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The 21 cm line provides a powerful probe of astrophysics and cosmology at high redshifts, but unlocking
the potential of this probe requires the robust mitigation of foreground contaminants that are typically
several orders of magnitude brighter than the cosmological signal. Recent simulations and observations
have shown that the smooth spectral structure of foregrounds combines with instrument chromaticity to
contaminate a “wedge”-shaped region in cylindrical Fourier space. While previous efforts have explored
the suppression of foregrounds within this wedge, as well as the avoidance of this highly contaminated
region, all such efforts have neglected a rigorous examination of the error statistics associated with the
wedge. Using a quadratic estimator formalism applied to the interferometric measurement equation, we
provide a framework for such a rigorous analysis (incorporating a fully covariant treatment of errors).
Additionally, we find that there are strong error correlations at high spatial wave numbers that have so far
been neglected in sensitivity derivations. These error correlations substantially degrade the sensitivity of
arrays relying on contributions from long baselines, compared to what one would estimate assuming
uncorrelated errors.
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I. INTRODUCTION

Modern cosmological observations have produced
exquisite constraints on both the initial and final conditions
of structure formation in our Universe. Initial conditions
have now been probed to high significance with a large
number of cosmic microwave background experiments
[1,2], while at low redshifts, a combination of galaxy
surveys and traditional astronomical measurements provide
the final conditions [3]. Still missing from these direct
observations, however, are the intermediate epochs that
bridge the gap between early and late times. For example,
despite tremendous recent progress in high-redshift galaxy
observations, details regarding the formation of the first
luminous objects and their effects on the intergalactic
medium (IGM) during the epoch of reionization (EoR)
remain uncertain.
In the next few years, direct observations of the EoR

will be made possible by measurements of the redshifted
21 cm hyperfine transition of neutral hydrogen (see, e.g.,

Refs. [4–7] for reviews). At the relevant redshifts, the
intensity field of the 21cm brightness temperature depends
on a rich variety of different astrophysical effects, such as
fluctuations in the ionization and spin states of the IGM, as
well as cosmological quantities such as the underlying dark
matter density field and peculiar velocity gradients. Amap of
the 21 cm intensity field at redshifts z ∼ 6 and above would
therefore be a rich probe of EoR physics, including the
nature of the first luminous sources (such as their typical
mass and luminosity scales), their ionizing and heating
efficiency, and feedback processes on the IGM, among
other effects. Such a mapping can be accomplished in three
dimensions, since the spectral nature of a 21 cm measure-
ment provides redshift (and therefore line-of-sight distance)
information, while the angular directions are mapped using
traditional imaging. Because of this, the 21 cm line allows
access to a large fraction of our Universe’s comoving
volume, potentially allowing futuristic measurements to
move beyond astrophysics and into the measurement of
fundamental cosmological parameters [8–10].
There are currently a number of experiments aimed

at mapping the fluctuations of the cosmological 21 cm*acliu@berkeley.edu
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signal, including the Giant Metrewave Radio Telescope
Epoch of Reionization experiment (GMRT-EoR [11]), the
Low Frequency Array (LOFAR [12]), the Murchison
Widefield Array (MWA [13]), and the Donald C. Backer
Precision Array for Probing the Epoch of Reionization
(PAPER [14]). These interferometer arrays have yet to
make a positive detection of the cosmological signal, with
the primary challenges being foreground contamination
and the high sensitivity requirements. To increase sensi-
tivity, these experiments are primarily targeting binned,
statistical measures of the brightness temperature field such
as the power spectrum. Recent progress has resulted in a
number of increasingly stringent upper limits [11,15,16],
and proposed next-generation instruments such as the
Hydrogen Epoch of Reionization Array [17] and the
Square Kilometer Array [18] promise to yield extremely
high significance measurements.
In addition to achieving the required sensitivity, obser-

vations targeting the redshifted 21 cm line must also
contend with foreground contaminants. In the relevant
frequency ranges (roughly ∼100 to 200 MHz, correspond-
ing to z ∼ 13 to 6), there exist a large number of non-
cosmological sources of radio emission that contaminate
measurements. These include sources such as the diffuse
synchrotron radiation from our own Galaxy, as well as
extragalactic point sources, whether they are bright and
resolved or part of a dim and unresolved background. The
brightness temperature of foregrounds is expected to be 105

times greater than theoretical expectations for the amplitude
of the cosmological signal. A detection of the reionization
power spectrum will therefore be challenging without a
robust foreground mitigation strategy.
Historically, cosmic microwave background (CMB)

experiments have had to deal with similar problems of
foreground contamination. However, strategies for fore-
ground cleaning that have been developed for the CMB
cannot be directly applied to 21 cm cosmology for two
reasons. First, CMB experiments typically operate at higher
frequencies, where foregrounds are not as bright. In fact,
microwave-frequency foregrounds are subdominant to the
CMB away from the Galactic plane. In addition, CMB
experiments measure anisotropies over a two-dimensional
surface, with different observation frequencies providing
consistency checks and a set of redundant measurements
that can be used for foreground isolation. The three-
dimensional mapping of the 21 cm line, on the other hand,
contains unique cosmological information at every fre-
quency, which makes it more difficult to remove fore-
grounds in a way that does not result in the loss of
cosmological signal [19].
With CMB techniques unlikely to succeed without

modification, a number of alternate foreground mitigation
strategies have been suggested for 21 cm cosmology.
These include spectral polynomial fitting [20–23], Wiener
filtering [24], principal component analyses [11,25–27],

nonparametric subtractions [28–30], Fourier-mode or delay
filtering [31,32], frequency stacking [33], Karhunen-Loéve
eigenmode projection [34,35], and inverse covari-
ance weighting [15,36,37]. The vast majority of these
approaches rely on the fact that foreground sources are
expected to be spectrally smooth, while the cosmological
EoR signal is expected to fluctuate rapidly with frequency
[38]. The cosmological signal can therefore be extracted by
isolating spectrally smooth components from the data.
Recently, however, a complication to this simple picture

was realized, in what has been colloquially termed the
“foreground wedge.” Consider a cylindrically binned
power spectrum measurement, i.e., one where Fourier
amplitudes are squared and binned in annuli specified by
wave numbers perpendicular to the line of sight k⊥ and
wave numbers parallel to the line of sight k∥. Because the
line-of-sight direction is equivalent to the spectral axis of an
interferometer, one might have naively expected smooth
spectrum foregrounds to be sequestered to only the lowest
k∥. However, this neglects the fact that interferometers are
inherently chromatic instruments, with a given baseline
probing finer spatial scales (higher k⊥) at higher frequen-
cies. This coupling of spectral and spatial information is
sometimes coined mode mixing and results in the leakage
of information from low to high k∥. This effect is
particularly pronounced at high k⊥, where the modes are
typically probed by longer baselines, which are more
chromatic. Putting everything together, theoretical studies
and simulations [32,39–44] have shown that foregrounds
are expected to leak out of the lowest k∥ into a characteristic
wedge that is schematically shown in Fig. 1. Observations
with PAPER and MWA have confirmed this basic picture
[45], including its evolution with frequency [15].
The foreground wedge is both a blessing and a curse. At

the sensitivity levels that have been achieved by current
experiments, observations have seen a sharp dropoff in
foregrounds beyond the wedge [45]. Theoretical calcula-
tions and simulations have shown that such a dropoff is the
natural consequence of geometric limitations [32], pro-
vided the foregrounds are spectrally smooth. If further
integration reveals low-level foregrounds that are spectrally
unsmooth, their influence will leak beyond what is typi-
cally labeled as the edge of the wedge. However, if
foregrounds continue to be reasonably smooth, the fact
that physical considerations limit the extent of wedge
implies that there must exist an “EoR window”: a region
in Fourier space that is a priori expected to be foreground-
free. The existence of the EoR window thus enables a
relatively robust foreground avoidance strategy, where a
detection of the power spectrum can be made simply by
avoiding measurements within the wedge. On the other
hand, such a conservative approach forces one to work at
higher k than if the chromatic effects had not caused the
wedge in the first place. This is unfortunate because the
ratio of the cosmological signal to instrumental noise
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typically peaks at low k, which means that if it were
possible to work within the wedge (or to at least push
back its boundaries a little), one would be able to make
higher significance detections of the power spectrum.
Indeed, in Ref. [17] it was suggested that working within
the wedge can increase the detection significance anywhere
from a factor of 2 to 6 (depending on the interferometer’s
configuration), with corresponding decreases in the error
bars on astrophysical parameters.
Given the potentially high payoff associated with push-

ing back the influence of the wedge (or equivalently,
enlarging the EoR window), it is important to have a
statistically rigorous framework for describing the wedge.
In this paper, we provide just such a mathematical
framework. Since there already exists an extensive liter-
ature on the foreground wedge and the EoR window, it is
worth summarizing the ways in which this paper builds
upon and extends previous results. Works such as
Refs. [39–41] describe instrumental simulations that take
one particular realization of foregrounds and propagate
them through a power spectrum estimation pipeline. They
therefore only probe the mean power spectrum, and not the
scatter (i.e., the errors) about this mean. In Ref. [43], a
statistical treatment of point source populations was

considered. While error bars were computed, off-diagonal
error correlations (i.e., covariances) in the final measure-
ments were neglected. Potential error correlations are
important particularly because Ref. [43] considered the
application of various tapering functions to their Fourier
transforms, and certain choices can result in significant
correlations between Fourier bins. We consider full fore-
ground covariances, a full treatment of instrumental effects
(such as having a non-top-hat beam), a full treatment of
data analysis choices such as tapering functions, and a fully
covariant propagation of errors. We build upon Ref. [42],
which made use of Monte Carlo methods to propagate
errors. Our treatment is more analytic, allowing us to
capture the large dynamic range needed to accurately
compute the error statistics in a measurement where the
foregrounds are many orders of magnitude brighter than the
signal. This is made computationally feasible by our use
of the delay spectrum approach introduced in Ref. [32],
where input frequency spectra are sorted into a set of time-
delay τ modes via a per-baseline Fourier transform.
However, unlike in some works where the delays are used
as an approximation for line-of-sight Fourier modes (an
assumption that is only valid for short baselines, as we will
discuss in Sec. II), we use delays strictly as a convenient
choice of basis. This basis makes it computationally
possible for us to deal directly with visibilities in our
formalism (bypassing any mapmaking steps), which avoids
gridding artifacts in our numerical results. We also take into
full account the correlations between partially overlapping
baselines and therefore rigorously treat the possible
complications that were highlighted in Ref. [44]. A related
treatment pertaining to lower-redshift 21 cm intensity
mapping experiments (though focusing less on the details
of the wedge) can be found in Ref. [35]. While our fiducial
calculations are centered around instruments targeting the
EoR, the techniques developed in this paper are equally
applicable to cosmological 21 cm at lower (or higher)
redshifts.
We accomplish our goals by making use of the quadratic

estimator formalism, which was adapted for 21 cm power
spectrum measurements in Refs. [36,37] and applied to real
data in Ref. [15]. However, appropriate “wedge effects”
were not incorporated into the formalism, an omission that
we rectify in this paper. Placing everything in the quadratic
estimator formalism enables a systematic computation of
the aforementioned error statistics, as well as a systematic
study of the optimality (or lack thereof) of various power
spectrum estimators. In the following paper (Ref. [46],
henceforth “paper II”), we will take advantage of this to
examine the extent to which statistical methods can enlarge
the EoR window.
With our fully covariant treatment, we find that the

wedge is not simply a region of large foreground errors and
biases, but also as a marker for error correlations: at k⊥
values where the wedge is a dominant effect, the errors tend

FIG. 1 (color online). A schematic of the EoR window in the
cylindrical k⊥k∥ Fourier plane. At the lowest k⊥, errors increase
because of limits on an instrument’s field of view. High k⊥ modes
are probed by the longest baselines of an interferometer array, and
the sensitivity drops to zero beyond k⊥ scales corresponding to
these baselines. Spectral resolution limits the sensitivity at large
k∥. The lowest k∥ are in principle limited by cosmic variance, but
in practice the larger concern is limited bandwidth and the
foreground contamination, which intrinsically resides at low
k∥. As one moves towards higher k⊥, however, the foregrounds
leak out to higher k∥ in a characteristic shape known as the
“foreground wedge." The remaining parts of the Fourier plane are
thermal-noise dominated, allowing (with a large collecting area or
a long integration time) a clean measurement of the power
spectrum in this “EoR window."
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to be strongly correlated. With strongly correlated errors,
the number of independently measurable Fourier modes
is reduced, suggesting that previous sensitivity estimates
(such as those in Refs. [17,47,48]) may be overly opti-
mistic, particularly for arrays that make use of long base-
lines (such as LOFAR or GMRT). In fact, the rewards for
working within the wedge may be overrated as a result of
this, but of course this cannot be quantified without a
rigorous way to compute the error statistics of the wedge—
hence the present paper.
The rest of this work is organized as follows. In Sec. II

we examine the measurement equation of an interferometer
in detail, paying special attention to chromatic effects. This
provides a first noncovariant preview of the foreground
wedge, which we generalize to an approximate, but fully
covariant description in Sec. IV, following a review of
the quadratic estimator formalism in Sec. III. In Sec. V we

discard the approximations made in Sec. IV in a full
numerical implementation of our formalism. We summa-
rize our conclusions in Sec. VII. Because a large number of
mathematical quantities are defined in this paper, we
provide dictionaries in Tables I and II for the reader’s
convenience.

II. A NONCOVARIANT PREVIEW OF THE
FOREGROUND WEDGE

In this section, we will derive the Fourier-space fore-
ground wedge from first principles. We begin with the
visibility V measured by a baseline b at frequency ν:

Vðb;νÞ ¼
Z

Iðθ;νÞA
�
θ
θ0

�
exp

�
−i2π

ν

c
b · θ

�
d2θ; ð1Þ

TABLE I. Dictionary of scalars and functions. The “context” column gives equation references, typically either their defining equation
or their first appearance in the text.

Quantity Meaning/definition Context

Basic quantities
u Fourier dual to angular direction θ Eq. (4)
η Fourier dual to ν (i.e., spectral wave number) Eq. (4)
τ Delay, i.e., Fourier dual to ν (or spectral wave number) for a single baseline Eq. (3)
Vðb; νÞ Visibility measured by baseline b at frequency ν Eq. (2)
~Vðb; τÞ Delay-space visibility by baseline b at delay τ Eq. (3)

Instrumental parameters
b Baseline vector Eq. (1)
θ0 Characteristic width of primary beam Eq. (1)
A Primary beam function Eq. (1)
~A Spatial Fourier transform of primary beam function Eq. (5b)
~Ab∥ Profile of ~A parallel to baseline vector direction Eq. (7)
~Ab⊥ Profile of ~A perpendicular to baseline vector direction Eq. (7)
Bchan Frequency channel width Eq. (2)
γ Frequency channel profile Eq. (2)
~γ Fourier transform of frequency channel profile γ Eq. (8)
Bband Bandwidth corresponding to depth of cosmological volume Eq. (3)
Ωpp Integrated beam squared area Eq. (50)
Tsys System temperature Eq. (49)
t Total integration time Eq. (49)
nðbÞ Number baselines Eq. (49)

Sky
Iðθ; νÞ Sky brightness temperature at angle θ and frequency ν Eq. (1)
~Iðu; ηÞ Fourier transform of the sky temperature at angular wave number u and line-of-sight wave number η Eq. (4)
Pðu; ηÞ Cylindrically binned power spectrum at angular wave number u and line-of-sight wave number η Eq. (A3)
CX
l Angular power spectrum of foregrounds, Eq. (46)

νXc Frequency coherence length of foregrounds Eq. (46)
(for both CX

l and νXc , X ¼ diff for diffuse Galactic emission and X ¼ ps for point sources)

Data analysis
ϕ Bandpass or tapering function Eq. (3)
~ϕ Fourier transform of bandpass or tapering function ϕ Eq. (9)
hðu; η;b; τÞ Visibility response at delay τ of baseline b to sky mode on spatial scale u and spectral scale η Eq. (17)
gðu; η; b; τÞ Same as hðu; η;b; τÞ but integrated over direction on uv plane perpendicular to baseline vector Eq. (30)
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where θ is the angular sky position, Iðθ; νÞ is the sky
temperature and Aðθ=θ0Þ is the primary beam,1 with θ0
denoting its characteristic width. For notational simplicity
in this section, we will omit the instrumental noise con-
tribution to the visibility, but of course it is always
implicitly present. Our (arbitrary) convention for A is that
it is dimensionless and is normalized so that Að0Þ ¼ 1. In
what follows, we will see that the foreground wedge arises
from the fact that the product of ν and θ appears in the
complex exponential. Fourier transforms in θ are therefore
coupled to ν and vice versa, leading to the “mode-mixing”
phenomena coined in Ref. [41] and ultimately the wedge.

To mimic the discreteness of frequency channels in a real
instrument, we introduce a function γ that describes the
response of a single frequency channel. Our measurement
equation therefore becomes

Vðb; νÞ ¼
Z

dν0

Bchan
d2θIðθ; ν0ÞA

�
θ
θ0

�

× γ

�
ν − ν0

Bchan

�
e−i2π

ν0
cb·θ; ð2Þ

with Bchan denoting the width of a frequency channel, and γ
normalized such that

R
∞
−∞ γðxÞdx ¼ 1.

So far, we have no choice in the matter, in that the results
of Eq. (2) are handed to us by the instrument. Moving onto
data analysis, however, there is considerable freedom as to
how one proceeds. For example, we may choose to move
into delay space, which is accomplished by taking the
Fourier transform in frequency of the spectrum measured
by a single baseline (a “delay transform”):

~Vðb; τÞ ¼
Z

Vðb; νÞϕ
�
ν − ν0
Bband

�
e−i2πντdν; ð3Þ

where τ is the delay (with units of time), Bband is the
bandwidth over which we wish to compute a power
spectrum, and ν0 is the central frequency of our band.

TABLE II. Dictionary of vectors and matrices. The quantities shown here are grouped into three categories: those that exist in the
vector space of the visibility measurements (indexed, for example, by baseline and delay), those that exist in the vector space of band
powers (indexed by Fourier wave numbers), and those that bridge the two spaces. In the column giving the length and dimensions, Nb1
denotes the number of baselines, Nν the number of frequency channels, and Nbands the number of bins in Fourier space (i.e., the number
of band powers).

Quantity Components Meaning/definition Length/dimensions Context

Quantities in measurement space
x xi Serialized data vector of visibilities Nb1Nν Eq. (14)
C Cij Total covariance matrix C≡ hxx†i Nb1Nν × Nb1Nν Eq. (15)
N Nij Noise covariance matrix Nb1Nν × Nb1Nν Eq. (15)
S Sij Signal covariance matrix Nb1Nν × Nb1Nν Eq. (16)

Quantities in power spectrum space
p pα Serialized vector of true band powers (i.e., power spectrum

at various grid points in Fourier space)
Nbands Eq. (19)

p̂ p̂α Estimator for band powers derived from measurements Nbands Eq. (22)
Σ Σαβ Error covariance of estimated band powers,

i.e., Σαβ ≡ hp̂αp̂βi − hp̂αihp̂βi
Nbands × Nbands Eq. (23)

Σ̄ Σ̄αβ Error correlation of estimated band powers Nbands × Nbands Eq. (52)
W Wαβ Window function matrix Nbands × Nbands Eq. (24)
b bα Power spectrum estimator bias Nbands Eq. (26)
M Mα Power spectrum estimator normalization Nbands Eq. (28)

Hybrid quantities
Eα ðEαÞij Estimator matrix for quadratic estimator of of band power

pα, i.e., p̂α ¼ xEαx
Nb1Nν × Nb1Nν for each
α ¼ 1 to Nbands

Eq. (22)

C;α ðC;αÞij Response of total covariance to the αth band power,
i.e., C;α ≡ ∂C=∂pα

NblNν × NblNν for each
α ¼ 1 to Nbands

Eq. (20)

1In general, the primary beam will depend on frequency,
although for some instruments (such as PAPER) the antennas are
intentionally designed to minimize the frequency dependence of
the beam [14]. In this paper, we will neglect the frequency
dependence, because our goal is not to provide results pertaining
to a particular instrument, but instead to provide a rigorous
understanding of how foregrounds enter an interferometric power
spectrum measurement. Including a frequency-dependent beam
makes many of our analytic manipulations more difficult, which
obscures the key physical effects that give rise to the foreground
wedge. We note, however, that our general strategy of incorpo-
rating an interferometer’s measurement equation into the quad-
ratic estimator formalism is one that is capable of including
frequency-dependent beams, albeit at a slightly greater computa-
tional cost.
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The function ϕ is normalized so that ϕð0Þ ¼ 1 and captures
both the bandpass of our instrument and any tapering that
one may wish to impose near the band edges. (In what
follows, we will therefore use the terms “tapering function”
and “bandpass” interchangeably to describe ϕ.) Precisely
what form the edge tapering takes is a data analysis choice,
and as shown in Ref. [43], choosing a good tapering
function minimizes leakage of foregrounds in the Fourier
plane. Later on, we will extend the work of Ref. [43] to self-
consistently incorporate the effect that a tapering function
has on error covariances. Aside from the peculiarities of
certain tapering functions, working in delay space is simply
a change of basis and, as emphasized in Ref. [32],
represents no loss of generality. In later sections, we will
find that delay space is a particular efficient basis to work
in, one that makes many of the large matrices required for
power spectrum estimation sparse (see Appendix C for
details).
At this point our data are in a basis specified by baseline

vector b and delay mode τ. This basis closely approximates
the Fourier basis that the power spectrum inhabits, but the
correspondence is not exact and in general must be
accounted for. Concretely, suppose we let u be the
Fourier dual of θ and η be the Fourier dual of ν. Since
the transverse comoving distance can be used to convert
angles on the sky to transverse comoving distance, we have
u ∝ k⊥ (the exact conversion is given in Appendix A,
where we define our Fourier conventions). Similarly, the
observed frequency of a spectral line can be mapped to a
comoving line-of-sight distance, so η ∝ k∥. At a particular

frequency, a single baseline b of an interferometer
roughly measures the spatial Fourier mode specified by
wave number u ¼ b=λ [this can be seen by applying
Parseval’s theorem to Eq. (1) and assuming that the primary
beam is wide]. Across different frequencies, however, we
see that a single baseline probes different spatial Fourier
modes. A Fourier transform of a single baseline’s spectrum
[Eq. (3)] is thus a Fourier transform along one of the solid
lines in Fig. 2, where we show the chromaticity of various
baselines. As pointed out in Ref. [32], with short baselines
it is an excellent approximation to say that η ∼ τ. In this
paper, we do not make this “delay approximation,” as
we consider baselines of all lengths.2

To properly account for the mapping between the “true”
Fourier coordinates ðu; ηÞ to our visibilities expressed in
the ðb; τÞ basis, we can express the sky temperature Iðθ; νÞ
in terms of its true Fourier transform, ~Iðu; ηÞ:

Iðθ; νÞ ¼
Z

~Iðu; ηÞei2πðu·θþηνÞdηd2u: ð4Þ

Inserting Eqs. (2) and (4) into Eq. (3) gives

~Vðb; τÞ ¼
Z

d2udη~Iðu; ηÞ
Z

d2θA

�
θ
θ0

�

×
Z

dν
dν0

Bchan
e−i2π

ν0
cb·θγ

�
ν − ν0

Bchan

�

× ϕ

�
ν − ν0
Bband

�
e−i2πντei2πðu·θþην0Þ ð5aÞ

¼
Z

d2udη~Iðu; ηÞθ20
Z

dν
dν0

Bchan

× ~A

�
θ0

�
u −

ν0

c
b

��
γ

�
ν − ν0

Bchan

�

× ϕ

�
ν − ν0
Bband

�
ei2πðν0η−ντÞ: ð5bÞ

The integral over ν0 can be simplified because ~A is a much
broader function (with a characteristic width of cb=θ0)
than γ (which has a characteristic width of Bchan). For a
typical EoR experiment, one might have ν0 ¼ 150 MHz
and Bchan ¼ 50 kHz. Even with a rather conservative
θ0 ¼ 1 rad, ~A is wider than γ for any baseline shorter than
∼3000λ. With compact arrays giving the highest sensitivity
[17,47], very few interferometers that are optimized for an
EoR measurement have any relevant sensitivity on base-
lines this long. As a result, ~A can be factored out of the
integral and evaluated at ν0 ¼ ν, leaving a Fourier transform

FIG. 2. Angular Fourier coordinate u probed by a variety of
baseline lengths, plotted as a function of observing frequency.
Taking a Fourier transform of the frequency spectrum of data
from a single baseline essentially amounts to taking a Fourier
transform along a solid line in this figure. This is a good
approximation to taking a Fourier transform along the “true”
frequency axis for short baselines.

2Note that the distinction between τ modes and η modes
implies that our tapering functions differ slightly from those
examined in Ref. [43]. In this paper, the tapering functions are
applied to the per-baseline Fourier transform, rather than the
Fourier transform along the true frequency axis of Fig. 2.
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over the ν0 variable. Defining ~γ to be the Fourier transform
of γ, this leaves

~Vðb; τÞ ≈
Z

d2udη~Iðu; ηÞθ20 ~γðBchanηÞ

×
Z

dν ~A

�
θ0

�
u −

ν

c
b

��

× ϕ

�
ν − ν0
Bband

�
ei2πνðη−τÞ: ð6Þ

With our approximations, then, the effect of having
frequency channels with nonzero width is to envelope
our response in η: limited spectral resolution makes the
array less sensitive to high ηmodes (i.e., rapidly fluctuating
spectral modes).
To further simplify our expression, it is useful to orient

our u≡ ðu; vÞ axes so that the u axis is in the same
direction as the baseline vector b. If we further assume that
the antenna’s footprint on the uv plane is separable, i.e.,

~A

�
θ0

�
u −

ν

c
b

��
¼ ~Ab∥

�
θ0

�
u −

ν

c
b

��
~Ab⊥ðθ0vÞ; ð7Þ

then our expression becomes

~Vðb; τÞ ≈
Z

d2udη~Iðu; ηÞθ20 ~Ab⊥ðθ0vÞ~γðBchanηÞ

×
Z

dν ~Ab∥

�
θ0

�
u −

ν

c
b

��

× ϕ

�
ν − ν0
Bband

�
ei2πνðη−τÞ: ð8Þ

To proceed beyond this point requires specific forms for
~Ab∥ and γ. However, it is instructive to examine various
limits. For an instrument with short baselines and/or narrow
fields of view satisfying bθ0 ≪ c=Bband, ~Ab∥ is a slowly
varying function that can be factored out of the integral,
yielding

~Vðb; τÞ
����
bθ0≪c=Bband

≈
Z

d2udη~Iðu; ηÞθ20Bband

× ~A

�
θ0

�
u −

ν0
c
b

��
~γðBchanηÞ

× ~ϕ½Bbandðη − τÞ�ei2πν0ðη−τÞ; ð9Þ

wherewe used Eq. (7) to recombine ~Ab∥ and ~Ab⊥. This gives
the “usual” description of an interferometric measurement:
each baseline samples a portion of the sky in uvη space,
defined by the antenna’s footprint on the uv plane and the
Fourier transform of the bandpass shape in η, enveloped by
the Fourier transform of a frequency channel’s profile. On
the other hand, for an instrument with long baselines and/or

wide fields of view satisfying bθ0 ≫ c=Bband, it is ϕ that
is broad compared to ~Ab∥, and Eq. (8) is well approximated
by3

~Vðb; τÞ
����
bθ0≫c=Bband

≈
Z

d2udη~Iðu; ηÞ cθ0
b

~Ab⊥ðθ0vÞ

× ~γðBchanηÞϕ
�
uc=b − ν0
Bband

�

× Ab∥

�
c
bθ0

ðη − τÞ
�
ei2πðη−τÞ

uc
b : ð10Þ

We see that in this limit, the bandpass shape ϕ and the
primary beam Ab∥ swap roles: the bandpass acts as the
convolution kernel on the uv plane, while the primary
beam acts as the convolution kernel in the η direction.
When bθ ∼ c=Bband, the full expression given by Eq. (8)
interpolates between the two extremes given by Eqs. (9)
and (10); in general, the bandpass shape and the primary
beam both play a part in determining the uv plane and
η-direction convolution kernels. This point was emphasized
in Ref. [32].
Returning to the long-baseline limit of Eq. (10), we can

see our first glimpse of the foreground wedge. Suppose one
were dealing with flat-spectrum foregrounds, where
~Iðu; ηÞ ¼ ~I0ðuÞδðηÞ, so that there is no signal beyond
η ¼ 0. With such a sky, the measurement becomes propor-
tional to Ab∥ðcτ=bθ0Þ and j ~Vðb; τÞj2 ∝ A2

b∥ðcτ=bθ0Þ.
Suppose we now make use of the delay approximation
[32], where the quantity j ~Vðb; τÞj2 can be treated as an
estimate of the power spectrum Pðu; ηÞ at u ≈ ν0b=c and
η ≈ τ. The result is

Pðu; ηÞ ∝ A2
b∥ðν0η=uθ0Þ: ð11Þ

Thus, even flat spectrum sources (which would naively
only have power at η ¼ 0) give a nonzero measured power
spectrum at higher η. If the primary beam is zero beyond
some argument value (which is always true in some sense,
since A is identically zero below the horizon), then the
power extends only to a finite region on the uη plane. For
example, if we define θ0 to be the angle at which A drops to
zero (we are free to do so, since θ0 is simply a characteristic
scale that we have so far kept general as simply “some
characteristic scale"), Eq. (11) predicts that the line

η ¼ θ0
ν0

u ð12Þ

3As one factors ϕ out of the integral, the function can no longer
enforce the limits on the ν integral that reflect the finite bandwidth
of the instrument. However, the ~A function that remains inside the
integral is by construction narrow. It is therefore perfectly
acceptable to keep −∞ and þ∞ as the limits of integration.
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should be a sharp boundary between zero and nonzero
power. Switching from angular or spectral Fourier coor-
dinates u and η to comoving spatial wave numbers k⊥ and
k∥ using the relations in Appendix A gives

k∥ ¼
H0DcEðzÞθ0
cð1þ zÞ k⊥; ð13Þ

where EðzÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p
, Dc is comoving line-

of-sight distance, H0 is the Hubble parameter, Ωm is the
normalized matter density, and ΩΛ is the normalized
dark energy density. This is precisely the usual formula
given for the edge of the foreground wedge (e.g., in
Refs. [15,32,41,42]). As a function of η (or k∥), the wedge
has a profile given by the square of the primary beam
profile, scaled by u in such a way that power is found at
higher η for higher u.
In presenting a preview of the wedge, we have made

a number of assumptions that will be relaxed in the
following sections. For example, we will no longer
approximate τ modes as η modes. Nor will we assume
that each baseline cleanly samples just a single value of u.
In fact, our use of the delay approximation here was
somewhat inappropriate—while one may always take a
delay transform, we have seen (e.g., from Fig. 2) that the
delay approximation (i.e., assuming τ ∼ η) ought to work
well only if baselines are short. By using Eq. (10) instead of
Eq. (9), however, we are expressly working in the long-
baseline limit. It is thus important to emphasize that the
preview shown here is included only to build intuition, and
a much more rigorous treatment will be presented in later
sections. There, we will also generalize to a sky with an
arbitrary power spectrum. While there will be minor
alterations to details of the foreground wedge, the basic
picture will remain intact.
In the strictest sense, the derivation that we have just

presented is nothing new. We have simply rederived a
number of results (e.g., the existence of the wedge) that are
already known in the literature. However, our rederivations
have been part of an analytic formalism, confirming a
number of numerical results while bringing together
many known (but previously separate) features in a
unified framework. In the next section, we will extend
this framework to include a fully covariant description of
the wedge, including correlated errors in such a way that
extends the quadratic power spectrum estimation tech-
niques of Ref. [36] to include wedge physics. Setting up
such a framework allows one to systematically examine the
statistical properties of various power spectrum estimators
in light of the wedge, a study that we perform in paper II.

III. QUADRATIC ESTIMATOR FORMALISM

Until now, our focus has been on the measurement
of a visibility, which is linear in temperature. The power

spectrum, however, is a quantity that depends quadratically
on temperature. In this section we very briefly review the
mathematical machinery that makes possible the fully
covariant description of the EoR window we will present
in Secs. IV and V. The basis of our discussion will be the
quadratic estimator formalism, which has a long history in
the CMB and galaxy survey literature (e.g., Refs. [49–51])
and was explicitly adapted for 21 cm cosmology in
Refs. [36,37].
The central quantity that encodes our instrument (and

therefore the statistical properties of our estimators) is the
data covariance matrix C. To form the covariance matrix,
imagine that our input data (organized by baseline and
delay mode) are serialized into a data vector x, i.e.,

x ¼

0
BBBBBBBB@

~Vðb1; τ1Þ
~Vðb1; τ2Þ

..

.

~Vðb2; τ1Þ
~Vðb2; τ2Þ

..

.

1
CCCCCCCCA
: ð14Þ

The covariance matrix is then given by C≡ hxx†i.
Importantly, we will keep track of all off-diagonal elements
in the matrix, so that all correlations between different
baselines and different delay (or spectral) modes are taken
into account. Knowledge of these correlations will allow us
to formulate both a covariant description of the foreground
wedge and the tools to fight its contaminating influence.
Although we omitted noise contributions in the previous

section for notational cleanliness, they of course contribute
to the variance captured by C. Assuming that instrumental
noise is uncorrelated with sky signals, the noise appears as
an additive term to the sky covariance, so that we can write
C as

C≡Nþ S; ð15Þ

where S is the sky signal portion of the covariance.
Inserting Eq. (6) into our general definition of the data
covariance, we obtain

Sij¼
Z

d2udηPðu;ηÞhðu;η;bi;τiÞh�ðu;η;bj;τjÞ; ð16Þ

where we have defined

hðu; η;b; τÞ≡ θ20 ~γðBchanηÞ
Z

dν ~A

�
θ0

�
u −

ν

c
b

��

× ϕ

�
ν − ν0
Bband

�
ei2πνðη−τÞ; ð17Þ

and have made use of the definition of the power spectrum
Pðu; ηÞ:
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h~Iðu; ηÞ~I�ðu0; η0Þi≡ Pðu; ηÞδðu − u0Þδðη − η0Þ: ð18Þ

As we have written it, our power spectrum is expressed
in terms of u and η, instead of the more common
combination of k⊥ and k∥. Doing so minimizes the number
of cosmological quantities in our expressions, since u and η
are the more “natural” quantities from the perspective of the
instrument. This represents no loss of generality, and
indeed, in Sec. V we will express our results in terms of
k⊥ and k∥.
To form a practical estimator for the power spectrum, it is

necessary to discretize. Assuming that the power spectrum
possesses cylindrical symmetry4 (so that the power depends
only on the magnitudes of u and η), one can imagine
binning the uvη space into a series of annuli, each specified
by a radius juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and “vertical distance” jηj away

from the η ¼ 0 plane. Each annulus can then be represented
as a small cell on a jujη plane (which we will henceforth
call the uη plane to conform to convention).5 As long as
these cells are made sufficiently small, the power spectrum
can be approximated by a constant band power pα in each
cell, with α indexing a serialized list of locations on the uη
plane. With this approximation, our covariance can be
written compactly as

C ¼ Nþ
X
α

pαC;α; ð19Þ

where C;α ≡ ∂C=∂pα is the response of the covariance to
αth band power and is given by

ðC;αÞij ¼
Z
Vα

d2udηhðu; η;bi; τiÞh�ðu; η;bj; τjÞ; ð20Þ

with Vα denoting the annular volume that is binned into the
αth uη cell. If desired, the sky contribution of the

covariance can be further divided into separate contribu-
tions from foregrounds and the cosmological signal:

C ¼ Nþ Cfg þ
X
α

psig
α C;α; ð21Þ

where Cfg is the foreground covariance and psig
α is the αth

band power of the cosmological signal only. Equation (21)
is more general than Eq. (19), because the latter implicitly
assumes thatCfg is given by

P
αp

fg
α C;α, where p

fg
α is a set of

foreground band powers. This assumption holds true only
when the foregrounds are describable as a power spectrum.
In the quadratic estimator formalism, the band powers

are extracted by forming weighted pairwise combinations
of the data vector x. In particular, one can form a quadratic
estimator p̂α of the true band power pα by computing6

p̂α ¼ x†Eαx; ð22Þ

where Eα is an estimator matrix of weights to be used for
weighting pairwise products of the data when estimating
the αth band power. To see how this works, consider (as a
toy example) a noiseless cosmological survey with uncor-
related real-space measurements in a three-dimensional
volume. Further suppose that one’s goal is to measure the
unbinned, three-dimensional power spectrum PðkÞ, i.e.,
p̂α ¼ P̂ðkαÞ. If x is expressed in a real-space basis (so that
it is simply a serialized list of real-space voxel intensities), a
sensible choice for the estimator matrix would be
Eα

ij ∝ e−ikα·ðri−rjÞ, where ri and rj are the position vectors
of the ith and jth voxels, respectively. We therefore see that
in this example, the role ofEα is to take a Fourier transform
of the data. If one desires estimates of a binned power
spectrum (for example, one where statistical isotropy
allows the binning of power over shells of constant jkj),
the relevant Eα for different kα are simply averaged
together in each bin.
Now suppose instead that our data are expressed in a

Fourier basis, so that each element of the data vector x
represents the Fourier amplitude at some location in k
space. The estimator matrix is then even simpler, and in fact
becomes diagonal, with Eα

ij ¼ δαiδij. In our current appli-
cation, the data are organized by baseline b and delay τ. As
discussed above, b and τ closely approximate the Fourier
wave numbers u and η in some regimes, but the corre-
spondence is not perfect. For our application we would
therefore expect Eα to be diagonal dominant, but not be
perfectly diagonal. (For an explicit form, see Secs. IV
and V.)
In general, correlated errors and other instrumental

effects (such as the ones that we seek to model in this
paper) make the estimator matrices more complicated than

4The true power spectrum of the cosmological signal is of
course spherically symmetric (thanks to statistical isotropy) and
thus can be further binned. However, systematics such as fore-
grounds tend to be cylindrically symmetric, since the instrument
probes the line-of-sight direction differently than it does the
angular directions [52]. Another effect to consider (though it is
beyond the scope of this paper) is that of redshift-space
distortions, which will break spherical symmetry. The cylindrical
power spectrum is therefore a useful diagnostic quantity to
compute prior to the formation of a spherical power spectrum.
Note that in general, we need not make any assumptions
about symmetry in our estimation formalism. If desired, our
formalism can be used to estimate Pðu; ηÞ without even the
cylindrical binning step. The presence of symmetry, while useful
for increasing signal to noise, is much less important than other
assumptions such as the smoothness of foregrounds. (Although
see Sec. VI for a discussion of strategies for dealing with
unsmooth foregrounds.)

5We note an unfortunate bit of notation: u is used both to
denote the first coordinate on the uv plane as well as the
magnitude of the u vector. Unfortunately, both usages are
standard.

6Throughout this paper, we use hats to denote estimators of
quantities.
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they were in our pedagogical examples. They will typically
involve the C;α matrices, since those provide the link
between the “input” space that the data covariance inhabits
and the “output” space of band powers. The detailed form
of the family of Eα matrices is a choice made by the data
analyst, and different choices yield estimators with different
statistical properties. One such property is the error
covariance Σαβ ≡ hp̂αp̂βi − hp̂αihp̂βi of our estimated
band powers, which is given by7

Σαβ ¼ 2tr½CEαCEβ�; ð23Þ

a result that can be derived by direct substitution of Eq. (22)
into the definition of the error covariance. The error bars on
our band power estimates are given by Δpα ≡ ðΣααÞ12, but it
is important to note that the error covariance contains much
more information than just the error bars: off-diagonal
elements of the covariance encode correlations between
different uη cells of the cylindrical power spectra. With a
fully covariant formulation of the errors, it is possible to
overresolve in uη space, evading the commonly made
assumption that uη cells are independent (i.e., have a
diagonal covariance matrix) so long as they are more than
1=Bband apart in the η direction and separated by more than
the width of ~A in the u direction. While this assumption is
prevalent in the 21 cm cosmology literature for reasons of
computational simplicity, we will see that it is one that
should be avoided. More precisely, we will see in Sec. V
that the errors on the uη plane are not independent at high
k⊥ (including the foreground wedge region), necessitating
a full accounting of the entire error covariance matrix and
not just its diagonal elements.
In addition to the error covariance, the quadratic

estimator formalism also allows the computation of biases
and window functions. Taking the expectation value of
Eq. (22), recalling that C≡ hxx†i, and inserting Eq. (21)
gives

p̂α ¼
X
β

tr½EαC;β�psig
β þ tr½EαðNþ CfgÞ�

≡X
β

Wαβp
sig
β þ bα; ð24Þ

where we have defined the window function matrix

Wαβ ≡ tr½EαC;β� ð25Þ

and the contamination bias

bα ¼ tr½EαðNþ CfgÞ�: ð26Þ

From Eq. (24), we see that each row of the window function
matrix gives a window function that specifies the linear
combination of the true band powers that each estimate of a
band power represents. Typically, the Eα matrix is nor-
malized such that each row of W sums to unity, allowing
the linear combinations to be interpreted as weighted
averages.8

The contamination bias represents an additive bias to the
estimated power spectrum that arises due to residual noise
and foregrounds in the data. In practice, cross-correlation
techniques—such as forming cross-power spectra between
odd and even time samples of data, as was done in
Ref. [15], or between different subsets of redundant base-
lines in an array, as was done in Ref. [16]—allow the noise
bias to be eliminated without any explicit bias subtraction.
The bias that one needs contend with is therefore solely
comprised of the foreground bias:

bα ¼ bfgα ¼ tr½EαCfg�: ð27Þ

If a perfect foreground model is available, this expected
level of this bias can be computed and subtracted from the
power spectrum estimate. However, because a detailed
knowledge of the low-frequency sky is as yet unavailable,
this subtraction step is often omitted to avoid oversub-
tractions that destroy cosmological information. Instead,
one simply hopes that the bias is small in regions of the uη
plane where one wishes to make a power spectrum
measurement.
In the following sections, the error covariance Σ, the

window function matrix W, and the bias bα are the
quantities that will provide us with a detailed, covariant
picture of the EoR window and the foreground wedge. The
bias essentially captures the power spectrum contribution
from noise and foreground contaminants and corresponds
to the foreground wedge signatures seen in various sim-
ulations in the literature. The window functions provide an
alternate view of the wedge: the wedge can be thought of as
a leakage of power from low to high η (or equivalently, k∥)
modes that becomes increasingly pronounced as u (or k⊥)
increases. For a wedge to exist, window functions for band

7While we write all vector and matrix quantities in boldface, it
is important to note that there are two different vector spaces at
work here. The error covariance Σ and the window function
matrixW defined later inhabit the output vector space indexed by
locations on the uη plane, unlike matrices such asN andC, which
inhabit the input vector space indexed by baseline and delay.
Hybrid quantities include C;α and Eα, which can either be
thought of as a family of matrices in the input vector space or
as rank-3 tensors in a combined space.

8In the signal processing literature, the tapering function ϕ that
we introduced in the previous section is often called a “window
function.” This is a conceptually separate use of the term, and we
avoid the signal processing nomenclature in order to be consistent
with the cosmology literature. For us, a window function will
always refer to the linear combination of the true power spectrum
that forms a particular band power estimate, and never the
tapering function.
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powers centered at high η and high u must have tails that
extend to low η, where foregrounds live. Finally, the error
covariance provides an estimate of the error bars through-
out the Fourier plane (including the wedge region), as well
as a quantification of how the chromatic response of an
interferometer can cause error correlations between other-
wise uncorrelated uη cells.

IV. A COVARIANT DESCRIPTION
OF THE FOREGROUND WEDGE

FOR A BASIC ESTIMATOR

In this section, we use the quadratic estimator formal-
ism to derive the foreground wedge and the EoR window
for a “basic” estimator of the power spectrum. We will
make a number of approximations for the sake of analytical
tractability, leaving an exact numerical treatment to Sec. V.
The goal here is to formalize the discussion from Sec. II to
obtain a fully covariant, analytic description of power
spectrum properties at high u and low η, where the
foreground wedge resides. This will provide a basic picture
of the foreground challenges that we face, setting the stage
for paper II, where we look at how these challenges can be
mitigated with better estimators.
The relatively simple estimator that we will examine in

this paper is specified by the relation

Eα ¼ MαN−1C;αN−1; ð28Þ

where N is the instrumental noise covariance and Mα is a
normalizing scalar9 for each band power α. This choice
gives an estimator that is quite similar to the crude
j ~Vðb; τÞj2 estimator discussed informally in Sec. II. The
principal difference between what we will consider here
and our previous estimator is the presence of C;α. The role
ofC;α is twofold. Its first purpose is to complete a signal-to-
noise weighting of our data: the copies of N−1 downweight
noisy data, whileC;α (by virtue of its being the derivative of
C) upweights the high signal portions. The second purpose
is to map the data from the input baseline b and delay τ
space to the output uη space. Recall from Sec. II that while
b and τ approximate u and η, respectively, the correspon-
dence is not perfect. Applying C;α completes the transition
to Fourier space, a fact that will become more apparent
when we write down an explicit form for the matrix.
Studying the basic estimator given by Eq. (28) is

worthwhile because it is approximately equivalent to the
methods used in a number of state-of-the-art 21 cm power
spectrum pipelines for analyzing observations and

simulations [43,44,53]. These pipelines typically use an
optimal mapmaking approach [54,55] to first go from
visibilities to a gridded uvη data cube of Fourier ampli-
tudes. The complex magnitudes of these amplitudes are
then squared and binned to estimate power spectrum band
powers. (Note that while the mapmaking may be optimal in
this case, the subsequent power spectrum estimation is not.)
In Appendix B, we will prove that in the limit of infinitely
fine bins in Fourier space, such pipelines are equivalent to
estimating power spectra directly from the visibilities using
Eq. (28) and the quadratic estimator formalism. Our
numerical results will therefore be roughly representative
of those seen in the aforementioned pipelines, but with
fewer gridding artifacts because we go straight from
visibilities to power spectra.
For analytical tractability here and numerical tractability

in later sections, we will use an approximate form for the
covariance matrix:

Cij ¼
Z

dudηPðu; ηÞgðu; η; bi; τiÞg�ðu; η; bj; τjÞ; ð29Þ

where

gðu; η; bi; τiÞ≡ k~γðBchanηÞ

×
Z

dν ~Ab∥

�
θ0

�
u −

ν

c
bi

��

× ϕ

�
ν − ν0
Bband

�
ei2πνðη−τiÞ ð30Þ

with

k≡ θ0

�Z
dq ~A2

b⊥ðθ0qÞ
�1

2

; ð31Þ

and we have once again omitted the instrumental noise
contribution to the covariance for simplicity. Superficially,
this looks quite similar to Eqs. (16) and (17). However, in
this case we have gone beyond simply forming C≡ hxx†i
from Eq. (8), in that we have performed the integral over
~Ab⊥. This is not always permissible and represents a subtle
additional approximation: we have assumed that baselines
that are similar in length but very different in orientation
have a negligible correlation with each other, and that those
with similar orientations are correlated as though they were
identical in orientation. In other words, we assume that
although two baselines can be completely uncorrelated,
partially redundant, or perfectly redundant in the direction
of the baseline vector,10 overlaps between baselines in the

9In this paper, we do not consider the more general possibility
of a matrix-based normalization, where instead of a simple
multiplicative normalization, one multiplies the unnormalized
band power estimates p̂0

β by a matrix M to form the normalized
band powers p̂α, i.e., p̂α ¼

P
βMαβp̂0

β. For details, please see
Ref. [15] or paper II.

10Note that our ability to accommodate the full continuum of
redundancy from zero to perfect redundancy along the direction
of the baseline vector allows us to capture possible subtleties
related to partial redundancy effects like those highlighted in
Ref. [44].
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transverse direction are treated in a binary fashion, so that
the overlap is either zero or perfect. This assumption was
inherited from the derivation of Eq. (8), which required a
reorientation of the axes of the uv plane so that the u axis
would lie along the direction of the baseline. While this can
always be done for a single baseline, the covariance matrix
C encodes correlations between different baselines, which
may be oriented differently. It is thus strictly speaking
incorrect to form a covariance matrix from Eq. (8), and in
principle one should use Eq. (6) instead. For the purposes
of intuition, however, we may continue with our approxi-
mate expression as long as we remember that distant
baselines have negligible correlation.
As we previously mentioned, C;α provides the crucial

link between the input data and the output Fourier space. It
therefore forms a crucial component of any error statistic.
Working in the limit of a continuous (rather than discrete)
set of band powers, we may differentiate C with respect to
Pðuα; ηαÞ to obtain

ðC;αÞij ≡ ∂Cij

∂Pðuα; ηαÞ ¼ gðuα; ηα;bi; τiÞg�ðuα; ηα; bj; τjÞ;

ð32Þ

where we used the fact that Pðu; ηÞ can be written asR
duαdηαPðuα; ηαÞδðu − uαÞδðη − ηαÞ. Inserting this into

Eq. (28) provides a concrete example of the general proof
of equivalence given in Appendix B. One sees that each
copy of g acts on a noise-weighted copy of the data vector
x. Examining Eq. (30) reveals that the action of g is to
Fourier transform the delay spectrum back into the fre-
quency domain, apply another copy of the tapering
functions, grid the result at the appropriate location on
the uv plane, and then Fourier transform in frequency
again, before adjusting for frequency channel discretization
by an additional weighting in η. This is precisely the
procedure that one would follow with a mapmaking
algorithm in uvη space [55]. The result is then squared
to form a power spectrum. While this particular example
may at first sight seem to render the delay basis obsolete
(since the first action of g is to transform back to a
frequency spectrum), it is important to remember that in
a more realistic case, one may be unable approximate the
band powers as being continuous. For example, at small u
and η, bin sizes may be comparable to the values of u and η
themselves. Many of the algebraic simplifications used in
this section then become inapplicable, necessitating full
numerical manipulations of the relevant matrices, which are
typically more computationally efficient in the delay basis
(as we discuss in Appendix C).
Continuing with our approximation scheme for this

section, however, Eq. (32) is particularly convenient for
computing our suite of error statistics because it is
separable. Taking advantage of this, the window functions
for our basic estimator reduce to

Wαβ ¼ tr½EαC;β� ∝ tr½C;αC;β� ¼ jgα† · gβj2

≈ j
X
b

Z
dτg�ðuα; ηα; b; τÞgðuβ; ηβ; b; τÞj2; ð33Þ

where we defined the shorthand gα ≡ gðuα; ηα; b; τÞ, and
in the last step assumed that our delay bins were fine
enough to be approximated as being continuous. This
form for the window function matrix has a straightforward
geometric interpretation: when estimating the αth band
power, one probes a mixture of the true band powers; the
amount of the βth band that is included in the estimate of
the αth band is given by the overlap of our interferometer’s
response to the αth and βth bands. We stress, however, that
this simple form does not hold when one considers more
complicated estimators such as the ones that we will
consider in paper II.
Let us now compute some example window functions.

Just as we did in Sec. II, we can gain some analytic intuition
by working in the short- and long-baseline limits. For short
baselines satisfying bθ0 ≪ c=Bband (or equivalently, if the
time delay τ of a signal between the antennas of the
baseline satisfies τ ≪ 1=θ0Bband), we may invoke the same
approximations that led to Eq. (9) and say that

gshort b1ðu; η; b; τÞ ∝ ~γðBchanηÞ ~Ab∥

�
θ0

�
u −

ν0
c
b

��
× ~ϕ½Bbandðη − τÞ�ei2πν0ðη−τÞ: ð34Þ

Inserting Eq. (34) into Eq. (33) and evaluating the integral
over τ yields

Wshort b1
uα;ηα ðuβ; ηβÞ ∝ ~γ2ðBchanηαÞ~γ2ðBchanηβÞ

×

�X
b
~Ab∥

�
θ0

�
uα −

ν0
c
b

��

× ~Ab∥

�
θ0

�
uβ −

ν0
c
b

���
2

× ðfϕ2½Bbandðηα − ηβÞ�Þ2; ð35Þ

where fϕ2 signifies the Fourier transform of ϕ2, not the
square of ~ϕ. This expression is in line with what one might
intuitively expect from interferometry: the spatial u
dependence of the window function is controlled by the
primary beam (or more precisely, its Fourier transform),
while the spectral η dependence is controlled by the
bandpass.
On the other hand, with long baselines satisfying

bθ0 ≫ c=Bband we can use the approximations that led
to Eq. (10), obtaining
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glong b1ðu; η; b; τÞ ∝ ~γðBchanηÞϕ
�
uc=b − ν0
Bband

�Z
dν ~Ab∥

�
θ0

�
u −

ν

c
b

��
ei2πνðη−τÞ: ð36Þ

Once again, we may insert this into Eq. (33) to get

Wlong b1
uα;ηα ðuβ; ηβÞ ∝ ~γ2ðBchanηαÞ~γ2ðBchanηβÞ

����X
b

ϕ

�
uαc=b − ν0

Bband

�
ϕ

�
uβc=b − ν0

Bband

�

×
Z

dν ~A�
b∥

�
θ0

�
uα −

ν

c
b

��
~Ab∥

�
θ0

�
uβ −

ν

c
b

��
e−i2πνðηα−ηβÞ

����2: ð37Þ

Now, consider first the η dependence (rather than the u dependence) of the window functions, since our principal worry is
that smooth, low-η foregrounds might scatter to higher η because of the instrument’s chromaticity. If we suppress the u
dependence by setting u ¼ uα ¼ uβ, we obtain

Wlong b1
ηα ðηβÞ ∝ ~γ2ðBchanηαÞ~γ2ðBchanηβÞ

����X
b

c
b
ei2π

uc
b ðηβ−ηαÞϕ2

�uc
b − ν0
Bband

�
ðAb∥ � Ab∥Þ

�
c
bθ0

ðηβ − ηαÞ
�����2: ð38Þ

Equation (38) predicts that with our basic estimator,
foregrounds should appear in the now-familiar wedge in
uη space. To see this, consider the additive foreground bias
for a hypothetical single-baseline interferometer. Since we
are concernedwith foregrounds, themost relevant regions of
the uη plane will be the low η regions. We may therefore

safely ignore the ~γ2 terms, since at low η they will be
approximately unity anyway. If we imagine that such fore-
grounds are described by a power spectrum pfg

α , the fore-
groundcovariance is givenby

P
αp

fg
α C;α, and the foreground

contribution bfgα to the bias in Eq. (26) is given by

bfgα ¼ tr½EαCfg� ¼
X
β

tr½EαC;β�pfg
β ¼

X
β

Wαβp
fg
β ð39aÞ

∝
Z �

ðAb∥ � Ab∥Þ
�
c
bθ0

ðηα − ηβÞ
��

2

PfgðηβÞdηβ; ð39bÞ

where we have suppressed the u dependence of the foreground power spectrum for notational cleanliness. Now, if we
approximate the foregrounds as being completely comprised of flat spectrum sources, then PfgðηÞ ∝ δðηÞ, and our
foreground bias becomes

bfgðηÞ ∝
�
ðAb∥ � Ab∥Þ

�
c
bθ0

η

��
2

: ð40Þ

This equation provides a general mathematical form for the
profile of the foreground wedge, as a function of η, and
reduces to previously derived special cases for the wedge
profile in the limit of top-hat primary beam shapes and
bandpasses [42]. Had we retained the ϕ2 terms, they would
have enforced the condition thatu ≈ bν0=c.We therefore see
that foreground contamination ought to leak to higher η for
higher values of u, since those are probed only by larger b.
Importantly, we emphasize that this foreground wedge
feature is basis independent, in that the final result makes
no mention of delays. Our choice in this paper to express
visibilities and covariances using a delay basis (rather than,

say, a frequency basis, i.e., spectra) is a choice that is
computationally convenient (see Appendix C for details)
but is fundamentally an arbitrary one. The same is true
regarding our indexing of measurements by baseline. [The
baseline length b that appears in Eq. (40) is an expression of
array configuration rather than basis choice; indeed, Eq. (33)
shows that all baseline indices are summed over.] The
foreground wedge is purely a function of our instrument’s
design and the form of our power spectrum estimator.
With multiple baselines, Eq. (38) contains cross terms

between different baselines. Working once again at low η
and high u (long baselines), one has
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WηαðηβÞ ∝
X
bi

1

b4i
ϕ4

�uc
bi
− ν0

Bband

��
ðAb∥ � Ab∥Þ

�
c

biθ0
ðηα − ηβÞ

��
2

þ
X
bi

X
bj>bi

2

b2i b
2
j
ϕ2

�uc
bi
− ν0

Bband

�
ϕ2

�uc
bj
− ν0

Bband

�

× cos

�
2π

�
1

bi
−

1

bj

�
ðηα − ηβÞu

�
ðAb∥ � Ab∥Þ

�
c

biθ0
ðηα − ηβÞ

�
ðAb∥ � Ab∥Þ

�
c

bjθ0
ðηα − ηβÞ

�
: ð41Þ

While this expression is certainly more complicated than
the one we had before, the same basic picture holds: the
window functions can be quite broad in the η direction, thus
allowing foregrounds to be scattered from low to medium
values of η. But in general, the resulting contamination is
still enveloped by terms like ðAb∥ � Ab∥Þ½ c

bθ0
η�, which limits

the possible contamination at high η.
Let us now turn briefly to the behavior of the window

functions as a function of u. With the short-baseline limit
already provided by Eq. (35), we once again focus on the
long-baseline limit. Setting η ¼ ηα ¼ ηβ to isolate the u
dependence, Eq. (37) becomes

Wlong b1
uα ðuβÞ ∝ ~γ4ðBchanηÞ

���� fA2
b∥½θ0ðuβ − uαÞ�

X
b

c
bθ0

× ϕ

�
uαc=b − ν0

Bband

�
ϕ

�
uβc=b − ν0

Bband

�����2; ð42Þ

where fA2
b∥ denotes the Fourier transform of the square of

Ab∥, not the square of the Fourier transform. As expected, a
baseline b roughly probes a u scale equal to bν0=c.
Additionally, the window functions peak at uα ¼ uβ, a
fact that is enforced by the appearance of the two copies
of ϕ as a product, as well as by the presence offA2
b∥½θ0ðuβ − uαÞ�. The width of the window function in

the u direction therefore depends on both the primary beam

and the bandpass function. The fA2
b∥ term has a character-

istic width of θ−10 , while the ϕ functions have a character-
istic width of Bbandb=c. Now, the window function involves
the product of these functions, which means that the width
of its central portion will be determined mostly by the
narrower of the two contributions. In the long-baseline
limit that we are working in, θ−10 ≪ Bbandb=c by definition,

so the fA2
b∥ part is the narrower contribution and determines

the width of central portion of the window function. We
thus predict that the central width is just θ−10 and does not
depend on the u (or equivalently, k⊥) value on which the
window function is centered.
However, simply characterizing the width of the central

peak is insufficient for our purposes. As emphasized
throughout this paper, the large dynamic range that exists
between the bright foreground emission and the dim
cosmological signal means that it is important to accurately
capture the weak, low-level wings of the window functions,

away from the central peak. These wings will be controlled
by the broader contribution in Eq. (42), namely, the product
of the bandpasses. As stated above, the bandpasses have a
characteristic width Bbandb=c, and since baselines of length
b probe spatial scales given by u ∼ ν0b=c, our window
function wings will have a width Δu of

Δu ¼ Bband

ν0
u: ð43Þ

The widths of the window function wings are therefore
proportional to u and grow as u increases. Equivalently,
since Δu ∝ u, the fractional wing width is constant, and the
wings will appear to have the samewidth on a logarithmic u
(or k⊥) scale. This is intuitively unsurprising, as longer
baselines probe a greater spread of spatial scale due to their
greater chromaticity, and the width of this spread is
proportional to the baseline length (see Fig. 2). Since a
given u mode is mostly accessed by baselines of length
b ∼ uλ, one is then driven to the conclusion that Δu ∝ u.

V. A NUMERICAL MODEL
OF A BASIC ESTIMATOR

Having made various approximations in the previous
section to enable an analytic treatment of the foreground
wedge, we will now discard most of these approximations
in lieu of an exact numerical treatment of our basic
estimator. We will find that the basic picture that we
presented above remains unchanged.

A. Instrument and foreground model

The model instrument that we consider in this paper is
intended to reflect a typical design for an interferometer
optimized for 21 cm power spectrum (rather than one that is
intended to function as a general-purpose low-frequency
radio observatory). Maximizing power spectrum sensitivity
requires antennas to be placed in a way that yields a large
number of short, identical baselines [17,47]. With this in
mind, we perform our computations for a square, 20 by 20
array of antennas, with a 14m spacing between adjacent
antennas. Each antenna is assumed to have a Gaussian
primary beam, with a full width at half maximum (FWHM)
of 40.5° that is approximated as frequency independent in
the Bband ¼ 8 MHz band that we consider. The frequency
width of each individual spectral channel is set at
Bchan ¼ 50 kHz. With no loss of qualitative generality,
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we consider only observations centered around ν0 ¼
150 MHz. The formalism presented in this paper applies
to all redshifts accessible to a 21 cm interferometer, and
none of the “lessons learned” in our analysis are substan-
tially changed by examining a different redshift.
For computational simplicity, we take the tapering

function ϕ½ðν − ν0Þ=Bband� of our delay transform

[Eq. (3)] to be Gaussian, even though previous studies
in the literature have argued for more desirable choices
such as Blackman-Harris function or a Blackman-Nuttal
function [16,43]. Using a Gaussian allows us to compute
analytically compute the ν integral in our measurement
equation [Eq. (8)], giving

~Vðb; τÞ ¼ 2πθ20Bband

Z
d2udη~Iðu; ηÞ exp

�
−

2π2θ20ðu − ν0b=cÞ2
1þ ð2πθ0bBband=cÞ2

�
exp

�
−

2π2B2
bandðη − τÞ2

1þ ð2πθ0bBband=cÞ2
�

× exp

�
i2πBbandðη − τÞ 4π

2θ20ðu − ν0b=cÞðbBband=cÞ
1þ ð2πθ0bBband=cÞ2

�
~Ab⊥ðθ0vÞ~γðBchanηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πθ0bBband=cÞ2

p ei2πν0ðη−τÞ; ð44Þ

where the characteristic scale of the beam θ0 is given by the standard deviation of our Gaussian beam, which in our case is
θ0 ¼ FWHM=

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p ¼ 17.2°. Intuitively, one sees that each delay mode of each baseline probes a reasonably localized
region in uvη space. One also sees that there exists a complex exponential term that mixes spatial and spectral information,
which is to be expected given the chromatic nature of an interferometer’s synthesized beam.
Following this, we form the covariance matrix Cij ≡ h ~Vðbi; τiÞ ~V�ðbj; τjÞi under the same coherency approximation as

the one we employed in the previous section: two baselines may have any amount of overlap on the uv plane in the direction
parallel to their baseline vector, but are either completely nonoverlapping or perfectly overlapping in the direction
perpendicular to the baseline vector. This allows the integral over v (defined to be the direction on the uv plane
perpendicular to a pair of correlated baselines) to be evaluated analytically. The sky signal portion of our covariance matrix
is then

Sij ¼ 4π
5
4B2

bandθ
4
0e

i2πν0ðτj−τiÞ
Z

dudη
Pðu; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2i
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2j

q ~γ2
�
Bchanη

�
exp

�
−2π2θ20

�ðu − ν0bi=cÞ2
1þ α2i

þ ðu − ν0bj=cÞ2
1þ α2j

��

× exp

�
−2π2B2

band

�ðη − τiÞ2
1þ α2i

þ ðη − τjÞ2
1þ α2j

��
exp

�
i4π2

�
αi
ðη − τiÞðu − ν0bi=cÞ

1þ α2i
− αj

ðη − τjÞðu − ν0bj=cÞ
1þ α2j

��
;

ð45Þ

where αi ≡ 2πθ0Bbandbi=c and similarly for αj. We take the
frequency channel response γ to be a Gaussian, which
makes its Fourier transform ~γ also a Gaussian. Computing
C;α is very similar to computing S. Since instrumental noise
is random and does not depend on the power spectrum, we
have C;α ¼ S;α. To find C;α, then, we simply need to
evaluate the integrals in Eq. (45), but with u and η
integration limits chosen to match to the band in question,
rather than being −∞ and þ∞.
Having described our instrument and how it manifests

itself in the covariance of our measurements, the final
ingredient that we require for our numerical calculations is
a model for the total power spectrum Pðu; ηÞ. We model the
total power spectrum as the sum of the cosmological power
spectrum and a foreground power spectrum. For the
cosmological power spectrum, we use the spherically
symmetric power spectrum provided in Ref. [56] and
assume statistical isotropy to compute the cylindrical
power spectrum needed for our covariance. As for the

foregrounds, we consider a relatively simple two-compo-
nent power spectrum model Pfg:

Pfgðu; ηÞ ¼ AðCdiff
l¼2πue

−νdiffc jηj þ Cps
l¼2πue

−νpsc jηjÞ; ð46Þ

where A is an overall normalization, Cdiff
l is the angular

power spectrum of the diffuse Galactic emission, and νdiffc is
its frequency coherence length. The corresponding quan-
tities for point sources are given by Cps

l¼2πu and νpsc . The η
dependence of this parametric form is motivated by the
mathematical results of Ref. [26]. In that work, empirically
motivated models of foreground spectra were put through
an eigenmode analysis, and it was found that the resulting
set of eigenmodes were essentially Fourier modes in
frequency (i.e., η modes). The eigenvalue spectra were
well fit by a linear exponential in η, with a coherence
frequency of 64.8 MHz. For simplicity, we adopt this value
for both νpsc and νdiffc .
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To model the angular structure of the diffuse Galactic
emission, we use the GLOBAL SKYMODEL (GSM) software
[57] to generate a model of the sky at 150 MHz. We then
compute the angular power spectrum of this model, which
we find to be well fit by

Cdiff
l ∝

�
exp ða1lþ a2l2Þ for l ≤ 8

b1lb2 for l > 8;
ð47Þ

with a1 ¼ −1.450, a2 ¼ 0.1003, b1 ¼ 0.7666, and
b2 ¼ −2.365. For notational simplicity, we have omitted
the overall normalization of Cdiff

l , as it can be absorbed into
A. We note that while only the high l (power-law) portion
of the angular power spectrum is typically modeled in
foreground studies, it is crucial to include the low l
behavior as well. To see this, note that Eq. (45) predicts
a substantial overlap between the response of the shortest
baselines and the u ¼ 0 mode of the power spectrum. This
is simply reflecting the fact that the sky is not infinite in
extent. Thus, even though the autocorrelation and zero-
spacing baseline products are typically discarded from
interferometric data, the instrument may still be sensitive
to the zero mode of the sky.
For the point source contribution to foregrounds,

we neglect clustering for simplicity, and therefore take
Cps
l¼2πu to be a constant. We fix this constant by assuming

that at l ¼ 1000, the amplitude of the point source angular
power spectrum is roughly a factor of 10 smaller than that
of the diffuse emission [58]. We therefore set Cps

l¼2πu ¼
0.1 Cdiff

l¼1000. Using a simple, l-independent angular power
spectrum for point sources is not a required approximation
for our formalism, and this assumption can be easily
relaxed. In principle, including clustering would boost
the point source power at low l modes [59]. In practice,
however, the low l regime is dominated by the diffuse
Galactic emission anyway, and we do not expect that an
inclusion of clustering would qualitatively impact our
numerical results.
We fix the overall normalization A of our foregrounds by

considering the zero mode of the power spectrum. We
require that

Pðu ¼ 0; η ¼ 0Þ ¼ Bbandθ
2
0Ī

2
GSM; ð48Þ

where ĪGSM ¼ 433 K is the mean temperature of our GSM
foreground template.
Finally, we must add the noise contribution to our

covariance. The computation of a noise covariance matrix
N is rather subtle, given the assumptions that we have made
above regarding baselines that overlap in directions
perpendicular to their baseline vectors. We first sort the
baselines of our array by baseline length into 54 equally
spaced bins. If only one baseline fell into each bin, the noise
variance assigned to each bin would be [47]

Nii

����
single b1

¼ Ωpp

2t
BbandT2

sys; ð49Þ

where t is the integration time (taken to be 520 h), Tsys is
the system temperature, and

Ωpp ≡
Z

A2ðθ=θ0Þd2θ: ð50Þ

Note that our expression for the noise variance differs from
equations that are commonly seen in the literature in two
ways. First, our variance is proportional to Bband. This is
simply due to the fact that we are working in a delay basis
rather than a frequency basis. In addition, the beam area
used here is the integrated square of the beam profile
(rather than just the integral of the beam profile itself),
which was shown in Ref. [16] to be the correct beam area to
use for this calculation. With our Gaussian primary beam,
Ωpp ¼ πθ20. We assume a sky-noise dominated instrument
and set Tsys ¼ ĪGSM.
We now adjust for the fact that each baseline length bin

contains more than just a single baseline. If there are nðbiÞ
baselines within a particular bin, we simply divide the noise
variance by nðbiÞ, assuming that a combination of instanta-
neous redundancy and rotation synthesis allows a large
fraction of the baselines to be combined coherently, prior to
forming a power spectrum. (In practice, this is a somewhat
optimistic assumption, given that baselines that are dis-
similar in orientation can only be combined statistically,
and not coherently.) Further assuming that the noise
covariance matrix is diagonal, our final form for N is

Nij ¼
1

nðbiÞ
Ωpp

2t
BbandT2

sysδij; ð51Þ

where the Kronecker delta function ensures that instru-
mental noise is uncorrelated both between baselines and
between delay bins.
Admittedly, the instrument and noise models presented

in this section are quite crude and make use of a large
number of simplifying assumptions. The assumptions
regarding instrumental noise and rotation synthesis, in
particular, are quite optimistic. However, the numerical
computations that we perform in this paper are not designed
to be definitive sensitivity calculations. Rather, the goal is
to use our rough model—which captures the essential
features of large-amplitude smooth-spectrum foregrounds
and lower-amplitude broadband instrumental noise—to
gain some statistically rigorous intuition for the EoR
window. For further technical details regarding our exact
implementation (e.g., for information about bin sizes), we
refer the reader to Appendix C.
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B. Window functions and foreground bias

We now examine the statistical properties of our basic
power spectrum estimator. We will find that with our basic
estimator, the foregrounds appear in a wedge in k⊥k∥ space,
consistent with findings in the previous literature.
In Fig. 3, we show the expected foreground bias from

Eq. (27) in terms of the cylindrical Fourier coordinates11 k⊥
and k∥. This shows the expected level of additive fore-
ground bias in an estimate of the power spectrum. This
foreground bias is the quantity that is most directly
comparable to previous studies where a single set of
simulated foregrounds are propagated through a power
spectrum estimation pipeline. We see that our results are
consistent with such studies as well as the analytic argu-
ments of the previous section: the foregrounds are mostly
sequestered to low k∥ modes at low values of k⊥, rising to
higher k∥ modes at high k⊥ in a wedgelike pattern. As
predicted by Eq. (13), the edge of the wedge is defined by a
line with unit logarithmic slope. Beyond this edge, the
contamination drops off sharply to give a clean EoR
window.
Importantly, we emphasize that the characteristic shapes

seen here are not tied to the specifics of our foreground
model, beyond the fact that foregrounds are spectrally
smooth. Instead, the foreground wedge is tied to the
chromatic nature of our instrument and the properties of
our basic estimator. While this may be difficult to establish
definitively with a simulation, the covariant formalism that
we make use of in this paper allows the foreground models
to be easily disentangled from the way they interact with
the instrument and the power spectrum estimation pipeline.
For example, in Fig. 4, we show some examples of window
functions on the k⊥k∥ plane. From Eq. (25), we know that
these functions depend only on our choice of estimator
(through Eα) and the instrument’s response (through C;β).
Thus, any signatures of the wedge that are independent of
the foreground model should be apparent in the window
functions.
Consider first the leftmost plot from Fig. 4, which shows

three window functions that are all centered on the k∥ value
of 0.25 hMpc−1, but different k⊥ values. As one moves to
higher k⊥, the window functions become increasingly
elongated12 in the k∥ direction. With long tails to low k∥
(where foreground emission naturally resides), this implies

a leakage of smooth foregrounds from low to high k∥. Since
this effect is most pronounced at high k⊥, the result is
precisely a wedgelike structure. To guide the eye, the black
lines on each plot show the edge of the wedge as predicted13

by Eq. (13) with θ0 ¼ π=2.
Window functions centered at higher k∥ values (central

and rightmost plots in Fig. 4) also develop elongations as
one moves from low to high k⊥, although the effect is
visually subtle due to our logarithmic plotting. These
elongations are slightly less important for smooth fore-
grounds, as even the elongated tails are not quite long
enough to reach the lowest k∥ for window functions that are
centered at high k∥. However, such effects may be
important if foregrounds turn out to contain unsmooth
(high k∥) components (see Sec. VI for a brief discussion
of this).
Except for at the lowest k⊥ values, the width of the

window functions in the k⊥ direction also appears to
increase with increasing k⊥. Plotted on the logarithmic
axes of Fig. 4, it is visually clear that at intermediate to high
k⊥ the window functions have a roughly constant loga-
rithmic width, confirming the proportional increase in
width with k⊥ that we predicted in Eq. (43).
Our analytic, covariant treatment of power spectrum

statistics allows us to compute window functions to the
high dynamic range shown in Fig. 4. This is crucial given
that foregrounds are expected to be ∼1010 times brighter in

FIG. 3 (color online). Expected foreground bias [Eq. (27)] for
the basic estimator defined in Sec. IV, where Eα ∝ N−1C;αN−1.
For this basic estimator, the chromatic nature of the instrument
results in foreground contamination in the form of a characteristic
wedge at high k⊥.

11In the mathematical formalism that we have developed so far,
we have preferred to use u and η as our Fourier coordinates
perpendicular and parallel to the line of sight, respectively.
However, to better relate our results to theoretical predictions,
we convert to using the more conventional Fourier coordinates k⊥
and k∥ when displaying our results. For details about this
conversion and our Fourier conventions, please see Appendix A.

12This elongation is real and not just an artifact of our
logarithmic k⊥k∥ axes. We know this because the set of three
windows shown in each plot of Fig. 4 are chosen to be centered
on the same k∥.

13Our use of θ0 ¼ π=2 to define the edge of the wedge is
somewhat arbitrary, given that there is nothing special about θ0 ¼
π=2 in our flat-sky approximation. However, as emphasized in
Ref. [32], in a proper curved-sky treatment it is the natural scale
to consider, since the primary beam of an instrument must vanish
at the horizon.
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power (i.e., in temperature-squared units) compared to the
cosmological signal. It is therefore essential to capture the
low-level tails of window functions. Conveniently, once the
windows have been computed, the foreground bias for a
different foreground power spectrum can be easily deter-
mined using Eq. (39a).

C. Error bars and error covariance

In addition to the foreground bias, we may quantify the
error covariance in estimates of the power spectrum. In
Fig. 5, we show the square root of the diagonal elements of
the error covariance matrix [Eq. (23)], i.e., the power
spectrum error bars. These error bars capture more than
just thermal noise errors and include contributions from the
foreground covariance. Indeed, one sees that the fore-
ground wedge appears not just in the bias that we discussed
previously, but also in the form of increased error bars.
Outside the wedge, the error bars are dominated by thermal
noise and are quite low, in what constitutes the EoR
window. Note that the thermal noise contribution did not
appear in the bias, since we have assumed that cross
correlations have eliminated the noise bias. Towards the
smallest k⊥, the errors increase by a small amount due to
cosmic variance. This effect is typically negligible unless
k∥ is also small but does play a small role since our model
has a rather low noise level. (Again, we emphasize that our
goal is not to perform a definitive sensitivity calculation.)
At the highest k∥, the errors also rise slightly. This is due to
the finite spectral resolution of our instrument, which is

self-consistently included in our error bars via the spectral
channel profile γ in our formalism.
Beyond just the error bars, our formalism also delivers

the off-diagonal elements of the error covariance Σ, which
encode the error correlations between different k⊥k∥ cells.
As emphasized in Ref. [15], these correlations need to be
quantified if one wishes to accurately propagate errors from
the cylindrical power spectrum Pðk⊥; k∥Þ to the spherical

FIG. 4 (color online). Sample window functions on the k⊥k∥ plane for the basic estimator defined by Eα ∝ N−1C;αN−1. The leftmost
plot shows a set of window functions centered at k∥ ¼ 0.25 hMpc−1; the middle plot shows a set centered at k∥ ¼ 0.66 hMpc−1; the
rightmost plot at k∥ ¼ 3.28 hMpc−1. Within each plot, the window functions are centered, from left to right, at k⊥ ¼ 0.0042 hMpc−1,
k⊥ ¼ 0.024 hMpc−1, and k⊥ ¼ 0.078 hMpc−1. The black solid line in each plot indicates the rough extent of the foreground wedge
[Eq. (13) with θ0 ¼ π=2]. For window functions centered at high k⊥, there is substantial elongation in the k∥ direction, causing higher k∥
modes to pick up foreground power, resulting in a foreground-contaminated wedge.

FIG. 5 (color online). Expected foreground error bars [given by
ðΣααÞ1=2 for the αth band power or k⊥k∥ cell] for the basic
estimator defined by Eα ∝ N−1C;αN−1. The foreground wedge
also shows up in the error bars of a power spectrum measurement.
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power spectrum PðkÞ. To capture this information, we
consider the correlation matrix, defined as

Σ̄αβ ≡ Σαβffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣααΣββ

p ; ð52Þ

which is essentially a whitened version of the error
covariance. Examining Σ̄ instead of Σ allows the correla-
tions rather than the larger errors within the wedge to be the
dominant feature. To further aid visualization, we focus on
just small portions of the correlation matrix. Whereas the
full correlation matrix would relate all k⊥k∥ coordinates to
all other such coordinates, in Fig. 6 we fix k⊥ at three
separate values and consider the correlations between
different k∥ coordinates.
Immediately obvious is the fact that the error correlations

form qualitatively different structures at different values of
k⊥. To calibrate our expectations, we include in each plot a
semitransparent square of size Δk∥ × Δk∥, where

Δk∥ ∼ 2π
H0EðzÞ
cð1þ zÞ2

1

Bband
: ð53Þ

This is the scale over which errors are expected to be
correlated in the k∥ direction. It is derived by making the
assumption that for a survey with bandwidth Bband, the
error correlation scale in η should be roughly 1=Bband, and
expressing this scale in cosmological Fourier coordinates.

In the leftmost plot of Fig. 6, where k⊥ is fixed at the
low value of 0.0042 hMpc−1, we see that our rough
expectations are correct. Having chosen our Fourier cell
sizes with the survey volume in mind (see Appendix C
for details), the cells are seen to be essentially
uncorrelated.
This simple picture breaks down, however, as we move

towards higher k⊥, where the effects of the foreground
wedge are more pronounced. Figure 6 shows that increas-
ing k⊥ (which essentially means moving deeper and deeper
into the wedge) causes different k∥ cells to become
increasingly correlated. To understand why error correla-
tions are to be expected, consider what it would take for the
errors to be uncorrelated in k∥. Suppose one had an
achromatic instrument with noise properties that were
uncorrelated and uniform (i.e., white) between all fre-
quency channels. Moving into k∥ space by way of a Fourier
transform does not induce any error correlations, because
uncorrelated white noise has the same statistical properties
in all bases. On the other hand, for our measurement we
have an inherently chromatic instrument, which makes our
noise chromatic. Fourier transforming nonwhite noise will
result in noise correlations, even if the noise was uncorre-
lated to begin with. Additionally, interferometers are
chromatic in a very specific way, with longer baselines
more chromatic (as illustrated in Fig. 2). Since higher k⊥
are probed by longer baselines, error correlations should
increase with k⊥, as seen in Fig. 6.

FIG. 6 (color online). Sections of the measurement error correlation matrix [Eq. (52)] for our basic Eα ∝ N−1C;αN−1 estimator. Each
plot shows the measurement error correlation between all k∥ bins for fixed k⊥ (from left to right, k⊥ ¼ 0.0042 hMpc−1, 0.050 hMpc−1,
and 0.13 hMpc−1). It is often assumed in the literature that errors in two k∥ cells are uncorrelated if the cells are more than Δk∥ ∼

2π H0EðzÞ
cð1þzÞ2

1
Bband

apart. Overlaid near the bottom left corner of each plot is a semitransparent square of sizeΔk∥ × Δk∥. Comparing the sizes

of these squares to the width of the off-diagonal correlations, one sees that such an assumption holds only at low k⊥. At high k⊥ the
errors are highly correlated, reducing the number of independently measurable modes.
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Viewed together, Figs. 5 and 6 suggest that the character-
istic k∥ correlation scale coincides roughly with the k∥
extent of the wedge. This suggests that the instrumental
effects that caused the wedge have also decreased the
number of independent measurements, thus decreasing
overall signal to noise. (Note, however, that the correlated
errors persist even at high k∥. Though somewhat challeng-
ing to see with our logarithmic axes and hybrid binning,
one sees that even there the off-diagonal k∥ correlations are
greater for large k⊥ modes.) That there is a rough matching
of scales between the wedge and our error correlation scale
is not entirely surprising (though not given in the a priori
sense14), since that window functions and covariances are
closely related to one another. Recall that our window
functions exhibited long elongations in k∥ as we moved
towards higher k⊥. With extremely broad window func-
tions, our instrument essentially smoothed over a large
number of modes, and it is unsurprising that the errors in
nearby bins ended up being positively correlated.
We can quantify the error correlations in more detail by

defining an effective number of independent cells Neff ,
where

Neff ≡ N2
cPNc

α;β Σ̄αβ

; ð54Þ

with Nc being the number of Fourier cells that enter into a
simple unweighted averaging of Fourier modes. By con-
struction, if all the modes that one averages over are
independent,Neff equalsNc, whereasNeff ¼ 1 if the modes
are perfectly correlated. In Fig. 7, we consider the effect of
averaging Fourier modes along the k∥ axis and showNeff as
a function of Nc, with Nc increasing from unity (when only
the lowest k∥ mode is included in the average) to Nc ¼ 30
(the total number of k∥ cells in our computation). We do
this for two different constant k⊥ slices on the Fourier
plane, k⊥ ¼ 0.0042 hMpc−1 and 0.13 hMpc−1 (corre-
sponding to the leftmost and rightmost plots of Fig. 6,
respectively). For low k⊥, one sees the linear relationship
Neff ≈ Nc regardless of how many k∥ cells are included in
the averaging. For high k⊥, however, Neff increases only
very slowly at first, as one averages together the highly
correlated modes within the wedge. The increase in Neff is
linear only at higher k∥, where our hybrid binning becomes
logarithmic, and each cell encompasses a greater extent in
k∥, eventually exceeding the error correlation length. In our

formalism, the correlated errors within each of these larger
cells have already been self-consistently averaged over,
giving independent cells that contribute linearly to Neff .
Regardless of the specific of one’s power spectrum esti-
mation formalism, it is crucial to take into account error
correlations if averaging together bins that are narrower
than the error correlation length, or if the bins are wider
than this, to ensure that the implicit averaging performed
within the bin is done correctly [rather than relying on
possibly incorrect a priori assumptions such as that implied
by Eq. (53)].
For the particular computational setup in this paper, one

sees about a factor of 2 reduction in Neff for the highest k⊥.
Going to even higher k⊥ causes even greater reductions in
sensitivity (compared to simple expectations). The corre-
lations discussed here are particularly important for experi-
ments proposing to make measurements deep within the
wedge. As discussed above, the extent of the wedge in k∥
provides the characteristic error correlation length between
different k∥ cells. It therefore follows that errors are highly
correlated whenever one chooses to work within the wedge.
Though such measurements may be well motivated by the
fact that the cosmological-signal-to-thermal-noise ratio is
largest at low k, previous studies that established this have
typically assumed the correlation length given by Eq. (53).

FIG. 7 (color online). Effective number of independent cells
Neff as a function of Nc, the number of Fourier cells included in
an averaging of k∥ modes (going from low to high k∥). The
approximately linear relationship seen for the low k⊥ curve is
indicative of uncorrelated modes. On the other hand, the high k⊥
curve approaches linearity only when high k∥ modes dominate
the average. Its initially slow increase at low k∥ shows that the
modes are highly correlated. Thus, for power spectrum sensitivity
calculations to be reliable, one must take error correlations into
account or risk overestimating an instrument’s sensitivity.

14While window functions and error covariances are related to
one another, they are conceptually separate entities, and window
function widths do not in general coincide perfectly with error
correlation lengths. In paper II, for example, we will see an
example of an estimator with completely uncorrelated errors, but
whose window functions continue to have a nonzero width. It is
also possible to write down estimators that artificially force the
window functions to be delta functions, with the corresponding
errors becoming anticorrelated [15,35].
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The resulting signal-to-noise ratios may therefore have
been overestimated.
We emphasize that the error correlations seen in this

section exist whether or not one’s power spectrum estima-
tion pipeline includes a direct subtraction of modeled
foregrounds from the input data. To see this, suppose a
direct foreground subtraction scheme reduces the fore-
ground covariance by some constant multiplicative con-
stant, so that Cfg → εCfg, where 0 < ε ≤ 1. If one assumes
that thermal noise is negligible compared to foreground
residuals at low k after a long time integration, the result of
our reduced Cfg will be a corresponding decrease in the
amplitude of the final bias and the error bars. However, the
plots of error correlation in Fig. 6 will remain unchanged,
since the correlation is insensitive to an overall scaling. The
number of independent modes will therefore still decrease
in the manner discussed above, reducing sensitivity. Since
this loss of sensitivity is the most pronounced at high k⊥, it
is particularly important to take into account for arrays that
make use of long baselines, such as LOFAR or GMRT.

VI. UNSMOOTH FOREGROUNDS?

In many prior works on 21 cm cosmology, the
assumption of spectrally smooth foregrounds is considered
crucial to one’s ability to perform foreground subtraction.
At various points in this paper, we too have assumed that
foregrounds are smooth, and incorporating this assumption
into our general framework gave rise to various predictions,
such as the existence of the EoR window. However, since
the power spectrum estimation framework itself does not
require smooth foregrounds, a number of our key results
would survive a (hypothetical) discovery of unsmooth
foreground sources. We now briefly discuss how the
problem of foreground mitigation would change if such
an unfortunate discovery were to be made.
Because the window functions encode only the mapping

of the true power spectrum to the estimated power spectrum
and do not depend on the actual power spectrum, they do
not rely on the assumption of smoothness. Irrespective of
whether the foregrounds are smooth or not, the window
functions accurately describe how foreground power is
smeared out on the k⊥k∥ plane by our instrument. If the
foregrounds are smooth, their influence is limited to the
wedge. This makes foreground mitigation easy, as their
avoidance requires no more than a simple cut on the Fourier
plane. If the foregrounds are not as smooth as expected, the
EoR window will be smaller, but its exact size can still be
predicted by convolving the (now unsmooth) model of our
foregrounds with the same window functions as before.
Forthcoming data from various experiments at higher
sensitivity will allow further foreground modeling and—
with the help of the window functions—an accurate
determination of the extent of the foreground wedge.
Encouragingly, recent theoretical calculations have shown
that in physically motivated models of synchrotron

emission, foreground spectra tend to be smooth even under
the most pessimistic of assumptions [60].
For the sake of argument, however, let us consider a

worst-case scenario where foregrounds are discovered to be
sufficiently unsmooth for the EoR window to be drastically
reduced in size. In such a scenario, a number of strategies
can be employed for foreground subtraction. First, fore-
grounds can be modeled and subtracted to the best of one’s
ability in the visibility data. Following that, a more
sophisticated estimator (one that downweights the data
not by N but by the total covariance C to account for
uncertainty in the foregrounds) can be used. Finally, the
foreground bias can be subtracted from the power spectrum
using Eq. (39a), and window function decorrelation tech-
niques can also be used in an attempt to increase the size of
the EoR window. We explore a number of these techniques
in paper II [46].

VII. CONCLUSIONS

In any measurement of the redshifted 21 cm power
spectrum, foreground contamination is a serious concern.
Fortunately, observations and various theoretical studies
have shown that despite complications arising from the
inherently chromatic nature of an interferometric measure-
ment, smooth spectrum foregrounds occupy a characteristic
wedge region in cylindrical k⊥k∥ Fourier space. The
complement of this region is expected to be relatively
foreground-free, forming an EoR window where measure-
ments might be made.
While there exists an extensive literature on the topic,

previous studies have typically focused on how the fore-
ground wedge manifests itself in the mean power spectrum
signal. However, the same physical effects that cause the
wedge in the power spectrum also affect the associated
error statistics, such as the error covariance and the window
functions. An examination of some of these statistics was
performed in Ref. [42] using Monte Carlo methods. In this
paper, we have provided a complementary treatment by
deriving a rigorous, fully covariant mathematical descrip-
tion of the foreground wedge and the EoR window. While
our methods require the numerical evaluation of some
matrix expressions, they differ from previous work in that
they do not require numerical simulations of interferomet-
ric measurements, since the underlying framework is
largely analytic. This makes it possible to compute error
statistics with very high dynamic range, which is crucial
since the foregrounds are expected to dwarf both the
instrumental noise and cosmological signal.
Our formalism takes advantage of the delay spectrum

techniques introduced in Ref. [32] to achieve computa-
tional savings, and in fact it is the use of the delay basis that
makes our covariant, high dynamic range calculations
numerically feasible. However, we reemphasize that this
is merely a choice of basis, and that our results are
independent of this choice. This was shown explicitly in
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Sec. IV, when we developed a description of the foreground
wedge in terms of window functions. Our description
decouples the causes of the wedge—which depend only
on the chromatic nature of the instrument and the specific
form of our power spectrum estimator—from the detailed
nature of the foreground emission. Independent of fore-
ground properties, window functions that are centered at
high k⊥ will typically develop long tails towards low k∥.
The wedge then results from the additional assumption that
foregrounds are spectrally smooth, so that strong signals
from low k∥ are transferred to higher k∥ by the long tails.
Once the window functions have been computed, however,
our formalism allows such assumptions to be relaxed.
With a fully covariant framework, we are able to track all

error correlations in our numerical computations. We find
that measurements made at high k⊥ have highly correlated
errors, effectively reducing the number of independent
measurements that can be made in that part of Fourier
space. This is particularly important for sensitivity forecasts
that rely heavily on measurements made within the wedge,
since the wedge’s extent in Fourier space is roughly on the
same scale as that of the error correlations. Previous studies
have typically neglected error correlations, assuming that
errors are independent as long as the spatial Fourier cells
are of the same size as an antenna’s uv footprint, and the
spectral Fourier cells are on the order of 1=Bband. Our work
suggests that this is likely to be too optimistic an
assumption. At the highest k⊥ considered in our numerical
computations (k⊥ ¼ 0.13 hMpc−1), for example, error
correlations reduce the number of independent modes by
approximately a factor of 2. This effect will be even more
pronounced at even higher k⊥, which are probed by
experiments with extremely long baselines. Since the
chromatic effects that caused the wedge are closely related
to those that cause error correlations, it will be crucial in
future research to address the question of exactly how far
the wedge can be pushed back (or equivalently, how much
one can expand the EoR window). In paper II, we use the
formalism of this paper to explore statistical methods for
enlarging the EoR window [46].
In this paper, our goal was to provide a rigorous

treatment of the wedge. Previous treatments have typically
made different simplifying assumptions. These include
neglecting partially redundant baselines, approximating
delay modes as η modes, making assumptions about
baseline length, assuming top-hat primary beams, neglect-
ing binning artifacts, or assuming that errors are uncorre-
lated on the Fourier plane. Our framework discards all of
these approximations simultaneously, and it is gratifying to
see that the basic picture of the EoR window as a naturally
foreground-free region of Fourier space remains
unchanged. This bodes well for foreground avoidance
efforts that aim to detect the EoR by working outside
the wedge, making it possible for 21 cm cosmology to open
a new window into the high redshift universe using only

existing data analysis techniques, with even more trans-
formative results possible with further advances that
expand the EoR window.
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APPENDIX A: FOURIER CONVENTIONS

In this Appendix, we define our Fourier conventions. In
sections where we establish formalism, we typically use a
Fourier convention with factors of 2π in the exponent, so
that the sky Iðθ; νÞ and its Fourier transform ~Iðu; ηÞ are
related by

~Iðu; ηÞ ¼
Z

∞

−∞
Iðθ; νÞe−i2πðu·θþηνÞd2θdν ðA1Þ

and

Iðθ; νÞ ¼
Z

∞

−∞
~Iðu; ηÞei2πðu·θþηνÞd2udη; ðA2Þ

where u is the Fourier dual to θ and η is the Fourier dual
to ν. Correspondingly, the power spectrum Pðu; ηÞ is
defined as

h~Iðu; ηÞ~I�ðu0; η0Þi≡ Pðu; ηÞδðu − u0Þδðη − η0Þ: ðA3Þ

ADRIAN LIU, AARON R. PARSONS, AND CATHRYN M. TROTT PHYSICAL REVIEW D 90, 023018 (2014)

023018-22



Adopting this Fourier convention is convenient for devel-
oping a mathematical description of the foreground wedge
because the Fourier transform closely mimics the definition
of a visibility [Eq. (1)].
Theoretical studies, however, typically use different

coordinates and a different Fourier convention. In cosmo-
logical coordinates, the Fourier transform is given by

~Tðk⊥; k∥Þ ¼
Z

∞

−∞
Tðr⊥; r∥Þe−iðk⊥·r⊥þk∥r∥Þd2r⊥dr∥; ðA4Þ

and the inverse transform is given by

Tðr⊥; r∥Þ ¼
Z

∞

−∞
~Tðk⊥; k∥Þeiðk⊥·r⊥þk∥r∥Þ d

2k⊥dk∥
ð2πÞ3 ; ðA5Þ

where Tðr⊥; r∥Þ is the sky temperature at comoving
position r⊥ perpendicular to the line of sight and r∥ parallel
to the line of sight. The power spectrum P̄ is defined as

h ~Tðk⊥; k∥Þ ~T�ðk0⊥; k0∥Þi ¼ ð2πÞ3P̄ðk⊥; k∥Þδðk − k0Þ;
ðA6Þ

where k≡ ðk⊥; k∥Þ.
Because the angular positions and frequencies can be

mapped to transverse and line-of-sight comoving distances,
respectively, the two Fourier conventions can be related to
one another. Defining r⊥ as the comoving distance
perpendicular to the line of sight, we have

r⊥ ¼ Dcθ; ðA7Þ

with

Dc ≡ c
H0

Z
z

0

dz0

Eðz0Þ ; EðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

q
;

ðA8Þ

where c is the speed of light, z is the redshift of observation,
H0 is the Hubble parameter, Ωm is the normalized matter
density, and ΩΛ is the normalized dark energy density. The
line-of-sight direction ismore subtle.When forming a power
spectrum, one typically includes only data from a relatively
narrow range in redshift. Otherwise, cosmological evolution
invalidates the assumption of a translation-invariant temper-
ature field, which is needed in the definition of a power
spectrum. What matters, then, is not the mapping between
frequency and the total comoving line-of-sight distance, but
rather, the local relation between differences in frequency
Δν and differences in distance Δr∥ at the redshift of
observation:

Δr∥ ¼
c

H0ν21

ð1þ zÞ2
EðzÞ Δν; ðA9Þ

where ν21 ≡ 1420 MHz is the rest frequency of the 21 cm
line. Having established this mapping we may (in what is
perhaps an abuse of notation) recenter our coordinates so that
Δν → ν and Δr∥ → r∥. Such a recentering introduces a
constant phase shift in our Fourier transforms, which has no
bearing on quadratic statistics such as the power spectrum.
Making the identification between Tðr⊥; r∥Þ and Iðθ; νÞ

using our mappings, we may compare Eqs. (A1) and (A4)
to conclude that

k⊥ ¼ 2πu
Dc

; k∥ ¼
2πν21H0EðzÞ
cð1þ zÞ2 η: ðA10Þ

This allows the power spectra defined under the different
Fourier conventions to be related to one another:

P̄ðk⊥; k∥Þ ¼
cð1þ zÞ2D2

c

ν21H0EðzÞ
Pðu; ηÞ: ðA11Þ

In this paper, we will plot all numerical results in terms
of cosmological Fourier coordinates k⊥ and k∥, even
though we perform all our computations in terms of u
and η. We use WMAP9 cosmological parameters:
Ωm ¼ 0.28, ΩΛ ¼ 0.72, and H0 ¼ 69.7 km=s

Mpc [1].

APPENDIX B: EQUIVALENCE OF GRIDDED
AND VISIBILITY-BASED APPROACHES TO
BASIC POWER SPECTRUM ESTIMATION

In this Appendix, we prove that estimating the power
spectrum directly from visibilities using the basic estimator
of Sec. IV is equivalent to first gridding the visibilities in
uvη space and estimating the power spectrum by squaring
and binning the results.
In Sec. IV we considered a quadratic power spectrum

estimator of the form

p̂α ∝ x†N−1C;αN−1x; ðB1Þ

where N is the instrumental noise covariance matrix, x is
the data vector (containing all spectral information from all
baselines), and C;α ≡ ∂C=∂pα is the response of the
covariance matrix to the αth band power. Working in the
limit of continuous band powers and differentiating
Eq. (16) with respect to Pðuα; ηαÞ gives

ðC;αÞij ≡ ∂Cij

∂Pðuα; ηαÞ ¼ hðuα; ηα; bi; τiÞh�ðuα; ηα; bj; τjÞ:

ðB2Þ

This allows us to simplify our expression for the power
spectrum:

p̂α ∝ jhα†N−1xj2; ðB3Þ
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where hα
i ≡ hðuα; ηα;bi; τiÞ. If we imagine writing each hα

vector as a column of a larger H matrix, the result can be
compactly rewritten as

p̂α ∝ jðH†N−1xÞαj2; ðB4Þ

where we have similarly grouped the band powers into a
vector p̂.
We now show that essentially the same estimator results

if one first uses the visibilities to form a (Fourier space) map
of the sky, which is then squared to form the power
spectrum. Comparing Eqs. (6) and (17), we see that our
measurement equation can be written as

x ¼ Hsþ n; ðB5Þ

where x is our data vector like before, n is the instrumental
noise contribution to the data (with covariance hnn†i given
by the instrumental noise covariance N discussed above),
and s is a discretized “map” of the Fourier sky, with
elements given by ~Iðu; ηÞ evaluated at predefined grid
points.
In the generalized mapmaking problem, one seeks to use

the data x to form an estimator ŝ of the true sky s. This is
accomplished in a lossless manner [54] by the estimator

ŝ ¼ RH†N−1x; ðB6Þ

where R is an invertible matrix. As discussed in Ref. [55]
the combination H†N−1x constitutes a dirty map, and the
role of R is to normalize and/or deconvolve this map. If R
is taken to be diagonal, then its role is merely one of
normalization. More complicated forms forRmix different
pixels of the dirty map, in principle allowing the dirty map
to be deconvolved. For example, the choice R≡
½H†N−1H�−1 deconvolves the instrumental beam perfectly,
giving an estimator with the property hŝi ¼ s (so that each
pixel in the estimated map is on average probing only the
corresponding pixel in the true map, rather than a linear
combination of pixels in the pattern of a remaining point-
spread function).
Suppose one forgoes deconvolution by picking Rij ≡

riδij and then proceeds to form an estimate of the power
spectrum by squaring the complex magnitude of the
resulting map estimator ŝ. The result is

jŝij2 ¼ r2i jðH†N−1xÞij2 ∝ p̂i; ðB7Þ

thereby proving that the basic power spectrum estimator
that we examined in Sec. IV is equivalent to one where one
forms a uvη space dirty map from visibilities and then
squares the result.
We stress that the proof that we have just presented is

basis independent, in the sense that our data vector need not
be indexed by baseline and delay. For example, one may
choose to deal with frequency spectra rather than delay

spectra, in which case the data vector would be indexed by
baseline and frequency channel. The resulting hα vectors
would no longer be given by Eq. (17), but the proof shown
here would be unchanged.
Crucially, the proof shown here assumed an infinitely

finely discretized Fourier space. In practice, this will only
be a good approximation on small scales (large Fourier
wave numbers), where the difference in wave number Δk
between neighboring discretized bins is small compared to
the magnitudes of the wave numbers k themselves. In paper
II we will formalize this assumption by importing the
Feldman-Kaiser-Peacock approximation that is commonly
used in galaxy surveys.
Importantly, we emphasize that while squaring a nor-

malized uvη dirty map is a perfectly reasonable way to
estimate a power spectrum, it is by no means optimal.
Indeed, Eqs. (B4) and (B7) are provably nonoptimal, and
better estimators are explored in paper II. Instead, the
estimators considered here (and therefore in Sec. IV) are
intended to be representative of simple, “first pass”
methods [43,44,53], and their statistical properties provide
basic pictures of the challenges that one faces.

APPENDIX C: TECHNICAL
COMPUTATIONAL DETAILS

In this Appendix, we provide further details pertaining to
the numerical computations described in Sec. V.

1. Binning

In the quadratic estimator formalism used in this paper,
there are two sets of discretizations: a discretization of the
input data and a discretization of the output power spectra.
For all the computations performed here, we have chosen

to express the input data in a basis parameterized by
baselines and delay. In other words, each component of
the input datavectorx corresponds to a different baseline and
delay pair. For computational tractability, we bin baselines
together into 50 linear bins of width 5 m, with the first bin
centered about 10 m and the last bin centered about 255 m.
(There are in fact some slightly longer baselines in our array.
However, we discard them in our analysis for reasons of
numerical stability.) The delay bins are again linear and
range from −200 to 198.75 μs in 320 bins. This gives delay
increments of 0.125 μs, equal to the natural bin size of
1=Bband.Note that this equality is bynomeans a requirement.
If computational resources are not a concern, it may be
preferable to slightly overresolve. This is perfectly legiti-
mate despite the fact that the bins will no longer be
independent, since the inclusion of the channel profile γ
and our tracking of full covariance information allows the
nonindependence to be self-consistently captured.
Given that a baseline of length b roughly probes modes

with u ∼ bν0=c, and that a delay bin τ roughly probes η ∼ τ,
a logical way to discretize the output uη space would be to
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use linear bins that matched the input bins (but with u bins
scaled by an appropriate factor of ν0=c). Such a scheme
would be the most appropriate for matching the specifica-
tions of the instrument. However, the cosmological power
spectrum is expected to evolve on logarithmic k scales.
Thus, a linear binning is computationally wasteful at high
k, where a large number of bins are used to resolve a power
spectrum that does not evolve very much. On the other
hand, a logarithmic binning scheme that is appropriate at
high k will tend to be computationally wasteful at low k,
where one would be overresolving the instrumental
response. As a compromise, we use a hybrid binning
scheme that is roughly linear at low k and roughly
logarithmic at high k. In this scheme, the ðnþ 1Þth
boundary of the u bins unþ1 is given by

unþ1 ¼ 1.036un þ 2.5: ðC1Þ
Similarly, the ðnþ 1Þth boundary of the η bins ηnþ1 is
given by

ηnþ1 ¼ 1.095ηn þ 0.125 μs: ðC2Þ
At low u and low η the additive terms dominate, yielding
bin boundaries that are spaced in an approximately linear
fashion well suited to the instrumental specifications. At
high u and η the multiplicative terms dominate, giving
logarithmic bins that are a good fit for theoretical expect-
ations. For both u and η, we use 30 bins, giving a total of
900 uη band powers. The bottom edge of the lowest u bin is
at u ¼ 3, while the bottom edge of the lowest η bin is
at η ¼ 0.12 μs.

2. Sparseness and computational shortcuts

The methods and computations presented in this paper
are basis independent. By this, we mean that while our final
goal is to estimate a power spectrum (and its associated
error statistics) on the k⊥k∥ plane, our input data may be
expressed in any basis that we find convenient. We now
elaborate on our reasons for working in a baseline or
delay basis.
As an example, consider the evaluation of C. With the

Gaussian beams and tapering functions used in Sec. V, the

covariance C is given by Eq. (45). For parts of the matrix
corresponding to short baselines, one can see by inspec-
tion that the matrix will be diagonal dominant, with a large
number of off-diagonal elements that are close to zero.
The C;α matrices are even more sparse, since many of the
diagonal elements (those that do not satisfy u ≈ ν0bi=c or
η ≈ τi) will also be zero. In our computations, we skip
the evaluation of matrix elements that are expected to
be small. This represents significant savings in computa-
tion time, given that with our binning scheme each
matrix measures 16000 × 16000, and each element
requires numerically integrating a two-dimensional inte-
gral given by Eq. (45). Moreover, with 900 band powers,
this process must be repeated 900 times for each of the C;α
matrices.
In our implementation, we set off-diagonal matrix

elements of C to zero if the integrand is suppressed by
at least 10−12 relative to the relevant diagonal elements
everywhere over the integration volume. For the C;α

matrices, we apply the additional constraint that a diagonal
element is to be skipped if the integrand is attenuated by
10−12 or more compared to a different diagonal element that
satisfies uα ≈ ν0b=c and ηα ≈ τ, where uα and ηα are the uη
values corresponding to the αth band.
The sparseness that we have described here is a direct

result of our using a baseline or delay basis. In contrast,
parameterizing the spectral information in a frequency
basis results in substantially denser matrices, since the
data are highly correlated between frequencies [42]. The
delay transform roughly isolates spectral information by η
mode. This isolation is imperfect in the long-baseline limit,
as we saw in Eq. (10). The matrices are therefore still dense
for elements corresponding to long baselines, but the
sparseness that is available with short baselines provides
enough savings to enable the full propagation of covariant
information without resorting to Monte Carlo methods,
which can sometimes be slow to converge to the dynamic
range displayed in Sec. V. Finally, we note that in an
application of our methods to real measurements, the delay
transform operates individually on each baseline [32] and
therefore can be applied with negligible computational cost
to the input data.
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