∇pfK term in (3a) is
quadratic in fK. Therefore when taking the ensemble
average to derive an equation for the one-particle distri-
bution function f1 an additional correlation term emerges
which involves the irreducible part f2c of two-particle
distribution function f2ðx; p; x0; p0Þ ¼ f1ðx; pÞf1ðx0; p0Þþ
f2cðx; p; x0; p0Þ, compare [43]

∂tf1 ¼−
p

a2m
·∇xf1þm∇xV ·∇pf1

þm
Z

d3x0d3p0∇xVðx− x0Þ ·∇pf2cðx;p;x0;p0Þ: ð5Þ

This leads to a set of coupled kinetic equations where the n-
particle distribution in turn depends on the ðnþ 1Þ-particle
distribution. This is the so-called Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy, describing the dyna-
mics of an interacting N-particle system. The resulting
equation (5) for f1 differs from the Klimontovich
equation (3) by a correlation term which vanishes in the
absence of pair correlations. Fortunately, for the case of
interest here—CDM particles—these collisional effects are
completely negligible since they are suppressed by 1=N
where N is the number of particles (see [7]). The corre-
sponding Vlasov-Poisson system for the one-particle phase
space density f1, which we will denote simply by f from
now on, describes collisionless dark matter in the absence
of two-body correlations

∂tf ¼ −
p

a2m
·∇xf þm∇xV ·∇pf; ð6aÞ

¼
�

p2

2a2m
þmVðxÞ

�
ð ⃖∇x

~∇p − ⃖∇p
~∇xÞf; ð6bÞ1More generally, any expansion history is allowed as long as

metric perturbations are only sourced by CDM.
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ΔV ¼ 4πGρ0
a

�Z
d3pf − 1

�
: ð6cÞ

B. Dust model

The dust model describes CDM as a pressureless fluid
with density ndðxÞ and fluid momentum given by an
irrotational flow ∇ϕdðxÞ which remains single-valued at
each point, and therefore absolutely cold, meaning that
particle trajectories are not allowed to cross and velocity
dispersion cannot arise. This regime is usually referred to as
“single-stream,” meaning that the validity of this model
breaks down as soon as shell crossings occur and multiple
streams develop. The corresponding distribution function
is given by

fdðx; pÞ ¼ ndðxÞδDðp −∇ϕdðxÞÞ: ð7Þ

As we will see in Sec. III, the Vlasov equation (6a) for fd
implies the hydrodynamical equations for a perfect pres-
sureless fluid with density nd and velocity potential ϕd=m.
The fluid equations consist of the continuity equation, the
Bernoulli and Poisson equation,

∂tnd ¼ −
1

ma2
∇ · ðnd∇ϕdÞ; ð8aÞ

∂tϕd ¼ −
1

2a2m
ð∇ϕdÞ2 −mVd; ð8bÞ

ΔVd ¼
4πGρ0

a
ðnd − 1Þ: ð8cÞ

By defining an irrotational velocity according to ud ¼∇ϕd=m one can rewrite (8a) and (8b) in the following
equivalent form:

∂tnd ¼ −
1

a2
∇ · ðndudÞ; ð9aÞ

∂tud ¼ −
1

a2
ðud ·∇Þud −∇Vd; ð9bÞ

∇ × ud ¼ 0: ð9cÞ

C. Coarse-grained Vlasov equation

The coarse-grained distribution function f̄ is obtained
from f by convolution with a Gaussian of width σx and σp
in x and p space, respectively. For convenience we will
adopt the shorthand operator representation of the smooth-
ing which can be easily obtained by switching to Fourier
space,

f̄ðx;pÞ¼
Z

d3x0d3p0

ð2πσxσpÞ3
exp

�
−
ðx−x0Þ2
2σx

2
−
ðp−p0Þ2
2σp

2

�
fðx0;p0Þ;

f̄¼ exp

�
σx

2

2
Δxþ

σp
2

2
Δp

�
f: ð10Þ

The corresponding coarse-grained Vlasov equation as
given in [44] is easily obtained from the usual Vlasov
equation (6) by applying the smoothing operator. We
employ the following identity for the smoothing operator,

expðΔÞðABÞ ¼ ½expðΔÞA� exp ð2 ⃖∇ ~∇Þ½expðΔÞB�; ð11Þ

in order to express the coarse-graining of a product in terms
of its coarse-grained factors. The result is the cosmological
analogue to the evolution equation for coarse-grained
classical distribution,

∂tf̄ ¼ −
p

a2m
∇xf̄ −

σp
2

a2m
∇x∇pf̄ þm∇xV̄ expðσx2 ⃖∇x

~∇xÞ∇pf̄; ð12aÞ

¼ exp

�
σx

2

2
Δx þ

σp
2

2
Δp

��
p2

2a2m
þmV

�
exp ðσx2 ⃖∇x

~∇x þ σp
2 ⃖∇p

~∇pÞð ⃖∇x
~∇p − ⃖∇p

~∇xÞf̄; ð12bÞ

which was given in [28] for a ¼ 1 and units where
σx

2 ¼ σp
2 ¼ ℏ=2.

Note that this result holds on a FRW background with
cosmic time t, comoving x and canonical conjugate one-
form p, where V̄ fulfills Eq. (3b) with f is replaced by f̄.
If derivative operators like ∇x and ∇p carry left or right
arrows over them, they specify that they only act on
quantities on their left or right hand side, respectively.
The notation of Eq. (12) is the same as used in [28]. At first
glance the coarse-graining introduced in (10) might seem

like an unfavorable artifact that complicates calculations on
the one hand and erases relevant information on the other
hand. However, one has to bear in mind that when sampling
the distribution function numerically using a finite number
of particles, a coarse-graining is inevitable to provide a
proper phase space description [18]. This is of particular
importance since solving the Vlasov-Poisson equation
analytically is a formidable task and one typically has to
resort to numerical simulations, for example N-body codes
[2,8–12]. The coarse-grained phase space distribution
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function f̄ can therefore be seen as a theoretical N-body
double. Another important property of f̄ is that it can be
obtained from fK directly by coarse-graining in phase
space, f̄ ¼ exp ½1

2
σx

2Δx þ 1
2
σp

2Δp�fK, without the need of
obtaining first f and the Vlasov equation via ensemble
averaging fK.

D. Husimi-Vlasov equation

1. Schrödinger Poisson system

The Schrödinger-Poisson system in a ΛCDM universe
with scale factor a is given by

iℏ∂tψ ¼ −
ℏ2

2a2m
Δψ þmVψ ; ð13aÞ

ΔV ¼ 4πGρ0
a

ðjψ j2 − 1Þ ð13bÞ

(see for instance [22]). Using the so-called “Madelung
representation” for the wave function ψðxÞ ¼ffiffiffiffiffiffiffiffiffi
nðxÞp

exp ðiϕðxÞ=ℏÞ one can obtain fluidlike equations
of motion for the normalized density2 n and the velocity
potential ϕ directly from the Schrödinger equation [35].
By separating real and imaginary parts one obtains the
continuity equation (8a), and an equation for ϕ which is
similar to the Bernoulli equation (8b) but contains an
extra term proportional to ℏ2, the so-called “quantum
pressure,”

∂tn ¼ −
1

ma2
∇ · ðn∇ϕÞ; ð14aÞ

∂tϕ ¼ −
1

2a2m
ð∇ϕÞ2 −mV þ ℏ2

2a2m
Δ

ffiffiffi
n

p
ffiffiffi
n

p ; ð14bÞ

ΔV ¼ 4πGρ0
a

ðn − 1Þ: ð14cÞ

With the definition u ¼ ∇ϕ=m, the modified Bernoulli
equation for ϕ is then equivalent to a modified Euler
equation with the constraint ∇ × u ¼ 0

∂tn ¼ −
1

a2
∇x · ðnuÞ; ð15aÞ

∂tu ¼ −
1

a2
ðu · ∇Þu −∇V þ ℏ2

2a2m2
∇
�
Δ

ffiffiffi
n

p
ffiffiffi
n

p
�
: ð15bÞ

At this stage we want to emphasize again that the
Schrödinger equation is considered here as a mere tool
to model CDM dynamics. Therefore the value of ℏ has to
be treated as a parameter which is not necessarily connected

to the value of ℏ in the context of ordinary quantum
mechanics, but rather must be adjusted to computational
feasibility and the physical problem at hand [22]. Another
important remark is in order. The Madelung respresentation
Eqs. (14) is only equivalent to the Schrödinger system
Eqs. (13) as long as n ≠ 0. We will see later that during
shell crossings, interference in the wave-function ψ will
cause n ¼ 0 at isolated points in space and time. Once this
happens the Madelung representation breaks down because
ϕ develops infinite spatial gradients and phase jumps,
leading to infinite time derivatives. In Appendix B we
investigate the Lagrangian formulation of the SPE, which
suffers from the same problem. If one still prefers to stay in
the fluid picture, one needs to solve instead for the
momentum j≡ nu, which is well behaved during these
phase jumps and fulfills

∂tn ¼ −
1

a2
∇ · j; ð15cÞ

∂t j ¼ −
1

a2
∇i

�
ji j
n

�
− n∇

�
V −

ℏ2

2a2m2

Δ
ffiffiffi
n

p
ffiffiffi
n

p
�
: ð15dÞ

We will comment on the nature of phase jumps in
Sec. IV B. The dynamics of ψ in Eqs. (13) is free from
pathologies.

2. Wigner quasi-probability distribution

Originally introduced to study quantum corrections to
classical statistical mechanics, the Wigner quasiprobability
distribution [45] allows us to link the Schrödinger wave
function ψðxÞ to a function fðx; pÞ in phase space

fWðx;pÞ¼
Z

d3 ~x
ðπℏÞ3 exp

�
2
i
ℏ
p · ~x

�
ψðx− ~xÞψ�ðxþ ~xÞ; ð16Þ

where ψ� denotes the complex conjugate of ψ . fW is a
quasiprobability distribution since it can become negative
in general. For the dustlike initial conditions studied later
see Fig. 2, left.
Wigner Vlasov equation.—The time evolution equation

for fW is obtained by using the Schrödinger equation (13a)
and performing an integration by parts twice which
yields

∂tfW ¼ −
p

a2m
∇xfW þ i

ℏ

Z
d3 ~x
ðπℏÞ3 exp

�
2
i
ℏ
p · ~x

�
ð17Þ

×m½Vðxþ ~xÞ − Vðx − ~xÞ�ψðx − ~xÞψ�ðxþ ~xÞ:

In order to obtain a factorization of the form VðxÞ · fW one
has to perform a Taylor expansion of Vðx − ~xÞ − Vðxþ ~xÞ
around x using α ∈ N3

0 as a multi-index2The volume average is hnivol ¼ 1.
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Vðxþ ~xÞ − Vðx − ~xÞ ¼
X
jαj≥1

∂ðαÞ
x VðxÞ
α!

½~xα − ð−~xÞα�: ð18Þ

Obviously the difference in parenthes vanishes if jαj is
even and gives 2~xα if jαj is odd. Therefore this term

can be rewritten as derivative −iℏ∂ðαÞ
p exp ½2ip · ~x=ℏ�. Upon

resummation one obtains the evolution equation for the
Wigner function

∂tfW ¼ −
p

a2m
∇xfW þmV

2

ℏ
sin

�
ℏ
2
⃖∇x

~∇p

�
fW; ð19aÞ

¼
�

p2

2a2m
þmV

�
2

ℏ
sin

�
ℏ
2
ð ⃖∇x

~∇p − ⃖∇p
~∇xÞ

�
fW;

ð19bÞ

which coincides with the result given in [28] for the special
case where a ¼ 1. Note that on an FRW space aðtÞ is the
scale factor with t cosmic time, x comoving, p is the
conjugate momentum one-form and V fulfills Eq. (14c).
Relation to fd.—The similarity between the equa-

tions (14) obtained from a Schrödinger wave function
when decomposing it into modulus and phase ψ ¼ffiffiffi
n

p
exp ðiϕ=ℏÞ

and the fluid equations (8) can also be understood from the
point of view of distribution functions. Transforming
variables ~x → ℏ~x and adopting the shorthand notation
g� ¼ gðx� ℏ~xÞ the Wigner function can be rewritten in
the following form

fWðx; pÞ ¼
Z

d3 ~x
π3

ffiffiffiffiffiffiffiffiffiffiffi
nþn−

p
exp

�
i

�
2p · ~xþ ϕ− − ϕþ

ℏ

��
;

which allows us to examine the formal limit ℏ → 0. Taylor-
expanding n� and ϕ� to leading nonvanishing order in ℏ
and evaluating the integral gives [22]

fWðx; pÞ ¼ℏ→0 nðxÞδDðp −∇ϕðxÞÞ ¼ fdðx; pÞ: ð20Þ
Correspondence to Vlasov equation.—At leading order,

the Wigner Vlasov equation (19) differs from the Vlasov
equation (6) only by a term proportional to ℏ2

∂tðfW − fÞ≃ ℏ2

24
∂xi∂xj∇xV∂pi

∂pj
∇pfW þOðℏ4Þ:

Therefore one might hope that they are in good agreement.
However, as was shown exemplarily in [28], the corre-
spondence between the time-evolution of the Wigner
distribution fW and Vlasov distribution function f is in
general very poor by virtue of the violent oscillations of fW
on scales ℏ, related to the fact that fW can become negative.
In this context one has to bear in mind that the semiclassical
limit ℏ → 0 is not meaningful in the sense that it does not
drive the solution towards a classical one in a continu-
ous way.

3. Coarse-grained Wigner distribution function

The so-called “Husimi-Q” [27] representation can be
understood as a smoothing of the Wigner quasi-probability
distribution (16) by a Gaussian filter of width σx and σp in x
and p space, respectively, f̄W

f̄W ¼ exp

�
σx

2

2
Δx þ

σp
2

2
Δp

�
fW: ð21Þ

In contrast to the Wigner distribution itself the coarse-
grained version is a positive-semidefinite function if the
filter is of appropriate size σxσp ≥ ℏ=2 for a semi-classical
description (see [46]). Note that for the FRW case, the form
of f̄W remains unchanged provided x is comoving and p is
the conjugate momentum one-form.
Husimi-Vlasov equation.—The corresponding Husimi-

Vlasov equation for the coarse-grained fW is then easily
obtained by acting with the coarse-graining operators onto
Eq. (19) employing again the product rule (11)

FIG. 2 (color online). Comparison between fW and f̄W at the initial time aini ¼ 0.01 using linear dustlike initial conditions n ¼ nd
and ϕ ¼ ϕd. The left panel shows the strongly oscillating fW (red is negative, blue is positive), the right panel is its smoothed
version f̄W (with the same coloring as in Fig 1). We choose the minimal values of σx and σp such that f̄W ≥ 0, which turned out to
be σxσp ¼ 0.03ℏ.
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∂tf̄W ¼ −
p

a2m
∇xf̄W −

σp
2

a2m
∇x∇pf̄W þmV̄ expðσx2 ⃖∇x

~∇xÞ
2

ℏ
sin

�
ℏ
2
⃖∇x

~∇p

�
f̄W; ð22aÞ

¼ exp

�
σx

2

2
Δx þ

σp
2

2
Δp

��
p2

2a2m
þmVðxÞ

�
exp ðσx2 ⃖∇x

~∇x þ σp
2 ⃖∇p

~∇pÞ
2

ℏ
sin

�
ℏ
2
ð ⃖∇x

~∇p − ⃖∇p
~∇xÞ

�
f̄W: ð22bÞ

This equation is the generalization of the result given
in [28] allowing for cosmological backgrounds, arbitrary
potentials and smoothing scales σx; σp. It is the resumma-
tion of the equation given up to second order in σx in [47],
which we obtained by explicit calculation performed
analogously to the one presented for fW.
In [22] the Husimi representation was used instead, in

which the wave function is represented in a (over-complete)
basis of Gaussian wave packets

ψHðx; pÞ ¼
Z

d3yKHðx; y; pÞψðyÞ; ð23aÞ

KHðx; y; pÞ ¼
exp ½− ðx−yÞ2

4σx
2 − i

ℏ p · ðy − 1
2
xÞ�

ð2πℏÞ3=2ð2πσx2Þ3=4
; ð23bÞ

such that when going from ψ to ψH no information is
sacrificed. Defining the Husimi distribution function to be

fH ¼ jψHj2; ð23cÞ

it is easy to check that it is a special case of the coarse-
grained Wigner function, namely,

fH ¼ f̄W if σxσp ¼ ℏ=2: ð23dÞ

This representation is very convenient numerically, because
fH is manifestly real and positive. Also the integration is
much simpler to evaluate than for fW. The main advantage
is that one does not need to sample the quite heavily
oscillating fW to construct f̄W. Figure 2 (left) provides an
impression of fW for cold initial conditions. We also
know that σxσp ≥ ℏ=2 ensures f̄W ≥ 0 [46]. Therefore
the Husimi representation picks the smallest sufficient σp
for a positive phase space distribution given a σx and ℏ.
However we would like to point out that for cold dustlike
initial conditions well within the linear regime we are
free to choose even σxσp < ℏ=2 without encountering any
trouble, compare Figs. 1 (1st panel) and 2 (right). It is
also important to realize that the dynamics at early times
well before shell crossing is not affected by the seemingly
poor phase space resolution [see Fig. 1 (1st panel)]. We can
see this by inspecting the Madelung representation (14) of
the Schrödinger equation from which it is clear that for
smooth dustlike initial conditions the quantum potential
with

Q ¼ −
ℏ2

2a2m2

Δ
ffiffiffi
n

p
ffiffiffi
n

p ; ð24Þ

will be subdominant for sufficiently small ℏ=m.
Correspondence to coarse-grained Vlasov equation.—

Comparing the coarse-grained Vlasov equation (12) and
the Husimi-Vlasov equation (22) we find that they are equal
at first order in σ2x and σ2p

∂tðf̄W − f̄Þ≃ ℏ2

24
∂xi∂xj∇xV̄∂pi

∂pj
∇pf̄W þOðℏ4;ℏ2σx

2Þ:
ð25Þ

The Husimi-Vlasov equation (22) is in good correspon-
dence to the coarse-grained Vlasov equation (12) if
σxσp ≳ ℏ=2, which ensures the removal of the violent
oscillations and therefore approximates the Vlasov equa-
tion well if σx ≪ xtyp and σp ≪ ptyp. Hereby we compared
the two distribution functions which are obtained with the
same coarse-graining parameters σx and σp in phase space.
As described in [28], the coarse-grained Wigner function
f̄W reveals a considerably better correspondence to the
probability distribution function f in classical mechanics
than the Wigner function fW does.

4. Appropriate choice of the smoothing scales

If xtyp and ptyp are the (minimal) scales of interest we
have to ensure that

σx ≪ xtyp and σp ≪ ptyp: ð26Þ

Furthermore in general the maximal achievable resolution
in phase space is limited by the value of ℏ such that σx and
σp have to be chosen to fulfill

ℏ=2≲ σxσp ð27Þ

(see however Fig. 2 for an exception well before shell
crossing). On a FRW background these bounds take the
same form if distances are comoving and if utyp ¼ ptyp=m
is absolute value of the comoving (or canonical) momen-
tum one-form. For translating these bounds into require-
ments for numerical simulations, for example grid time
resolution, we refer the reader to [22].
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III. HIERARCHY OF MOMENTS

In practice one is usually interested in following the
evolution of the spatial distribution instead of describing
the fully fledged phase space dynamics encoded in the
Vlasov equation. For this purpose, the relevant information
can be extracted by taking moments of the distribution
function with respect to momentum as follows.
Generating functional.—The momentsMðnÞ of the phase

space distribution function fðx; pÞ can be obtained from the
generating functional G½J� by taking functional derivatives.
In a similar way the cumulants can be determined from the
moments. They provide a good way to understand the
prominent dust-model which is the only known consistent
truncation of the Vlasov hierarchy. The generating func-
tional, moments and cumulants are given by

G½J� ¼
Z

d3p exp ½ip · J�f; ð28aÞ

MðnÞ
i1���in ≔

Z
d3ppi1…pinf ¼ ð−iÞn ∂nG½J�

∂Ji1…∂Jin
����
J¼0

;

ð28bÞ

CðnÞ
i1���in ≔ ð−iÞn ∂

n lnG½J�
∂Ji1…∂Jin

����
J¼0

: ð28cÞ

Vlasov hierarchy.—The evolution equations for the
moments MðnÞ of the phase space distribution f
can be determined from the Vlasov equation (6a)
by multiplying it with pi1…pin and performing an inte-
gration over momentum

∂tM
ðnÞ
i1���in ¼ −

1

a2m
∇jM

ðnþ1Þ
i1���inj −m∇ði1V ·Mðn−1Þ

i2���inÞ:

ð29Þ

Indices enclosed in round brackets imply symmetrization
according to aðibjÞ ¼ aibj þ ajbi. It turns out that a coupled
Vlasov hierarchy for themoments emerges whichmeans that
in order to determine the time evolution of the nth moment
the ðnþ 1Þ-th moment is required. This closure problem for
the hierarchy becomes more transparent when looking at the
dynamical equation for the nth cumulant CðnÞ. The time
evolution can be determined from the generating functional
(28a) using the Vlasov equation (6a) and reads

∂tC
ðnÞ
i1���in ¼ −

1

a2m

�
∇jC

ðnþ1Þ
i1���inj þ

X
S∈Pðfi1;���;ingÞ

Cðnþ1−jSjÞ
l∉S;j · ∇jC

ðjSjÞ
k∈S

�
− δn1 ·m∇i1V; ð30Þ

where S runs through the power set P of indices fi1;…; ing
and the Kronecker δn1 in last term ensures that the potential
contributes only to the equation for the first cumulant Cð1Þ

describing velocity. From this equation it becomes clear that
one can set Cðn≥2Þ ≡ 0 in a consistent manner since each
summand in the evolution equation of Cð2Þ contains a factor
of Cðn≥2Þ. In contrast, the time evolution of Cð3Þ depends
also on summands containing solely Cð2Þ such that it cannot
be trivially fulfilled when setting Cðn≥3Þ ≡ 0. A similar
reasoning applies to all higher cumulants Cðn≥3Þ and
demonstrates that there is no consistent truncation of the
hierarchy of cumulants apart from the one at second order.
These arguments are seconded by numerical evidence
indicating that as soon as velocity dispersion encoded in
Cð2Þ becomes relevant, even higher cumulants are sourced
dynamically (see [20]).
Strategies for closing the hierarchy.— In principle it

would be desirable to adopt an ansatz for f as general as
possible. However, in this case it is difficult to find a closed
form expression for the moments since one cannot perform
the integration over momentum space. Therefore we have
to resort to a special ansatz for the p dependence of f which
allows us to compute moments up to arbitrary order
analytically. In the following we will compare three differ-
ent ansätze for the distribution function f: the dust model

fd, the Wigner function fW as well as the Husimi
distribution function f̄W.

A. Hierarchy of moments of f d
The generating functional for the dust model where fd

was inserted according to (7) is given by

Gd½J� ¼ nd exp ½i∇ϕd · J�: ð31Þ

The moments MðnÞ
d and cumulants CðnÞ

d are then given by

Mð0Þ
d ¼ nd; Md

ð1Þ
i ¼ ndϕd;i; Md

ðn≥2Þ
i1���in ¼ ndϕd;i1 � � �ϕd;in ;

ð32aÞ

Cð0Þ
d ¼ ln nd; Cd

ð1Þ
i ¼ ϕd;i; Cd

ðn≥2Þ
i1���in ¼ 0: ð32bÞ

Since the exponent of the generating functional is mani-
festly linear in J, all cumulants of order higher than one
vanish identically. This means that the dust model does not
include effects like velocity dispersion, which is encoded in
the second cumulant Cð2Þ, or vorticity since the velocity is
determined from a potential ϕ. Therefore for the dust ansatz
fd, the Vlasov equation is equivalent to its first two
equations of the hierarchy of moments, the pressureless
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fluid system (8) consisting of the continuity and Euler
equation. The first two moments of the Vlasov hierarchy
(29) are

∂tnd ¼ −
1

a2m
∇kðndϕd;kÞ; ð33aÞ

∂tðndϕd;iÞ ¼ −
1

a2m
∇j½ndϕd;iϕd;j� −mnd∇iVd: ð33bÞ

If nd and ϕd fulfill these equations then all evolution
equations of the higher moments are automatically
satisfied, for example Eqs. (33) imply that

∂tðndϕd;iϕd;jÞ ¼ −
1

a2m
∇kðndϕd;iϕd;jϕd;kÞ

−mnd∇ðiVd · ∇jÞϕd: ð34Þ

B. Hierarchy of moments of fW
For simplicity we first consider the Wigner distribution

function fW as a model for a general distribution function f
fulfilling the Vlasov equation. This case will serve as
pedagogical demonstration how the closure of the hierarchy
can be achieved by choosing a special ansatz for the
distribution function. The generating functional can be
computed by plugging the expression for fW in terms of
ψ ¼ ffiffiffi

n
p

exp ðiϕ=ℏÞ in (28a) and simplified by adopting
again the shorthand notation g�ðx0Þ ≔ gðx0 � ℏ

2
JÞ

G½J� ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþn−

p
exp

�
i
ℏ
ðϕþ − ϕ−Þ

�
: ð35Þ

From this expression the calculation for the moments MðnÞ
is straightforward and yields

Mð0Þ ¼ n; Mð1Þ
i ¼ nϕ;i: ð36aÞ

As expected, even all higher moments Mðn≥2Þ of fW are
given in terms of the two scalar degrees of freedom n and ϕ
introduced as modulus and phase of the wave function ψ ,
respectively,

Mð2Þ
ij ¼ n

�
ϕ;iϕ;j þ

ℏ2

4

�
n;in;j
n2

−
n;ij
n

��
; ð36bÞ

Mð3Þ
ijk ¼ n

2
4ϕ;iϕ;jϕ;k þ

ℏ2

4

0
@�

n;in;j
n2

−
n;ij
n

�
ϕ;k

þcyc perm

− ϕ;ijk

1
A
3
5;

ð36cÞ

σij ≔
ℏ2

4

�
n;in;j
n2

−
n;ij
n

�
¼ Cð2Þ

ij ; Cð3Þ
ijk ¼ −

ℏ2

4
ϕ;ijk: ð36dÞ

To those terms that are marked by “þcyc perm,” cyclic
permutations of the indices have to be added. As we will
explain in the following, this special form of the higher
moments and cumulants amounts to having closed the
infinite Wigner-Vlasov hierarchy for the moments of fW
without truncating it. To demonstrate this we take moments
of the Wigner-Vlasov equation (19) where we consider
corrections to the Vlasov equation up to arbitrary order in
ℏ2. The ℏ terms constitute correction terms to the Vlasov
hierarchy (29) which become relevant forMðn≥3Þ but do not
contribute to Mðn≤2Þ since they have at least three deriv-
atives with respect to momentum which cancel all lower
moments than the third. Therefore the first three evolution
equations are completely analogous to the ones obtained
for the dust model. By plugging in the expression for Mð2Þ
we obtain a closed system of differential equations for n
and ϕ;i,

∂tn ¼ −
1

a2m
∇kðnϕ;kÞ; ð37aÞ

∂tðnϕ;iÞ ¼ −
1

a2m
∇j

�
nϕ;iϕ;j þ

ℏ2

4

�
n;in;j
n

− n;ij

��

− nm∇iV: ð37bÞ

We see that Eqs. (37) determining time evolution of the
first two moments of fW are identical to the fluidlike
equations obtained directly from the Schrödinger
equation (15). This can be verified easily by plugging
(37a) into (37b) and using that the difference in the
quantum velocity dispersion term arising from (41c) and
(41b) is only apparent since

ℏ2

4
∇j

�
n;in;j
n

− n;ij

�
¼ −

ℏ2

2
n∇i

�
Δ

ffiffiffi
n

p
ffiffiffi
n

p
�
: ð38Þ

Note that a proper pressure term in the Euler equation would
have the form ∇p with some p and not the form n∇Q.
Rather the left hand side of (37b) suggests that this term
constitutes a quantum velocity dispersion, since it is of
the form∇iðnσijÞ. Equivalently, one can interpret the ℏ term
as a correction to the Newtonian potential V → V þQ.
The evolution equation for the second moment Mð2Þ

involves the third moment Mð3Þ and is given by

∂tM
ð2Þ
ij ¼ −

1

a2m
∇kM

ð3Þ
ijk − nm∇ðiV · ∇jÞϕ: ð39Þ

For the Wigner function fW all moments MðnÞ can be
expressed entirely in terms of the density n and conjugate
velocity ∇ϕ. Hence, this ansatz closes the hierarchy since
Eq. (39) is automatically fulfilled when Mð2Þ and Mð3Þ,
taken from (36b) and (36c), respectively, are expressed in
terms of n and ϕ which fulfill the corresponding fluid
equations (37). The same is true for all higher moments.
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C. Hierarchy of moments of f̄W

1. Moments up to third order

Wewant to resort to a special ansatz for the p dependence
of f which allows us to compute moments up to arbitrary
order analytically. The coarse-grained Wigner distribution
function f̄W provides us with such an ansatz. Furthermore
it is well suited to model a general distribution function f
fulfilling the Vlasov equation as was demonstrated in [22].
By plugging in the expression for f̄W in terms of
ψ ¼ ffiffiffi

n
p

exp ðiϕ=ℏÞ we can rewrite the generating func-
tional to get

Ḡ½J� ¼ exp

�
σx

2

2
Δ −

σp
2

2
J2
� ffiffiffiffiffiffiffiffiffiffiffi

nþn−
p

exp

�
i
ℏ
ðϕþ − ϕ−Þ

�
:

ð40Þ

From this expression the calculation for themoments M̄ðnÞ is
straightforward and yields

M̄ð0Þ ≕ n̄ ¼ exp

�
σx

2

2
Δ
�
n; ð41aÞ

M̄ð1Þ
i ≕ mn̄ ūi ¼ exp

�
σx

2

2
Δ
�
ðnϕ;iÞ: ð41bÞ

The corresponding mass weighted velocity ū is obtained by
smoothing the momentum field and then dividing by the
smoothed density field. This is precisely the definition
commonly used in the effective field theory of large-scale
structure, compare [48,49]. From a physical point of view ū
describes the center-of-mass velocity of the collection of
particles inside a coarsening cell of diameter σx around x. As
expected, even all highermoments M̄ðn≥2Þ of f̄W are given in
terms of the two scalar degrees of freedom n and ϕ
introduced as modulus and phase of the wave function ψ ,
respectively,

M̄ð2Þ
ij ¼ exp

�
σx

2

2
Δ
�
fn½ϕ;iϕ;j þ σp

2δij þ σij�g; ð41cÞ

M̄ð3Þ
ijk ¼ exp

�
σx

2

2
Δ
��

n

�
ϕ;iϕ;jϕ;k þ ðσp2δij þ σijÞϕ;k

þcyc perm

−
ℏ2

4
ϕ;ijk

��
: ð41dÞ

The corresponding cumulants can be calculated from the
previous results using

C̄ð2Þ
ij ¼ M̄ð2Þ

ij

M̄ð0Þ −
M̄ð1Þ

i M̄ð1Þ
j

½M̄ð0Þ�2 ð41eÞ

¼ σp
2δij þ

nσij
n̄

þ nϕ;iϕ;j

n̄
−
nϕ;i nϕ;j

n̄2
; ð41fÞ

C̄ð3Þ
ijk ¼

M̄ð3Þ
ijk

M̄ð0Þ −
M̄ð2Þ

ij M̄
ð1Þ
k

½M̄ð0Þ�2

þcyc perm

þ 2
M̄ð1Þ

i M̄ð1Þ
j M̄ð1Þ

k

½M̄ð0Þ�3 ð41gÞ

¼ M̄ð3Þ
ijk

M̄ð0Þ − C̄ð2Þ
ij C̄

ð1Þ
k

þcyc perm

− C̄ð1Þ
i C̄ð1Þ

j C̄ð1Þ
k : ð41hÞ

As we will explain in the following, this allows us to close
the infinite hierarchy for the moments of f̄W arising from
the Husimi-Vlasov Eq. (22) without setting any of the
cumulants to zero. Instead, all higher moments are deter-
mined self-consistently from the lowest two, which are
dynamical and represent the coarse-grained density n̄ and
velocity ū, respectively. This distinguishes our formalism
fundamentally from phenomenological models which at-
tempt to close the hierarchy by postulating an ansatz for the

second cumulant, called stress tensor nσij, but simulta-
neously setting all higher cumulants to zero. For example,
the ansatz for the velocity dispersion of a cosmological
imperfect fluid is given by nσij ¼ pδij þ ηð∇iuj∇jui −
2
3
δij∇ · uÞ þ ζδij∇ · u where p denotes the pressure and η

and ζ are shear and bulk viscosity coefficients, respectively.
The underlying approximation σij ≈ 0 is valid during the
first stages of gravitational instability when structures are
well described by a single coherent flow (single-stream).
However, as soon as multiple streams become relevant after
shell crossing, velocity dispersion and vorticity are gen-
erated dynamically and at once all higher moments become
relevant too [20]. Thus, the hierarchy of cumulants of CDM
dynamics cannot be truncated after shell crossing has
occurred.
In the subsequent calculation it will be necessary to

reexpress all higher moments entirely in terms of M̄ð0Þ ∝ n̄
and M̄ð1Þ ∝ n̄ūi. For this purpose we introduce the D
symbol which allows us to express the coarse-graining
of any product or quotient entirely in terms of its coarse-
grained constituents, for example,

exp

�
1

2
σ2Δ

�
ðnϕ;iϕ;jÞ ¼ exp

�
1

2
σ2ðΔ −DÞ

��ðn̄ūiÞðn̄ūjÞ
n̄

�
:

ð42Þ
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2. Properties of the D symbol

D fulfills the Leibniz product rule of a first derivative
operator when acting on compositions of

A; B;C ∈ fn̄; n̄ūig

or derivatives thereof, but when acting on a single function
it is the Laplacian,

DðAÞ ¼ ΔA; DðgðAÞÞ ¼ ∂AgðAÞDA ¼ ∂AgðAÞΔA;
ð43aÞ

DðABÞ ¼ ðDAÞBþ AðDBÞ ¼ ðΔAÞBþ AðΔBÞ: ð43bÞ

Applying the definition of the D symbol one can derive the
following expressions for the evaluation of Dn,

Dn

�
AB
C

�
¼
Xn
k¼0

�
n
k

�Xn−k
l¼0

�
n− k
l

�
ΔlA ·Δn−k−lB ·Dk

�
1

C

�
;

ð44aÞ

Dk

�
1

C

�
¼

Xk
r¼0

ð−1Þrr!
Crþ1

Bk;rðΔC;Δ2C;…;Δk−rþ1CÞ;

ð44bÞ

where Bk;r are the Bell polynomials. Furthermore we have
that

1

exp ðσx2ΔÞC
¼ exp ðσx2DÞ

�
1

C

�
: ð44cÞ

3. Evolution equations for the moments of f̄W
We take moments of the Husimi-Vlasov equation where

we consider corrections to the Vlasov equation up to
arbitrary order in σx2, σp2 and ℏ2. Eq. (22) can be employed
to obtain evolution equations for the first two moments

n̄ ¼ M̄ð0Þ and ūi ¼ M̄ð1Þ
i =ðmn̄Þ which correspond to den-

sity and mass-weighted velocity, respectively. The velocity
ūi which follows from a coarse-grained distribution func-
tion f̄ is automatically a mass-weighted one computed
according to mūi ¼ nϕ;i=n̄ and does not coincide with the
volume-weighted velocity ϕ̄;i. In particular, the volume-
weighted velocity is automatically curl free, whereas the
mass-weighted velocity will have vorticity in general.
By plugging in the expression for M̄ð2Þ and rewriting it
according to (42) we obtain a closed system of differential
equations for n̄ and ūi

∂tn̄ ¼ −
1

a2
∇ · ðn̄ ūÞ; ð45aÞ

∂tðn̄ūiÞ ¼ −
1

a2m2
∇jM̄

ð2Þ
ij −∇iV̄ exp ðσx2 ⃖∇x

~∇xÞn̄

þ σp
2

a2m2
∇in̄;

¼ exp

�
σx

2

2
ðΔ −DÞ

��
−

1

a2m2
∇j

�ðn̄ūiÞðn̄ūjÞ
n̄

þ

þ ℏ2

4

�
n̄;in̄;j
n̄

− n̄;ij

��
− n̄∇iV̄

�
; ð45bÞ

ΔV̄ ¼ 4πGρ0
a

ðn̄ − 1Þ: ð45cÞ

These equations are supplemented by the constraint that
there exists a scalar function ϕ̄ such that

mn̄ ū ¼ n̄ exp ðσx2 ⃖∇x
~∇xÞ∇ϕ̄: ð45dÞ

The last constraint equation is the analogue of the curl-free
constraint Eq. (9c). It enforces a very particular nonzero
vorticity for ū. The evolution equation for the second
moment M̄ð2Þ involves the third moment M̄ð3Þ and is
given by

∂tM̄
ð2Þ
ij ¼ −

1

a2m
∇kM̄

ð3Þ
ijk −m∇ðiV̄ exp ðσx2 ⃖∇x

~∇xÞðn̄ūjÞÞ

þ σp
2

a2
ðn̄ūðiÞ;jÞ: ð46Þ

For the coarse-grained Wigner distribution function f̄W all
moments M̄ðnÞ can be expressed entirely in terms of the
density n̄ and velocity ū. This ansatz closes the f̄W
hierarchy since all higher moment equations are automati-
cally fulfilled when M̄ðnÞ is calculated from (40), expressed
in terms of n̄ and ū which are to be determined from the
coarse-grained fluid equations (45). In Appendix A we
show by explicit computation that Eq. (34) is automatically
satisfied when M̄ð2Þ and M̄ð3Þ are taken from (41c) and
(41d), respectively.
Alternatively and for practical applications, instead of

solving the coarse-grained fluid equations (45) for n̄ and ū
one can simply solve the SPE (13) for n and ϕ and construct
the cumulants of interest according to (41). Both proce-
dures automatically and self-consistently include multi-
streaming effects. Note that Eqs. (45) are naturally written
in terms of the macroscopic momentum j̄≡ n̄ ū, which is
just the coarse-grained quantum momentum and therefore
free from phase jump pathologies (see Sec. II D 1).

D. Comparison between the models

If we compare the fluid equations obtained via the
Husimi approach Eqs. (45) with the one obtained directly
from the Madelung representation Eqs. (14) of the under-
lying Schrödinger-Vlasov system we see that our special
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ansatz for the distribution function f ¼ f̄W amounts to
considering a spatially coarse-grained Schrödinger-Vlasov
system. However, we have to bear in mind that this is not
equivalent with a direct coarse-graining of n and ϕ;i since
the mass-weighted velocity ismūi ¼ nϕ;i=n̄ is not the same
as the volume-weighted velocity ϕ̄;i. It is nontrivial that
although f̄W is coarse-grained with respect to space and
momentum, the Schrödinger equation (14) and the first
moment equations (45) of f̄W are related only by spatial
coarse-graining. Note however that for instance the velocity

dispersion C̄ð2Þ
ij does depend on σp as well as on σx and ℏ

[see Eq. (41c)].

One the one hand, by neglecting the ℏ-corrections
which constitute a quantum velocity dispersion term in the
Euler-type equation in (45b) we obtain the same evolution
equations for the coarse-grained fields n̄ and ū as given in
[17,18]. Their approach started from a microscopic system
of N particles, which was spatially coarse-grained to
obtain a set of hydrodynamic equations for the macroscopic
fluid variables n̄ and ū. This was done by expanding the
smoothing operator exp ½1

2
σx

2Δ� up to first order in the so-
called “large-scale expansion.” Interestingly, these closed-
form equations can be derived from our formalism based on
the Schrödinger equation when setting ℏ → 0 in (45b)

∂tðn̄ūiÞ ¼ exp

�
σx

2

2
ðΔ −DÞ

��
−

1

a2m2
∇j

�ðn̄ūiÞðn̄ūjÞ
n̄

�
− n̄∇iV̄

�
:

In this sense we provide a formal resummation in the large-
scale parameter of [17]. Furthermore we can clearly see
that one would have arrived exactly at same equation by
spatially coarse-graining a dust fluid (33). However, this
identification is only meaningful as long as no shell
crossing has occurred in the microscopic dust fluid as
otherwise the filtering cannot be inverted. This explains the
apparent contradiction between the fact that the dust model
breaks down at shell crossing, although, according to [17],
the macroscopic system shows adhesive behavior. Obvi-
ously, the exact dust solution extended after shell crossing
(see red dashed line in Fig. 1) does not exhibit adhesive
behavior and coarse-graining cannot change this. This
exemplifies that it is no longer possible to obtain the
macroscopic quantities as the coarse-grained solution to the
microscopic dust equations (33).
On the other hand, numerical examples show that the ℏ

term in the ScM regularizes shell-crossing caustics already
on the microscopic level (see [24,28] and the next section).
This allows us to derive (45) from the SPE (13) and
shows that in order to obtain a solution to the macroscopic
system (45) one can simply coarse-grain the solution to
the microscopic system. Therefore the Schrödinger method
may be viewed as improved dust model with built-in
infinity regularization [quantum potential proportional to
ℏ2 in (15d)] as well as built-in eraser of regularization
artifacts [spatial coarse-graining with σx in (45)].
Nearly cold initial conditions can be implemented by

choosing

ψ iniðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndðaini; xÞ

p
exp ½iϕdðaini; xÞ=ℏ�; ð47Þ

at some early time where shell crossings have not occurred
yet, where nd and ϕd denote solutions to the dust system
(8). Although we have our focus on cold dark matter, let us
remark that ScM also opens up the possibility to study
warm initial conditions.

IV. NUMERICAL EXAMPLE

We study the standard toy example of sine wave
collapse, whose exact solution up to shell crossing is given
by the (in this case exact) Zel’dovich approximation [21]
and therefore has a long tradition in testing techniques of
LSS calculations [50]. Of particular relevance to our work
is [24] were the collapse of a wave function fulfilling the
Schrödinger Poisson equation and modifications to it were
studied and compared to the exact Zel’dovich solution.

A. Initial conditions

As reviewed in Appendix B, the Zel’dovich approxima-
tion in the one-dimensional (or plane parallel or pancake)
collapse is the exact solution to the hydrodynamic Eqs. (9).
We choose as initial linear density contrast

δlinða; qÞ ¼ DðaÞ cos
�
πq
L

�
; ð48aÞ

which guarantees collapse at a ¼ 1, because according to
Eq. (B4) the nonlinear density for dust is given by

ndða; qÞ ¼ ½1 − δlinða; qÞ�−1; ð48bÞ
choosing Dð1Þ ¼ 1. The displacement field Ψ describes
the trajectories xðqÞ ¼ qþΨða; qÞ of fluid elements and is
given by

Ψdða; qÞ ¼ −DðaÞL
π
sin

�
πq
L

�
; ð48cÞ

which can be used to express the velocity

∂xϕd ¼ udðqÞ ¼ a3HðaÞ∂aΨdða; qÞ ð48dÞ
and density nd in terms of x. We choose an Einstein–de
Sitter universe, H2 ¼ 8πG=3ρ0a−3 with Hða ¼ 1Þ ¼
70 kms−1Mpc−1 and we pick L ¼ 10 Mpc.
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We start to solve the Schrödinger equation at aini ¼ 0.01
and choose as initial wave function Eq. (47) with periodic
boundary conditions such that −L < x < L. We verified
that during the linear stage of collapse, the phase ϕ and
amplitude n of the wave function, agree with their dust
analogues ϕd and nd if ~ℏ≡ ℏ=m≲ 10−4 Mpc c, where c is
the speed of light. This agrees with findings of [24]. In
the remaining section we will mostly show results for
~ℏ ¼ 2 × 10−5 Mpc c and σx ¼ 0.1 Mpc. Only for the study
of relaxation (a ¼ 30.0 in the following plots) as well
as the Bohmian trajectories—the integral lines of ∂xϕ—in
Appendix B we choose the larger value ~ℏ ¼ 10−4 Mpc
and σx ¼ 0.2 Mpc. Note that the massm can be absorbed in
ϕ and ϕd, whereby m disappears from the Schrödinger
and fluid equations, respectively. The Wigner and coarse-
grained Wigner functions are depicted in Fig. 2.
It turns out that in single-streaming regions one can

choose σxσp ≪ ℏ while still ensuring f̄W ≥ 0 (see Fig. 2).
Comparing to the top panel of Fig. 1, it becomes clear that
f̄W can achieve a much higher resolution than fH in the u
direction. It exemplifies that the initial conditions are well
modeled by the SPE and that the large width of fH in the
initial conditions shown in Fig. 1 does not imply that the
dynamics is poorly resolved. In contrast, it only means that
if we want to use the more convenient fH we sacrifice
available information once we calculate moments and
cumulants. Another possibility to circumvent the oscilla-
tory behavior of the Wigner function is to use a mixed state
corresponding toN gravitating wave functions rather than a
single one. This was the method of choice in [41]. It turns
out that if N is large enough, the Wigner function becomes
well behaved even without any smoothing. Since our goal
is to develop analytical tools on the basis of the ScM, is
seems to be more prospective to consider a single wave
function and adopt the Husimi representation.

B. Time evolution of ψ, fH and moments

We numerically evolve the initial wave function ψ
Eqs. (47), (48) describing a nearly cold and linear CDM
overdensity using the SPE (13). Within the linear regime
the phase ϕ and amplitude n are basically indistinguishable
from ϕd and nd, however once shell crossing is approached
they start to deviate. The occurrence of singularities in nd
and phase jumps ϕ are the most dramatic differences. In
Fig. 3 we show the phase closely before and after the time
of first phase jump aϕ, shortly after the time a ¼ 1, where
nd diverges. Shortly before (full) and after (dotted) aϕ, ϕ
develops very steep gradients (diverging at the time of
phase jump and changing sign). For the wave function ψ
this causes no problem since the amplitude

ffiffiffi
n

p
vanishes

when the step becomes infinitely sharp and allows the
phase to “reconnect” (upper panel), while keeping ψ
smooth. For the Madelung representation this causes
another problem: at the moment of phase jump, not only
∇ϕ but also _ϕ diverges on a whole spatial interval (lower

panel). This second type of divergence is an artifact caused
by neglecting the fact that ϕ is defined only modulo 2π.
At the time aϕ and point xϕ where the phase develops the

sharp step we have
ffiffiffi
n

p ¼ 0. Therefore it makes sense to
determine the variance of position and momentum

hx2i ¼
R xϕ
−xϕ jψ j2x2dxR xϕ
−xϕ jψ j2dx

; hp2i ¼ −ℏ2

R xϕ
−xϕ ψ

�ΔψdxR xϕ
−xϕ jψ j2dx

: ð49Þ

Doing the numerical integrals it shows that hx2ihp2i≃
ðℏ=2Þ2, with ℏ=ð2mÞ ¼ 10−5 Mpc c specified for our
simulation. The physical interpretation of this result is that
the wave function collapsed to its densest possible state
given the initial conditions: a minimum uncertainty wave
packet forms within ½−xϕ; xϕ� at the time aϕ, which
expands consequently. We therefore can say that the
ScM contains “shell crossing without shell crossing.”
This bounce only looks like shell crossing when coarse-
grained over (see Appendix B). The result also suggests
optimal values for the coarse-graining parameters σp

2 ¼
hp2i and σx

2 ¼ hx2i of the one-dimensional collapse. We
therefore conclude that shell-crossing infinities appearing
in nd are now traded for infinities in ∇ϕ, which fortunately
do not cause infinities or other pathologies in ψ because n
vanishes at those instances and ψ remains smooth.
The wiggly form of the phase (see Fig. 4) corresponds to

large∇ϕ, which are visible as the strongly oscillating green
dotted lines in the right panel of Fig. 5. Because of many
phase jumps the amplitude n shows strong spatial oscil-
lations Fig. 5, left. These oscillations are invisible in the
physical quantities of interest: the moments and cumulants
of fH. We show the density and the first three cumulants in

0.20 0.15 0.10 0.05 0.00
4

2

0

2

4 Madelung

4

2

0

2

4
regnidörhcS

x Mpc

FIG. 3 (color online). The first phase jump Δϕ ¼ 2π occurred
around aϕ ≃ 1.07.
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Fig. 5 and Fig. 6. They are smooth and physically mean-
ingful. Figure 6 also shows that all higher cumulants are
switched on at the same time such that the cumulant
hierarchy cannot be truncated. In the ScM the two degrees

of freedom of ψ store information about all cumulants.
It is also interesting to note that C̄ð2Þ, Eq. (41f), can be
decomposed into a purely spatial average induced velocity
dispersion, a smoothed but microscopic velocity disp-
ersion and a constant part. Most notably, the first two
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FIG. 5 (color online). left Number density (full) and amplitude squared of wave function (dotted). right The first three cumulants and
the gradient of phase of the wave function, ∇ϕ. All these quantities are shown at four characteristic times: the unset of the nonlinear
regime around a ¼ 0.5, shell crossing of the dust model at a ¼ 1, formation of multistream regions around the second shell crossing
at a ¼ 2.5, and virialization a ¼ 30. These four times are also shown in Fig. 1.
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FIG. 6 (color online). Comparison between the first three
cumulants at the position x ¼ −0.5 Mpc. They are all equally
important after shell crossing: the hierarchy cannot be truncated.
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FIG. 4 (color online). The phase ϕ of the wave function at
different times. The wiggly behavior is characteristic for multi-
streaming regions.
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contributions are equally large and show oscillations over
time but add up to a smooth sum (see Fig. 7). Finally let
us consider the full phase space dynamics in Fig. 1. The
Husimi distribution fH contains like ψ the information
about all cumulants, but unlike ψ , in a form directly related
to physical quantities. The most interesting features are the
regularity at shell crossing, the formation of multistream
regions and the possibility to follow the dynamics until
virialization.
Notice that C̄ð2Þ within multistream regions remains

always positive while C̄ð1Þ basically vanishes. We therefore
checked that the (macroscopic) tensor virial theorem [51],
following from the Euler-type equation (45b) and a steady
state assumption (within the virialized object ū ¼ 0),

1

a2

Z
xvir

−xvir
dxðM̄ð2Þ

xx − σp
2n̄Þ

¼
Z

xvir

−xvir
dxx exp

�
1

2
σx

2Δ
�
ðnðxÞ∂xVðxÞÞ ð50Þ

is approximately satisfied for xvir ≃ 2.8 Mpc for a ¼ 30.
The σp term as well as the boundary terms from integrating
by parts are completely negligible. Looking at the right
panel of Fig. 5 we see that below xvir the macroscopic
velocity ū is basically zero for a ¼ 30.0, looking at the
left panel we see that the macroscopic density peaks around
xvir and drops off afterwards. Note that relaxation is known
to take much longer in one dimension than in three
dimensions [52].

V. PROSPECTS

For analysing, understanding as well as estimating
statistical errors of observations of LSS one is interested
in n-point correlation functions of the phase space
density. In the ScM these correlation functions are simply
related to the 2n-point correlation functions of the
complex scalar ψ

hfðt; r1; p1Þ…fðt; rn; pnÞi

¼
�Yn

i¼1

Z
d3xid3yiKHðri; xi; piÞK�

Hðri; yi; piÞ
�

× hψðt; x1Þψ�ðt; y1Þ…ψðt; xnÞψ�ðt; ynÞi;

where KH is the Husimi kernel Eq. (23) and the angle
brackets denote know ensemble average over all initial
conditions. This allows the construction of n-point
redshift space matter and halo correlation functions upon
integration over

Yn
i¼1

δD

�
si − ri −

pi · ẑ
a2mH

ẑ

�
d3pid3ri;

where ẑ points along the line of sight and si are the observed
positions in redshift space. As a first step one can study
the redshift space two-point correlation in the case where
ℏ ¼ 0, keeping only σx and σp which is under investigation
by the present authors. This approach is motivated by the
observation that keeping only σx results in a resummation
in the large-scale parameter of the macroscopic model
suggested in [17,18].
Ultimately we would like to keep ℏ, since from our

numerical study it is clear that the quantum pressure
plays a crucial rule not only in shell-crossing regularization
but also within the cumulants (see Fig. 7). Therefore
we need a method to calculate the time evolution of
hψðt; x1Þ…ψ�ðt; ynÞi including ℏ and most desirably in a
nonperturbative fashion.
There is a simple Lagrangian and action for ψ from

which the SPE follow from the variational principle [33].
Therefore one might take the route of [53] and integrate
the nonperturbative renormalization group flow with time
as flow parameter [54]. Another possibility would be to
explore the fact that ℏ corresponds to the phase space
resolution and thus might be used as a flow parameter with
interpretation of Kadanoff’s block spin transformation [55].
It might also be possible to interpret the formation

of wiggly phases via phase jumps (see Figs. 3 and 4) as
something akin to a phase transition. Halo formation under
time evolution would then correspond to magnetic domain
formation or hadronization in a ferromagnet or quark-gluon
plasma, respectively, under adiabatic cooling.
The ScM could also be connected to effective field

theory formulations of LSS formation [49,56,57]. Since the
ScM is a UV complete theory it might be possible to derive
an effective field theory including its parameters.
Another research route could be to look for stationary

complex solutions of the SPE3 with the aim of understanding
the universality of density profiles of virialized objects. Since
ScM allows for virialization it could prove useful in further
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FIG. 7 (color online). Comparison between the different parts
of the second cumulant at x ¼ 0.

3To our knowledge, so far only real solutions have been
studied [33,34]. Figure 4 however suggests that stationary
solutions that result from gravitational collapse are complex.
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analytical understanding of violent relaxation [58,59] that
leads to universal phase space and density profiles [60,61].

VI. CONCLUSION

We started with the coupled nonlinear Vlasov-Poisson
system (6) for the phase space distribution function f which
is relevant for LSS formation of CDM particles which
interact only by means of the gravitational potential.
Inspired by the Schrödinger method (ScM) proposed in
[22] for numerical simulations we aimed at employing its
ability to describe effects of multistreaming while including
recent studies regarding coarse-grained descriptions of
CDM and their implications investigated in [17,62].
Following closely [22], we introduced a complex field ψ
whose time-evolution is governed by the Schrödinger-
Poisson equation (SPE) (13) and constructed the coarse-
grained Wigner probability distribution f̄W according to
(21) from this wave function. We derived that the time-
evolution of f̄W is determined by Eq. (22) which is in good
correspondence to the one governed by the coarse-grained
Vlasov equation (12). Using a numerical toy example we
showed how the ScM is able to regularize shell- crossing
singularities and allows us to follow the dynamics into
the fully nonlinear regime. Furthermore we showed how
higher order cumulants (41) like velocity dispersion can
be calculated directly from the wave function and that a
vorticity is generated by the coarse-graining procedure.
This means that it suffices to solve the SPE (13), express

the result obtained for ψ in Madelung form
ffiffiffi
n

p
exp ðiϕ=ℏÞ,

and then simply coarse-grain n and n∇ϕ to obtain the

physical density n̄ and momentum mn̄ ū, respectively. In a
similar fashion all higher cumulants (28c) following from
(40) can be obtained from a solution to SPE (13).
We derived the corresponding closed-form fluidlike

equations (45) for the smooth density field n̄ and the
mass-weighted velocity ū. This is only possible because the
quantum pressure term proportional to ℏ2 resolves shell-
crossing singularities already on the microscopic level. We
showed that solving the macroscopic equations (45) means
closing the hierarchy for the moments of f̄W, without
truncating the cumulant hierarchy, thereby proposing a
different approach to the closure problem than truncation in
terms of cumulants. Indeed, all higher cumulants can be
written in terms of n̄ and ū.
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APPENDIX A: EXPLICIT CALCULATION FOR
CLOSING THE HIERARCHY

Asmentioned in III C 3 it can be shown that the evolution
equation for the second moment (46) is automatically
fulfilled when the coarse-grained fluid equations (45)
for density n̄ and mass-weighted velocity ū are satisfied.
In order to prove that we perform the following steps:

(1) Start with the time evolution equation for the second moment (46) which involves the third one,

∂tM̄
ð2Þ
ij ¼? −

1

a2m
∇kM̄

ð3Þ
ijk −m∇ðiV̄ exp ðσx2 ⃖∇x

~∇xÞðn̄ūjÞÞ þ
σp

2

a2
ðn̄ūðiÞ;jÞ: ðA1Þ

(2) Insert the explicit expressions for M̄ð2Þ and M̄ð3Þ given by (41c) and (41d),

∂t exp

�
σx

2

2
Δ
��

nϕ;iϕ;j þ σp
2nδij þ

ℏ2

4

�
n;in;j
n

− n;ij

��

¼? − exp

�
σx

2

2
Δ
�
∇k

8<
:nϕ;iϕ;jϕ;k þ σp

2δijnϕ;k

þcyc perm

þ ℏ2

4

2
4�n;in;j

n
− n;ij

�
ϕ;k

þcyc perm

− nϕ;ijk

3
5
9=
;

−∇ðiV̄ expðσx2 ⃖∇x
~∇xÞðn̄ūjÞÞ þ σp

2ðn̄ūðiÞ;jÞ: ðA2Þ

(3) Express everything in terms of n̄ and ūi ¼ ðnϕ;iÞ=n̄ using the rule for the D symbol (42),

∂t

�
exp

�
σx

2

2
ðΔ −DÞ

��ðn̄ūiÞðn̄ūjÞ
n̄

þ ℏ2

4

�
n̄;in̄;j
n̄

− n̄;ij

��
þ σp

2n̄δij

�

¼? − exp
�
σx

2

2
ðΔ −DÞ

�
∇k

2
4ðn̄ūiÞðn̄ūjÞðn̄ūkÞ

n̄2
þ ℏ2

4

��
n̄;in̄;j
n̄

− n̄;ij

�
n̄ūk
n̄

−
1

3
n̄
�
n̄ūi
n̄

�
;jk

�þcyc perm 3
5

− σp
2∇kðδijn̄ūkÞ

þcyc perm

−∇ðiV̄ expðσx2 ⃖∇x
~∇xÞðn̄ūjÞÞ þ σp

2ðn̄ūðiÞ;jÞ: ðA3Þ
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(4) Pull the time derivative through the smoothing operator and apply the product rule to reexpress the terms,

exp

�
σx

2

2
ðΔ −DÞ

��∂tðn̄ūðiÞðn̄ūjÞÞ
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−
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4

�∂tn̄;ðin̄;jÞ
n̄

−
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n̄2
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��
þ σp

2∂tn̄δij
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�
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2

2
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�8<
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�
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�
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−
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�
n̄ūj
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�
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−
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4
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��
n̄;in̄;j
n̄

− n̄;ij

�
n̄ūk
n̄

−
1

3
n̄

�
n̄ūi
n̄

�
;jk

�þcyc perm 9=
; − σp

2∇kðn̄ūkÞδij: ðA4Þ

(5) Employ the fluid equations (45) to carry out the time derivatives ∂tðn̄Þ and ∂tðn̄ūiÞ

exp

�
σx

2

2
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��
− exp

�
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2
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��
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�
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n̄2

−
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−
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��

¼? exp
�
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2
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n̄ūin̄ūk
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�
n̄ūk
n̄

−
1

3
n̄

�
n̄ūi
n̄

�
;jk

�þcyc perm 9=
;: ðA5Þ

(6) Combine the different D symbols acting successively on the terms to yield an overall D symbol according to

exp

�
1

2
σx

2ðΔ −DABCÞ
�
ðĀ B̄ C̄Þ ¼ exp

�
1

2
σx

2ðΔ −DAðBCÞÞ
��

Ā exp

�
1

2
σx

2ðΔ −DBCÞ
�
ðB̄ C̄Þ

�
:

This is possible since the action of the D symbol depends on the product structure it is acting on,

exp
�
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2
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��
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¼✓ exp
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2
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−
1

3
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�
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�
;jk

�þcyc perm 9=
;: ðA6Þ

One has to note that equality is only established once we make use of the constraint Eq. (45d).

APPENDIX B: LAGRANGIAN FORMULATION

We follow [63] to rewrite the fluidlike system Eqs. (15)
formulated in terms n and ∇ϕ evaluated at the Eulerian
position x, into a Lagrangian system in which the sole
dynamical variable is the displacement field Ψ, that maps
between x and the Lagrangian (or initial coordinate of a
fluid element) q. Since the continuity and Euler equation
Eqs. (9) are unchanged apart from the added quantum
potential Q in Eq. (15b) the analogue of Eq. 2.31 in [63] is

½ð1þΨl;lÞδij −Ψi;j þΨc
i;jÞ�Ψ00

ij

¼ αðηÞðJF − 1Þ þ JF
ℏ2

4m2
Δx

�
Δx½ðJFÞ−1=2�
ðJFÞ−1=2

�
; ðB1Þ

which can be obtained by solving the continuity equation
with 1þ δ ¼ 1=JF, where JF ¼ detðFijÞ¼ detðδi;jþΨi;jÞ
and Fij ¼ ∂xi=∂qj is the Jacobian relating x and q and
with∇xϕ=m ¼ Ψ0, where a prime denotes a derivative with
respect to superconformal time η related to cosmic time t
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via dt ¼ a2dη. In Eq. (B1) the Laplacians are with respect
to x, rather than q and have therefore to be rewritten in
terms of q using the Jacobian Fij. The equation is
supplemented by a constraint equation Fi;nϵnjkFl;jF0

l;k¼0
that follows from ∇x × u ¼ 0. If the density and velocity
distribution depend only on x ¼ ðx; 0; 0Þ, [and therefore
q ¼ ðq; 0; 0Þ], the above system can be written, using
ϵqqq ¼ 0 and Ψi ¼ ∶Ψδiq and JF ¼ 1þΨ;q as

Ψ00 ¼αðηÞΨþ ℏ2

2m2

�
10ðΨ;qqÞ3
ð1þΨ;qÞ6

−8
Ψ;qqΨ;qqq

ð1þΨ;qÞ5
þ Ψ;qqqq

ð1þΨ;qÞ4
�
;

ðB2Þ

where αðηÞ ¼ 4πGaρ0. Note that compared to the three-
dimensional case (B1), we were able to integrate already
once over q in order to obtain (B2). In the case of ℏ ¼ 0, we
recover the case of dust,

Ψ00
d ¼ αðηÞΨd; ðB3Þ

whose exact solution is the Zel’dovich approximation
Ψ;qðq; aÞ ¼ −DðaÞδlinðx ¼ qÞ, where δlinðxÞ is the initial
condition Eulerian density field (which is assumed to
vanish at a ¼ 0) linearly extrapolated to a ¼ 1 using the
linear growth DðaÞ. The red dashed lines in Fig. 1 are
points ðqþΨ;Ψ0Þ, parametrized by q and can be extended
after shell crossing. Unfortunately, this continuation does
not behave as CDM and the trajectories continue on their
straight lines indefinitely [see red lines in (B2)]. Including

the ℏ terms, a separation ansatz does not work anymore
and we do not expect to find an exact solution of (B2)
(see Figs. 8 and 9 for the complicated dynamics of Ψ for
the case of initial conditions studied in Sec. IV). Under a
coarse-grained view the Bohmian and collisionless CDM
trajectories would turn into network that is indistinguish-
able. On a microscopic level though, they are very different
(see Fig. 9). Although the phase space density fH behaves as
if shell crossings and multistream regions form, the phase ϕ
of the wave function ψ is single valued and therefore the
trajectories qþΨ never intersect. The intricate behaviour of
Ψ emulatesmultistreaming. Given the Bohmian trajectories
Ψðq; aÞ one can recover nðx; aÞ and ϕðx; aÞ via

nðx; aÞ ¼ 1

1þΨ;qðq; aÞ
����
q¼qðx;aÞ

ðB4Þ

∂xϕðx; aÞ=m ¼ Ψ0ðq; aÞjq¼qðx;aÞ; ðB5Þ

where the q-dependent expressions are converted into
x-depend ones via inversion of x ¼ qþΨðq; aÞ. The
Lagrangian formulation Eq. (B1) of the Madelung repre-
sentation, Eq. (14) suffers from the same singularities as the
Euler-type equation Eq. (15b); at the isolated space-time
points where the phase ϕ jumps about 2π, the velocity ∇ϕ
and therefore _Ψ diverge and change sign. Figures 8 and 9
were constructed from the solution of the Schrödinger-
Poisson equation (13) and not from Eq. (B2).
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