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In this paper, we investigate a scenario of variable gravity and apply it to the unified description of
inflation and late-time cosmic acceleration dubbed quintessential inflation. The scalar field called “cosmon,”
which in this model unifies both the concepts, reduces to the inflaton at early epochs. We calculate the
slow-roll parameters, the Hubble parameter at the end of inflation, the reheating temperature, and the tensor-
to-scalar ratio, and we demonstrate the agreement of the model with observations and the Planck data. As for
the postinflationary dynamics, the cosmon tracks the background before it exits the scaling regime at late
times. The scenario gives rise to the correct epoch sequence of standard cosmology, namely, radiative
regime, matter phase, and dark energy. We show that the long kinetic regime after inflation gives rise to
enhancement of the relic gravity wave amplitude, resulting in violation of the nucleosynthesis constraint at
the commencement of the radiative regime in the case of an inefficient reheating mechanism, such as
gravitational particle production. Instant preheating is implemented to successfully circumvent the problem.
As a generic feature, the scenario gives rise to a blue spectrum for gravity waves on scales smaller than the
comoving horizon scale at the commencement of the radiative regime.
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I. INTRODUCTION

Theoretical and observational consistencies demand
that the standard model of the Universe be complemented
by early phase of accelerated expansion, dubbed inflation
[1–14], and late-time cosmic acceleration [15–25]. Inflation
is a remarkable paradigm, a single simple idea which
addresses logical consistencies of a hot big bang and
provides a mechanism for the primordial perturbations
needed to seed the structures in the Universe. As for late-
time cosmic acceleration, it is now accepted as an observed
phenomenon though its underlying cause still remains
obscure, whereas similar confirmation of inflation is still
awaited. Thus, the hot big bang and the two phases of
accelerated expansion represent a theoretically accepted
framework for the description of our Universe.
Without a doubt, inflation is a great idea; the phenome-

non should therefore live forever such that the late-time
cosmic acceleration is nothing but its reincarnation à la
quintessential inflation [26–60]. The idea was first pro-
posed by Peebles and Vilenkin in 1999 [26] and was later
implemented in the framework of braneworld cosmology
[27–31]. At the theoretical level, it sounds pretty simple to
implement such a proposal in the language of a single
scalar field. The field potential should be shallow at early

times, facilitating slow roll, followed by steep behavior
thereafter and turning shallow again at late times. The steep
potential is needed for the radiative regime to commence,
such that the field is subdominant during the radiation era
and does not interfere with nucleosynthesis. It should
continue to remain in hiding during the matter phase till
its late phases, in order not to obstruct structure formation.
It is then desirable to have a scaling regime, in which the
field mimics the background by being invisible, and
allowing the dynamics to be free from initial conditions,
which in turn require a particular steep behavior of the
potential. At late times, the field should overtake the
background, giving rise to late-time cosmic acceleration,
which is the case if slow roll is ensured or if the potential
mimics shallow behavior effectively.
There are several obstacles in implementing the above

unification scheme. First, since inflation survives in this
scenario until late times, the potential is typically of a
runaway type and one therefore requires an alternative
mechanism of reheating in this case. One could invoke
reheating due to gravitational particle production after
inflation [61–68], which is a universal phenomenon.
However, the latter is an inefficient process and it might
take a very long time for the radiative regime to commence.
Clearly, in this case, the scalar field spends a long time in
the kinetic regime such that the field energy density
redshifts with the scale factor as a−6, corresponding to
the equation of state of stiff matter. It is known that the
amplitude of gravitational waves produced at the end of
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inflation is enhanced during the kinetic regime, and if the
latter is long, the relic gravitational waves [27,28,69–88]
might come into conflict with the nucleosynthesis con-
straint at the commencement of the radiative regime
[27,28,88]. Hence, one should look for yet another alter-
native reheating mechanism, such as instant preheating
[89–91], to circumvent said problem.
A second obstacle to the unification is that if we want the

scalar field to mimic the background for most of the
thermal history, the field potential should behave like a
steep exponential potential, at least approximately, such as
the inverse power-law potentials. Since the scaling regime
is an attractor in such cases, an exit mechanism from the
scaling regime to late-time acceleration should be in place
in the scenario.
Let us examine how to build the unified picture. The

single scalar field models aiming for quintessential infla-
tion can be broadly put into two classes: (1) models in
which the field potential has a required steep behavior for
most of the history of the Universe but turn shallow at
late times, for instance, the inverse power-law potentials
[27–29,33]; and (2) models in which the field potential is
shallow at early epochs, giving rise to inflation, followed by
the required steep behavior.
In the first class of potentials, we cannot implement

inflation in the standard framework, since slow roll needs to
be assisted in this case. For example, one could invoke
Randall-Sundrum (RS) braneworld [92,93] corrections
[27–29] to facilitate inflation with steep potential at early
epochs. In this case, as the field rolls down to the low
energy regime, the braneworld corrections disappear, giv-
ing rise to a graceful exit from inflation, and thereafter the
scalar field has the required behavior. However, gravita-
tional particle production [65,66] is extremely inefficient in
the braneworld inflation [27] and one could in principle
introduce the instant preheating to tackle the relic gravi-
tational waves problem [28]. Unfortunately, the steep
braneworld inflation is inconsistent with observations,
namely, the tensor-to-scalar ratio of perturbations is too
high in this case. Thus, the scenario fails in the early phase,
although the late-time evolution is compatible with theo-
retical consistency and observational requirements [27,28].
In the second class of potentials, that is, shallow at early

epochs followed by steep behavior, we need a mechanism
to exit from the scaling regime. A possible way out is
provided by introducing neutrino matter, such that neutrino
masses are field dependent [94–98]. Such a scenario can be
motivated from the Brans-Dicke framework, with an addi-
tional assumption on the matter Lagrangian in the Jordan
frame, namely, treating massive neutrinos differently from
other forms of matter in such a way that the field is
minimally coupled to cold dark matter/baryon matter in the
Einstein frame, whereas the neutrino masses grow with the
field [94]. In such a scenario, neutrinos do not show up in
the radiation era; their energy density tracks radiation being

subdominant. However, in the subsequent matter phase at
late times, as they become nonrelativistic, their masses
begin to grow and their direct coupling to the scalar field
builds up such that the effective potential acquires a
minimum at late times, giving rise to late-time acceleration,
provided the field rolls slowly around the effective mini-
mum. At this point, a question arises, namely, whether we
could do without neutrino matter and the extra assumption,
in which case the field would couple to matter directly in
the Einstein frame and the effective potential would also
acquire a minimum. For simplicity, let us assume that we
are dealing with a constant coupling Q à la coupled
quintessence [99]. In that case it is possible to achieve
slow roll around the minimum of the effective potential,
provided that Q is much larger than the slope of the
potential, such that the effective equation-of-state param-
eter has a desired negative value [weff ¼ −Q=ðQþ αÞ,
where α is the slope of the potential]. The scaling solution
(which is accelerating thanks to nonminimal coupling), an
attractor of the dynamics, is approached soon after the
Universe enters into the matter dominated regime and
consequently, we cannot have a viable matter phase in
this case. It is therefore necessary that the matter regime
be left intact and the transition to accelerated expansion
take place only at late times. The latter can be triggered
by massive neutrino matter with field-dependent masses
[100–102].
In this paper we consider a scenario of quintessential

inflation in the framework of the variable gravity model
[94–98]. We first revisit the model in the Jordan frame
(Sec. II) and then we transition to the Einstein frame
(Sec. III) for detailed investigations of cosmological
dynamics by considering the canonical form of the action
(Sec. III A). Behavior of the canonical field with respect to
the noncanonical field is also examined (Sec. III B). In the
Einstein frame we examine the inflationary phase (Sec. IV),
kinetic regime and late-time transition to dark energy
(Sec. V). Reference [94] provides a broad outline of
inflation and late-time acceleration in the framework of
the model under consideration. In this paper, we present a
complete evolution history by invoking a suitable preheat-
ing mechanism. We investigate issues related to the
spectrum of relic gravity waves (Sec. IVA) as generic
observational features of quintessential inflation. The relic
gravity wave amplitude is defined by the inflationary
Hubble parameter, whereas the spectrum of the wave
crucially depends upon the postinflationary evolution.
We investigate the problems related to the long kinetic
regime in the scenario and discuss the instant preheating
(Sec. IV B) to tackle the problem. Postinflationary evolu-
tion (Sec. VA) is investigated with canonical action and the
epoch sequences (Sec. V B) are achieved with a viable
matter phase. Detailed dynamical analysis is performed to
check the nature of stability of all fixed points (Sec. V C).
Finally in Sec. VI we summarize the results.
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II. VARIABLE GRAVITY IN JORDAN FRAME

In this section we revisit and analyze the variable gravity
model [94,95] to be used for our investigations. The
scenario of variable gravity is characterized by the follow-
ing action in the Jordan frame:

SJ ¼
Z

d4x
ffiffiffi
~g

p �
−
1

2
~FðχÞ ~Rþ 1

2
~KðχÞ∂μχ∂μχ þ ~VðχÞ

�

þ ~Sm þ ~Sr þ ~Sν; ð1Þ

where tildes represent the quantities in the Jordan frame. In
the above action χ is the cosmon field with ~VðχÞ, and apart
from the coupling ~KðχÞ we have considered an effective
Planck mass ~FðχÞ driven by the field. Additionally, ~Sm and
~Sr are the matter and radiation actions, respectively, and ~Sν

is the action for neutrino matter, which we have considered
separately since massive neutrinos play an important role in
this model during late times. During the radiation era or
earlier, neutrinos are ultrarelativistic or relativistic, which
implies that neutrinos behave as radiation during and before
radiation era, with their mass being constant. After the
radiation era, neutrinos start losing their energy and become
nonrelativistic, behaving like ordinary matter with zero
pressure. During late times, neutrino mass starts growing
with the field, and along with the cosmon field χ they give
rise to a late-time de Sitter solution [100–114].
In this construction the variation in the particles’ masses

comes from the nonminimal coupling of the field with
matter. For radiation this nonminimal coupling does not
affect its continuity equation, since the energy-momentum
tensor for radiation is traceless. We consider different
couplings of the field with matter, radiation, and neutrinos,
that is we consider the nonminimal coupling A2ðχÞ
between the cosmon field and matter, and the nonminimal
coupling B2ðχÞ between the cosmon field and the neutri-
nos. Without loss of generality we consider the nonminimal
coupling between the field and radiation to be AðχÞ2 too.
To sum up, we shall use the following actions:

~Sm ¼ ~SmðA2 ~gαβ;ΨmÞ; ð2Þ

~Sr ¼ ~SrðA2 ~gαβ;ΨrÞ; ð3Þ

~Sν ¼ ~SνðB2 ~gαβ;ΨνÞ: ð4Þ

Variation of the action (1) with respect to the metric leads
to the Einstein field equation

~F

�
~Rαβ −

1

2
~R~gαβ

�
¼ ~K∂αχ∂βχ −

1

2
~K ~gαβ∂ρχ∂ρχ

− ~V ~gαβ þ ~∇α
~∇β

~F − ~∇2 ~Fgαβ

þ ~Tαβ ¼ ~F ~Gαβ; ð5Þ

where ~Tαβ includes the contributions frommatter, radiation,
and neutrinos, that is, ~Tαβ ¼ ~TðmÞ

αβ þ ~TðrÞ
αβ þ ~TðνÞ

αβ .
Variation of action (1) with respect to the cosmon

field χ provides its equation of motion of the field,
namely,

~K ~□ χ þ 1

2

∂ ~K
∂χ ∂μχ∂μχ ¼ ∂ ~V

∂χ −
1

2

∂ ~F
∂χ ~Rþ ~qχ ; ð6Þ

where ~qχ ¼ ~qχ;m þ ~qχ;ν þ ~qχ;r and

~qχ;m ¼ 1ffiffiffiffiffiffi
−~g

p δ ~Sm

δχ
¼ A0

A
~TðmÞ ¼ −

∂ lnA
∂χ ð~ρm − 3 ~pmÞ; ð7Þ

~qχ;ν ¼
1ffiffiffiffiffiffi
−~g

p δ ~Sν

δχ
¼ B0

B
~TðνÞ ¼ −

∂ lnB
∂χ ð~ρν − 3 ~pνÞ; ð8Þ

~qχ;r ¼
1ffiffiffiffiffiffi
−~g

p δ ~Sr

δχ
¼ 0: ð9Þ

Here the primes represent derivatives with respect to χ and
the energy-momentum tensors are defined as

~TðiÞ
αβ ¼ −

2ffiffiffiffiffiffi
−~g

p δ ~Si

δ~gαβ
: ð10Þ

One can easily see that [94]

~qχ;m ¼ −
∂ lnmp

∂χ ð~ρm − 3 ~pmÞ ¼ −
mpnp
χ

; ð11Þ

~qχ;ν ¼ −
∂ lnmν

∂χ ð~ρν − 3 ~pνÞ ¼ −ð2~γ þ 1Þmνnν
χ

; ð12Þ

where mp and mν are the masses of matter particles and
neutrinos and np and nν are the number densities of the
matter particles and the neutrinos, respectively. In the above
expression we have followed [94], and for convenience we
have defined ~γ through

mν ∝ χ2~γþ1: ð13Þ

Comparing (11) and (12) with (7) and (8), respec-
tively, we can see that mp ∼A and mν ∼ B. Thus,
choosing suitable A and B we can match our consid-
erations with those of [94]. In particular, according to
[94], particles’ masses vary linearly with the cosmon
field, apart from the neutrinos. That is, AðχÞ2 ¼ χ2=M2

Pl,
which leads to mp ∼A ∼ χ. Neutrino mass varies
slightly differently from the other particles. In particular,
BðχÞ2 ¼ ðχ=MPlÞ4~γþ2, which gives mν ∼ B ∼ χ2~γþ1, with
~γ a constant.
We shall consider four matter components in the

Universe, namely, radiation, baryonic+cold dark matter
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(CDM), neutrinos, and the contribution of the cosmon field.
Furthermore, we stress that the late-time dark energy is
attributed to two contributions, namely, to both the cosmon
and the neutrino fields. Thus, the total energy-momentum
tensor, which can be calculated from action (1), reads

~Tαβ ¼ ~TðmÞ
αβ þ ~TðrÞ

αβ þ ~TðνÞ
αβ þ ~TðχÞ

αβ ; ð14Þ

where

~TðχÞ
αβ ¼ ~K∂αχ∂βχ − ~gαβ

�
1

2
~K∂ρχ∂ρχ þ ~V

�

þ ~∇α
~∇βF − ~∇2 ~F~gαβ þ ð ~F0 − ~FÞ ~Gαβ; ð15Þ

with ~F0 ¼ ~Fðχ0Þ the present value of ~FðχÞ.1
The evolution equations of the various sectors in the

model at hand read

_~ρm þ 3 ~Hð~ρm þ ~pmÞ ¼ − ~qχm _χ ¼ ð~ρm − 3 ~pmÞ
_χ

χ
; ð16Þ

_~ρν þ 3 ~Hð~ρν þ ~pνÞ ¼ − ~qχm _χ

¼ ð2~γ þ 1Þð~ρν − 3 ~pνÞ
_χ

χ
; ð17Þ

_~ρr þ 3 ~Hð~ρr þ ~prÞ ¼ 0; ð18Þ

which follow from the equations

~TðmÞα
β;α ¼ ~qχ;mχ;β; ð19Þ

~TðνÞα
β;α ¼ ~qχ;νχ;β; ð20Þ

~TðrÞα
β;α ¼ ~qχ;rχ;β: ð21Þ

From Eqs. (16), (17), and (18) we can extract the
continuity equation for the cosmon field, which is written
as

_~ρχ þ 3 ~Hð~ρχ þ ~pχÞ ¼ ~qχm _χ ¼ −fð~ρm − 3 ~pmÞ

þð2~γ þ 1Þð~ρν − 3 ~pνÞg
_χ

χ
: ð22Þ

Finally, the consistency check of Eqs. (16), (17), (18),
and (22) follows from the conservation equation of the total
energy ~ρT ¼ ~ρm þ ~ρν þ ~ρr þ ~ρχ :

_~ρT þ 3 ~Hð~ρT þ ~pTÞ ¼ 0: ð23Þ

We close this section by mentioning that, although the
above model looks similar to extended quintessence
[99,115–117], or as a special case of the generalized
Galileon models, there is a crucial difference, namely, that
the particle masses depend on χ; that is, the matter energy
density and pressure depend on χ too. This has an important
phenomenological consequence: the appearance of an
effective interaction among the scalar field, matter, and
neutrinos, described by relations (16), (17), and (22). In the
discussion to follow, it would be convenient to work in the
Einstein frame.

III. VARIABLE GRAVITY IN
EINSTEIN FRAME

In this section we examine the variable gravity
model in the Einstein frame and analyze the aspects
related to the early phase, thermal history, and late-time
evolution. Let us consider the following conformal
transformation,

gμν ¼ Ω2 ~gμν; ð24Þ

where Ω2 ¼ ~FðχÞ=M2
Pl is the conformal factor and gμν is

the Einstein-frame metric.
Using the conformal transformation (24), one can easily

show that

~R ¼ Ω2ðRþ 6□ lnΩ − 6gμν∂μ lnΩ∂ν lnΩÞ

¼
~F

M2
Pl

�
Rþ 3□ ln

�
~F

M2
Pl

�
−

3

2 ~F2
gμν∂μ

~F∂ν
~F

�
; ð25Þ

ffiffiffiffiffiffi
−~g

p
¼ Ω−4 ffiffiffi

g
p

: ð26Þ

Therefore, under the conformal transformation (24) the
Jordan-frame action (1) becomes

SE ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

�
−
1

2
Rþ 1

2χ2
KðχÞ∂μχ∂μχ

�
þVðχÞ

�
þSm þSr þSν; ð27Þ

where

VðχÞ ¼ M4
Pl
~V

~F2
; ð28Þ

1Equation (15) is calculated by writing Eq. (5) as the standard
one, that is,

~F0
~Gαβ ¼ ~K∂αχ∂βχ −

1

2
~K ~gαβ∂ρχ∂ρχ − ~V ~gαβ þ ~∇α

~∇β
~F

− ~∇2 ~F − ~F ~Gαβ þ ~Tαβ;

where F0 gives the present value of Newton’s constant.
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KðχÞ ¼ χ2
�
~K
~F
þ 3

2

�∂ ln ~F
∂χ

�2�
: ð29Þ

In this work following [94], we consider the choice,

~FðχÞ ¼ χ2; ð30Þ

~KðχÞ ¼ 4

~α2
m2

χ2 þm2
þ 4

α2
χ2

χ2 þm2
− 6; ð31Þ

where ~α and α are constants (the tilde in ~α has nothing to do
with the frame choice). The parameter m is an intrinsic
mass scale which plays a crucial role in inflation, when
χ ≲m, but can be neglected during and after the radiation
era when χ grows to a higher value such that χ ≫ m.
Hence, for the late-time behavior of the model we can use
the approximation χ ≫ m, which gives approximately a
constant ~KðχÞ:

~K ≈
4

α2
− 6: ð32Þ

One can easily see that in the Einstein frame, neutrino
matter is nonminimally coupled to the cosmon field,
whereas matter and radiation are minimally coupled.
Indeed, we have

Sm ¼ ~SmðΩ−2A2 ~gαβ;ΨmÞ ¼ ~Smðgαβ;ΨmÞ; ð33Þ

Sr ¼ ~SrðΩ−2A2 ~gαβ;ΨrÞ ¼ ~Srðgαβ;ΨrÞ; ð34Þ

Sν ¼ ~SνðΩ−2B2 ~gαβ;ΨνÞ ¼ ~Sνððχ=MPlÞ4~γgαβ;ΨνÞ: ð35Þ

Thus, from (33), (34), and (35) we deduce that only the
neutrino mass is field dependent in the Einstein frame,
while the other particles’ masses remain constant as they
should be [94,95], that is,

_ρm þ 3Hðρm þ pmÞ ¼ 0; ð36Þ

_ρr þ 3Hðρr þ prÞ ¼ 0; ð37Þ

_ρν þ 3Hðρν þ pνÞ ¼ 2~γðρν − 3pνÞ
_χ

χ
: ð38Þ

Equations (36) and (37) imply that ρm ∼ a−3 and
ρr ∼ a−4, as usual. However, interestingly enough, the
neutrino behavior changes from era to era. During the
radiation epoch or earlier, neutrinos behave as radiation;
that is, the rhs of Eq. (38) becomes zero and thus ρν ∼ a−4.
On the other hand, after the radiation epoch, neutrinos start
becoming nonrelativistic and behaving like nonrelativistic
matter, that is, pν ∼ 0 during and after the matter era.
However, note that Eq. (38) implies that the neutrino mass
depends on the field when the rhs of Eq. (38) is nonzero,

and therefore, we deduce that during or after the matter era,
the neutrino density ρν does not evolve as ∼a−3.
In order to proceed further, we consider a quadratic

potential in the Einstein frame [94,95],

~VðχÞ ¼ μ2χ2: ð39Þ

It proves convenient to redefine the field χ in terms of a new
field ϕ as

χ ¼ μe
αϕ

2MPl : ð40Þ

In this case, action (27) becomes

SE ¼
Z

d4x
ffiffiffi
g

p �
−
M2

Pl

2
Rþ 1

2
k2ðϕÞ∂μϕ∂μϕþ VðϕÞ

�
þ Sm þ Sr þ SνðC2gαβ;ΨνÞ; ð41Þ

with

k2ðϕÞ ¼ α2ð ~K þ 6Þ
4

¼ α2 þ ~α2μ2me
αϕ
MPl

~α2ðμ2me
αϕ
MPl þ 1Þ

ð42Þ

CðϕÞ2 ¼ðμ=MPlÞ4~γe2~γαϕ=MPl ; ð43Þ

where we have defined μm ≡ μ=m, and according to
[94] μm ≈ 0.01. Let us note that the action (41) is a
particular case of the Horndeski class with higher deri-
vative terms absent and the coefficient of the kinetic term
having dependence on the field ϕ alone. Secondly, the
system is free of ghosts, as kðϕÞ is positive definite in our
choice.
Variation of the action (41) with respect to the metric

gives

M2
PlGαβ ¼ M2

Pl

�
Rαβ −

1

2
Rgαβ

�

¼ TðϕÞ
αβ þ TðmÞ

αβ þ TðrÞ
αβ þ TðνÞ

αβ ; ð44Þ

where

TðϕÞ
μν ¼ −

1

2
k2gμν∂ρϕ∂ρϕþ k2∂μϕ∂νϕ − VðϕÞgμν; ð45Þ

and

VðϕÞ ¼ M4
Ple

−αϕ=MPl : ð46Þ

Moreover, variation of (41) with respect to the rescaled
cosmon field ϕ gives its equation of motion, namely,

k2□ϕþ k
∂k
∂ϕ ∂μϕ∂μϕ ¼ ∂V

∂ϕ þ ~γα

MPl
ðρν − 3pνÞ: ð47Þ
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Finally, note that in terms of the field ϕ, Eq. (38) becomes

_ρν þ 3Hðρν þ pνÞ ¼ ~γαðρν − 3pνÞ
_ϕ

MPl
; ð48Þ

which can then be reexpressed in terms of the neutrino mass
mν as [108,109]

_ρν þ 3Hðρν þ pνÞ ¼
∂ lnmν

∂ϕ ðρν − 3pνÞ _ϕ: ð49Þ

Thus, comparing Eqs. (48) and (49) we deduce that

mν ¼ mν;0e~γαϕ=MPl ; ð50Þ

where mν;0 ¼ mνðϕ ¼ 0Þ ¼ mνðχ ¼ μÞ. Since at the
present time χ ≈MPl, we can write

mν;0 ¼ mνðz ¼ 0Þ ×
�

μ

MPl

�
2~γ

; ð51Þ

where z is the redshift andmνðz ¼ 0Þ is the present value of
the neutrino mass.
Finally, from the rhs of Eq. (47), we can define the

effective potential

VeffðϕÞ ¼ VðϕÞ þ ðρ̂ν − 3p̂νÞeð~γαϕ=MPlÞ; ð52Þ

where ρ̂ν ¼ ρνe−ð~γαϕ=MPlÞ and p̂ν ¼ pνe−ð~γαϕ=MPlÞ are
independent of ϕ. This effective potential Veff has a
minimum at

ϕmin ¼
MPl

αð1þ ~γÞ ln
�

M4
Pl

~γðρ̂ν − 3p̂νÞ
�
; ð53Þ

which is the key feature in the scenario under consideration.
By setting the model parameters, it is possible to achieve
the minimum at late times such that the field rolls slowly
around the minimum of the effective potential. The role of
neutrino matter is solely related to the transition to stable de
Sitter around the present epoch. Figure 1 shows the nature
of the effective potential (52) and the inset shows the
minimum of the effective potential.
Using Eq. (53) we get the minimum value of the effective

potential (52) for ϕ ¼ ϕmin,

Veff;min ¼
�
1þ 1

~γ

�
Vmin; ð54Þ

where Vmin ¼ VðϕminÞ.
Equation (54) can be represented in terms of the neutrino

mass by using Eqs. (50) and (51),

Veff;min ¼
�
1þ 1

~γ

��
mνðz ¼ 0Þ
mν;min

�
1=~γ

μ2M2
Pl; ð55Þ

where mν;min ¼ mνðϕ ¼ ϕminÞ & μ ≈H0.
Since to get late time cosmic acceleration field has

to settle down at the minimum of the effective potential
and hence Veff;min ∼H2

0M
2
Pl. Also during the present

epoch we can take mνðz ¼ 0Þ ¼ mν;min, which implies
~γ ≫ 1.

A. Canonical form of the action

Let us now transform the scalar-field part of the action
(41) to its canonical form through the transformation

σ ¼ kðϕÞ; ð56Þ

k2ðϕÞ ¼
�∂k
∂ϕ

�
2

; ð57Þ

where k2ðϕÞ is given by (42). Thus, (41) becomes

SE ¼
Z

d4x
ffiffiffi
g

p �
−
M2

Pl

2
Rþ 1

2
∂μσ∂μσ þ Vðk−1ðσÞÞ

�
þ Sm þ Sr þ SνðC2gαβ;ΨνÞ; ð58Þ

where CðσÞ is the conformal coupling in the Einstein frame
between the canonical field σ and neutrinos. As we can see,
the scalar field has now the canonical kinetic term.
The ϕ dependence of the canonical field σ can be

calculated from Eq. (57), and is written as
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FIG. 1 (color online). Effective potential (52) is plotted against
the noncanonical field ϕ. ~γ ¼ 30; α ¼ 20; ρ̂ν=ρc0 ¼ 10−3587, and
p̂ν=ρc0 ¼ 0 are the chosen values of different parameters, where
ρc0 ¼ 3H2

0M
2
Pl. Here we should note that if we change the values

of the parameter ρ̂ν=ρc0 then the nature of the effective potential
does not change and only the position of the minimum shifts. The
inset shows the minimum of the effective potential.
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σðϕÞ
MPl

¼ αϕ

~αMPl
−
1

~α
ln

�
2α2 þ eαϕ=MPlμ2mðα2 þ ~α2Þþ2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eαϕ=MPlμ2mÞðα2 þ eαϕ=MPlμ2m ~α

2Þ
q �

þ 1

α
ln

�
α2 þ ~α½ ~αþ 2eαϕ=MPlμ2m ~α þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eαϕ=MPlμ2mÞðα2 þ eαϕ=MPlμ2m ~α

2Þ
q

�
�
þ C; ð59Þ

where C is an integration constant. We consider σðϕ ¼ 0Þ ¼ 0,2 which gives

C¼ 1

~α
ln

�
2α2 þ μ2mðα2 þ ~α2Þþ2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μ2mÞðα2 þ μ2m ~α

2Þ
q �

−
1

α
ln

�
α2 þ ~α½ ~αþ 2μ2m ~α þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μ2mÞðα2 þ μ2m ~α

2Þ
q

�
�
: ð60Þ

Additionally, if we consider ~α very small (according to [94]
~α≲ 0.02) and α large compared to ~α and μm [94], we can
approximate it as

C ≈
2

~α
ln ð2αÞ − 2

α
ln ðαþ ~αÞ: ð61Þ

Finally, note that in order to write the explicit form of
VðσÞ ¼ Vðk−1ðσÞÞ in (58), we need to invert (61) in order
to obtain the explicit form of ϕðσÞ, and then substitute into
VðϕÞ in (46). However, (61) is a transcendental equation
and thus it cannot be inverted. Fortunately, in the following
elaboration VðσÞ will appear only through its derivative
dVðσÞ=dσ, which using (56), (57) acquires the simple form

dVðσÞ
dσ

¼ 1

kðϕÞ
dVðϕÞ
dϕ

: ð62Þ

In order to check whether the behavior of the field can
comply with requirements spelled out in the aforesaid
discussion, it would be convenient to check for the
asymptotic behavior of the potential.

B. Asymptotic behavior

In the previous subsection we extracted the expressions
for σðϕÞ, kðϕÞ, and dVðσÞ=dσ, where σ is the redefined
scalar field, in terms of which the action takes the canonical
form. Since the involved expressions are quite complicated,
it would be useful to obtain their asymptotic approxima-
tions. In particular, we are interested in the two limiting
regimes, that is, for small χ [χ ≪ m or equivalently
ϕ ≪ −2MPl lnðμmÞ=α] and large χ [χ ≫ m or equivalently
ϕ ≫ −2MPl lnðμmÞ=α], respectively.
For small χ from (31), (42), we have

k2ðϕÞ ≈ α2

~α2
; ð63Þ

and then Eq. (61) gives

σðϕÞ ≈ α

~α
ϕ: ð64Þ

Although, as we discussed at the end of the previous
subsection, the explicit form of VðσÞ cannot be obtained,
since it requires the inversion of the transcendental equa-
tion (61) of σðϕÞ. Its asymptotic form can be easily
extracted, since now σðϕÞ takes the simple form (64)
which can be trivially inverted. In particular, for small χ
the potential becomes

VsðσÞ ≈ Vs0e− ~ασ=MPl ; ð65Þ

which for small slope can facilitate slow roll which can
continue for large values of χ. Similarly, for very large
values of χ (χ ≫ m), Eqs. (31), (42) lead to

k2ðϕÞ ≈ 1; ð66Þ

and then Eq. (59) gives

σ ≈ ϕ −
2

~α
ln

�
μm
2

�
þ 2

α
ln

�
~αμm
αþ ~α

�
: ð67Þ

Thus, for large χ the potential reads

VlðσÞ ≈ Vl0e−ασ=MPl ; ð68Þ

which gives rise to the scaling solution for α >
ffiffiffi
3

p
; we

shall take α≃ 10 to satisfy the nucleosynthesis constraint.
From the above asymptotic expressions, we deduce that

the behavior of the canonical field σ with respect to the
noncanonical field ϕ changes from a straight line with
slope α= ~α (for small ϕ) to a straight line with slope 1, and y
axis intercepts at − 2

~α lnðμm2 Þ þ 2
α lnð ~αμmαþ ~αÞ (for large ϕ). This

behavior is always true as long as α > ~α and α > μm. In
Fig. 2 we present the change in σ-field behavior, in terms of
the ϕ field. We next investigate the dynamics of unification
in detail, which includes the inflationary phase, thermal
history, and late-time cosmic acceleration. We shall also
examine the issues related to relic gravity waves, a generic
feature of the scenario under consideration. To this effect,

2The choice of σðϕ ¼ 0Þ also gives χ → 0 as σ → −∞, similar
to the ϕ field. Therefore, the value of C we are getting here can
also be obtained from Eq. (61) by putting eαϕ=MPl ¼ 0 and
considering σðχ → 0Þ ¼ ϕðχ → 0Þ.
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we shall invoke the instant preheating to circumvent the
excessive production of gravity waves.

IV. INFLATION

Having presented the scenario of variable gravity [94] in
the Jordan and Einstein frames, in this section we proceed
to a detailed investigation of the inflationary stage. As
discussed earlier, at early times or equivalently for negative
values/small positive values of the field, the potential VðϕÞ
given by Eq. (46) reduces to the canonical potential VsðσÞ
of (65), which facilitates slow roll for small values of
~α≲ ffiffiffi

2
p

, where consistency with observations demands that
~α ≪ 1. On the other hand, for very large values of ϕ, where
kðϕÞ → 1 and the potential is given by (68), we obtain the
required scaling behavior in the radiation and matter era,
for α ≳ 10.
The σ-field slow-roll parameters can be easily expressed

in terms of ϕ as

ϵ ¼ M2
Pl

2

�
1

V
dV
dσ

�
2

¼ M2
Pl

2k2ðϕÞ
�
1

V
dV
dϕ

�
2

¼ α2

2k2ðϕÞ ; ð69Þ

η ¼ M2
Pl

V
d2V
dσ2

¼ 2ϵ −
MPl

α

dϵðϕÞ
dϕ

; ð70Þ

where we have made use of (62). Since α2, ~α−2 ≫ 1, the
slow-roll regime lasts for large values of ϕ (since
k2 ¼ α2=2) such that X ≡ μ2=m2eαϕ=Mp ≫ 1, and there-
after the field crosses to the kinetic regime where k≃ 1.

Clearly, the large-field slow-roll regime is of great
physical interest. In this case the slow-roll parameters
are simplified to

ϵ ¼ η ¼ ~α2

2
X → Xend ¼

2

~α2
ð71Þ

and the kinetic function is given by

k2ðϕÞ≃ α2

~α2X
→ kend ≃ αffiffiffi

2
p : ð72Þ

We mention that k2 interpolates between α= ~α and 1, as the
field evolves from early epochs to late times. At the end of
inflation kend ≃ 6, and then it quickly relaxes to k ¼ 1,
marking the beginning of the kinetic regime. This transition
takes place very fast, since the kinetic function decreases
exponentially with the field.
It is convenient to express the physical quantities in

terms of the noncanonical field ϕ too. It is then straightfor-
ward to write down the Friedman equation in the slow-roll
regime as

H2 ¼ M2
Pl

3
e−αϕ=MPl ≡ μ2

3m2

M2
Pl

X
; ð73Þ

which we shall use in the following discussion.
The number of e-foldings is given by

N ðϕÞ ¼ 1

αMPl

Z
ϕend

ϕ
k2ðϕÞdϕ0;

¼ αðϕend − ϕÞ
~α2

þ
�
1

α2
−

1

~α2

�
ln

�
m2 þ μ2eαϕend=MPl

m2 þ μ2eαϕ=MPl

�
; ð74Þ

where ϕend is the value of the ϕ field at the end of inflation.
Now from Eq. (71) we have eαϕend=MPl ¼ 2m2=ð ~α2μ2Þwhich
approximates Eq. (74) by neglecting the α−2 term with
respect to ~α−2:

N ðϕÞ ≈ 1

~α2

�
ln ð1þ X−1Þ − ln

�
1þ ~α2

2

��
: ð75Þ

For the given e-foldings from Eq. (75), we can calculate the
value of ϕ when inflation started.
The number of e-foldings in the large-X approximation

is given by

N ðϕinÞ≃ 1

~α2Xin
; ð76Þ

where ϕin designates the field value where inflation
commences. The Cosmic Background Explorer (COBE)
normalized value of density perturbations [118,119],

1 0 1 2 3
1
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M pl

M
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l
10
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Mpl

M pl

2
ln m 2

2
ln

m

FIG. 2 (color online). The blue (solid) line represents the
behavior of the σ field [Eq. (61)]. The red (dotted) line represents
Eq. (64) and the green (dashed) line represents Eq. (67). The
figure clearly shows the transition of the σ field from Eq. (64) to
Eq. (67). To plot this figure we have taken α ¼ 10, ~α ¼ 0.01, and
μm ¼ 0.01. If one changes the value of α and ~α maintaining
α > ~α, then only the transition point changes, but the behavior
remains the same. This plot can be extrapolated for small and
large values of the ϕ field and nature remains the same. If we take
values ~α > α, then the nature also remains the same but the slopes
of the straight lines are changed.
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δ2H ¼ 1

150π2
1

M4
Pl

V in

ϵ
≃ 2 × 10−10; ð77Þ

then allows us to estimate V in and the important ratio of
parameters, ~α2μ2=m2, in terms of the number of e-foldings,
namely,

~α2μ2

m2
¼ 150 × π2 × 10−10

N 2
ð78Þ

V in ¼ N
~α2μ2

m2
M4

Pl ¼
150 × π2 × 10−10

N
M4

Pl: ð79Þ

Let us also note the important relationship betweenHin and
Hend using the expressions of Xin and Xend:

H2
end

H2
in

¼ Vend

V in
¼ Xin

Xend
¼ 1

2N
; ð80Þ

which in particular can be used to estimate the Hubble
parameter at the end of inflation,

H2
end ¼

M2
Pl

6

~α2μ2

m2
¼ 25π2 × 10−10

N 2
M2

Pl: ð81Þ

As mentioned in the Introduction, the scenario under
consideration does not belong to the class of oscillatory
models. In this case we need to look for an alternative
reheating mechanism, and a possible candidate is the
gravitational particle production [65,66]. The space-time
geometry undergoes a crucial transition at the end of
inflation, involving essentially a nonadiabatic process that
gives rise to particle production. Assuming thermalization
of the energy thus produced, the energy density of radiation
produced in this process at the end of inflation is given by

ρrad ≃ 0.01 × gpH4
end; ð82Þ

where gp is the number of different species produced
at the end of inflation, varying typically between 10 and
100. Thus, assuming gp ∼ 100, we obtain the radiation
temperature

Tend ≃ 1.5 ×
10−4

N
MPl: ð83Þ

Up to now we have kept the number of e-foldings
arbitrary. This number typically depends upon the reheating
temperature and also the scale of inflation. It can be
estimated by considering a typical length scale which
leaves the Hubble scale during inflation at a ¼ ain and
reenters the horizon today:

k ¼ ainHin ¼ a0H0 →
k

a0H0

¼ ain
aend

aend
a0

Hin

H0

¼ e−N
T0

Tend

Hin

H0

; ð84Þ

which gives N ≃ 70. Therefore, the temperature at the end
of inflation is given by

Tend≃ 3:6 × 1012 GeV: ð85Þ

We then estimate the spectral index ns and the ratio of
tensor-to-scalar perturbations r as

ns ≈ 1 − 6ϵþ 2η ¼ 1 −
2

N
≃ 0.97; ð86Þ

r ≈ 16ϵ ¼ 8

N
≃ 0.11: ð87Þ

Equations (86) and (87) can be combined into a single
equation, namely,

r ¼ 4ð1 − nsÞ: ð88Þ

In Fig. 3 we present the 68% and 95% contours on the
ns-r plane, using the data of Planck+WP+BAO [120]. On
top of them, we depict the ns and r values calculated in our
model using (86) and (87), respectively, having considered
the e-foldings ðN Þ between 55 and 70. It seems that the
valueN ¼ 55 is ruled out up to the 2σ level for this model.
But the values slightly higher than 55 are well within the 2σ
level. The line shown in Fig. 3 follows Eq. (88). In the
subsection to follow, we consider the problem related to
excessive production of relic gravity waves.

FIG. 3 (color online). 1σ (blue, inner contour) and 2σ (cyan,
outer contour) contours for Planck+WP+BAO data are shown on
the ns-r plane. We have also shown the possible positions of ns
and r for the e-foldings (N ) 55 to 70 for the model under
consideration. The point for N ¼ 55 on the ns-r plane is outside
the 2σ contour but slightly higher values of the e-foldings result
in points within the 2σ contour.
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A. Relic gravity waves and nucleosynthesis constraint
on reheating temperature

Let us assume that gravitational particle production is the
sole mechanism for reheating [61–68]. In this case using
Eqs. (73) and (82) and considering N ¼ 70, we have

�
ρϕ
ρr

�
end

≃ M2
PlH

2
end

0.01 × gpH4
end

≃ 2 × 1011; ðgp ≃ 100Þ:

ð89Þ

This ratio is typically 1016 in braneworld models [27,28].
Hence, it takes a long time for the radiative regime to
commence. In those models similar to our situation, the
potential is very steep after inflation and therefore ρϕ ∼
1=a6 till radiation takes over. During this regime, called the
kinetic regime, the gravity wave (produced during infla-
tion) amplitude is enhanced and violates nucleosynthesis
constraints at the commencement of the radiative regime
[27,28]. We have to check it here also.
The quantum mechanical production of gravity waves

during inflation is a generic feature of the scenario. The
tensor perturbations hij satisfy the Klein-Gordon equation
□hij ¼ 0 [69,70], which gives

φ̈kðτÞ þ 2
_a
a
φkðτÞ þ k2φkðτÞ ¼ 0; ð90Þ

where hij ∼ φkeikxeij (eij is the polarization tensor); τ
(dτ ¼ dt=a) is conformal time; and k is the comoving wave
number. As pointed out in the preceding discussion,
inflation is approximately exponential, and so a ¼ τ0=τ
and Hin ¼ −1=τ0 is the Hubble parameter during inflation.

The “in” state φðþÞ
in ðk; τÞ corresponds to the positive

frequency solution of Eq. (90) in the adiabatic vacuum

[φðþÞ
in ðk; τÞ ¼ ðπτ0=4Þ1=2ðτ=τ0Þ3=2Hð2Þ

3=2ðkτÞ]. After inflation
has ended, the Universe makes a transition from a quasi–de
Sitter phase to the phase characterized by power-law
expansion. In the standard scenario, the postinflationary
evolution is described by the radiative regime, whereas in
the quintessential inflation, the after-inflation transition is
to the kinetic phase with a stiff equation-of-state parameter
[27,28]. This transition involves a nonadiabatic change of
geometry. We shall assume that postinflationary dynamics
is described by a power-law expansion, a ¼ ðt=t0Þp≡
ðτ=τ0Þ1=2−μ, where μ≡ 3=2ððw − 1Þ=ð3wþ 1ÞÞ, with w
being the postinflationary equation-of-state parameter.
Let us notice that μ ¼ 0 in the kinetic regime (w ¼ 1).
The “out” state contains both positive and negative fre-
quency solutions to (90),

φout ¼ αφðþÞ
out þ βφð−Þ

out ; ð91Þ
where α and β are Bogoliubov coefficients [27]. The out

state is given by φðþ;−Þ
out ¼ ðπτ0=4Þ1=2ðτ=τ0ÞμHð2;1Þ

jμj ðkτÞ. The

energy density of relic gravity waves depends upon β
[27,72],

ρg ¼ hT00i ¼
1

π2a2

Z
dkk3jβj2: ð92Þ

During the kinetic regime, jβkinj2 ∼ ðkτkinÞ−3; as a result,
using (92) we obtain

ρg ¼
32

3π
h2GWρb

�
τ

τkin

�
; ð93Þ

where ρb is the background energy density made by
radiation and scalar stiff matter. While deriving (93), we
made use of the fact that Hin ¼ −1=τ0. Since, at the
equality of radiation and field’s energy density (τ ¼ τeq),
τeq=τkin ¼ ðTkin=TeqÞ2 and ρb ¼ 2ρr, we have from
Eq. (93),

�
ρg
ρr

�
eq
¼ 64

3π
h2GW

�
Tend

Teq

�
2

; ð94Þ

where hGW is the dimensionless gravity amplitude which
needs to be fixed in each model, imposing COBE nor-
malization [118,119],

h2GW ¼ H2
in

8πM2
Pl

¼ N
24π

�
~α2μ2

m2

�
¼ N

4π

H2
end

M2
Pl

≃ 2.8 × 10−11: ð95Þ

Let us notice from (94) that the longer the kinetic regime
lasts, the smaller Teq is, and therefore, the larger the ratio of
energy densities of relic gravity waves and radiation at
equality. It may also be worthwhile to note from (92) that
ρg ∼ 1=a4 for ω > 1=3, whereas ρg ∼ ρb if ω < 1=3, and
during the radiation era, ρg also approximately tracks the
background. It is the specific behavior of ρg during the
kinetic regime which causes the problem.
For simplicity we shall here made an approximation that

the field after inflation instantaneously comes to the kinetic
regime (ρϕ ∼ 1=a6). In fact, ρϕ ∼ 1=a2 at ϕ ¼ ϕend and
soon thereafter, the field enters the kinetic regime, which
happens rather fast because the potential is steep. Thus, we
shall assume that Hend ≃Hkin and Tend ≃ Tkin. Numerical
calculations show that the kinetic regime commences
quickly (see Fig. 4) after the end of inflation; our estimates
do not change significantly by adopting said approxima-
tion. Since Teq ∼ Tend=aeq, we have

�
ρϕ
ρr

�
end

¼
�
Tend

Teq

�
2

: ð96Þ

Then we have the following relation:
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�
ρϕ
ρr

�
end

¼ 3π

64

�
ρg
ρr

�
eq

1

h2GW
: ð97Þ

As for ρg=ρr at equality, nucleosynthesis dictates that it
should be less than 0.2 [27]. We know the left-hand side, so
if we estimate the gravity wave amplitude, we can find out
whether the gravitational particle production can do the job.
Indeed, we find using Eq. (95),

�
ρϕ
ρr

�
end

≲ 3π

64
× 0.2 ×

4π

N
M2

Pl

H2
end

≃ 109: ð98Þ

Comparing the estimate with the one obtained by using
(89), we conclude that even if we take gp ∼ 100, the
gravitational particle production does not meet the require-
ment imposed by the nucleosynthesis constraint at the
commencement of the radiative regime. It should also be
noted that the kinetic regime does not set instantaneously;
incorporating evolution from the end of inflation to the
beginning of the kinetic regime further worsens the
situation. Gravitational particle production is clearly an
inefficient process and we should therefore look for an
alternative way of reheating. Instant preheating provides us
with an efficient mechanism which suits the quintessential
inflation scenario under consideration.
Let us also quote the spectral energy density of the

gravitational wave (see Ref. [27] for details),

ΩGWðλÞ ¼
1

ρc

dρg
d ln k

; ð99Þ

where ρc is the critical energy density.
In different epochs, the form of ΩGW is given by

ΩðMDÞ
GW ¼ 3

8π3
h2GWΩm0

�
λ

λh

�
2

; λMD < λ ≤ λh; ð100Þ

ΩðRDÞ
GW ðλÞ ¼ 1

6π
h2GWΩr0; λRD < λ ≤ λMD; ð101Þ

ΩðkinÞ
GW ðλÞ ¼ ΩðRDÞ

GW

�
λRD
λ

�
; λkin < λ ≤ λRD; ð102Þ

where

λh ¼ 2cH−1
0 ; ð103Þ

λMD ¼ 2π

3
λh

�
Ωr0

Ωm0

�
1=2

; ð104Þ

λRD ¼ 4λh

�
Ωm0

Ωr0

�
1=2 TMD

Trh
; ð105Þ

λkin ¼ cH−1
kin

�
Trh

T0

��
Hkin

Hrh

�
1=3

; ð106Þ

where MD, RD, and kin represent matter dominated,
radiation dominated, and kinetic-energy dominated epochs;
and λ represents wavelength. H0 is the present value of the
Hubble parameter and Ωm0 and Ωr0 are the present values
of matter and radiation energy densities. Trh and Hrh are
the reheating temperature and Hubble parameter, respec-
tively, which are approximately the same as the temperature
and Hubble parameter at the end of the inflation,
respectively.

B. Instant preheating

In this subsection, we shall describe instant preheating
applied to the scenario under consideration. We shall
demonstrate its viability to tackle the problem associated
with relic gravity waves.
Inflation ends when ϕ ¼ ϕend which, for convenience,

we can shift to the origin by translating the field,
ϕ0 ¼ ϕ − ϕend, without the loss of generality. In what
follows we will keep using ϕ, remembering that the
translated field ϕ < 0. We next assume that ϕ interacts
with a new field χ, which interacts with a Fermi field via
Yukawa interaction,

Lint ¼ −
1

2
g2ϕ2χ2 − hψ̄ψχ; ð107Þ

where χ does not have bare mass, its effective mass is given
by mχ ¼ gjϕj, and couplings g and h are assumed to be
positive. In the model under consideration, the field ϕ soon
comes to the kinetic regime after inflation has ended as the
potential is steep there. In this case, the production of χ
particles may commence providedmχ changes nonadiabati-
cally [89,90],

_mχ ≳m2
χ → _ϕ≳ gϕ2: ð108Þ
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FIG. 4 (color online). Postinflationary evolution of ρϕ from the
end of inflation, aend ¼ 1, on the logarithmic scale. The blue
dotted straight line corresponds to const=a2 on the log scale. It
touches the curve ρϕ=ρr around 0.4 on the x axis, which signals
the commencement of the kinetic regime. The kinetic regime is
established rather quickly after inflation ends.
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The condition for particle production (108) can be satisfied
provided

jϕj≲ jϕpj ¼
ffiffiffiffiffiffiffiffiffi
_ϕend

g

s
: ð109Þ

Using slow-roll equations (69) and (70), it can be noticed
that

_ϕend ¼
α

k2end

ffiffiffiffiffiffiffiffiffi
Vend

3

r
; kend ¼

αffiffiffi
2

p : ð110Þ

Since ϕp ≲MPl, from Eq. (109) we have a constraint on the
coupling g,

_ϕend

g
≲M2

Pl → g ≫
2

αM2
Pl

ffiffiffiffiffiffiffiffiffi
Vend

3

r
: ð111Þ

Further, we can estimate the production time,

δtp ∼
jϕj
_ϕ

¼ g−1=2 _ϕ−1=2
end : ð112Þ

Using the uncertainty relation gives us the estimate for

wave number, kp ≃ δt−1p ≃
ffiffiffiffiffiffiffiffiffiffiffi
g _ϕend

q
. We then can find out

the occupation number for χ particles [62,90],

nk ∼ e−πk
2=k2p ; ð113Þ

which gives the number density of χ particles,

Nχ ¼
1

ð2πÞ3
Z

∞

0

nkd3k ¼ ðg _ϕendÞ3=2
ð2πÞ3 : ð114Þ

The energy density of created particles χ is given by

ρχ ¼ Nχmχ ¼
ðg _ϕendÞ3=2
ð2πÞ3 gjϕpj ¼

g2Vend

6π3α2
: ð115Þ

If the particle energy produced at the end of inflation is
supposed to be thermalized, then using Eq. (73) and
Eq. (115) we find

�
ρϕ
ρr

�
end

≃ 6π3α2

g2
: ð116Þ

Using (116), we can find the lower limit on the coup-
ling g by invoking the relic gravity constraint on ρϕ=ρr
from (98),

g≳ 6α × 10−5: ð117Þ

Let us further note that

δtpHend ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
α

2gM2
Pl

r �
Vend

3

�
1=4

<
4.5 × 10−5=2

N

⇒ δtp ≪ H−1
end; ð118Þ

since N ∼ 70. This tells us that during particle production
expansion can be ignored. Let us also notice that
ϕp ≃ 4 × 10−4, which implies that particle production
takes place almost instantaneously after inflation has
ended. Since ϕ runs fast after inflation has ended, the
mass of χ grows larger, making it decay into ψ̄ψ , and the
decay width is given by

Γψ̄ψ ¼ h2mχ

8π
¼ h2

8π
gjϕj: ð119Þ

We should now worry about the backreaction of χ on the
postinflationary dynamics of ϕ. Around ϕ ¼ 0 where
inflation ends, ρϕ ∼ 1=a2, and therefore the field potential
and the dissipative term in the evolution equation for ϕ
evolve slower than ρχ . On the other hand, the decay rate has
larger and larger values of ϕ as mχ gets larger. Hence, the
decay of χ into fermions would be accomplished before the
backreaction of χ on ϕ evolution becomes important,
provided that

Γψ̄ψ ≫ Hend → h2 ≳ 8π
Hend

gjϕj : ð120Þ

Since ϕ≲MPl, the above estimate implies that
h≳ 2g−1=2 × 10−6, which gives the lower bound on the
numerical value of the coupling h. Figure 5 shows the
allowed values of g and h. It is clear that this is a wide
region in the parameter space, where the instant preheating
is quite efficient.
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FIG. 5 (color online). Figure depicts the parameter space of
(g; h). The shaded region shows the allowed values of the
parameters where preheating is efficient. α is considered to be 10.
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Figure 6 shows the spectral energy density (ΩGW) of the
relic gravitational wave background along with the sensi-
tivity curve of AdvLIGO [121,122] and LISA [123,124].
To plot Fig. 6 we have taken the present values of matter
and radiation energy density to be 0.3 and 9 × 10−5,
respectively.
Next, we turn to late-time dynamics of the model.

V. LATE-TIME COSMOLOGY: DARK ENERGY

In this section we investigate the cosmological behavior
at late times, where as we mentioned in the Introduction,
the scenario at hand leads to an effective dark-energy driven
acceleration of the Universe.

A. Evolution equations

We consider the spatially flat Friedmann-Robertson-
Walker (FRW) cosmology,

ds2 ¼ −N2dt2 þ aðtÞ2δijdxidxj: ð121Þ

Varying the action (58) with respect to the metric gμν and
setting N ¼ 1, we obtain the two Friedmann equations:

3H2M2
Pl ¼

1

2
_σ2 þ VðσÞ þ ρm þ ρr þ ρν; ð122Þ

ð2 _H þ 3H2ÞM2
Pl ¼ −

1

2
_σ2 þ VðσÞ − 1

3
ρr − pν; ð123Þ

where, as we mentioned, the neutrino pressure pν behaves
as radiation during the early times, but it behaves like
nonrelativistic matter during the late times. Varying the

action (58) with respect to the field σ leads to its equation of
motion3:

σ̈ þ 3H _σ ¼ −
dVðσÞ
dσ

−
∂ lnmν

∂σ ðρν − 3pνÞ: ð124Þ

Additionally, note that relation (50), using (56) and (57),
gives

∂ lnmν

∂σ ¼ ~γα

MPlkðϕÞ
: ð125Þ

Let us make an important comment here. During the
radiative regime, the last term in the rhs of Eq. (124) does
not contribute as during that era neutrinos behave like
radiation and the energy momentum tensor is traceless. On
the contrary, at late times, neutrinos behave as nonrelativ-
istic matter. As a result, the last term in the rhs of (124) is
nonzero and the nonminimal coupling between the scalar
field and the neutrinos builds up, which plays a vital role in
the model under consideration.
According to [94], as we mentioned in (66), during and

after the radiation era, we can take χ ≫ m and kðϕÞ ≈ 1.
Thus, the neutrino mass (50) at late times exhibits an
effective behavior

mν;effðσÞ ¼ mν;0e~γασ=MPl ; ð126Þ

which shows the same behavior as Eq. (50) that gives rise to
the same type of effective potential like Eq. (52). In this
case, the neutrino conservation equation (49) effectively
reads

_ρν þ 3Hðρν þ pνÞ ¼
~γα

MPl
_σðρν − 3pνÞ: ð127Þ

We stress here that in the scenario at hand, the late-time
acceleration is attributed to the combined effect of the
neutrinos and scalar field. That is, the effective dark-energy
sector includes these two contributions; namely, its energy
density and pressure read

ρDE ≡ ρν þ ρσ ¼ ρν þ
1

2
_σ2 þ VðσÞ; ð128Þ

pDE ≡ pν þ pσ ¼ pν þ
1

2
_σ2 − VðσÞ; ð129Þ

and they obey the continuity equation
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FIG. 6 (color online). Spectral energy density of the relic
gravity wave background for different reheating temperatures.
Red (dashed), blue (long dashed), and green (dotted) lines are for
g ¼ 5 × 10−4, 0.01, and 0.3, respectively. α is taken to be 10.
Also we have considered N ¼ 70 for this plot, but it has been
checked that the behavior does not change significantly for the
variation of N from 50 to 70. Black solid curves represent the
expected sensitivity curves of Advanced LIGO and LISA.

3Variation of Sν with respect to σ reads as

1ffiffiffiffiffiffi−gp δSν

δσ
¼ 1ffiffiffiffiffiffi−gp δSν

δϕ

∂ϕ
∂σ ¼ C;ϕ

C
TðνÞ

kðϕÞ :
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_ρDE þ 3HðρDE þ pDEÞ ¼ 0: ð130Þ

There is still one missing piece of information in order
for the above cosmological equations to close, namely, the
behavior of the neutrino equation-of-state parameter
wν ≡ pν=ρν, which determines the neutrino pressure pν

that enters into pDE, and then into the conservation
equation (130).
As we discussed in detail in Sec. III, before and during

the radiation era neutrinos are relativistic and behave as
radiation, while during and after the matter era neutrinos
become nonrelativistic and wν becomes 0. Thus, a
complete and detailed investigation of the thermal history
of the Universe requires the exact behavior of wν, that is,
its specific form interpolating between these two regimes.
Expressing the Universe’s evolution through the redshift
z, for convenience, one can have several wνðzÞ para-
metrizations with the above required properties, namely,
the interpolation of the equation-of-state parameter
between 1=3 and 0 [114]. In this work we desire to
have a better control on the features of this transition,
namely, the epoch around which the transition is realized
and the duration of realization. We shall use the follow-
ing ansatz for wνðzÞ,

wνðzÞ ¼
pν

ρν
¼ 1

6

�
1þ tanh

�
lnð1þ zÞ − zeq

zdur

��
: ð131Þ

In the above expression zeq determines the moment
around which the transition takes place; the choice for
the transition redshift where matter and radiation energy
densities become equal is reasonable. Additionally, zdur
determines how fast this transition is realized. In par-
ticular, having in mind that varying mass, neutrinos
become nonrelativistic after their mass turns constant
[100,101], and imposing the physical requirement that the
varying mass of neutrinos has to be nonrelativistic at the
recent cosmological past, we deduce that we need a large
value of zdur such that the transition is smooth. However,
the exact zdur determination requires exact knowledge of
the redshift zNR after which neutrinos become nonrela-
tivistic, which according to [100,101] is zNR ∈ ð2 − 10Þ
for mν ∈ ð0.015–2.3Þ eV, while according to [113] it
is zNR < 4.
Finally, in order to compare with observations,

we introduce the dimensionless density parameters
for the radiation, matter, neutrinos, and scalar field,
respectively, as

Ωm ¼ ρm
3H2M2

Pl

; ð132Þ

Ωr ¼
ρr

3H2M2
Pl

; ð133Þ

Ων ¼
ρν

3H2M2
Pl

; ð134Þ

Ωσ ¼
ρσ

3H2M2
Pl

; ð135Þ

and thus, according to (128),

ΩDE ¼ Ωσ þ Ων: ð136Þ

Lastly, the equation-of-state parameters of the total matter
content in the Universe of the scalar-field sector and of the
dark-energy sector can be written as

weff ¼ −1 −
2

3

_H
H2

; ð137Þ

wσ ¼
pσ

ρσ
; ð138Þ

wDE ¼ weff − 1
3
Ωr

ΩDE
: ð139Þ

In what follows we shall present our numerical results.

B. Postinflationary dynamics: The epoch sequence

Let us now examine the thermal history of the Universe;
that is, we are interested in its transient behavior from
inflation to the present epoch. Due to the complexities of
the cosmological equations of the previous subsection, no
exact analytical solutions are possible and one needs to
perform a numerical elaboration. In particular, we numeri-
cally evolve the cosmological equations (122)–(125),
(130), and (131), focusing on the evolution of observables
like the various density and equation-of-state parameters.
For the numerical evolution we consider α ¼ 10, ~γ ¼ 30,
and4 zdur ¼ 3.6 and 10, and for the initial conditions of the
radiation and scalar field we use the ratio of ρr and ρσ that
we obtain at the end of inflation. Additionally, for matter
and neutrinos we impose Ωm0 ≈ 0.3 and Ων0 ≃ 0.01 at the
present epoch. Finally, the value of zdur is set in order for the
neutrinos to become nonrelativistic in the recent past
(considering zNR ∼ 2–10 [101]).
In Fig. 7 we depict the evolution of Ωm, Ωr, Ων, and

Ωσ . The figure shows the evolution of the Universe from
the kinetic regime (where the scalar-field kinetic energy

4The parameter ~γ enters in the expression of the minimum of
the effective potential (52) given by Veff;min ¼ ð1þ 1=~γÞVmin,
which tells us that ~γ ≫ 1 for also enters in the expression of the
equation-of-state parameter of dark energy whose value at the
attractor point is given by wDE ¼ −~γ=ð1þ ~γÞ. There is nothing
special about ~γ ¼ 30. It could be any large value such that wDE
falls within the observed value of the equation-of-state parameter
(for instance, ~γ ¼ 30 and wDE ≈ 0.97).
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is dominant) after the end of inflation followed by the
radiation and matter eras. Finally, the Universe enters into
the dark-energy epoch and late-time acceleration com-
mences. Apart from the above standard thermal history of
the Universe, which acts as a consistency test for our
scenario, we observe that Ων starts growing in the recent
past which is a novel feature that the scenario at hand
brings in.
In Fig. 8, we present the postinflationary evolution of

the energy densities: matter (ρm), radiation (ρr), neu-
trinos (ρν) and scalar field (ρσ). The figure shows that
the field energy density soon after the end of inflation
enters the kinetic regime which is attributed to the steep
behavior of the potential. Initially scalar field energy
density is much larger than that of radiation; the field
therefore overshoots the background and freezes. It
remains in the locking regime till the radiation density
becomes of the order of field energy density. The field
then begins evolving and tracks radiation and matter. At
late times, the field takes over matter and becomes the
dominant component of the Universe. Let us notice the
important role played by the neutrino matter. Since
neutrinos become nonrelativistic in the recent past, the
interaction between neutrinos and field becomes non-
zero. Because of this interaction term, the field effective
potential acquires a minimum [Eq. (52)] and the field
eventually settles in that minimum of the effective
potential, which causes the scalar field to exit from
scaling regime to the de Sitter phase. As the neutrino
mass settles to its present value, the numerical value of
Veff in the minimum is of the order of the present value
of dark energy, provided we choose the parameter ~γ
appropriately; not much fine-tuning is involved in this

process. Figure 8, therefore, presents the desired post-
evolutionary evolution of our Universe.
In Fig. 9 we depict the evolution of the various equation-

of-state parameters. As we observe, during the radiation
dominated era wr ¼ 1=3 and wν ¼ 1=3, and in the recent
universe wσ; wDE and weff ∼ −1, that is the dark-energy
component behaves like a cosmological constant.
Last but not least, for completeness, we show in Fig. 10

the evolution of the growing neutrino mass (normalized
with its present value). When neutrinos are relativistic, they
behave like radiation and the interaction term between the
neutrino and field is zero; therefore, the mass ratio is
constant. In the recent past (z ∼ 4–10), neutrinos become
nonrelativistic and the interaction term builds up, giving
rise to the growth of neutrino mass.

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

Log 10 1 z

r

m

FIG. 7 (color online). Evolution of different density parameters
(Ω). Ωr (blue long-dashed line), Ωm (green dot-dashed), Ων

(black solid), and Ωσ (red dotted) represent the density param-
eters for radiation, matter, neutrinos, and the scalar field σ,
respectively. Cosmological sequences start from a scalar field
kinetic regime to a late-time dark-energy dominated era. We have
used the numerical values, α ¼ 10, ~γ ¼ 30, and zdur ¼ 3.6 for
plotting the figure. Since at the end of inflation kend ¼ α=

ffiffiffi
2

p
, we

take the initial value of λ ∼Oð1Þ.
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FIG. 8 (color online). Evolutions of different energy densities
(ρ). ρr (blue dashed line), ρm (green dot-dashed), ρσ (red solid in
upper panel), ρν (purple solid in lower panel) represent the
densities of radiation, matter, scalar field σ, and neutrino,
respectively. ρc0 is the critical energy density of the Universe
at present. This figures show the tracker behavior of the scalar
field which tracks radiation and matter up to the recent past and
then takes over matter and becomes the dominant component of
the Universe. The figure in the lower panel shows that at late
times when neutrinos become nonrelativistic, ρν takes over
radiation and slowly grows thereafter. At the present epoch ρν
is still subdominant, but it will take over matter in the future. To
plot this figure, we have considered α ¼ 10, ~γ ¼ 30, and
zdur ¼ 10. Since at the end of inflation kend ¼ α=

ffiffiffi
2

p
, we can

take the initial value of λ ∼Oð1Þ.
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C. Asymptotic behavior: Fixed points
and stability issues

In order to reveal the late-time behavior of the scenario at
hand, in this subsection, we perform a detailed phase-space
analysis of the cosmological equations (122)–(125), (130),
and (131). In this way we can bypass the complexities of
the cosmological equations, which do not allow for a
compete analytical treatment, and extract the late-time,
asymptotic behavior of the Universe.
In order to transform the cosmological equations into an

autonomous system, we define the dimensionless auxiliary
variables:

x ¼ _σffiffiffi
6

p
HMPl

; ð140Þ

y ¼
ffiffiffiffi
V

pffiffiffi
3

p
HMPl

; ð141Þ

λ ¼ −
MPl

VðσÞ
dVðσÞ
dσ

¼ −
MPl

kðϕÞ
1

VðϕÞ
∂VðϕÞ
∂ϕ ¼ α

kðϕÞ ;

ð142Þ

where in the last definition we used relation (62), and the
kðϕÞ term is given by (42). In order to simplify our analysis,
we shall use approximations that are valid at late times.
Since in this section we are dealing with late-time cosmol-
ogy [χ ≫ m or equivalently ϕ ≫ −2MPl lnðμmÞ=α], instead
of the full kðϕÞ, we can use its late-time approximate value.
Expanding (42) and keeping up to first order in e−αϕ=MPl ,
we find

k2ðϕÞ ≈ 1þ α2 − ~α2

~α2μ2m
e−αϕ=MPl ; ð143Þ

which satisfies the discussed requirements that after the end
of inflation k2ðϕÞ goes rapidly towards 1 for α > ~α and
~α ≪ 1. [Note that we could have used an even more
approximate expression (66), namely, k2ðϕÞ ≈ 1, since
for postinflationary evolution this approximation is also
very close to the exact behavior that arises from the exact
numerical evolution of the cosmological system.] Thus, the
auxiliary variable λ from (142) becomes

λ ¼ α

�
1þ α2 − ~α2

~α2μ2m
e−αϕ=MPl

�−1=2
: ð144Þ

Additionally, in order to compare with observations, we
will use the dimensionless density parameters Ωm, Ωr, Ων,
Ωσ given by (132).
In summary, using the six dimensionless variables wν, x,

y, λ, Ωm, and Ωr, we can transform our cosmological
system of equations (122)–(125), (130), and (131) into its
autonomous form:

dx
dN

¼ x
2
ð3wνΩν þΩr − 3y2 − 3Þ þ 3x3

2
þ

ffiffiffi
3

2

r
y2λ

þ
ffiffiffi
3

2

r
ð3wν − 1Þ~γλΩν; ð145Þ

dy
dN

¼ y
2
ð3x2 −

ffiffiffi
6

p
xλþ 3þ 3wνΩν þ ΩrÞ −

3y3

2
; ð146Þ

dΩr

dN
¼ −Ωrð1 − 3x2 þ 3y2 − 3wνΩν −ΩrÞ; ð147Þ

dΩm

dN
¼ Ωmð3x2 − 3y2 þ 3wνΩν þ ΩrÞ; ð148Þ
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FIG. 9 (color online). Evolutions of equation-of-state param-
eters (w). wσ (blue dotted line), wDE (black dashed), weff (red
solid), and wν (green dot-dashed) represent the scalar field σ, dark
energy, effective, and neutrino equation of states, respectively,
and are represented by Eqs. (155), (156), (154), and (131). At the
present time, wσ and wDE are very close to −1. To plot this figure
we have considered α ¼ 10, ~γ ¼ 30, and zdur ¼ 3.6. Since at the
end of inflation kend ¼ α=

ffiffiffi
2

p
, we have taken the initial value

of λ ∼Oð1Þ.
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FIG. 10 (color online). Evolution of normalized neutrino mass
[mν=mνðz ¼ 0Þ] vs redshift. We have used the numerical values,
α ¼ 10, ~γ ¼ 30, and zdur ¼ 3.6 for plotting the figure.
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TABLE I. Fixed points with their nature of stability and eigenvalues for the autonomous system (145)–(150). We always consider here zdur > 0 to get the proper behavior of wν.
Values of the field equations of state wσ , dark-energy equations of state wDE, and effective equations of state weff corresponding to each fixed point are also listed. Here
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 − 16α4 ~γð1þ ~γÞ2 þ 3α2ð−7þ 4~γð3þ 5~γÞÞ

p
, and “arbitr” stands for “arbitrary.”

Cr.P. x y λ Ωr Ωm Ων wν wσ wDE weff Stability Eigenvalues

P1 1 0 α 0 0 0 1
3

1 1 1 Unstable node for α < 0 3; 2; 2; 2
zdur

;−
ffiffiffi
6

p
α; 3 −

ffiffi
3
2

q
α

Saddle node for α > 0

P2 −1 0 α 0 0 0 1
3

1 1 1 Unstable node for α > 0 3; 2; 2; 2
zdur

;
ffiffiffi
6

p
α; 3þ

ffiffi
3
2

q
α

Saddle for α < 0

P�
3

αffiffi
6

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

6

q
α 0 0 0 1

3
α2

3
− 1 α2

3
− 1 α2

3
− 1 Saddle 2

zdur
; ðα2 − 6Þ=2; α2 − 4; α2 − 4; α2 − 3;−α2

P�
4

2
ffiffi
2

pffiffi
3

p
α

� 2ffiffi
3

p
α

α 0 0 1 − 4
α2

1
3

1
3

1
3

1
3

Saddle −4; 1; 0; 2
zdur

;− αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α − α−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α

P�
5

ffiffi
3

pffiffi
2

p
α

�
ffiffi
3

pffiffi
2

p
α

α 0 1 − 3
α2

0 1
3

0 0 0 Saddle −3;−1;−1; 2
zdur

;− 3ðαþ
ffiffiffiffiffiffiffiffiffiffiffi
24−7α2

p
Þ

4α − 3ðα−
ffiffiffiffiffiffiffiffiffiffiffi
24−7α2

p
Þ

4α

P�
6

2
ffiffi
2

pffiffi
3

p
α

� 2ffiffi
3

p
α

α Ωr 0 1 − 4
α2
− Ωr

1
3

1
3

1
3

1
3

Saddle −4; 1; 0; 2
zdur

;− αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α − α−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α

Q1 1 0 α 0 0 0 0 1 1 1 Saddle 3; 2;− 2
zdur

;−
ffiffiffi
6

p
α; 3 −

ffiffi
3
2

q
α; 3þ ffiffiffi

6
p

α~γ

Q2 −1 0 α 0 0 0 0 1 1 1 Saddle 3; 2;− 2
zdur

;
ffiffiffi
6

p
α; 3þ

ffiffi
3
2

q
α; 3 −

ffiffiffi
6

p
α~γ

Q�
3

αffiffi
6

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

6

q
α 0 0 0 0 α2

3
− 1 α2

3
− 1 α2

3
− 1 Stable for α2 < minf3; 2

1þ~γg − 2
zdur

;−α2; α2 − 4; α2 − 3; 1
2
ðα2 − 6Þ; α2ð1þ ~γÞ − 3

Saddle otherwise

Q�
4

2
ffiffi
2

pffiffi
3

p
α

� 2ffiffi
3

p
α

α 1 − 4
α2

0 0 0 1
3

1
3

1
3

Saddle −4; 1;− 2
zdur

;− αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α − α−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
64−15α2

p
2α ; 1þ 4~γ

Q�
5

ffiffi
3

pffiffi
2

p
α

�
ffiffi
3

pffiffi
2

p
α

α 0 1 − 3
α2

0 0 0 0 0 Stable for ~γ < 0 and
ffiffiffi
3

p
< α ≤ 2

ffiffi
6
7

q
or −2

ffiffi
6
7

q
≤ α < −

ffiffiffi
3

p
−1; 3~γ;− 2

zdur
;− 3ðαþ

ffiffiffiffiffiffiffiffiffiffiffi
24−7α2

p
Þ

4α − 3ðα−
ffiffiffiffiffiffiffiffiffiffiffi
24−7α2

p
Þ

4α ;−3

Saddle for ~γ > 0

Q6 − 1ffiffi
6

p
α~γ

0 α 1 − 1
2α2 ~γ2

0 1
3α2 ~γ2

0 1 1
3

1
3

Saddle 1;− 2
zdur

; 1
2
ð4þ 1

~γÞ; 1~γ ;−
α~γþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2−3α2 ~γ2

p
2α~γ ;− α~γ−

ffiffiffiffiffiffiffiffiffiffiffiffi
2−3α2 ~γ2

p
2α~γ

Q7 −
ffiffi
2
3

q
α~γ 0 α 0 0 1 − 2α2 ~γ2

3
0 1 2α2 ~γ2

3
2α2 ~γ2

3
Saddle − 2

zdur
; 2α2 ~γ; 2α2 ~γ2;− 3

2
þ α2 ~γ2;−1þ 2α2 ~γ2; 3

2
þ α2 ~γð1þ ~γÞ

Q�
8

ffiffi
3

pffiffi
2

p
αð1þ~γÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2α2 ~γð1þ~γÞ

pffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ð1þ~γÞ2

p α 0 0 −3þα2ð1þ~γÞ
α2ð1þ~γÞ2 0 − α2 ~γð1þ~γÞ

3þα2 ~γð1þ~γÞ − ~γ
1þ~γ − ~γ

1þ~γ For attractor conditions see Fig. 11 − 2
zdur

;− 3
1þ~γ ;−4þ 3

1þ~γ ;−
3~γ
1þ~γ ;

−3αð1þ2~γÞþ ffiffi
3

p
A

4αð1þ~γÞ ;− 3αð1þ2~γÞþ ffiffi
3

p
A

4αð1þ~γÞ

R1 0 0 λ 0 0 1 1
3

Arbitr 1
3

1
3

Saddle 2;−1; 1; 0; 0; 2
zdur

R2 0 0 λ 0 1 0 1
3

Arbitr Arbitr 0 Saddle − 3
2
; 3
2
;−1;−1; 0; 2

zdur

R3 0 0 λ Ωr 0 1 − Ωr
1
3

Arbitr Arbitr 1
3

Saddle 2;−1; 1; 0; 0; 2
zdur

R4 0 0 λ 1 0 0 0 Arbitr Arbitr 1
3

Saddle 2;−1; 1; 1; 0;− 2
zdur

R5 0 0 λ 0 1 0 0 Arbitr Arbitr 0 Saddle − 3
2
; 3
2
;−1; 0; 0;− 2

zdur
(Table continued)
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dwν

dN
¼ 2wν

zdur
ð3wν − 1Þ; ð149Þ

dλ
dN

¼
ffiffiffi
3

2

r
xλ2

�
1 −

λ2

α2

�
; ð150Þ

where N ¼ ln a.
Finally, let us express the remaining observables in

terms of the auxiliary variables wν, x, y, λ, Ωm, and Ωr.
Concerning the density parameters Ωσ and Ων, they can be
expressed as

Ωσ ¼ x2 þ y2 ð151Þ

and

Ων ¼ 1 −Ωσ − Ωm −Ωr; ð152Þ

where the last expression arises from the Friedmann
equation (122). Additionally, according to (128), in the
scenario at hand the effective dark-energy density param-
eter will be just

ΩDE ¼ Ωσ þ Ων: ð153Þ

Lastly, the equation-of-state parameters of the total content
of the Universe, the scalar-field sector, and the dark-energy
sector, defined in (154)–(156), can be written as

weff ¼ x2 − y2 þ wνΩν þ
Ωr

3
; ð154Þ

wσ ¼
x2 − y2

x2 þ y2
; ð155Þ

wDE ¼ weff − 1
3
Ωr

ΩDE
¼ x2 − y2 þ wνΩν

1 −Ωm − Ωr
: ð156Þ

We first extract the critical points of the above autono-
mous system by equating Eqs. (145)–(150) to zero. Then in
order to determine their stability properties, we follow the
usual procedure and we expand around them, obtaining the
perturbation equations in matrix form [125–128]. Thus,
the eigenvalues of the coefficient matrix calculated for each
critical point determine its type and stability.
The real and physically meaningful (that is, correspond-

ing to 0 ≤ Ωi ≤ 1) critical points for wν, x, y, λ, Ωm, andΩr
are presented in Table I, along with their stability con-
ditions and the corresponding eigenvalues of the perturba-
tion matrix. Additionally, using (152), (154), and (156), for
each critical point we calculate the corresponding values of
Ων, weff , wσ, and wDE. Finally, note that points with y > 0,
that is, with H > 0, correspond to an expanding Universe,
while those with y < 0 correspond to a contracting one, and
we denote them by the index—in the point’s name (forTA
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y ¼ 0, the Universe can be either contracting or
expanding).
Amongst the critical points, the stable ones are the most

interesting: they are the late-time attractors of the dynamics.
As we observe, there are four conditionally stable fixed
points (we focus on the expanding ones):

(i) Point Qþ
3 corresponds to a dark-energy dominated

(ΩDE ¼ Ωσ þ Ων ¼ 1), quintessencelike Universe
(wDE ≥ −1), which can be accelerating (if
weff < −1=3) or not (if weff > −1=3). As embedded
in the model, the neutrinos behave as dust (wν ¼ 0).
This point is a good candidate for the description of
the late-time Universe since it is in agreement with
observations.

(ii) Point Qþ
5 corresponds to a Universe with 0 < Ωm <

1 and 0 < ΩDE < 1; that is, it can alleviate the
coincidence problem since dark-energy and dark-
matter density parameters can be of the same order.
However, the fact that it is a nonaccelerating
Universe, with a stiff dark-energy equation-of-state
parameter, which is not favored by observations,
does not make it a good candidate for the description
of the late-time Universe.

(iii) Point Qþ
8 is the novel point of the scenario at hand.

It corresponds to a quintessencelike Universe
(wDE ≥ −1), which can be accelerating (if
weff < −1=3, that is, if ~γ > 1=2) or not. Addition-
ally, it has 0 < Ωm < 1 and 0 < ΩDE < 1; that is, it
can alleviate the coincidence problem, and the
neutrinos behave as dust. The interesting feature
of this point is that its properties are determined by
the neutrino-dependent quantity ~γ, which was not the
case in the other critical points. The region in the
α − ~γ plane for which Qþ

8 is stable is shown
in Fig. 11.

(iv) Point Sþ7 correspond to a de Sitter (weff ¼ −1),
accelerating Universe, which is dark-energy domi-
nated (ΩDE ¼ 1), with the dark energy behaving like
a cosmological constant (wDE ¼ −1) and the neu-
trinos behaving as dust. (Although this point is
nonhyperbolic, since it has one zero eigenvalue
amongst the negative ones, an immediate application
to the center manifold [129,130] analysis shows that
its behavior is stable.)

Finally, note that the points P1 and P2 represent the
scalar-field kinetic-energy dominated regime (the kinetic
regime) that we mentioned in the previous subsection.
Let us make a comment here on the standard-

quintessence limit of the scenario of variable gravity, which
acts as a self-consistency test of our analysis. Clearly, this is
obtained when λ¼ const, Ωr ¼ 0, and Ων ¼ 0 (since
Ων ¼ 0, the value of wν does not play a role); that is,
one freezes these variables to these values, in Table I, and
thus neglects the four corresponding eigenvalues (the
system cannot get perturbed in these directions). In this
case, we do recover the standard-quintessence points of
[125], and in particular Qþ

3 becomes the physically
interesting dark-energy dominated, quintessencelike point,
while Qþ

5 becomes the stiff dark-energy one. However, we
mention that in the case where the standard-quintessence
limit is considered, that is, where one imposes the above
requirements, Pþ

3 and Pþ
5 also coincide with Qþ

3 and Qþ
5 ,

and thus with the two stable standard-quintessence points.
In order to present the obtained results in a more

transparent way, we perform a numerical elaboration of
our cosmological system. In Fig. 12 we depict the projec-
tion of the phase space on the x-y plane, for α ¼ ~γ ¼ 1,
considering Ων ¼ 0 and 0 ≤ x2 þ y2 ≤ 1. In this case the
Universe at late times results in the dark-energy dominated,
quintessencelike Universe Qþ

3 , which moreover is accel-
erating for these parameter values.

10 5 0 5 10

4

2

0

2

4

6

8

10

FIG. 11 (color online). Shaded region shows the allowed values
of α and ~γ for which points Q�

8 are stable. The regions can be
extrapolated for α; ~γ > 10 and α; ~γ < −10.

FIG. 12 (color online). Projection of the phase-space diagram
on x-y-Ωm subspace for the autonomous system (145)–(150), for
α ¼ ~γ ¼ 1 and Ων ¼ 0. In this case the Universe at late times
results in the dark-energy dominated, quintessencelike Universe
Qþ

3 , which moreover is accelerating for these parameter values.
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Similarly, in Fig. 13 we present the phase-space evolu-
tion for α ¼ 10 and ~γ ¼ 30, in the case where the Universe
at late times is attracted by the novel stable point Qþ

8 , that
is, by a quintessencelike, neutrino-dependent Universe,
which moreover is accelerating for these parameter values.

VI. CONCLUSIONS

In the present work we have investigated a scenario of
variable gravity [94,95] in context with quintessential
inflation—a unified description of cosmic evolution from
inflation to radiation, matter, and dark-energy epochs. In
variable gravity, the Planck mass is driven by a scalar field,
which additionally drives the mass of the various particles.
This field-dependent mass, amongst others, leads to the
appearance of an effective interaction between the scalar
field and matter, and the scalar field and the neutrinos.
Furthermore, through suitable conformal transformations,
one can formulate this model in the Einstein frame in terms
of a canonical scalar field with an effective nonminimal
coupling between the canonical field and the neutrinos. The
cold dark matter is minimally coupled in this framework.
The key assumption in the model is related to the field
dependence of masses in the Jordan frame such that cold
dark matter and baryonic matter have standard behavior in
the Einstein frame, whereas the neutrino masses grow with
the field in a specific way. The canonical scalar field at
early times is shown to drive inflation with required number
of e-folds N (which is approximately equal to 70 in the
model under consideration) and the tensor-to-scalar ratio of
perturbations, r≃ 0.11, consistent with Planck data within
a 2σ confidence level. After inflation, the field potential
quickly turns into a steep exponential potential such that the
field enters into the kinetic regime with field energy density

redshifting as a−6. We checked that gravitational particle
production as a reheating mechanism is inefficient
[ðρϕ=ρrÞend ≃ 1011] and it takes a long time for the radiative
regime to commence. The amplitude of relic gravity waves
is enhanced during the kinetic regime such that the
nucleosynthesis constraint [ðρϕ=ρrÞend ≲ 109] is violated
at the beginning of radiation domination in this case. We
then implemented an instant preheating mechanism which
involves the coupling of inflatons with a scalar field χ such
that mχ ¼ gjϕj, which in turn couples to the matter field,
hχψ̄ψ . At the end of inflation, the mass of χ changes
nonadiabatically, giving rise to χ production. Assuming
that the energy of χ production is thermalized, we can
achieve ðρϕ=ρrÞend ≲ 109 provided that g≳ 6α × 10−5.
Since after inflation, ϕ grows fast, the produced particles
are shown to decay quickly into ψ̄ψ , avoiding any back-
reaction of χ particles on the postinflationary dynamics of
field ϕ, provided that h≳ 2g−1=210−6. We also noticed that
particle production takes place almost instantaneously after
the end of inflation (ϕ ≤ ϕp ≃ 4 × 10−4). We have shown
that instant preheating takes place in a large parameter
space ðg; hÞ, and the process is quite efficient, to comply
with the thermal history.
Since the field potential in the postinflationary era

mimics a steep exponential potential with the chosen slope,
the field exhibits the scaling behavior after the locking
regime becomes subdominant. At late times when neutrinos
become nonrelativistic, the direct coupling of neutrino
matter with scalar field builds up, and thanks to non-
minimal coupling, the field potential acquires a minimum
which slowly evolves with the expansion of the Universe.
The field settles in that minimum forever; the transition
from the scaling regime to late-time cosmic acceleration is
successfully triggered by growing neutrino matter. By
performing a detailed phase-space analysis, we showed
that apart from the usual stable attractors similar to those of
standard quintessence cosmology, namely, the de Sitter
attractor, the dark-energy dominated quintessencelike
attractor, and the nonaccelerating stiff dark-energy attrac-
tor, the system can result in a new attractor, with properties
depending on the neutrino behavior, corresponding to a
quintessencelike Universe.
We have shown that quintessential inflation based on a

variable gravity model can successfully unify inflation and
dark energy. The model based on instant preheating has
been shown to be consistent with observations. The
possibility of detection of the relic gravity wave back-
ground by Advanced LIGO and LISA has been discussed.
As for the early Universe, the model complies with the

recent Planck data, showing that within a 2σ confidence
level, the scenario is consistent with observations. The
scrutiny of late-time acceleration and the study of obser-
vational constraints on the model parameters are deferred to
our future work. It will also be interesting to carry out
detailed investigations of the stability of neutrino matter

FIG. 13 (color online). Projection of the phase-space diagram
on x-y-Ωm subspace for the autonomous system (145)–(150), for
α ¼ 10 and ~γ ¼ 30. In this case the Universe at late times is
attracted by the quintessencelike, neutrino-dependent, stable
point Qþ

8 , which moreover is accelerating for these parameter
values.
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under perturbations. One may also examine the scenario
under consideration in the framework of warm inflation,
which might further improve the tensor-to-scalar ratio of
perturbations.
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