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We study DBI spinflation models with angular potentials that are derived in string theory. We analyze the
background dynamics with different parameter sets and study the impact of changing each parameter on
inflationary dynamics. It is known that the conversion of the entropy perturbation into the curvature
perturbation gives multifield Dirac-Born-Infeld (DBI) inflation models a possibility of satisfying the
observational constraints by relaxing the stringent microphysical constraint that disfavors single-field DBI
inflation models. We show that our model is excluded by the Planck satellite observations even with the
conversion mechanism regardless of the parameter set.
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I. INTRODUCTION

In the inflationary scenario, the cosmic microwave
background (CMB) anisotropies are generated as a result
of the quantum fluctuations of an inflaton field which
drives inflation. The recent observations of the nearly
Gaussian CMB anisotropies support the inflationary sce-
nario because inflation naturally produces nearly Gaussian
quantum fluctuations [1]. The statistical properties of the
CMB anisotropies can be used to rule out some inflation
models and a variety of inflation models has been studied
using the results of the CMB observations [2–5]. Among
the observables that quantify the statistical properties of
the CMB anisotropies, the non-Gaussianities have been
studied extensively in the recent literature. The values of
the non-Gaussianity parameters have been constrained
by the Planck satellite observations to the unprecedented
precision [6].
In many inflation models, the origin of inflaton is not

specified. The Dirac-Born-Infeld (DBI) inflation [7,8]
motivated by string theory is driven by inflaton that is
one of the scalar fields describing the position of a D-brane
in the higher dimensional space in the effective four-
dimensional theory. Also, DBI inflation has interesting
features such as the speed limiting effect on the velocity of
the scalar fields [9] and large non-Gaussianity [10]. The
single-field ultraviolet (UV) DBI inflation models where a
D3 brane is moving down the warped throat have been
ruled out because of the microphysical constraint on the
variation of inflaton in a string theory setup combined with
the constraints on the tensor-to-scalar ratio, the spectral
index, and non-Gaussianity by CMB observations [11–15].
However, DBI inflation naturally has more than one field

because it is motivated by string theory in which there are
six extra dimensions, which are the radial direction and five
angular directions in the internal space. In the multifield

DBI inflation, the stringent constraints introduced above
are relaxed as follows. A turn in the trajectory in the field
space converts the entropy perturbation into the curvature
perturbation on superhorizon scales [16]. When we have
such a conversion, it was shown that the constraints on
single-field DBI models are relaxed [17–20]. However, we
need a concrete model to make definite predictions on the
values of the CMB observables. In [21], a toy model of
two-field DBI inflation with a waterfall phase transition
was studied. It was shown that this two-field DBI model
satisfies the microphysical constraints combined with the
WMAP observations even though it was ruled out with the
PLANCK satellite observation. Because DBI inflation
models are motivated by string theory, it is important to
study models with potentials that are derived in string
theory.
In [22], the potential with the angular directions for a

D3 brane in the warped deformed conifold was calculated.
The impact of angular motion on DBI inflation has been
studied with numerical calculations in [23,24]. In [24],
concrete angular dependent potentials in the spinflation
models are derived and the background dynamics has been
studied numerically. The rotational motion due to the
angular potential in those models can potentially relax
the microphysical constraints on the DBI inflation and
make the values of the CMB observables compatible with
the observations. We need numerical calculations to see if
there is a parameter set which makes this model compatible
with the PLANCK satellite observations.
In this paper, the two-field DBI inflation model with the

spinflation potential is analyzed. We perform numerical
calculations in order to obtain the predictions for the
CMB observables such as the power spectrum of the
curvature perturbation, spectral index, tensor-to-scalar ratio
and non-Gaussianity to see if this model is compatible with
the microphysical constraint on DBI inflation and the CMB
observations. In DBI inflation models, large equilateral
type non-Gaussianities are generated from the bispectrum
of the quantum fluctuations of the scalar fields in
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subhorizon scales [8]. On the other hand, the local type
non-Gaussianities [25] can be generated on superhorizon
scales when there is a conversion from the entropy pertur-
bation to the curvature perturbation (see [26] for a review
and references therein). Therefore, multifield DBI inflation
models are generally capable of producing a combination
of the non-negligible equilateral type and local type non-
Gausianities. With this feature, we can distinguish DBI
models from other inflationary models [27–29].
Both equilateral and local type non-Gaussianities in

multifield DBI inflation were first calculated in [30]
assuming only an effective single-field potential until the
end of inflation where a tachyonic instability occurs in the
angular direction. In this paper, we consider the dynamics
in the angular direction during inflation because the
potential has the angular dependence derived in string
theory.
In Sec. II, we study the background dynamics of the

spinflation model and show the numerical results of the
background inflationary trajectories with different param-
eter sets after reviewing the background dynamics of the
DBI inflation. In Sec. III, we review the linear perturbation
theory of inflation and the conversion of the entropy
perturbation into the curvature perturbation due to a turn
of the background trajectory in the field space. Then, we
show the analytic formulas of the spinflation that are valid
when the dynamics is effectively single field around
horizon crossing. We confirm those formulas by solving
the linear perturbations numerically. In Sec. IV, after
reviewing the equilateral non-Gaussianity, we introduce
the microphysical constraint that strongly disfavors the
single-field DBI inflation. Finally, we show that the
spinflation model studied in this paper is excluded by
the PLANCK satellite observations using the constraint on
the CMB observables including the equilateral non-
Gaussianity even with the conversion of the entropy
perturbation into the curvature perturbation. In the last
section, we summarize our work and discuss the cases in
which we cannot use the analytic formulas.

II. BACKGROUND DYNAMICS

In this section, we first introduce multifield DBI infla-
tion. We briefly review a simple model of single-field DBI
inflation analyzed in [7,8] because the two-field model that
we study in this paper is approximated with this model in
the region with a large radial coordinate when the dynamics
is mainly in the radial direction. After introducing the
spinflation model derived in [24], we show our numerical
results for the background trajectories with different values
of the parameters.

A. Multifield DBI inflation

We consider the bulk whose warped geometry is given
by [18]

ds2 ¼ h−1=2ðyKÞgμνdxμdxν þ h1=2ðyKÞGIJðyKÞdyIdyJ
≡HABdYAdYB; ð1Þ

where YA ¼ fxμ; yIg with the indices μ ¼ 0; 1; 2; 3
and I ¼ 1;…; 6. YA

ðbÞðxμÞ ¼ ðxμ; ηIðxμÞÞ are the ten-

dimensional coordinates which specify the brane position
in the bulk where xμ is the four-dimensional space-time
coordinates on the brane. Then, the Lagrangian for the
multifield DBI inflation is given by

PðXIJ;ϕIÞ ¼ ~Pð ~X;ϕIÞ

¼ −
1

fðϕIÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2fðϕIÞ ~X
q

− 1

�
− VðϕIÞ;

ð2Þ

where ϕI are the scalar fields ðI ¼ 1; 2;…Þ defined as

ϕI ¼
ffiffiffiffiffi
T3

p
ηI; ð3Þ

where T3 is the brane tension. Note that ~X is defined in
terms of the determinant

D ¼ detðδIJ − 2fXI
JÞ

¼ 1 − 2fGIJXIJ þ 4f2X½I
I X

J�
J − 8f3X½I

I X
J
JX

K�
K

þ 16f4X½I
I X

J
JX

K
KX

L�
L ; ð4Þ

as

~X ¼ ð1 −DÞ
2f

; ð5Þ

where

XIJ ≡ −
1

2
∂μϕ

I∂μϕJ: ð6Þ

Note that fðϕIÞ is defined by the warp factor hðϕIÞ and the
brane tension T3 as

fðϕIÞ≡ hðϕIÞ
T3

: ð7Þ

The sound speed is defined as

cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~P; ~X

~P; ~X þ 2 ~X ~P; ~X ~X

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f ~X

q
; ð8Þ

where, ~X means the partial derivativewith respect to ~X. Note
that ~X coincides with X ≡ GIJXIJ in the homogeneous
background because all the spatial derivatives vanish. From
the action (2), we can show that
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~P; ~X ¼ 1

cs
: ð9Þ

In this paper, we consider the Einstein-Hilbert action for
gravity and hence all equations of motion are derived from
the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð4ÞRþ 2PðXIJ;ϕIÞ�; ð10Þ

where we set 8πG ¼ 1 and ð4ÞR is the four-dimensional
Ricci curvature. The Friedmann equation is given by

3M2
PH

2 ¼ 1

fðϕÞ
�
1

cs
− 1

�
þ VðϕIÞ: ð11Þ

where H is the Hubble parameter H ≡ _a=a with the scale
factor a.

B. Single-field DBI inflation with a quadratic potential

Here, we introduce the single-field DBI inflation model
in a simple setup in string theory following [7,8]. In the
AdS throat, a potential of the mass term is given by

VðϕÞ ¼ m2ϕ2; ð12Þ
with the mass of inflaton m. For a pure AdS5 throat of
radius R, we have

fðϕÞ ¼ λ

ϕ4
; ð13Þ

where λ≡ R4=α02 is constant with the inverse string tension
α0. Note that the throats arising from IIB flux compacti-
fications can look approximately AdS [8]. Let us define the
slow-roll parameters as

ϵ ¼ −
_H
H2

; η ¼ _ϵ

Hϵ
; s ¼ _cs

Hcs
: ð14Þ

Then, when the field value is sub-Planckian, namely
ϕ=MP ≪ 1, it is shown that we have the relations [7,8]

ϕ ¼
ffiffiffi
λ

p

t
; γ ¼ c−1s ¼

ffiffiffiffiffi
4

3λ

r
MPmt2;

H ¼ 1

ϵt
; ϵ ¼

ffiffiffi
3

λ

r
MP

m
; ð15Þ

if we assume that the sound speed cs is much smaller than
unity where MP is the Planck mass. Then, the slow roll
parameters η and s are given by

η ¼ 0; s ¼ −2ϵ; ð16Þ
from Eqs. (14) and (15). Therefore, in this model, the
background dynamics can be expressed with these

functions of time when the field value is sub-Planckian
and the sound speed is much smaller than unity.

C. Spinflation model

Let us introduce the two-field model with a potential
derived in string theory embedding a warped throat into a
compact Calabi-Yau space with all moduli fields stabilized
following [24]. Let us define χ and θ to be the radial and
angular coordinates in the warped throat in the internal
space, respectively. The field space metric is then given by

ds2 ¼ ~gmndymdyn ¼ κ4=3
�

dχ2

6KðχÞ2 þ BðχÞdθ2
�
; ð17Þ

with

KðχÞ ¼ ðsinh χ cosh χ − χÞ1=3
sinh χ

;

BðχÞ ¼ 1

2
KðχÞ cosh χ; ð18Þ

and the deformation parameter κ. Note that ηI ¼ ðχ; θÞ in
Eq. (3). The warp factor in this model is given by [31]

hðχÞ≡ e−4A ¼ 2ðgsMα0Þ2κ−8=3IðχÞ; ð19Þ

where

IðχÞ≡
Z

∞

χ
dx

x coth x − 1

sinh2x
ðsinh x cosh x − xÞ1=3; ð20Þ

with the parameter M, the string coupling gs, and the
inverse string tension α0. By varying the action (10) with
respect to the fields, the equations of motion for the radial
scalar field χ and angular scalar field θ are given by

χ̈ ¼−
3H
γ2

_χ − 4A;χðγ−1− 1Þ_χ2− 12κ−4=3K2A;χe4Aðγ−1− 1Þ2

þK;χ

K
_χ2þ 3K2B;χ

_θ2þ e−4A _θ _χ
U;θ

γ

− ð6K2κ−4=3 − e−4A _χ2ÞU;χ

γ
; ð21Þ

θ̈ ¼ −
3H
γ2

_θ − 4A;χðγ−1 − 1Þ_χ _θ −
B;χ

B
_χ _θ þ e−4A _χ _θ

U;χ

γ

−
�
κ−4=3

B
− e−4A _θ2

�
U;θ

γ
; ð22Þ

where the subscripts denote derivatives with respect to the
fields as ;χ ≡ ∂

∂χ and ;θ ≡ ∂
∂θ. The sound speed of the scalar

field perturbations is given by
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cs ¼ γ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−4A ~gmn _ym _yn

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hκ4=3

�
_χ2

6K2
þ B_θ2

�s
; ð23Þ

where ym ¼ ðχ; θÞ. The potential is derived by solving the
equation of motion for Φ−

∇2Φ− ¼ gs
24h2

jG−j þR4 þ hj∇Φ−j3 þ Slocal; ð24Þ

which is derived from the IIB supergravity action [32]
where ∇2 is the Laplacian with respect to the 6D metric
GIJ in Eq. (1), h is the warp factor, gs ¼ eϕ is the string
coupling with the dilation field ϕ, R4 is the four-
dimensional Ricci scalar, Slocal represents the localized
sources, and

G− ¼ ð⋆6 − iÞG3 ð25Þ

is the imaginary antiself-dual component of the complex
three form flux G3 where ⋆6 is the six-dimensional Hodge
star operator. In [24], the equation of motion (24) is solved
including linearized perturbations around the imaginary
self-dual (ISD) solution with a warped throat embedded
into a compact Calabi-Yau space with all moduli fields
stabilised. Because the dominant source for Φ− is G− and it
sources only second-order perturbations, the perturbations
of Φ− around the ISD condition ðΦ− ¼ 0Þ satisfy

∇2Φ− ¼ 0; ð26Þ

at the linear level. For a general warped deformed conifold,
the Laplacian of Eq. (26) takes a simple form when we are
only interested in the low-lying states that are dependent on
only one angular coordinate θ. In this case, the leading-
order term of the eigenfunction with the lowest angular
mode l ¼ 1 is given by

Φ− ∝ ðcosh χ sinh χ − χÞ1=3 cos θ: ð27Þ

Adding the mass term that arises from the effects of the
bulk geometry, the potential is derived with the eigenfunc-
tion (27) as

VðϕIÞ ¼ T3U

¼ T3

�
1

2
m2

0frðχÞ2 þ c2KðχÞ sinh η cos θg þ U0

�
;

ð28Þ

where the proper radial coordinate is given by

rðχÞ ¼ κ2=3ffiffiffi
6

p
Z

χ

0

dx
KðxÞ ; ð29Þ

with an arbitrary constant c2 which is of the same order as
the deformation parameter: c2 ∼ κ4=3. Note that the con-
stant U0 is chosen so that the global minimum of V is
V ¼ 0 .
Figure 1 shows the shape of the potential. From Eqs. (3),

(7), (11), and (28), the Friedmann equation reads

H2 ¼ T3

3M2
P

�
1

h
ðγ − 1Þ þU

�
: ð30Þ

Combining the time derivative of Eq. (30) with respect
to the cosmic time t and the continuity equation _ρ ¼
−3HðEþ PÞ, we obtain

_H ¼ −
T3

2M2
Ph

ðγ − γ−1Þ: ð31Þ

Note that E denotes the energy density which is equivalent
to 3M2

PH
2 while P is the pressure which is equivalent to the

Lagrangian given in Eq. (2). In [11], it is shown that the
volume of the compactification is constrained by the Planck
mass. Because the volume of the warped throat must be
smaller than the total volume of the internal space, we have
the relation

M2
P ≥

κ4=3gsM2T3

6π
JðχUVÞ; ð32Þ

where JðχÞ ¼ R
dχIðχÞ sinh2 χ with the UV cutoff of the

throat at χ ¼ χUV. Note that T3 is the D3-brane tension
given in Eq. (3). The mass dimension ½M� is determined by
the relation (32), which is rewritten as

M2
P ¼ κ̄4=3gsM2T̄3

6π
NJðχUVÞM2; ð33Þ

1

2

3

0

FIG. 1 (color online). The potential (28) with gs ¼ 1=2π½M0�,
α0 ¼ 1½M−2�, M ¼ 106π½M0�, κ ¼ 10−11½M−3=2�, and m0 ¼
4.5 × 10−5½M�. Note M is the mass unit defined in Eq. (33).
The minima of the potential in the angular direction are at
θ ¼ ð2N þ 1Þπ with an integer N while the maxima are along the
lines θ ¼ 2Nπ. The radial potential is quadratic in terms of rðχÞ.
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with the dimensionless parameters N ≥ 1, T̄3 ¼ T3=M4,
and κ̄4=3 ¼ κ4=3M2. We use only the dimensionless param-
eters in the numerical calculations and that gs and M are
dimensionless. Below, all the values of the parameters are
given in the mass unit ½M� unless stated otherwise. The
dimensions of the parameters are gs½M0�,M½M0�, Ts½M4�,
κ4=3½M−2�, and α0½M−2�. By saturating the Planck mass
bound (32), Eqs. (30) and (31) are rewritten as

H2 ¼ T3

3M2
P

�
1

h
ðγ − 1Þ þ U

�

→
2π

κ4=3gsM2JUV

�
1

h
ðγ − 1Þ þ U

�
; ð34Þ

_H¼−
T3

2M2
Ph

ðγ− γ−1Þ→−
3π

κ4=3gsM2JUVh
ðγ− γ−1Þ: ð35Þ

FIG. 2 (color online). Background inflationary trajectories with a flux parameter gsM ¼ 100½M0�, inflaton mass m0 ¼ 5½M�, and the
saturated Planck mass. Note M is the mass unit defined in Eq. (33). The horizontal axes denote χ cos θ while the vertical axes denote
χ sin θ. The value of κ and C ¼ c2κ−4=3½M0� are indicated. The same parameter sets are studied in [24].
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D. Numerical results for the background trajectories

The system of Eqs. (21), (22), (34), and (35) can be
solved numerically if we set the values of the parameters.
We show the numerical results for the background trajec-
tories with six different parameter sets following [24] in
figure 2. The flux parameter gsM is set to 100 and the
inflaton mass m0 is set to 5 while we changed the values of
κ and c2. Note that we assume χUV ¼ 10 in this section.
The trajectory starts with χ ¼ 10 and θ ¼ π=2. The initial
radial brane velocity is taken to vanish while the angular
brane velocity is highly relativistic. Although the results are
different from those in the published version of [24] due to
a numerical problem, we confirmed some of their findings
about the background dynamics [33] as follows.

(i) Decreasing the deformation parameter κ slows down
the brane and increases the number of e-folds.

(ii) For all the parameter sets in Fig. 2, regardless of the
angular dependence or initial momenta, the brane
rapidly becomes highly relativistic in the radial
direction and makes its first sweep down the throat.

(iii) Increasing the angular perturbation c2 shifts the
minimum of the potential.

Below, we introduce the new findings in our numerical
results. As we can see in the bottom pair of the plots in
Fig. 2, increasing the angular dependence changes the
trajectory and decreases the number of e-folds. This is
because the values of the slow-roll parameters increase due
to the angular motion. Figure 3 shows the decrease in the
number of e-folds due to the increase in the angular
dependence in more detail with different parameter sets.
This is opposite to the finding about the angular depend-
ence in [24]. The number of e-folds decreases by about
20% when increasing C ¼ c2κ−4=3 from 0.5 to 0.9 regard-
less of the value of κ as shown in Figs. 2 and 3. We also
checked that the effect on the number of e-folds stays the
same even if we change the inflaton mass m0. Therefore,
the angular terms have some impact on the background
dynamics even though they are still subdominant.
In the top pair of the plots in Fig. 2, we show the

trajectories until the brane reaches the tip of the warped
throat. With those parameter sets, the brane goes to the tip
of the throat without reaching the minimum of the potential.
This means that the radial coordinate χ overshoots the
minimum in the radial direction before the angular coor-
dinate θ reaches its minimum at θ ¼ π. This is because the
velocity of the brane is high with a large deformation
parameter as explained below. When the brane moves
relativistically, the sound speed cs approaches unity and the
speed limiting effect appears [9]. Equation (23) shows that
the maximum speed of the brane is higher with a large
deformation parameter κ because of the factor κ−8=3 in
Eq. (19). In other plots in Fig. 2, the brane velocity is
suppressed by the small deformation parameters and the
brane moves slowly enough to settle at the minimum of
the potential after some oscillations. The oscillations are

smaller with a smaller deformation parameter because of
the speed limiting effect. We checked that the increase in
the number of e-folds during the oscillations around the
minimum of the potential is negligible regardless of the
choice of the parameter set and inflation occurs mainly in
the initial sweep down the throat.

III. LINEAR PERTURBATION

In this section, we review the linear perturbation theory
in DBI inflation models briefly. After introducing the
conversion of the entropy perturbation into the curvature
perturbation, we show the numerical results for such
conversions with different initial conditions in the spin-
flation model introduced in Sec. II C. Using the power
spectrum of the curvature perturbation, we also show that
the spinflation model with χ ≫ 1 is approximated by the
simple model introduced in Sec. II B when the coupling
between the radial and angular fields is small around
horizon crossing.

A. Linear perturbation theory

For the calculations of the linear perturbations, the
Arnowitt-Deser-Misner approach is used in [17,18,34] as

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð36Þ

t

10

20

30

40

50

N

C 0.9

C 0.5

C 0

FIG. 3 (color online). Evolution of the number of e-folds along
inflationary trajectories with m0 ¼ 5½M�, gsM ¼ 100½M0�, and
κ ¼ 0.001½M−3=2�. Note M is the mass unit defined in Eq. (33).
The thick black curve, the dashed grey curve, and the red solid
curve describe the trajectories with c2 ¼ 0½M−2�, c2 ¼
0.5κ4=3½M−2�, and c2 ¼ 0.9κ4=3½M−2�, respectively. Note that
C ¼ c2κ−4=3½M0�. The amount of inflation decreases as the
angular dependence is increased.
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where N is the lapse and Ni is the shift vector. We perturb
the components of the metric tensor as

N ¼ 1þ α; Ni ¼ ∂iψ þ N̄i;

hij ¼ a2ðtÞ½ð1 − 2AÞδij þ h̄jij þ ∂ðivjÞ þ tij�; ð37Þ

where α, ψ , A, and h̄ are scalar perturbations, N̄i and vi are
vector perturbations, and tij is a tensor perturbation with the
Kronecker delta δij. Note that ji denotes the spatial
covariant derivative with a2δij. Because the scalar modes
of the equations only contain the scalar modes of the
original metric perturbations as long as the metric pertur-
bations are contracted with the quantities which come from
the background metric or the derivatives (see [35] for
details), we can consider the scalar perturbation separately
from the vector and the tensor perturbations. We will work
in the flat gauge where we set A ¼ 0 and h̄ ¼ 0. Then, we
have the linear perturbations of the components of the
metric tensor and the scalar fields as

N ¼ 1þ α; Ni ¼ ∂iψ ; hij ¼ a2ðtÞδij;
ϕIðt;xÞ ¼ ϕ̄IðtÞ þQIðt;xÞ; ð38Þ

where QI are the scalar field perturbations. We define the
adiabatic basis vector ~eIσ as

~eIσ ¼
ffiffiffiffiffi
cs

p _ϕIffiffiffiffiffiffi
2X

p ; ð39Þ

and define the entropy basis vector ~eIs with the conditions

GIJ ~eIs ~eJs ¼
1

cs
;

GIJ ~eIσ ~eJs ¼ 0: ð40Þ

If we assume the relation

QI ¼ ~Qσ ~eIσ þ ~Qs ~eIs; ð41Þ

we obtain

~Qσ ≡GIJQI ~eJσ
cs

; ~Qs ≡ GIJQI ~eJscs: ð42Þ

We define the canonically normalized fields as

vσ ¼
a
cs

~Qσ; vs ¼
a
cs

~Qs: ð43Þ

Then, the equations of motion for vσ and vs are obtained
as [18]

v00σ − ξv0s þ
�
c2sk2 −

z00

z

�
vσ −

ðzξÞ0
z

vs ¼ 0; ð44Þ

v00s þ ξvσ 0 þ
�
c2sk2 −

α00

α
þ a2μ2s

�
vs −

z0

z
ξvσ ¼ 0; ð45Þ

where the prime denotes the derivative with respect to the
conformal time τ and

ξ≡ a
_σ
½ð1þ c2sÞ ~P;s − c2s _σ2 ~P; ~Xs�; ð46Þ

μ2s ≡ −cs ~P;ss −
1

_σ2
~P2
;s þ 2c22 ~P; ~Xs

~P;s; ð47Þ

z≡ a _σffiffiffiffiffi
cs

p
H
; α≡ a

1ffiffiffiffiffi
cs

p ; ð48Þ

with

_σ ≡ ffiffiffiffiffiffi
2X

p
; ~Ps ≡ ~P;IeIs

ffiffiffiffiffi
cs

p
; ~P; ~Xs ≡ ~P; ~XIe

I
s

ffiffiffiffiffi
cs

p
;

~P;ss ≡ ðDIDJ
~PÞeIseJscs; ð49Þ

where DI denotes the covariant derivative with respect to
the field space metric GIJ. With this field decomposition,
the curvature perturbation is written as

R ¼ H
ffiffiffiffiffi
cs

p
_σ

~Qσ: ð50Þ

From Eqs. (44) and (45), on small scales (k ≫ aH=cs), we
can see that both the adiabatic mode vσ and the entropy
mode vs propagate with the sound speed cs in the case of
DBI inflation. If the trajectory is not curved significantly,
the coupling ξ=aH becomes much smaller than one. When
the slow-roll parameters are much smaller than unity, the
approximations z00=z≃ 2=τ2 and α00=α≃ 2=τ2 hold. With
those conditions, we can approximate Eqs. (44) and (45)
as the Bessel differential equations. Then, the solutions
with the Bunch-Davis vacuum initial conditions are
given by

vσk ≃ 1ffiffiffiffiffiffiffiffiffi
2kcs

p e−ikcsτ
�
1 −

i
kcsτ

�
; ð51Þ

vsk ≃ 1ffiffiffiffiffiffiffiffiffi
2kcs

p e−ikcsτ
�
1 −

i
kcsτ

�
; ð52Þ

when μ2s=H2 is negligible for the entropy mode [18].
With the solution (51), the curvature perturbation on
superhorizon scales reads

PR� ¼
k3

2π2
jRj2 ¼ k3

2π2
jvσkj2
z2

≃ H4

4π2 _σ2

����
�
≃ H2

8π2ϵcs

����
�
; ð53Þ

where the subscript * indicates that the corresponding
quantity is evaluated at sound horizon crossing kcs ¼ aH.
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B. Conversion of the entropy perturbation

In this subsection, we first review the conversion
mechanism of the entropy perturbation following [18] with
the different definitions of the adiabatic and entropy bases
that are given in Sec. III A. Then, we show the numerical
results for such conversions in the spinflation model
with different initial conditions. We define the entropy
perturbation as

S ¼ H
ffiffiffiffiffi
cs

p
_σ

~Qs; ð54Þ

where ~Qs is defined in Eq. (42). The equation of motion for
the curvature perturbation is given by

_R ¼ ξ

a
S þH

_H

c2sk2

a2
Ψ; ð55Þ

where Ψ is the Bardeen potential defined as

Ψ ¼ Aþ aH

�
h̄0

2
− aψ

�
; ð56Þ

with A, h̄, and ψ in Eq. (37) and ξ is defined in Eq. (46).
We see that the entropy perturbation is the only source
of the curvature perturbation on superhorizon scales
ðcsk=aH ≪ 1Þ. Therefore, on superhorizon scales, the
equations of motion for the curvature perturbation and
the entropy perturbation are given by

_R ≈ αHS; _S ≈ βHS; ð57Þ

where

α ¼ Ξ
csH

; ð58Þ

β ¼ s
2
−
η

2
−

1

3H2

�
μ2s þ

Ξ2

c2s

�
; ð59Þ

and

Ξ ¼ cs
a
ξ: ð60Þ

We can rewrite Eq. (57) as

�
R
S

�
¼

�
1 TRS

0 TSS

��
R
S

�
�

ð61Þ

where the subscript * indicates that the corresponding
quantity is evaluated at sound horizon crossing kcs ¼ aH
with

TRSðt�; tÞ ¼
Z

t

t�
αðt0ÞTSSðt�; t0ÞHðt0Þdt0; ð62Þ

TSSðt�; tÞ ¼ exp

�Z
t

t�
βðt0ÞHðt0Þdt0

�
: ð63Þ

Hence, the power spectrum of the curvature perturbation is
given by

PR ¼ ð1þ T2
RSÞPR� ¼

PR�

cos2 Θ
; ð64Þ

with

sinΘ≡ TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q ; cosΘ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q ; ð65Þ

where PR� is given by Eq. (53) if the slow-roll parameters
and ξ=aH are much smaller than unity around the horizon
crossing.
We show how the power spectrum of the curvature

perturbation is enhanced when we consider trajectories that
start with slight deviations from the maximum of the
potential in the angular direction in the spinflaion model.
As shown in Fig. 1, the potential has its minima in the
angular direction at θ ¼ ð2N þ 1Þπ where N is an integer
number. We set the initial conditions to ðχ; θÞ ¼ ð9; ~δθÞ
with ~δθ ≪ 1. The reason that we consider such trajectories
is that the coupling ξ=aH is small when the trajectory is a
gentle curve around the minimum. If the coupling is not too
large around horizon crossing, we can use analytic expres-
sions that are useful to study the model, such as the
solutions of the equations of motion for the linear pertur-
bations (51) and (52), by starting the numerical calculations
when the scale of interest is well within the horizon
k ≫ aH=cs. Our numerical calculations show that the
brane quickly becomes highly relativistic in the radial
direction bending slowly towards the angular direction
even if we set the initial velocity highly relativistic only in
the angular direction. On the other hand, if the trajectory
starts in the middle of the hill of the potential, it is bent
towards the angular direction even if the initial velocity is
only in the radial direction producing large coupling terms
with ξ=aH ≫ 1. Therefore, even though we have more
conversion of the entropy perturbation to the curvature
perturbation with a larger coupling, we study those cases in
which the coupling is small and see how much conversion
we have in those cases. We show the numerical results
for three different trajectories with ~δθ ¼ 1 × 10−11, ~δθ ¼
1.5 × 10−11, and ~δθ ¼ 2 × 10−11, which will be shown with
a blue dotted line, a purple dashed line, and a black solid
line, respectively, in Figs. 4, 5, 6, and 7.
In this case, the displacement from the maximum of the

potential increases as inflation proceeds as shown in the left
panel of Fig. 4. The right panel shows that the brane goes to
the tip of the throat χ ¼ 0without reaching the minimum of
the potential in the angular direction at θ ¼ π. The slow-roll
parameters are shown in Fig. 5. Slow-roll approximation
holds until the end of inflation.
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The coupling exhibits interesting behaviors in Fig. 6.
The coupling increases as the number of e-folds increases.
In addition to that, the difference between the trajectories
also increases. This means that the coupling at the end of
inflation could be large even if it is almost negligible
around horizon crossing. Figure 7 shows the numerical
result for the power spectrum of the curvature perturbation.
The values of ξ=aH at horizon crossing are 10, 15, 22 for

the trajectories with ~δθ ¼ 1 × 10−11, 1.5 × 10−11, and
2 × 10−11, respectively. Therefore, we can no longer use
the analytic solutions for the linear perturbations and the
curvature power spectrum takes different values around
horizon crossing with different trajectories. By starting the
numerical calculations well within the horizon exits
(k ≫ aH=cs), the values of the curvature power spectrum
around horizon crossing are obtained numerically as 200,
4 × 107, and 2 × 1011 for the trajectories with ~δθ ¼
1 × 10−11, 1.5 × 10−11, and 2 × 10−11, respectively, while
the values of the final curvature power spectrum are ∼109,
∼1016, and ∼1024. Therefore, the values of cos2Θ
are ∼10−7, ∼10−9, and ∼10−15 for the trajectories with

~δθ ¼ 1 × 10−11, 1.5 × 10−11, and 2 × 10−11. In general, it
is safe to assume that cos2Θ keeps decreasing as the
amplitude of the displacement from the maximum increases.

C. Single-field approximation of spinflation

The warp factor (19) is approximated as [24,31]

hðχÞ ∼ 27

8

ðgsMα0Þ2
rðχÞ4

�
ln
rðχÞ3
κ2

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4

�
; ð66Þ

for large χ > 1. The angular term in the potential (28) is
always smaller than the radial term because c2 is smaller
than κ4=3 while rðχÞ2 is of the order of κ4=3. Also, the
constant term U0 is small by definition because the global
minimum of the potential is at a point where χ ≪ 1 where
both terms are negligible. Even though the angular term is
not negligible in general, the radial term affects the
dynamics dominantly when the motion of the brane is
mainly in the radial direction. In such cases, the potential is
approximated as

3 4 5 6 7 8

2. 10 11

3. 10 11

4. 10 11

5. 10 11

2 10 11

1.5 10 11

1 10 11

Initial

2 4 6 8
cos

5. 10 11

1. 10 10

1.5 10 10

sin

FIG. 4 (color online). Trajectories along the maximum of the potential at θ ¼ 0. Left: trajectories in the χ-θ plane. Right: trajectories in
the phase space.

FIG. 5 (color online). Left: slow-roll parameter ϵ. Middle: slow-roll parameter η. Left: slow-roll parameter s. All the slow-roll
parameters behave in the same way for all the trajectories with θ ¼ 1 × 10−11, 1.5 × 10−11, and 2 × 10−11 because the displacements are
small. The slow-roll approximation holds until the end of inflation.
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VðϕIÞ ∼ T3U ¼ T3

�
1

2
m2

0rðχÞ2
�
: ð67Þ

When we compare the spinflation model in this section
with the simple model in Sec. II B, we can identify the
fields χ and θ in this section with the dimensionless
coordinates in Eq. (3) as mentioned in Sec. II C.
Therefore, the canonical field ϕ with a mass dimension
½M� is given by

ϕðχÞ ¼
ffiffiffiffiffi
T3

p
rðχÞ ¼

ffiffiffiffiffi
T3

p κ2=3ffiffiffi
6

p
Z

χ

0

dx
KðxÞ ; ð68Þ

where the dimensions of T3 and κ2=3 are ½M4� and ½M−1�,
respectively.
Regarding the logarithmic dependence of r as constant,

the warp factor (66) is approximated by Eq. (13) with

λ≡ 27T3

8
ðgsMα0Þ2

�
ln
rðχÞ3
κ2

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4

�

¼ 27

64π3
gsM2

�
ln
rðχÞ3
κ2

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4

�
; ð69Þ

where we used the relation [24]

T3 ¼
1

ð2πÞ3
1

gsðα0Þ2
: ð70Þ

Note that f in Eq. (13) is the rescaled warp factor f ¼ h=T3

with h in Eq. (66) as defined in Eq. (7). The potential (67) is
approximated by Eq. (12) with

m≡m0: ð71Þ

We now show that the analytic formulas in Sec. II B predict
the numerical results with considerable accuracy.
We consider a model with gs ¼ 1=2π½M0�, M ¼
1.2 × 106π½M0�, m0 ¼ 3 × 10−3½M�, κ ¼ 10−8½M−3=2�,
N ¼ 1½M0�, α0 ¼ 10½M−2�, χUV ¼ 10½M0�, and C ¼
c2κ−4=3 ¼ 0.5½M0�. Note that all the quantities have the
units associated with the mass unit M defined in Eq. (33).
With those parameters, the mass unit M is defined by
Eq. (33) as

M≃ 0.0138MP: ð72Þ

Therefore, for example, the string scale 1=α ½M2� in the
Planck units is given by

M2

α0M2
P
¼ 1.91 × 10−5½M2

P�: ð73Þ

Figure 8 shows the numerical results for the trajectory in
the field space and the sound speed. The initial position of
the brane is ðχ; θÞ ¼ ð20; 10−15Þ. The initial velocity is only
in the radial direction, even though we confirmed that the
velocity becomes highly relativistic only in the radial
direction, regardless of the initial velocity, when the
trajectory is close to the maximum. In the left panel of
Fig. 8, it is shown that the trajectory is bent towards the
angular direction slowly and the deviation from the
maximum of the potential in the angular direction becomes
larger gradually. Below, we consider the perturbation that
exits the horizon around N ∼ 2. Using the numerical
results, the value of the canonical field (68) around horizon
crossing in the Planck units is

10 20 30 40 50 60
N

1000

2000

3000

4000

aH

2 10 11

1.5 10 11

1 10 11

Initial

FIG. 6 (color online). Evolution of the coupling ξ=aH in terms
of the number of e-folds N along the maximum of the potential in
the angular direction.

10 20 30 40 50 60
N

5

5

10

15

20

Log10 PR

2 10 11

1.5 10 11

1 10 11

Initial

FIG. 7 (color online). Evolution of the power spectrum of the
curvature perturbation in terms of the number of e-folds N along
the maximum of the potential in the angular direction. The scale
of interest exits the horizon around N ∼ 7 for all the trajectories.
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ϕðχÞ
MP

¼ 4.50 × 10−5
M
MP

¼ 6.22 × 10−7½MP�; ð74Þ

where we used Eq. (72). From Eq. (15), the sound speed is
given by

cs ¼
ffiffiffi
3

λ

r
MP

2m̄0M

�
ϕ

MP

�
2 ≃ 1.05 × 10−14; ð75Þ

with the dimensionless parameters m̄0 ¼ m0=M and λ ¼
5.78 × 1011 that is given by Eq. (69). In the right panel of
Fig. 8, we see that the analytic formula (75) predicts the
sound speed around N ∼ 2 with great accuracy.

Figure 9 shows the behavior of the slow-roll parameters.
From Eq. (15), the analytic prediction of the slow-roll
parameter ϵ is given by

ϵ ¼
ffiffiffi
3

λ

r
MP

m̄0M
¼ 0.0545: ð76Þ

In the left panel of Fig. 9, we see that the value of ϵ is
predicted with the analytic formula (76) with around 20%
error. In the middle panel, η is much smaller than ϵ, whereas
it is expected to vanish in Eq. (16). The right panel shows
that the second relation in Eq. (16) holds as s≃ −2ϵ.
As stated above, the trajectory is bent towards the

angular direction gradually. As shown in the middle panel
of Fig. 10, the coupling is negligible in the early stage of
inflation and becomes larger rapidly in the late stage.
Therefore, the curvature power spectrum PR is almost
constant in the early stage of inflation as shown in the left
panel of Fig. 10. Because this is the effective single-field
phase, it shows the same behavior as the power spectrum of
the curvature perturbation in the single-field inflation
models [36,37]. With Eq. (15), the power spectrum of
the curvature perturbation (53) reads

PR ¼ 1

8π2M2
P

H2

csϵ
¼ 1

4π2ϵ4λ
: ð77Þ

Therefore, the value of the power spectrum is analytically
predicted as
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FIG. 9 (color online). Left: slow-roll parameter ϵ. Middle: slow-roll parameter η. Right: slow-roll parameter s. All the horizontal axes
denote the number of e-folds.
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FIG. 10 (color online). Left: curvature power spectrum in the early stage of inflation. Middle: coupling. It increases rapidly in the late
stage of inflation. Right: behavior of the curvature power spectrum until the end of inflation.
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FIG. 8 (color online). Left: background trajectory in the χ-θ
plane of the brane moving down the throat along the maximum of
the potential in the angular direction with a small displacement
from the maximum. Right: evolution of the sound speed in the
early stage of inflation with respect to the number of e-folds.
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PR� ¼
1

4π2ϵ4λ
≃ 2.42 × 10−9; ð78Þ

where we used ϵ ¼ 0.065 and λ ¼ 5.78 × 1011 that is
obtained with Eq. (69). In the left panel of Fig. 10, it is
shown that the approximated analytic formula (78) predicts
the power spectrum of the curvature perturbation with great
accuracy when the brane has the effective single-field
dynamics. In the right panel, we see that the curvature
power spectrum is enhanced in the late stage of inflation
because of the coupling between the adiabatic and entropy
perturbations. Even though it is enhanced only by the factor
of 2 with those parameters and the initial conditions, the
conversion of the entropy perturbation into the curvature
perturbation becomes larger if we make the initial dis-
placement from the angular maximum larger.

IV. NON-GAUSSIANITY

In this section, we introduce the equilateral non-
Gaussianity. We also review the microphysical constraint
that excludes single-field DBI inflation models and show
that multifield DBI inflation models have the possibility of
satisfying the constraint with the conversion mechanism
introduced in Sec. III B. Finally, using the observables
including the equilateral non-Gaussianity, we show that the
spinflation model introduced in Sec. II C is excluded by the
Planck satellite observations even with the conversion
mechanism in the regime where the approximation shown
in Sec. III C holds.

A. Equilateral non-Gaussianity

In this subsection, we review the non-Gaussianity
parameter fequilNL in single-field DBI inflation models
[20,29,38,39]. Then, we introduce fequilNL in multifield
DBI inflation models following [18]. The parameter
fequilNL quantifies the bispectrum of the curvature perturba-
tion as

hΩjRð0;k1ÞRð0;k2ÞRð0;k3ÞjΩið3Þ

¼ −ð2πÞ7δð3Þðk1 þ k2 þ k3Þ
�
3

10
fequilNL ðPR�Þ2

�P
ik

3
i

Πik3i
;

ð79Þ

where Rðτ;kiÞ is the Fourier component of the curvature
perturbation with the wave vector ki ði ¼ 1; 2; 3Þ. Note that
we take the conformal time τ ≈ −ðaHÞ−1 to be 0 at the end
of inflation. We can derive the bispectrum of the curvature
perturbation in the single-field DBI inflation using the in-in
formalism as [39,40]

hΩjRð0;k1ÞRð0;k2ÞRð0;k3ÞjΩið3Þ

¼−ð2πÞ7δð3Þðk1þk2þk3ÞðPRÞ2
1

Πik3i
ADBIðk1;k2;k3Þ;

ð80Þ

where

ADBI ¼ 1 − c2s
c2s

�
−
1

K

X
i>j

k2i k
2
j þ

1

2K2

X
i≠j

k2i k
3
j þ

1

8

X
i

k3i

�
þ ϵ

c2s

�
−
1

8

X
i

k3i þ
1

8

X
i≠j

k2i k
2
j þ

1

K

X
i>j

k2i k
2
j

�

þ η

c2s

�
1

8

X
i

k3i

�
þ s
c2s

�
−
1

4

X
i

k3i −
1

K

X
i>j

k2i k
2
j þ

1

2K2

X
i≠j

k2i k
3
j

�
: ð81Þ

The bispectrum of the curvature perturbation (80) has its maximum at the equilateral configuration k1 ∼ k2 ∼ k3 as shown in
[29]. Even though the “bispectrum” of the curvature perturbation (79) is not the same with the actual bispectrum (80), it is
defined so that it has the same value as the actual bispectrum at the equilateral configuration where it has its maximum. By
setting k1 ¼ k2 ¼ k3 ¼ ~k, we have

ADBI ¼ −
7

24

�
1

c2s
− 1

�
~k3 ð82Þ

at the leading order. From Eqs. (80) and (82), in this limit, we have

hΩjRð0;k1ÞRð0;k2ÞRð0;k3ÞjΩið3Þ

¼ −ð2πÞ7δð3Þðk1 þ k2 þ k3Þ
�
−

7

24

�
1

c2s
− 1

�
~k3

Πik3i

��
H2

8π2ϵcs

�
2

¼ −ð2πÞ7δð3Þðk1 þ k2 þ k3Þ
�
−

7

72

�
1

c2s
− 1

�P
ik

3
i

Πik3i

�
ðPR� Þ2

¼ −ð2πÞ7δð3Þðk1 þ k2 þ k3Þ
3

10

�
−

35

108

�
1

c2s
− 1

�P
ik

3
i

Πik3i

�
ðPR�Þ2: ð83Þ
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Comparing Eq. (79) with Eq. (83), we obtain

fequilNL ¼ −
35

108

�
1

c2s
− 1

�
: ð84Þ

The non-Gaussianity parameter fequilNL in two-field DBI
inflation models is derived in the small sound speed limit
cs ≪ 1 in the slow-roll approximation as

fequilNL ¼ −
35

108

�
1

c2s
− 1

�
1

1þ T2
RS

¼ −
35

108

�
1

c2s
− 1

�
cos2Θ; ð85Þ

where TRS and cosΘ are defined in Eqs. (61) and (65),
respectively.

B. Microphysical constraint

In this subsection, we introduce the microphysical
constraint that strongly disfavors single-field DBI inflation
models. We also show how multifield DBI inflation models
have the possibility of satisfying this constraint. Baumann
and McAllister (2006) derived an upper bound on the
tensor-to-scalar ratio by analyzing the higher dimensional
geometry that can be approximated with geometry AdS5 ×
X5 [11]. In DBI inflation models, the scalar fields describe
the position of the brane in the higher dimensional
manifold. Because the volume of such a higher dimensional
manifold is finite, the variation of the inflaton field during
the observable inflation Δϕ� ¼

ffiffiffiffiffi
T3

p
Δχ� must be finite as

well. This is simply because the brane cannot move across
an infinite distance within the higher dimensional manifold
whose volume is finite. Therefore, the upper limit of the
variation of the inflaton field during the observable infla-
tion is derived as [11,12]

�
Δϕ�
MP

�
6

<
π3

16VolðX5Þ
r2�PR

�
1þ 1

3fequilNL

�
; ð86Þ

where VolðX5Þ is the dimensionless volume of the space
X5. This condition weakly depends on the non-Gaussianity
parameter in the case that fequilNL > 5 which is still com-
patible with the Planck satellite observations. Therefore, we
neglect the factor with fequilNL in the condition (86).
We usually expect VolðX5Þ ¼ Oðπ3Þ. Using the Lyth
bound [41]

1

M2
P

�
Δϕ
ΔN

�
2

¼ r
8
; ð87Þ

the upper bound on the variation of the inflaton field (86) is
rewritten as the upper bound on the tensor-to-scalar ratio as

r� < 10−7; ð88Þ

assuming that the minimum number of e-folds that could
be probed by observation is ΔN ∼ 1 and the Planck
normalization PR ¼ 2.23 × 10−9 [42]. Secondly, the
lower bound on the tensor-to-scalar ratio in the single-
field UV DBI inflation is derived in the following way.
The general relation between the spectral index for the
curvature perturbation and fequilNL in the multifield DBI
inflation is given by [19]

1 − ns ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jfequilNL j

q
r

4cos3Θ
−

_f
Hf

þ α� sin 2Θþ 2β�sin2Θ;

ð89Þ
where f is the warp factor defined in Eq. (7) and sinΘ
is defined in Eq. (65). Note that a term proportional to c2ss�
is neglected because we assume that both cs and s�
are small. For the single-field UV DBI inflation, we have
_f > 0 and Θ ¼ 0. Therefore, we have

r >
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jfequilNL j
q ð1 − nsÞ ðsingle fieldÞ; ð90Þ

from Eq. (89). The amplitude of the equilateral non-
Gaussianity is constrained as [42]

fequilNL ¼ −42� 75; ð91Þ

and the best-fit value for the specrtral index is ns ≃ 0.96
from the Planck satellite observation. From those values,
we can obtain the lower bound on the tensor-to-scalar
ratio as

r≳ 8.4 × 10−3: ð92Þ
The lower bound (92) is not compatible with the upper
bound (88). This is why single-field UV DBI inflation is
disfavored by observation.
These constraints are relaxed when we consider multi-

field models. The upper bound is relaxed because we have
angular directions and the field variation is not only
determined by the radial coordinate. More importantly,
the lower bound is relaxed significantly because the last
two terms in Eq. (89) become important if there is a transfer
from the entropy mode to the adiabatic mode (Θ ≠ 0). In a
multifield DBI inflation model, the tensor-to-scalar ratio is
given by

r≡ PT

PR
¼ 16ϵcsj� cos2Θ; ð93Þ

from Eq. (64) and the amplitude of the tensor perturbation

PT ¼ 2H2

π2

����
�
: ð94Þ
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In single-field cases, we have Θ ¼ 0. It is clear that the
more conversion of the entropy perturbation we have, the
smaller the value of r becomes. Therefore, the lower bound
(92) no longer exists in multifield DBI inflation models.

C. Observational constraints combined with
the analytic formulas

As shown in Sec. IV B, the microphysical constraint that
disfavors the single-field DBI inflation models is possibly
satisfied when the power spectrum of the curvature per-
turbation is enhanced after the horizon exit. In this section,
we consider the cases where the dynamics is effectively
single field until the perturbations considered are stretched
to superhorizon scales as in the example in Sec. III C. The
enhancement is quantified by the transfer function as in
Eq. (64). Using Eq. (64), the ratio of the power spectrum of
the curvature perturbation at the end of inflation PR to the
power spectrum of the curvature perturbation around
horizon crossing PR� is given by

cos−2Θ ¼ PR

PR�
: ð95Þ

Because PR at the end of inflation needs to satisfy the
constraint by the Planck satellite observations [43], we have
PR ∼ 2.2 × 10−9. Because we need cos−2Θ ≫ 1 to make
the multifield DBI inflation model compatible with the
Planck satellite observations for the equilateral non-
Gaussianity, we require

PR� < 10−9: ð96Þ

Using the approximated analytic expression (77), Eq. (96)
gives the lower bound of λ as

λ >
109

4π2ϵ4
; ð97Þ

with the slow-roll parameter ϵ. From Eqs. (85) and (95), we
obtain

fequilNL ≈ −
cos2Θ
3c2s

¼ −
1

3c2s

PR�
PR

: ð98Þ

Using the constraint on fequilNL by the Planck satellite
observations jfequilNL j < 100, Eq. (98) leads to

PR�

c2s
< 6 × 10−7; ð99Þ

where we have used PR ∼ 2.2 × 10−9. The inequality (99)
is rewritten as

107

6π2ϵ6λ
<

�
ϕ

MP

�
4

; ð100Þ

using Eq. (77) and the relation

cs ¼
ϵ

2

�
ϕ

MP

�
2

; ð101Þ

which is derived from Eq. (15). From Eqs. (33) and (68),
the canonical field in the Planck units is given by

ϕðχÞ
MP

¼
ffiffiffiffiffi
T3

p
κ2=3

MP

1ffiffiffi
6

p
Z

χ

0

dx
KðxÞ

¼
ffiffiffiffiffi
T̄3

q
κ̄2=3

M
MP

1ffiffiffi
6

p
Z

χ

0

dx
KðxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6π

κ̄4=3gsM2T̄3NJðχUVÞ

s ffiffiffiffiffi
T̄3

q
κ̄2=3

1ffiffiffi
6

p
Z

χ

0

dx
KðxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

gsM2NJðχUVÞ
r Z

χ

0

dx
KðxÞ : ð102Þ

From Eqs. (100) and (102), we obtain the inequality

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

gsM2NJðχUVÞ
r Z

χ

0

dx
KðxÞ

�
4

>
107

6π2ϵ6λ
; ð103Þ

which leads to

π2

N2JðχUVÞ2
�

27

64π3λ

�
ln
rðχÞ3
κ2

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4

��2�Z χ

0

dx
KðxÞ

�
4

>
107

6π2ϵ6λ
ð104Þ

from Eq. (69). Simplifying Eq. (104), we obtain the upper
bound of λ as

λ <
3

2π2

�
27

32

�
2

10−7ϵ6
ðln rðχÞ3

κ2
þ ln 4

ffiffi
2

p
3
ffiffi
3

p − 1
4
Þ2

JðχUVÞ2
�Z

χ

0

dx
KðxÞ

�
4

:

ð105Þ

Because we have both the lower bound (97) and the upper
bound (105) of λ, the lower bound must be smaller than the
upper bound
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4π2ϵ4
<

3

2π2

�
27

32

�
2

10−7ϵ6
ðln rðχÞ3

κ2
þ ln 4

ffiffi
2

p
3
ffiffi
3

p − 1
4
Þ2

JðχUVÞ2

×

�Z
χ

0

dx
KðxÞ

�
4

; ð106Þ

which is rewritten as
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Fðχ; χUVÞ < 4.27 × 10−16ϵ10; ð107Þ

with

Fðχ; χUVÞ≡ JðχUVÞ2
½ln ð 1ffiffi

6
p

R χ
0

dx
KðxÞÞ3 þ ln 4

ffiffi
2

p
3
ffiffi
3

p − 1
4
�2ðR χ

0
dx
KðxÞÞ4

;

ð108Þ

where we have used Eq. (29). If the condition (107) is not
satisfied, λ cannot take any value that is larger than the
lower bound (97) and smaller than the upper bound (105) at
the same time. Because the function FðχÞ is dependent only
on χ and χUV , this is a general condition that is independent
of all other parameters. Numerically, we obtain

LðχNÞ≡ ln

�
1ffiffiffi
6

p
Z

χN

0

dx
KðxÞ

�
3

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4
¼ 0; ð109Þ

where χN ¼ 1.9966. As χ increases from χN , LðχÞ
increases monotonically because we have

d
dχ

�Z
χ

0

dx
KðxÞ

�
¼ 1

KðxÞ > 0: ð110Þ

Because we consider the case χ ≫ 1, we study the behavior
of Fðχ; χUVÞ only in the region χ > 2 below. Therefore, the
denominator of Fðχ; χUVÞ in Eq. (108) is a monotonically
increasing function with χ. This means that χ ¼ χUV
minimizes Fðχ; χUVÞ and the condition (107) is rewritten as

FðχUV; χUVÞ < 4.27 × 10−16ϵ10 < 4.27 × 10−16; ð111Þ

where we used ϵ < 1 during inflation. Choosing χ ¼ χUV
means considering the perturbation that exits the horizon
when the brane is at χ ¼ χUV. As shown in the left panel of
Fig. 11, Fðχ; χUVÞ keeps decreasing exponentially. The plot
is for χUV ¼ 20 and FðχUV; χUVÞ ≈ 0.0134 in this case.
This does not satisfy the condition (111).
Let us show the behavior of FðχUV; χUVÞ with respect to

χUV below. For large χ, we obtain

KðχÞ ≈ 21=3 exp

�
−
1

3
χ

�
; ð112Þ

which leads to

Z
χ

0

dx
KðxÞ ≈

3

21=3
exp

�
1

3
χ

�
: ð113Þ

Using Eq. (113), we obtain

ln

�
1ffiffiffi
6

p
Z

χ

0

dx
KðxÞ

�
3

þ ln
4

ffiffiffi
2

p

3
ffiffiffi
3

p −
1

4
≈ χ: ð114Þ

The function IðχÞ in Eq. (20) is approximated as

IðχÞ ≈ 3

41=3
χ exp

�
−
4

3
χ

�
; ð115Þ

for large χ from the approximated expression in [24]. For
sufficiently large χUV, we obtain

JðχUVÞ ¼
Z

χUV

0

dχIðχÞsinh2χ

≈
Z

χUV

χt

dχIðχÞsinh2χ

≈
32

211=3
χUV exp

�
2

3
χUV

�
; ð116Þ

using Eq. (115) where 1 ≪ χt ≪ χUV. From Eqs. (108),
(113), (114), and (116), we obtain

FðχUV; χUVÞ ≈
1

26
≈ 0.0156; ð117Þ

for large χUV. In the right panel of Fig. 11, we see that
FðχUV; χUVÞ actually approaches 0.0156. It also shows that
FðχUV; χUVÞ does not become smaller than 0.01 in the
region 2 < χUV before it becomes constant. Therefore, we
conclude that the necessary condition (111) is not satisfied
regardless of the value of χUV. Because the condition (111)
is independent of any other parameter, this model is
excluded by the observations in the regime where we
can use those approximated formulas. Note that this strong
constraint comes from the fact that the sound speed and the
amplitude of the curvature perturbation is controlled
essentially by one factor that consists of the model
parameters gsM2 as in Eqs. (69) and (102). Due to this
relation, it is not possible to satisfy (96) and (99)
simultaneously.

V. SUMMARY AND DISCUSSIONS

In this paper, we studied the DBI inflation model with
the simplest two-field potential derived in string theory
[24]. When we consider the cases where we have the
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FIG. 11 (color online). Left: semilog plot of Fðχ; χUVÞ with
respect to χ for χUV ¼ 20. It keeps decreasing exponentially.
Right: plot of FðχUV; χUVÞ with respect to χUV. It takes a constant
value asymptotically.
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effective single-field dynamics around horizon crossing,
the model is approximated with a simple model studied
in [8]. After the horizon exit, the power spectrum of the
curvature perturbation is significantly enhanced if the
trajectory of the brane in the field space is bent sharply.
Because all the analytic expressions derived in Sec. IV are
valid with the effective single-field dynamics around the
horizon crossing, we can predict the value of the non-
Gaussianity parameters. It has been shown that the model is
excluded with the constraints on the power spectrum of the
curvature perturbation and fequilNL regardless of the model
parameters when we take into account the constraint on the
volume of the internal space [11].
We need further analysis if the coupling between the

adiabatic and entropy perturbations is not negligible around
horizon crossing as ξ=aH > 1. In such cases, the adiabatic
perturbation is coupled to the entropy perturbation around
horizon crossing and the power spectrum of the curvature
perturbation around horizon crossing can no longer be
estimated with Eq. (53). The expression for fequilNL (85) is
also not valid in such cases because we used the expression
for the curvature power spectrum which is valid only with a
small coupling around horizon crossing in deriving this
expression. Because the analytic formulas in Sec. III C are
derived assuming the single-field dynamics, the conclusion
in Sec. IV C is no longer valid in cases with large couplings
around horizon crossing. However, our numerical calcu-
lations show that it is difficult to maintain the almost scale-
invariant curvature power spectrum which is compatible
with the observations when the coupling is large around
horizon crossing.
If the coupling around horizon crossing is large, we need

to calculate the non-Gaussianity performing the full cal-
culations with the in-in formalism. In [44], the authors have
performed similar calculations in quasisingle-field inflation
where the coupling is not negligible around horizon
crossing. They studied a model where there is one slow-
roll direction while all other isocurvature fields have
masses at least of the order of H and obtained large
bispectra whose shape is between the equilateral and local
shapes. It would be interesting to apply their method to
study the shape of non-Gaussianity in the case with the
large coupling to know whether the stringent microphysical
constraint can be avoided.
Though we studied the simplest potential that takes into

account the leading-order correction to the potential in this
paper, the shape of the potential can be more complicated
depending on the embbeding of branes in the internal

space. For example, in [45], they obtained a potential where
a waterfall phase transition connects two different radial
trajectories. In [21], for the first time, we quantified the
effect of the angular dynamics on observables using a toy
model representing this type of the potential. We demon-
strated that all the Planck observational constraints can be
satisfied, except for the constraint on flocalNL , while obeying
the bound on the tensor-to-scalar ratio imposed in string
theory models. In general, the large conversion creates
large local type non-Gaussianity. In our model, this is
indeed the case and we expect that large equilateral non-
Gaussianity is generally accompanied by large local type
non-Gaussainity in multifield DBI models. Those studies
show that the precise measurement of the CMB anisotro-
pies makes it possible to test DBI inflation models
effectively once concrete potentials are given. Therefore,
it is important to study further the realisation of DBI
inflation models in string theory.
While we are completing this paper, a new exciting

measurement of the B-mode polarization was made by the
BICEP2 experiment suggesting r ¼ 0.20þ0.07

−0.05 at 7.0σ [46].
Even though the result by BICEP2 should be confirmed
with measurements of the CMB polarization in other
experiments such as the PLANCK satellite observation,
r≃ 0.2 would not satisfy the microphysical constraint (88)
for the single-field DBI inflation. There are several ways of
relaxing the microphysical constraints using wrapped
branes [47–49], multiple branes [50–53], or multiple fields
as explained in Sec. IV B. With those ideas, DBI inflation
models could be compatible with the BICEP2 result;
however, the DBI inflation models will face a significant
challenge. This can be seen from the formula for the tensor-
to-scalar ratio r, (93). Both the small sound speed cs < 1
and the multifield effect cos2Θ < 1 suppress the tensor-to-
scalar ratio. Although it is still possible to find a model that
produces r ¼ 0.2 in DBI inflation models [49], it requires
more elaborated constructions.
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