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We propose a scenario for realizing super-Planckian axion decay constants in Calabi-Yau orientifolds of
type IIB string theory, leading to large-field inflation. Our construction is a simple embedding in string
theory of the mechanism of Kim, Nilles, and Peloso, in which a large effective decay constant arises from
alignment of two smaller decay constants. The key ingredient is gaugino condensation on magnetized
or multiply-wound D7-branes. We argue that, under very mild assumptions about the topology of the
Calabi-Yau, there are controllable points in moduli space with large effective decay constants.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) [1] have provided extraordinary support for the
inflationary paradigm of an early epoch of accelerated
cosmic expansion [2]. Recent measurements of B-mode
polarization by the BICEP2 Collaboration [3] suggest that,
in addition to the scalar fluctuations that had been pre-
viously observed and well studied, the inflationary period
was marked by significant tensor fluctuations. In particular,
if the observed polarization is cosmological in origin, it is
compatible with a tensor-to-scalar ratio of r ≈ 0.1 − 0.2.
Detectable primordial B-mode polarization implies that

the energy scale of inflation is comparable to the unification
scale,

V1=4
inf ≈ 2.2 × 1016 GeV

�
r
0.2

�
1=4

: ð1Þ

In the simplest scenarios, inflation is driven by a single
scalar field ϕ undergoing slow-roll evolution in a potential
V. In such models, the tensor-to-scalar ratio respects the
Lyth bound [4]

Δϕ
Mpl

≳
�

r
0.01

�
1=2

; ð2Þ

in which Δϕ is the distance in field space that the inflaton
moves during inflation and Mpl ≈ 2.4 × 1018 GeV is the
reduced Planck scale. The BICEP2 observation, taken at
face value, implies a trans-Planckian displacement in field
space for such an inflaton. Analogous bounds exist for
theories with multiple fields or noncanonical kinetic terms,
with the general result that the observed r requires Δϕ to
exceed the ultraviolet cutoff of the theory [5].

Inflation is famously sensitive to corrections from quantum
gravity. Even if the scale of inflation were much smaller than
Mpl, Planck-suppressed operators can makeOð1Þ corrections
to theslow-rollparameterη ¼ M2

pl
V 00
V ,whichmust remainsmall

during inflation. In addition to this universal η problem, the
large inflationary scale and the trans-Planckian excursionof the
inflaton suggested by the BICEP2 results intensify the need for
a consistent embedding of inflation into a theory of quantum
gravity such as string theory.1However, despitemuchprogress,
complete and explicit models of large-field inflation in string
theory remain elusive.
In this paper, we suggest a mechanism by which large-

field inflation may be realized in controllable string theory
constructions. We make use of the scheme of natural
inflation [7] and the decay constant alignment mechanism
proposed by Kim, Nilles, and Peloso (KNP) [8].2 We
demonstrate that compactifications of type IIB string theory
allow for the large axion decay constants required to realize
large-field natural inflation in this framework. However, we
do not stabilize moduli in this paper, and so fall short of a
complete model of inflation.
While this work was in the last stages of preparation, we

learned of the independent concurrent development of
closely related ideas by other authors [12].

II. NATURAL INFLATION AND DECAY
CONSTANT ALIGNMENT

A natural way to control the appearance of irrelevant
operators in the inflationary potential, and thus ensure that
η is small, is to suppose that the inflaton enjoys a global
symmetry. The natural inflation scenario [7] achieves this
by using an axion to drive inflation. At the classical level,
an axion enjoys a continuous shift symmetry ϕ → ϕþ c
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1See [6] for a recent comprehensive review of inflationary
models in string theory.

2See [9–11] for recent field-theoretic treatments of related
scenarios.

PHYSICAL REVIEW D 90, 023501 (2014)

1550-7998=2014=90(2)=023501(10) 023501-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.023501
http://dx.doi.org/10.1103/PhysRevD.90.023501
http://dx.doi.org/10.1103/PhysRevD.90.023501
http://dx.doi.org/10.1103/PhysRevD.90.023501


for arbitrary c. However, when nonperturbative quantum
corrections are taken into account, this symmetry is broken
to a discrete shift symmetry ϕ → ϕþ 2πf, where f is
known as the axion decay constant. An example of a four-
dimensional Lagrangian that respects this symmetry is

L ¼ −
1

2
ð∂ϕÞ2 − Λ4

�
1 − cos

ϕ

f

�
: ð3Þ

When f ≳ 10 MPl and Λ ∼ 10−3 Mpl, this potential sup-
ports realistic inflation. Indeed, for large f, the potential is
well approximated by a quadratic potential, V ≈ Λ4

2f2 ϕ
2,

while higher-order terms in the potential are suppressed by
f, rather than by Mpl, thus ensuring the smallness of η.
It is of obvious importance to determine whether the

super-Planckian decay constants required to obtain realistic
natural inflation can be obtained in a theory of quantum
gravity such as string theory. String theory compactifica-
tions can provide many axions descending from the various
p-form potentials of ten-dimensional supergravity (see [13]
for a comprehensive discussion), but there exist no com-
plete examples in which the decay constants are suitably
large and the construction is parametrically controlled.3

Indeed, there are generic arguments that suggest that it
is quite difficult to obtain large decay constants in which
the string construction is under good control [15]. However,
it was pointed out by KNP [8] that if there are multiple
axions and multiple nonperturbative effects that couple to
different linear combinations of the axions, then an effec-
tively large axion decay constant can be obtained even
when the original decay constants are modest. Such an
enhancement relies on the alignment of the decay constants
appearing in the nonperturbative corrections to the scalar
potential.
To illustrate this alignment, we follow [8] and consider a

theory with two axions ϕ1 and ϕ2 with the nonperturba-
tively generated potential

VðϕÞ ¼ Λ4
A

�
1 − cos

�
ϕ1

fA1
þ ϕ2

fA2

��

þΛ2
B

�
1 − cos

�
ϕ1

fB1
þ ϕ2

fB2

��
ð4Þ

and the kinetic term

Lkin ¼ −kij∂μϕ
i∂μϕj: ð5Þ

In general, the axions may have kinetic mixing as well, with
off-diagonal terms in kij.
Taking both the kinetic and potential mixings into

account, the determinant of the mass matrix of the
canonically normalized fields is

det ∂i∂jVjϕ1¼ϕ2¼0
¼ ðfA1fB2 − fA2fB1Þ2

f2A1f
2
A2f

2
B1f

2
B2

Λ4
AΛ

4
B

4 detðkÞ ; ð6Þ

and so a flat direction emerges when the decay constants
are aligned,

fA1
fA2

¼ fB1
fB2

: ð7Þ

When this alignment is achieved, both terms in (4) couple
to the same linear combination of the axions, while the
orthogonal direction remains a flat direction.
By slightly misaligning the decay constants, a nearly flat

direction emerges and a large effective decay constant can
be obtained for this direction [8]. To illustrate this, we
consider an example of canonically normalized axions4 for
which all of the decay constants are nearly equal while the
dynamical scales are hierarchical,

fA1 ¼ fB1 ¼ fA2 ¼ f; fB2 ¼ fð1þ δÞ; ð8Þ

Λ4
A ¼ Λ4; Λ4

B ¼ δpΛ4; ð9Þ

where p > 0 and δ ≪ 1. Then the determinant of the
Hessian at the minimum is

det ∂i∂jVjϕ¼0
¼ δ2þpΛ8

f4ð1þ δÞ2 ; ð10Þ

while the particular eigenvalues are

m2
1 ¼ δ2þp Λ4

2f2
½1þOðδÞ� m2

2 ¼
2Λ4

f2
½1þOðδÞ�:

ð11Þ

In terms of the mass eigenstates, the potential takes the
form

V ¼ Λ4

�
1 − cos

� ffiffiffi
2

p
ψ2

f
þ δpþ1ψ1ffiffiffi

2
p

f

��

þ δpΛ4

�
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�
−

ffiffiffi
2

p
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f
þ δψ1ffiffiffi

2
p

f

��
; ð12Þ

where in each cosine we have kept only the first term in
which either field appears. The first condensate serves to
stabilize ψ2 ≈ 0, while for sufficiently small ψ1, the
potential is dominated by the second term, which exhibits
an effective decay constant that is parametrically enhanced
by the near alignment:

3See, however, [14] for recent proposals to obtain large decay
constants in string theory.

4From (6), it is apparent that the effect of introducing kinetic
mixing [which generally decreases detðkÞ] is to further lift the
nearly flat direction resulting from near alignment.
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feff ∼
f
δ
: ð13Þ

Interestingly, the first term in the condensate naively
exhibits an even larger effective decay constant.
However, its contribution to the potential of ψ1 (for fixed
ψ2) is subdominant for small ψ1.
Although we illustrated the effectiveness of decay

constants with a particular scaling (8), the scheme works
more generally. Indeed, one of the examples of an infla-
tionary potential that we present in Sec. VI utilizes different
relationships between the decay constants and the dynami-
cal scales.

III. AXIONS IN TYPE IIB STRING THEORY

Our objective in this paper is to propose a framework in
which the success of decay constant alignment may be
embedded into a string compactification. In general, the
construction of inflationary models in string theory cannot
be decoupled from the problem of moduli stabilization.
Therefore, we focus on inflation in O3=O7 Calabi-Yau
orientifold compactifications of type IIB string theory,
where the understanding of moduli stabilization is pres-
ently the most mature. Although we will not stabilize
moduli, the ingredients that we use to construct the infla-
tionary potential are the same as those used for moduli
stabilization in this corner of the landscape, and we have
found no reason why a completely stabilized compactifi-
cation could not in principle be constructed. In this section,
we briefly review aspects of the effective field theories of
such orientifolds, focusing on elements that are relevant for
the construction of our inflationary potentials. A more
detailed treatment can be found in, for example, [16].
The IIB supergravity multiplet in ten dimensions

consists of the metric, the axiodilaton τ ¼ Cþ ie−Φ, the
2-form potentials B2 and C2, and the 4-form potential C4.
In the absence of sources, the low-energy description of
a compactification on a Calabi-Yau threefold with Hodge
numbers ðh1;1; h2;1Þ is a four-dimensional N ¼ 2 super-
gravity theory with h2;1 vector multiplets (the scalar
components of which are the complex structure moduli),
h1;1 hypermultiplets (including Kähler moduli), and the
universal hypermultiplet built from τ and Bμν − τCμν.
Breaking to N ¼ 1 in four dimensions can be accom-

plished by orientifolding, in which we identify states
related by an orientation reversal of the worldsheet and a
holomorphic involution of the Calabi-Yau geometry. The
cohomology groups split under the action of the involution

Hðp;qÞ ¼ Hðp;qÞ
þ ⊕Hðp;qÞ

− : ð14Þ

Correspondingly,

hp;q ¼ hp;qþ þ hp;q− ; hp;q� ¼ dimHðp;qÞ
� : ð15Þ

The geometric involution will have fixed loci correspond-
ing to the presence of orientifold planes. We will focus on
O3=O7 orientifolds in which the fixed loci are points
(O3-planes) and divisors (O7-planes). After the orientifold
action, the low-energy theory is a four-dimensional N ¼ 1
supergravity theory with h2;1þ vector multiplets coming
from C4, h2;1− chiral multiplets describing complex structure
deformations, a chiral multiplet with scalar component τ,
h1;1− chiral multiplets from the 2-form potentials, and h1;1þ
chiral multiplets corresponding to complexified Kähler
moduli. Finally, the orientifold planes carry D3- and
D7-brane charge that must be canceled by the inclusion
of D-branes. These give rise to additional low-energy
degrees of freedom corresponding to the deformations of
these branes.
The axiodilaton, complex structure moduli, and the

deformation moduli of D7-branes can be stabilized at
the perturbative level by fluxes. We will assume that such
fluxes have been included and that these fields are
stabilized at a high scale and can be consistently integrated
out.5 The remaining closed-string moduli are those coming
from the 2-form potentials and the complexified Kähler
moduli. Their scalar degrees of freedom are encoded in the
Kähler coordinates [16]

Ga ¼ ca − τba; ð16Þ

Tα ¼ τα þ iϑα þ 1

4
eϕκαbcGbðGc − Ḡc̄Þ; ð17Þ

in which a ¼ 1;…; h1;1− , α ¼ 1;…; h1;1þ , and

τα þ iϑα ¼ 1

2

Z
Dα

J∧J þ i
Z
Dα

C4; ð18Þ

C2 ¼ caωa; B2 ¼ baωa: ð19Þ

The scalar field τα is the volume of the 4-cycle Dα, where
Dα (Da) is a divisor that is even (odd) under the geometric
involution and ωα (ωa) is the Poincaré dual of an even (odd)
divisor. Here κijk are triple intersection numbers in the
“upstairs” Calabi-Yau, and indices on the intersection
numbers are raised and lowered with the identity matrix.
Note that the definition of the good Kähler coordinates is
modified by the presence of open strings [17,18] or strong
warping [19].
At the classical level and in the absence of localized

brane sources, each of the fields ϑα, ca, and ba enjoys a
continuous shift symmetry. This is reflected by the absence
of a superpotential for Tα, and a Kähler potential for the
Kähler moduli that depends only on 2-cycle volumes,

5Integrating out fields stabilized by fluxes is consistent in
compactifications allowing sufficiently large hierarchies of
scales, but for constructions of high-scale inflation, which allow
only modest hierarchies, it would be worthwhile to relax this
assumption.
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K ¼ −2 logV; V ¼ 1

3!
καβγtαtβtγ: ð20Þ

The volumes of 4-cycle volumes τα are related to 2-cycle
volumes tα via τα ¼ 1

2
καβγtβtγ and hence the Kähler

potential is an implicit function of the Kähler coordinates
Tα, Ga, and their conjugates.
Nonperturbatively, the continuous shift symmetries of

ϑα, ca, and ba are broken to discrete shift symmetries. For
example, a stack of D7-branes realizing an SUðNÞ gauge
theory and wrapping a divisor D contributes a nonpertur-
bative correction to the superpotential via gaugino
condensation

Wnp ¼ Ae−aT; ð21Þ

in which T ¼ τ þ � � � corresponds to the volume of D, A is
a function of the stabilized complex structure and brane
moduli, and a ¼ 2π

N . In order for these superpotential terms
to appear, the deformation moduli of the D7-branes must be
lifted either by flux or by taking the stack to wrap a rigid
divisor. The coordinate T appears because the tree-level
gauge kinetic function for the gauge theory realized by the
D7-branes is simply

fD7 ¼ T: ð22Þ

Although the odd moduli Ga do not appear in Wnp, the
appearance of ba in the real part of the Kähler coordinate Tα

means that the ba can be stabilized when the 4-cycle
volumes are stabilized nonperturbatively [20,21]. At this
level, the ca axions remain unstabilized, though nonper-
turbative corrections to the Kähler potential from Euclidean
D1-branes will generically induce a mass for these fields.
The situation changes when the stack of D7-branes is

magnetized or is allowed to have multiple windings. We
consider a restricted class of magnetizations that can be
expanded in terms of pullbacks of 2-forms ωa on the
Calabi-Yau

Fint
2 ¼ 1

2πα0
FaP½ωa�: ð23Þ

When the stack is magnetized, the gauge kinetic function is
modified and depends holomorphically on the odd moduli
Ga. To be more precise, letD be the divisor wrapped by the
D7-brane stack, and let D0 be the orientifold image. Then
define the even and odd cycles,

D� ¼ D∪ð�D0Þ; ð24Þ

and the wrapping numbers,

ℵα ¼
Z
Dþ

~ωα; ℵa ¼
Z
D−

~ωa; ð25Þ

where ~ω are 4-forms satisfying

Z
ωα∧ ~ωβ ¼ δβ

α;
Z

ωa∧ ~ωb ¼ δa
b; ð26Þ

in which the integral is taken over the Calabi-Yau. The
gauge kinetic function for the D7-brane gauge theory is
then [17,18,22]

fD7 ¼ ℵα

�
Tα þ iκαbc

�
GbFc þ τ

2
FbFc

��
: ð27Þ

The contribution to the superpotential for such a stack of
magnetized D7-branes is Ae−2πfD7=N for an SUðNÞ gauge
theory. Including such magnetization thus breaks the
continuous shift symmetry of ca to a discrete shift
symmetry at the level of the superpotential. The shift
symmetry for ba is badly broken by the appearance of
baba in the real part of the Kähler moduli (17).
The magnetization also contributes to the D-term for the

D7-brane gauge theory [18,22]

DD7 ¼
α0tα
2V

καbcðbb − FbÞℵc: ð28Þ

In general, the D-term receives contributions from the
matter fields living on the D7-branes, but, as with the
complex structure moduli and the axiodilaton, we will
assume that they have been stabilized at a very high scale
by closed-string flux.

IV. LARGE DECAY CONSTANTS FROM
MAGNETIZED BRANES

We will consider two different, though closely related,
mechanisms by which large axion decay constants can be
realized via an implementation of the alignment scenario
reviewed in Sec. II. In this section, we will show how such
an alignment can be arranged by the magnetization of
homologous D7-branes.6

As discussed in the previous section, in the presence of
condensing magnetized branes, ϑα and ca enjoy discrete
shift symmetries, while τα and ba do not. Therefore, ϑα and
ca are candidates for natural inflation. Unless we allow the
D7-branes to have multiple windings on the 4-cycles (as we
do in the next section), we will not have the freedom to
arrange for the near alignment of decay constants for the
even axions ϑα. We will therefore focus first on the odd
axions ca.7

In order to obtain alignment in the odd sector, we need
h1;1− ≥ 2. For simplicity, we will assume that the overall

6The wrapping of homologous but distinct cycles was utilized
in related constructions of axion monodromy inflation [20].

7See, for example, [20,23–25] for other models where these
particular axions drive inflation.

CODY LONG, LIAM MCALLISTER, AND PAUL MCGUIRK PHYSICAL REVIEW D 90, 023501 (2014)

023501-4



volume of the Calabi-Yau takes the “strong Swiss cheese”
form,

V ¼ ðτ1Þ3=2 − γðτ2Þ3=2: ð29Þ
We will further assume that h1;1− ¼ 2 and that the odd cycles
intersect only with D2, the volume of which is controlled
by τ2. (In fact our construction allows for intersections
with other cycles, as long as these cycles are not wrapped by
branes that would contribute to the superpotential for ca.)
The other crucial ingredient in the alignment scenario is

the existence of two nonperturbative potentials coupling to
different combinations of the axions ca. Using the results of
the previous section, this can be arranged by taking two
stacks of magnetized D7-branes wrapping distinct repre-
sentatives ofD2. Configurations of this form can arise if the
cycle D2 is not rigid, so that the D7-branes have deforma-
tion moduli in the absence of flux, but are stabilized by flux
on distinct representatives. An alternative possibility is
that at the geometric level, before the inclusion of flux, D2

has more than one isolated locally volume-minimizing
representative.
By an appropriate choice of world volume flux on the

two stacks, we will be able to arrange for approximate
alignment of the decay constants, as the gauge kinetic
function for the magnetized D7-brane will depend linearly
on the odd moduli (27). However, ϑ̂α ¼ ImTα remains an
unstabilized axion that appears in the same nonperturbative
effect. Since the appearance of ϑ̂α in the gauge kinetic
function is independent of the magnetization, it is difficult
to utilize the C4 axions in the scheme of decay constant
alignment via magnetization. We therefore consider a third
stack, wrapping a third distinct representative (see Fig. 1).
This unmagnetized stack will allow us to stabilize the τα,
ϑ̂α, and ba. In addition, ba and τα will receive contributions
to their potentials from D-terms (28). These ingredients can
be used together to stabilize the saxions τα and ba, as well
as the additional axion ϑ̂α, at a higher scale than ca.
With these ingredients in hand, the nonperturbative

superpotential from gaugino condensation on the three
different stacks takes the form

Wnp ¼
X

ξ¼A;B;C

Aξe
−2π
Nξ
fξ ; ð30Þ

in which

fξ ¼ T2 þ iκ2bcFb
ξ

�
Gc þ τ

2
Fc
ξ

�
; ð31Þ

where Fa
ξ are the world volume flux quanta (23). The

unmagnetized stack has Fa
C ¼ 0 and so fC ¼ T2. These

nonperturbative superpotential terms supplement the
classical flux contribution [26]

W0 ¼
Z

G3∧Ω: ð32Þ

The F-term contribution to the scalar potential is

VF ¼ eKðKi ȷ̄DiWD̄ȷ̄W̄ − 3jWj2Þ; ð33Þ

in which DiW ¼ W;i þ K;iW is the Kähler-covariant
derivative of the superpotential, Ki ȷ̄ is the inverse of the
Kähler metric Ki ȷ̄ ¼ K;i ȷ̄, and the sum in (33) runs over all
chiral fields. The complex structure moduli z are assumed
to be supersymmetrically stabilized at a high scale and so
we take DzW ¼ 0. We assume also that τα, ϑα, and ba are
all stabilized by D terms and by the unmagnetized con-
densate. We further assume that ba ¼ 0 at the minimum, so
that the Kähler metric for the even and odd moduli becomes
block diagonal, Kαā ¼ 0. Using the no-scale result (which
applies even when ba ≠ 0),

KIJ̄KIKJ̄ ¼ 3; ð34Þ

where the sum is over all Kähler moduli, and assuming that
W0 is large compared to Wnp, the scalar potential takes the
form

V ¼ −
2

V2
ðταW̄0∂αWnp þ c:cÞ þ Vuplift; ð35Þ

in which we have included an uplift potential coming from
ingredients such as anti-D3-branes or frustrated D terms.
By an appropriate tuning of Vuplift, the potential for the
ca axions takes the form necessary for decay constant
alignment (4)

V ¼
X
ξ

Λ4
ξ

�
1 − cos

�
2π

Nξ
κ2bcFb

ξc
c

��
; ð36Þ

in which

Λ4
ξ ¼

8πjW0jAξ

V2Nξ
τ2e

−2π
Nξ
ðτ2− 1

2gs
κ2bcFb

ξF
c
ξÞ; ð37ÞFIG. 1 (color online). Three branes wrapping locally volume

minimizing representatives of the same homology class.
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where we have assumed that W0 < 0 and Aξ > 0 and have
set the stabilized axiodilaton to τ ¼ i

gs
.

With ba stabilized at zero, the metric for the odd
moduli is

Kab̄ ¼ −
gs
V
καabtα: ð38Þ

If we consider an example with κ2bc ¼ −δbc, then the
kinetic term for the odd axions is

Lkin ¼ −
gst2
V

∂μca∂μca: ð39Þ

The determinant of the Hessian at the minimum is

det ∂a∂bVjc¼0 ¼
ðfA1fB2 − fB1 f

A
2 Þ2

N2
AN

2
B

2π4VΛ4
AΛ

4
B

t2gs
: ð40Þ

The form of (40) exhibits the effect of decay constant
alignment (6). If we relax the assumption κ2bc ¼ −δbc,
then the resulting kinetic mixing will generally make the
task of arranging a suitably flat potential more delicate.

V. LARGE DECAY CONSTANTS FROM
MULTIPLE WINDINGS

In the example of the previous section, we made use of
the C2 axions ca since their decay constants could be
aligned by adjusting the magnetic flux on the D7-branes.
While the decay constants for the C4 axions ϑα cannot be
altered by magnetization, they can be aligned by winding
numbers if we allow multiply-wrapped D7-branes.
To realize alignment for ϑα, we need h1;1þ ≥ 2. For

simplicity, we consider examples with h1;1− ¼ 0 (in which
case ϑ̂α ¼ ϑα). We furthermore need two separate con-
densates to generate two distinct nonperturbative terms in
the superpotential. As in the previous section, this can be
arranged by taking two stacks of D7-branes, each of which
wraps a different representative of the two homology
classes. The nonperturbative superpotential realized on
these condensates is

Wnp ¼ AAe
− 2π
NA

ðT1þT2Þ þ ABe
− 2π
NB

ðT1þT2Þ: ð41Þ
The fact that both T1 and T2 appear in the same linear

combination eliminates our ability to arrange for near
alignment of the decay constants ϑα. However, we gain
additional freedom in aligning decay constants by allowing
the D7-branes to wrap multiple times.8 Including such
wrapping numbers modifies the nonperturbative super-
potential (27) to

Wnp ¼ AAe
− 2π
NA

ðℵA
1
T1þℵA

2
T2Þ þ ABe

− 2π
NB

ðℵB
1
T1þℵB

2
T2Þ: ð42Þ

These multiple windings effectively increase the volume of
the D7-branes while keeping the rank of the low-energy
gauge group unchanged. Again, by a suitable tuning of
Vuplift, we have a potential of the form (4)

V ¼
X
ξ¼a;b

Λ4
ξ

�
1 − cos

�
2π

Nξ
ðℵξ

1ϑ
1 þ ℵξ

2ϑ
2Þ
��

; ð43Þ

in which

Λ4
ξ ¼

8πjW0jAξ

NξV2

�
ℵξ
1τ

1 þ ℵξ
2τ

2

�
e
−2π
Nξ
ðℵξ

1
τ1þℵξ

2
τ2Þ
; ð44Þ

where we have taken −W0 and Aξ to be real and positive.
Although the number of D7-branes Nξ and the winding

numbers ℵξ
α are integers, they provide enough freedom to

realize the near alignment of the axion decay constants.
However, the story is complicated by the fact that the scalar
fields Tα do not have canonical kinetic terms and will be
subject to kinetic mixing. As a simple example, we assume
that the volume takes the form

V ¼ ðτ1Þ3=2 − γðτ2Þ3=2; ð45Þ

for some γ > 0. The kinetic term for the axions is then

Lkin ¼ −gαβ∂μϑ
α∂μϑβ; ð46Þ

with

gij ¼
1

V2

0
B@

6ðτ1Þ3=2þ3γðτ2Þ3=2
8
ffiffiffi
τ1

p − 9γ
ffiffiffiffiffiffi
τ1τ2

p
8

− 9γ
ffiffiffiffiffiffi
τ1τ2

p
8

3γðτ1Þ3=2þ6γ2ðτ2Þ3=2
8
ffiffiffi
τ2

p

1
CA: ð47Þ

FIG. 2 (color online). Two branes multiply wrapping the same
cycle the same number of times.

8A critical assumption is that the separate windings are spaced
apart, as illustrated in Fig. 2, so that there are no new light non-
Abelian gauge bosons from the multiwrappings. Arranging for
spiraling wrappings of this form may be possible given suitable
fluxes, as we discuss below.
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The determinant of the Hessian at the minimum of the
potential is (after canonically normalizing the fields)

det ∂α∂βVjϑ¼0
¼ ðℵA

1ℵ
B
2 − ℵB

1ℵ
A
2 Þ2

N2
AN

2
B

128π4V2
ffiffiffiffiffiffiffiffi
τ1τ2

p
Λ4
BΛ

4
B

9γ
:

ð48Þ
Again, this form exhibits the flat direction that appears
upon alignment of the decay constants (6).

VI. EXAMPLES

We can illustrate the parametric success of alignment in
these constructions by considering some particular exam-
ples. Although we provide only a few toy cases here, the
mechanism to arrange for decay constant alignment with
our ingredients is more general. Further control could be
obtained by using additional stacks and axions to align
multiple decay constants as in the field-theoretic treatment
of [27].

A. Alignment from multiply-wrapped branes

We first present an example of alignment resulting from
multiply-wrapped branes discussed in Sec. V. We consider
a strong Swiss cheese Calabi-Yau such that the volume can
be written as

V ¼ ðτ1Þ3=2 − ðτ2Þ3=2: ð49Þ
We take this toy example just to illustrate the success of
alignment, and the scheme will work more generally in
real Calabi-Yaus provided that multiple windings can be
accommodated. We wrap two stacks of D7-branes with the
following data for stack A,

NA ¼ 35; ℵA
1 ¼ 1; ℵA

2 ¼ 19; ð50Þ
while for stack B,

NB ¼ 30; ℵB
1 ¼ 1; ℵB

2 ¼ 20: ð51Þ
Taking

−W0 ¼ AA ¼ AB ¼ :1; ð52Þ
and considering the point τ1 ¼ 15, τ2 ¼ 2, the masses at the
minimum are

m1 ¼ 4 × 10−3 Mpl; m2 ¼ 4 × 10−6 Mpl: ð53Þ
In terms of these mass eigenstates, the potential takes the
form

V
M4

pl

≈ ð1.1 × 10−8Þ

− ð9.2 × 10−9Þ cos
�
−
37ψ1

Mpl
þ 0.02ψ2

Mpl

�

− ð1.5 × 10−9Þ cos
�
46ψ1

Mpl
þ :099ψ2

Mpl

�
: ð54Þ

Thus, ψ1 can be consistently integrated out, and what
remains is a potential for ψ2 that can accommodate natural
inflation (see Fig. 3). Note that the mass for ψ2 in (53) is the
appropriate scale for realizing m2ϕ2 chaotic inflation.
The large ranks of the D7-branes and the relatively small

τ2 also lead to parametric increases in the decay constant,
so we should ensure that the enhancements in the decay
constants are in fact a result of the alignment and not of the
large rank or small 4-cycle volume. To see this, we could
repeat the analysis of the above example but remove
the possibility for alignment by taking ℵA

1 ¼ ℵB
2 ¼ 1 and

ℵB
1 ¼ ℵA

2 ¼ 0 (note that increasing the winding numbers
decreases the decay constants). In this reference case, the
potential in the mass eigenbasis is

V
M4

pl

≈ ð6 × 10−6Þ

− ð2 × 10−6Þ cos
�
−
1.5ψ1

Mpl
þ 1.7ψ2

Mpl

�

− ð4 × 10−6Þ cos
�
2.1ψ1

Mpl
þ :6ψ2

Mpl

�
: ð55Þ

Although the decay constants are indeed relatively large,
they are only OðMplÞ, and natural inflation could not be
sustained. Further increasing the number of D7-branes so
that the total tension of the D7-branes is comparable to the
total tension of the multiply wound branes would increase
the decay constants, but would also suppress the dynamical

FIG. 3. The 2-axion potential (54). Darker regions correspond
to higher points in the potential. Inflation can be accommodated
along the super-Planckian trajectory indicated by the arrow. The
very slight tilt of the trajectory is a consequence of a very slight
shift in the position of the minimum for ψ1 as ψ2 evolves.
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scales, making it difficult to match the COBE normaliza-
tion of the scalar power spectrum.
The example above exists at relatively small volume, and

α0 corrections are of concern. We can move to a point of
larger volume, but this acts to suppress the size of the
nonperturbative effects, which can be compensated by an
increase in the ranks of the condensing gauge groups. For
example, if we consider the point τ1 ¼ 25, τ2 ¼ 10,
NA ¼ 100, NB ¼ 90, ℵA

1 ¼ ℵB
1 ¼ 1, ℵB

2 ¼ 20, and ℵA
2 ¼

19 with −W0 ¼ 10, AA ¼ AB ¼ 1, we find the potential

V
M4

pl

≈ ð9.5 × 10−8Þ

− ð8.4 × 10−8Þ cos
�
−
30ψ1

Mpl
þ :0065ψ2

Mpl

�

− ð1.1 × 10−8Þ cos
�
−
35ψ1

Mpl
þ :04ψ2

Mpl

�
: ð56Þ

This again supports natural inflation. Once again, the large
decay constants are not a result of the large ranks, but
instead a manifestation of the power of decay constant
alignment. Setting ℵA

1 ¼ ℵB
2 ¼ 1 and ℵB

1 ¼ ℵA
2 ¼ 0, we

again find OðMplÞ decay constants (which are again larger
than one expects at generic points, but are not large enough
to sustain inflation).
In either of these cases, obtaining realistic inflation using

just the nonperturbative superpotentials requires a non-
perturbative effect that is not too small. Since the additional
windings increase the action of the D7-branes, arranging
for alignment quickly pulls down the dynamical scale
unless the rank of the gauge groups is increased or the
volume of the cycles is shrunk. This is an important
constraint on realizing inflation via decay constant align-
ment that cannot be seen in field theoretic treatments where
the decay constants and dynamical scales are independently
adjustable. If we are not concerned with realizing the
COBE normalization, then we can obtain large decay
constants with more moderate volumes and ranks. For
example, if we take τ1 ¼ 25, τ2 ¼ 10, NA ¼ NB ¼ 15,
ℵA
1 ¼ ℵB

1 ¼ 1, ℵB
2 ¼ 30, and ℵA

2 ¼ 29 with −W0 ¼ AA ¼
AB ¼ 1.0 we find a decay constant of ∼5Mpl (compared to
:2Mpl without the mixing), but the mass of the would-be
inflaton is Oð10−31MplÞ, which is far too small to produce
the observed CMB anisotropies. This could still be useful
for constructing models of axion monodromy inflation
[20,28] in which the shift symmetry of the axion plays an
important role, but inflation is driven by explicit break-
ing terms.

B. Alignment from magnetized branes

As a final example we present a realization of the
magnetized brane scenario supporting natural inflation.
We write the volume of the Calabi-Yau in a form similar to
that of the previous examples (49),

V ¼ 1

6
ðt31 − t32Þ; ð57Þ

where t1 and t2 control the volumes of 2-cycles and are
constrained to be positive. The D7-branes are taken to wrap
a divisor whose volume is τ2 ¼ 1

2
t22. For simplicity, we

assume that the only nonvanishing even-odd-odd intersec-
tion numbers are of the form

κ2ab ¼
�−2 1

1 −2
�
:

As in the previous case, the intersection numbers that we
have chosen in this example are just for illustrative
purposes and the mechanism will work more generally.
We wrap two stacks of magnetized D7-branes, with the
following data for stack A,

NA ¼ 35; FA
1 ¼ 1; FA

2 ¼ 6; ð58Þ

while for stack B,

NB ¼ 40; FB
1 ¼ 1; FB

2 ¼ 7: ð59Þ

Taking

−W0 ¼ AA ¼ AB ¼ 1; gs ¼ 0.5; ð60Þ

and considering the point t1 ¼ 7, t2 ¼ 3, the masses at the
minimum are

m1 ¼ 4 × 10−4Mpl; m2 ¼ 2 × 10−6Mpl: ð61Þ

In terms of these mass eigenstates, the potential takes the
form

V
M4

pl

≈ ð8.3 × 10−9Þ

− ð7.6 × 10−9Þ cos
�
4ψ1

Mpl
þ 0.006ψ2

Mpl

�

− ð6 × 10−10Þ cos
�
−
4ψ1

Mpl
þ :066ψ2

Mpl

�
; ð62Þ

which again supports natural inflation.

VII. CONCLUSIONS

In this paper, we have presented an embedding into type
IIB string theory of the field-theoretic axion decay constant
alignment mechanism proposed by Kim, Nilles, and Peloso
[8]. Our primary tool is gaugino condensation on multiple
stacks of D7-branes wrapping homologous cycles in a
Calabi-Yau orientifold. When the branes are magnetized,
gaugino condensation leads to nonperturbative superpo-
tentials that give the leading breaking of the shift symmetry
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of the C2 axions. Approximate alignment of the decay
constants can then be achieved by an appropriate choice of
the magnetic fluxes. Alternatively, if the D7-branes are
multiply wound, their couplings to C4 axions can be
aligned by adjusting the winding numbers.
Although our constructions require only ingredients that

are commonplace in stabilized flux vacua of type IIB string
theory compactified on O3=O7 orientifolds of Calabi-Yau
manifolds, further care must be taken to ensure compat-
ibility of moduli stabilization with axion alignment.
Consistently stabilizing all moduli, leading to a fully
realized model of large-field inflation in string theory,
remains a significant challenge in our construction, just as
in all alternative scenarios for inflation in string theory. In
the closed-string sector, this may be particularly delicate in
the magnetized case of Sec. IV where the B2 saxions ba

must have small VEVs to ensure that mixing between the
even and odd moduli can be neglected and that the
dynamical scales (which are exponentially sensitive to
babb=gs) are not too suppressed. Although the case of
winding branes of Sec. V does not suffer from such a
dramatic saxion problem (though of course the 4-cycle
volumes must be stabilized), it may be difficult to arrange
for the required winding numbers without the D7-branes
intersecting themselves or each other. Such intersections
will introduce additional vector-like matter fields that must
be made massive in order for the nonperturbative effects
that our constructions invoke to be present. Even if such
intersections can be avoided, finding volume-minimizing
cycles allowing for multiple windings, or fluxes that
stabilize such windings, may be difficult. However, once
arranged, the masses of the D7-brane moduli will be
comparable to the masses of the complex structure moduli
and so these fields will be inert during inflation. An
additional constraint is that the D7-brane charge (and
induced lower brane charge in the magnetized case) must
be canceled. Although such cancellation can be achieved
by orientifold planes, it requires more detailed construc-
tions than those that we provide here.
Finally, in schemes of decay constant alignment, there is

some tension between the arrangement of a large effective
decay constant and the scale needed to match the normali-
zation of the scalar power spectrum. This can be seen in (4),

where although the decay constant is indeed enhanced by
the misalignment δ, it is at a cost of a decreased inflaton
mass. In string-theoretic implementations, this problem is
exacerbated as the dynamical scale will often decrease
exponentially as the misalignment is obtained. This tension
is not a fatal flaw of our proposal, and indeed it is easy to
find examples with properly normalized scalar power
spectra.
Some of these difficulties can be ameliorated by com-

bining our scheme with other recent proposals for produc-
ing large effective decay constants. In particular, in [27] it
was shown that the success of decay constant alignment in
field-theoretic models can be extended by increasing the
number of axions that mix in the scalar potential. Chaining
together alignment effects would be useful in our con-
struction, because although alignment does provide for a
parametric enhancement, the points in moduli space that
exhibit natural inflation are often near the edge of control.
Using a combination of alignments would allow us to
obtain parametrically large axion decay constants within a
region of robust control. In addition, it was recently
demonstrated [30] that the kinematic extension of field
range resulting from the combination of many axions
without aligned decay constants can be more efficient than
suggested previously in the N-flation literature [29]. The
kinetic alignment effect of [30] in concert with decay
constant alignment may be particularly powerful.
Moreover, one could use axion alignment to build a broader
range of scenarios for axion monodromy [20,28]: see in
particular the two-axion monodromy constructions of [24].
Constructing a fully stabilized compactification that

implements our proposal is an important problem for the
future.
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