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We investigate the late-time cosmological behavior of scalar-tensor theories with a universal
multiplicative coupling between the scalar field and the matter Lagrangian in the matter era. This class
of theory encompasses the case of the massless string dilaton [see Damour and Polyakov, General
Relativity and Gravitation 26, 1171 (1994)] as well as a theory with an intrinsic decoupling mechanism in
the solar system [see Minazzoli and Hees, Phys. Rev. D 88, 041504 (2013)]. The cosmological evolution is
studied in the general relativity limit justified by solar system constraints on the gravitation theory. The
behavior of these cosmological evolutions are then compared to two types of observations: the constraints
on temporal variations of the constants of nature and the distance-luminosity measurements. In particular,
the nonminimal coupling implies that the distance-luminosity relation is modified compared to general
relativity. Theories producing a cosmological behavior in agreement with these observations are identified.
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I. INTRODUCTION

Today, gravitation is facing a major problem: on one
hand, general relativity (GR) has passed all the stringent
solar system experiments [1]; on the other hand, GR and
the standard model of particles are not sufficient to explain
certain galactic or cosmological observations. The most
widespread solution consists of extending the matter-
energy content of the Universe by introducing dark matter
and dark energy. Another possibility consists of modifying
the law of gravitation at large scales without introducing
any new type of matter/energy. The number of alternative
theories of gravity developed in the last years has been
growing very fast (for a wide review, see [2]).
Among all the alternative theories of gravity, the most

widespread are scalar-tensor theories of gravitation.
Although scalar-tensor theories are often considered with
a minimal scalar-to-matter coupling, scalar-tensor theories
with nonmininal coupling generically appear in (gravita-
tional) Kaluza-Klein theories with compactified dimen-
sions [3,4] and in string theories at the low energy limit
[3,5–9]; but also in fðRÞ gravity [10], in Brans-Dicke–like
theories [11], in massive theories of gravity [12], or in the
so-called modified gravity [13]. Besides, it has also been
argued that requiring gauge and diffeomorphism invari-
ances would single out such types of theories as well [14].
Moreover, cosmological observations of dark energy are

quite often explained by a scalar field [15,16], and the

inflation paradigm also introduces such a field [16,17].
Finally, variations of the constants of nature (such as the
fine structure constant [18,19] for example) are usually
modeled with a scalar field as well [3,20–22].
However, the introduction of the scalar field has to

satisfy stringent solar system constraints on gravity
[1,23,24]. In this context, several mechanisms have been
proposed to screen the scalar field or to naturally decouple
it from matter. For instance, screening mechanisms
(chameleons [25], symetron [26], or Vainshtein mechanism
[27]) are different ways to reduce the effects of the scalar
field in some regions of space [28]. Recently, we proposed
a new decoupling mechanism of the scalar field in the
region of space-time where the pressure is negligible
(such as in in the solar system or during the late-time
cosmology) [29]. For this reason, we propose to dub such a
scalar field pressuron. In [29], we saw that the pressuron
theory naturally passes all solar system tests on the post-
Newtonian phenomenology.
But, in addition to satisfying the solar system tests of

gravitation, the developed theory has to explain the late-
time cosmological observations. In particular, it is known
that the Universe is currently experiencing an acceleration
of the cosmic expansion, which has been inferred from
distance-luminosity versus redshift measurements done
with supernovae Ia (SNe Ia) [30]. It is interesting to study
whether the developed scalar-tensor theories of gravitation
are able to reproduce such an acceleration of the cosmic
expansion without the introduction of a cosmological
constant. On the other hand, scalar-tensor theories induce
a variation of various fundamental constants of nature such
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as the gravitational constant G, and even sometimes the fine
structure constant α or the weak interaction constant αW . But
the spatial and temporal variations of these constants are
severely constrained by observations and experiments (see
[24,31] for G, [18,19] for α, or [18,32] for αW). Therefore, all
scalar-tensor theories have to converge during the evolution
of the Universe toward nonvariation of the fundamental
constants in order to satisfy the constraints coming from
observations. A converging mechanism towards GR has
been found for usual scalar-tensor theories [33–36], as well
as dilatonlike theories [5], but is effective for some specific
classes of theories only depending on the specific coupling
function of the theory [37,38].
In this article, we focus on the study of the late-time

cosmology of scalar-tensor theories of gravity with a
universal multiplicative coupling between the scalar field
and the matter Lagrangian. This encompasses the case of
the massless dilaton considered in [5] and the case of the
pressuron [29]. In order to do so, we apply the method
recently developed in [36] for the case of usual scalar-
tensor theories in the general relativity limit. The idea is to
study the possible cosmological evolution of the scalar field
and of the cosmic scale factor by solving perturbatively the
field equation (a different approach consisting of using a
phase space approach is used in [22]). Then we can identify
the conditions under which the scalar field evolves towards
an attractor, which is required in order to satisfy constraints
on variations of fundamental constants. Then we would like
to see if the same kind of cosmological evolution is able to
reproduce SNe Ia data. Since the coupling between the
scalar field and matter is nonminimal, the expressions of
the observables are not necessarily the same as in GR.
Therefore, we derive the expression of the distance-
luminosity versus redshift from first principles. We show
that the scalar field explicitly enters the expression of the
distance luminosity. Therefore, SNe Ia data might be
explained by the modification of the distance-luminosity
relation instead of being explained by an acceleration of the
cosmic scale factor.
This paper derives several important results. First, we

show that a general multiplicative scalar-to-matter coupling
(such as for the massless dilaton defined in [5]) leads to the
same cosmological behavior as in scalar-tensor theories
with minimal scalar-to-matter coupling, but with different
parameters. This means that the evolution depends on the
choice of the scalar coupling function and can lead to a
convergence towards GR. Second, we show that the
pressuron dynamic freezes for any scalar-field coupling
function enabling a natural explanation of the apparent
present constancy of fundamental constants. Unfortunately,
the modification of the distance-luminosity relation does
not allow us to explain SNe Ia observations by itself, with a
scalar field converging towards a constant. Therefore, a
potential is still needed to explain the apparent acceleration
of the cosmic expansion with the pressuron.

In Sec. II we present the general action considered in this
paper and we derive the cosmological field equations. In
Sec. III, we solve the field equations using a perturbative
method similar to the one used in [36]. A nonperturbative
approach based on [38] for the case without potential is also
presented. In Sec. IV, we compute the observables from
first principles and compare their evolutions with obser-
vations. Finally, we conclude in Sec. V.

II. COSMOLOGICAL EQUATIONS

Let us consider the action of a class of scalar-tensor
theories with a universal coupling between the scalar field
and the material Lagrangian:

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðΦÞLmðgμν;ΨÞ

þ 1

2κ

�
ΦR −

ωðΦÞ
Φ

ð∂σΦÞ2 − VðΦÞ
��

; ð1Þ

where R is the Ricci scalar constructed from the metric gμν, g
is the metric determinant, κ ¼ 8πG

c4 , with G being the
gravitational constant1 and c the velocity of light in vacuum,
VðΦÞ is the scalar-field potential, fðΦÞ is an arbitrary
adimensional function, Lm is the matter Lagrangian, and
Ψ represents the nongravitational fields. It has to be noted
that such an action encompasses the effective string theory’s
low energy action at tree level, but also the assumed full loop
expansion considered as a toy model in [5] (for which
fðΦÞ ∝ Φ and VðΦÞ ¼ 0; see Appendix A). The action (1)
also covers the theory studied in [29] for which fðΦÞ ∝ ffiffiffiffi

Φ
p

and VðΦÞ ¼ 0. As shown in [29], there is a decoupling of the
scalar field in the region where the pressure is negligible in
this specific theory. Therefore, we dub this particular scalar
field pressuron. In particular, this theory naturally satisfies
solar system tests of gravitation [29].
The definition of the stress-energy tensor is given by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð2Þ

From the extremization of the action (1), one gets the
following Einstein field equations,

Rμν −
1

2
gμνR ¼ κ

fðΦÞ
Φ

Tμν þ
1

Φ
½∇μ∇ν − gμν□�Φ

þ ωðΦÞ
Φ2

�
∂μΦ∂νΦ −

1

2
gμνð∂αΦÞ2

�

− gμν
VðΦÞ
2Φ

; ð3Þ

1Note, however, that it is different from the effective constant
measured with Cavendish-type experiments. See Sec. IVA 2 for a
discussion on the effective constant of gravitation.
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and the Klein-Gordon equation for the scalar field

2ωðΦÞ þ 3

Φ
□Φ ¼ κ

�
fðΦÞ
Φ

T − 2f0ðΦÞLm

�

−
ω0ðΦÞ
Φ

ð∂σΦÞ2 þ V0ðΦÞ − 2
VðΦÞ
Φ

;

ð4Þ

where T is the trace of the stress-energy tensor and the
prime denotes the derivation with respect to the scalar field.
The invariance of action (1) under diffeomorphisms

implies the following conservation equation:

∇σTμσ ¼ ðLmgμσ − TμσÞ∂σ ln f: ð5Þ

For a perfect fluid respecting the conservation equation, the
stress-energy tensor writes Tαβ ¼ ðϵþ PÞUαUβ þ Pgαβ

while the Lagrangian is Lm ¼ −ϵ [39,40], where ϵ and
ρ are the total and rest mass energy densities and Uσ is the
four-velocity of the fluid. Let us emphasize that this
Lagrangian is only valid for a perfect fluid. In particular,
it is not valid for electromagnetic radiation, which is
characterized by LEM ¼ 0 in vacuum. In this article, we
are interested in the late-time cosmological evolution and,
therefore, we will consider only a fluid of dust charac-
terized by P ¼ 0. The radiation is negligible in this part of
the cosmological evolution and will not be considered here.
Considering a flat Friedmann-Lemaître-Robertson-

Walker (FLRW) metric for the Universe,2

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð6Þ

and a perfect fluid, the field equations (3) become

H2 ¼ κ
fðΦÞ
3Φ

ϵþ ωðΦÞ
6

�
_Φ
Φ

�2

−H
_Φ
Φ
þ VðΦÞ

6Φ
; ð7aÞ

2 _H þ 3H2 ¼ −2H
_Φ
Φ
−
ωðΦÞ
2

�
_Φ
Φ

�2

−
Φ̈
Φ

þ VðΦÞ
2Φ

− κ
fðΦÞ
Φ

P; ð7bÞ

where H is the Hubble function defined as H ≡ _a=a and
the dot denotes the derivative with respect to the cosmic
time t. The Klein-Gordon equation (4) for the scalar field
reduces to

Φ̈ ¼ −3 _ΦH þ AðΦÞ
2

ð2ωðΦÞ þ 3Þ _Φ2

þ κfðΦÞ
2ωðΦÞ þ 3

��
1 − 2

Φf0ðΦÞ
fðΦÞ

�
ϵ − 3P

�

þ 1

2ωðΦÞ þ 3
½2VðΦÞ − ΦV 0ðΦÞ�; ð7cÞ

where AðΦÞ is defined as in [36,41] by

AðΦÞ ¼ d
dΦ

�
1

2ωðΦÞ þ 3

�
¼ −

2ω0ðΦÞ
ð2ωðΦÞ þ 3Þ2 : ð8Þ

Meanwhile, the conservation equation (5) reduces to3

_ϵþ 3
_a
a
ðϵþ PÞ ¼ 0: ð9Þ

We shall set fðΦÞ ∝ Φn, where n ∈ R, such that it
encompasses the cases considered both in [5] and [29].
The assumptions allow us to write

1 − 2
Φf0ðΦÞ
fðΦÞ ¼ 1 − 2n: ð10Þ

Following the development made in [36], for dust matter
(i.e., P ¼ 0), we use the redundancy of the system of
Eqs. (7) in order to eliminate ϵ. It leads to the following two
equations:

Φ̈þ 3H _Φ ¼ AðΦÞ
2

ð2ωðΦÞ þ 3Þ _Φ2

þ 2VðΦÞ − ΦV 0ðΦÞ
2ωðΦÞ þ 3

þ 1 − 2n
2ωðΦÞ þ 3

×

�
3ΦH2 þ 3H _Φ −

ωðΦÞ
2

_Φ2

Φ
−
VðΦÞ
2

�
;

ð11aÞ
and

_H ¼ −
3

2
H2 þH

_Φ
2Φ

−
ωðΦÞ
4

_Φ2

Φ2
−
1

4
ð2ωðΦÞ þ 3ÞAðΦÞ

_Φ2

Φ

þ VðΦÞ
4Φ

−
VðΦÞ − ΦV 0ðΦÞ=2

2ωðΦÞ þ 3

−
1 − 2n

2ð2ωðΦÞ þ 3Þ
�
3H2 þ 3H

_Φ
Φ
−
ωðΦÞ
2

_Φ2

Φ2
−
VðΦÞ
2Φ

�
:

ð11bÞ

It has to be noted that these equations only slightly differ
from the usual scalar-tensor case with minimal coupling

2In the following, we are using c ¼ 1.

3It has to be noted that the simple (usual) form of the
conservation equation arises in the present case from an exact
cancellation in the development of equation (5) and therefore is
rather remarkable.
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[fðΦÞ ¼ 1] considered in [36] [that is recovered for n ¼ 0
and VðΦÞ ¼ 0].

III. SOLUTION OF THE FIELD EQUATIONS

In this section, we will solve the field equations in order to
derive the cosmological evolution of the scalar field and of
the scale factor. This will allow us to determine under which
conditions the considered theory converges towards GR.
In a first step, we present an analytical perturbative approach
following what is done in [36]. This perturbative scheme
can be used in the general case covered by the action (1). We
will use it to consider first a massless scalar field [VðΦÞ ¼ 0]
and then extend the results in the case of a self-interacting
scalar field. However, we also present a nonperturbative
analytical procedure in the case without potential. The
method followed in this case is inspired by [38].

A. Perturbative approach in the GR limit
and the no potential case

In this section, we follow the approach presented in [36]
and we consider that there is no potential in the action (1).
In the following, we study the behavior of the late-time
cosmological evolution in the matter era in the GR limit.
This limit is justified in particular by solar system tests of
gravity. The GR limit is mathematically defined by four
conditions (see [35,36,41]):
(a) 1

2ωðΦÞþ3
→ 0 motivated by solar system tests of gravity

(although they do not hold for the pressuron; see the
discussion in Sec. III C). We define Φ⋆ by

1

2ωðΦ⋆Þ þ 3
¼ 0: ð12Þ

(b) _Φ → 0 motivated by the constraints on the variation of
fundamental constants.

(c) A⋆ ≡ AðΦ⋆Þ ≠ 0.
(d) 1

2ωðΦÞþ3
differentiable in Φ⋆.

It is worth mentioning that these conditions are con-
sistent with the field equations, as one can check with
Eqs. (7) (see also the discussion in [36]). With these
assumptions, we can develop our field equations around
a background such that

ΦðtÞ ¼ Φ⋆ þ xðtÞ; HðtÞ ¼ H⋆ðtÞ þ hðtÞ; ð13Þ
where H⋆ðtÞ is the Hubble function corresponding to
the evolution in GR, while xðtÞ and hðtÞ are small
perturbations.
With the assumptions mentioned above, one has

1

2ωðΦÞ þ 3
¼ 1

2ωðΦ⋆Þ þ 3
þ A⋆xþOð2Þ ¼ A⋆xþOð2Þ;

ð14aÞ

and

ð2ωðΦÞ þ 3Þ _Φ2 ¼ _x2

A⋆x
þOð2Þ: ð14bÞ

As in [36], the zeroth order solution of (11b) gives

H⋆ðtÞ ¼
2

3t
¼ HGRðtÞ; ð15Þ

where one has set the integration constant time equal to 0
for convenience and where HGR stands for the classical GR
evolution with no cosmological constant. At first order,
Eqs. (11) respectively write

ẍðtÞ þ 3H⋆ðtÞ_xðtÞ ¼
_x2ðtÞ
2xðtÞ þ 3ð1 − 2nÞA⋆Φ⋆H2⋆ðtÞxðtÞ;

ð16aÞ

and

_hðtÞ þ 3H⋆ðtÞhðtÞ

¼ −
1

4Φ⋆

�
1þ 1

2A⋆Φ⋆

�
_x2ðtÞ
xðtÞ

þ 1

2Φ⋆
H⋆ðtÞ_xðtÞ −

3

2
ð1 − 2nÞA⋆H2⋆ðtÞxðtÞ: ð16bÞ

For n ¼ 0, we recover the results from [36]. Let us
nevertheless mention that an additional condition (not
mentioned in [36]) is necessary in order to get
Eq. (16a): _x ≪ H⋆Φ⋆. This condition gives the limit at
which the perturbative approach used here breaks down.

1. Solutions of the perturbative equations

The solutions of Eqs. (16) have been derived and
discussed in detail in [36] for n ¼ 0. Solutions in the
general case n ≠ 0 are similar except for the fact that the
critical parameter D is modified and now writes

D ¼ 1þ 8

3
ð1 − 2nÞA⋆Φ⋆; ð17Þ

instead ofD ¼ 1þ 8=3A⋆Φ⋆ in the usual scalar-tensor case
[36]. In the following, we will briefly review the various
possible cosmological evolutions but we refer to [36] for a
complete detailed discussion.
For the sake of conciseness, the exact solutions of

Eqs. (16) are given in Appendix B 1. They depend on
the critical parameter D (17):

(i) D > 0: The solutions are polynomial [see Eqs. (B1)].
Let us mention that the behavior depends highly on
the value of D. If D > 1, the cosmological evolu-
tions will diverge from the GR evolution and the
approximation scheme used here will eventually
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break down. If D < 1, the solutions will asymptoti-
cally converge towards GR: the scalar field will
tend to a constant and the Hubble parameter tends
towards its GR expression. The case D ¼ 1 is not
allowed if n ≠ 1

2
since it contradicts the assumption

(c). The case n ¼ 1
2
corresponding to the pressuron

leads to D ¼ 1 independently of the function ωðΦÞ
and is considered in detail in Sec. III C.

(ii) D ¼ 0: The solutions are logarithmic [see Eqs. (B3)]
and converge asymptotically towards GR.

(iii) D < 0: The solutions are damped oscillations [see
Eqs. (B4)]. The behavior of these solutions is
developed in detail in [36]. Basically, they converge
towards the GR solution in the manner of damped
oscillations.

In conclusion, when D > 1 the solutions diverge from
GR and when D < 1 the solutions converge towards GR
with different behavior depending on the value of D.

2. Discussion on the limitations of the
perturbative approach

As noticed in [36], in order to develop perturbatively
the field equations, one needs to assume A⋆ ≠ 0 [see
assumption (c) above]. However, such a condition is quite
limiting regarding the possible coupling function ωðΦÞ
considered. Indeed, the condition writes

AðΦ⋆Þ ¼ −
ω0ðΦ⋆Þ

ð2ωðΦ⋆Þ þ 3Þ2 ≠ 0 ð18Þ

whileΦ⋆ satisfy the condition (12). For example, a constant
ω as used by Brans-Dicke [42] does not satisfy this
condition. Such a condition is respected for coupling
functions of the form 2ωþ 3 ∝ ðΦn − Φn⋆Þ−1 or 2ωþ 3 ∝
ðΦ − Φ⋆Þ−n for n > 1 but is far from being generically
satisfied. Another example satisfying (18) is given by a
coupling function of the form 2ωþ 3 ¼ −kðlnΦ=ΦsÞ2,
which is important since the conformal scale factor to
transform the action (1) into the Einstein frame is then
given by BðφÞ ¼ ekϕ

2=2 (where φ is a rescaled scalar field),
which is widely considered in the literature (see also the
discussion in Sec. III F).
Therefore, one should note that a wide range of theories

usually considered in the literature satisfies such a condition
[38,43–45]. Theories such that Eq. (18) is not respected
cannot be treated with the current perturbative approach.
Although it restricts the approach originally developed in
[36], the outcome of such a study is nevertheless very
informative on the kind of behaviors that scalar-tensor
theories can have in the so-called GR limit.

B. Damour and Polyakov’s dilaton

Let us now examine specific cases of the general action
(1). First of all, let us consider the string dilaton considered
in [5]. For this class of theory, the parameter n takes a value

of unity (see Appendix A) and the critical value D ¼ 1
therefore translates into A⋆Φ⋆ ¼ 3=8 (while the critical
value for standard scalar-tensor theories characterized by
n ¼ 0 is given by A⋆Φ⋆ ¼ −3=8). Therefore, the dilaton
considered in [5] can have both convergent and divergent
behaviors depending on the function ωðΦÞ. If the function
ω is such that A⋆Φ⋆ < 1, the dilaton will converge towards
GR while it will (locally) diverge in the other cases (see
also Sec. III F).

C. Pressuron without potential

In [29], we recently showed that the massless pressuron
is not constrained by current solar system observations
because of the intrinsic decoupling occurring when n ¼
1=2 in pressureless regimes. In particular, the coupling
function ωðΦÞ is weakly constrained in the case of a
pressuron (ω ∼ 1 is still allowed by solar system observa-
tions while one needs ω > 104 for usual Brans-Dicke
theories [46]). Therefore, the GR limit assumptions are
not all justified for such a class of theory. Nevertheless, we
shall investigate the pressuron’s behavior in the GR limit in
order to compare it with the dilaton and usual generalized
Brans-Dicke cases.4 After that, we shall relax assumption
(a) and study the case where ωðΦÞ is finite. However,
constraints on the apparent nonvariation of the fundamental
constants seem to indicate that the scalar field, if it exists,
must be close to a constant during the visible epoch.
Therefore, assumption (b) is still required in order to
explain the observed constancy of the fundamental
constants.

1. GR limit

The pressuron case is singular in the sense that D ¼ 1 in
any case, while it satisfies the necessary conditions
imposed by the GR limit A⋆ ≠ 0 and Φ⋆ ≠ 0 [36]. The
solutions for D ¼ 1 can be written from (B1)

�xðtÞ ¼
�
M1 −

M2

t

�
2

; ð19aÞ

�hðtÞ ¼ 2

3t2

�
M3 þ

M1M2

Φ⋆
ln tþ 2M2

2b
t

�
; ð19bÞ

where Mi are integration constants, while b is a constant
characterizing the underlying theory given by (B2).
Therefore, the pressuron theory converges towards GR
for any function ωðΦÞ. This convergence is not surprising
since the pressuron decouples to matter in pressureless
regimes [29]. But the relation (19) shows how the pressuron
freezes after entering in the dust regime.

4Generalized here means ω → ωðΦÞ.
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2. Relaxing assumption (a)

While solar system constraints impose usual scalar-
tensor theories as well as dilatonlike theories to satisfy
assumption (a), the pressuron is not subject to this con-
straint thanks to the post-Newtonian decoupling studied in
[29]. Therefore, one can relax this assumption and study a
more general scenario.5 Nevertheless, the constancy of the
fundamental constants of nature seems to indicate that the
derivative of the scalar field has to be very small. Therefore,
let us develop our system of equations around any given
constant scalar-field value ΦðtÞ ¼ Φ⋄ > 0 [which is a
solution of the Klein-Gordon equation (11a)], such that
ωðΦ⋄Þ is nonsingular. In other words, we are still consid-
ering the assumption (b): _Φ ∼ 0. We can develop our field
equations around the solution where the scalar field is
constant,

ΦðtÞ ¼ Φ⋄ þ xðtÞ; HðtÞ ¼ H⋄ðtÞ þ hðtÞ; ð20Þ

where Φ⋄ is constant and H⋄ðtÞ is the solution of Eq. (11b)
with a constant scalar field. The equation at zero order for
H⋄ðtÞ is given by

_H⋄ðtÞ ¼ −
3

2
H⋄ðtÞ; ð21Þ

which is the same equation as in GR. The solution of this
equation is given by H⋄ðtÞ ¼ HGRðtÞ ¼ H⋆ðtÞ where
H⋆ðtÞ is given by (15). At first order of perturbations,
Eqs. (11) become

ẍðtÞ ¼ −3_xðtÞH⋄ðtÞ; ð22aÞ

_hðtÞ ¼ −3H⋄ðtÞhðtÞ þ
1

2
H⋄ðtÞ

_xðtÞ
Φ⋄

: ð22bÞ

The solutions therefore write:

xðtÞ ¼ C1 þ
C2

t
; ð23aÞ

and

hðtÞ ¼ C3

t2
−

C2

3Φ⋄

ln t
t2

; ð23bÞ

where the Ci are integration constants. This means that the
pressuron freezes in the dust regime independently of the
initial conditions. This convergence is totally independent
of the function ωðΦÞ. The decoupling mechanism of the
pressuron is therefore very powerful since the scalar field
naturally converges towards a constant scalar field and thus

naturally satisfies solar system tests of gravity for any
nonsingular function ωðΦÞ.

D. General case with a potential in the GR limit

The analysis done so far does not consider any self-
interacting potential for the scalar field. This potential is
phenomenologically motivated if one wants to explain the
acceleration of the cosmic expansion (as we will show in
Sec. IV). Therefore, we will extend the results presented
previously by including a potential.
In this section, we will consider the so-called GR limit

using the assumptions (a)–(d) presented in Sec. III A.
Once again, we expand the field equations (11) around the
GR limit using (13). The zeroth order equation then writes

_H⋆ðtÞ ¼ −
3

2
H2⋆ðtÞ þ

V⋆
4Φ⋆

; ð24Þ

with V⋆ ¼ VðΦ⋆Þ and where this is the standard GR
equation with V⋆=2Φ⋆ identified with the cosmological
constant.
The solution is

H⋆ðtÞ ¼
ffiffiffiffiffiffiffiffi
V⋆
6Φ⋆

s
tanh

 ffiffiffiffiffiffiffiffi
3V⋆
8Φ⋆

s
tþ K

!
; ð25Þ

where K is a constant of integration. This is the standard
GR solution for a universe with matter density and a
cosmological constant that tends towards a de-Sitter space-
time characterized by a constant Hubble rate

H⋆ðt → ∞Þ ¼ H⋆∞ ¼
ffiffiffiffiffiffiffiffi
V⋆
6Φ⋆

s
: ð26Þ

The first perturbative order equations write:

ẍðtÞ ¼ −3H⋆ðtÞ_xðtÞ þ
_x2ðtÞ
2xðtÞ þ 3ð1 − 2nÞA⋆Φ⋆H2⋆ðtÞxðtÞ

þ
�
W⋆ −

1 − 2n
2

V⋆
�
A⋆xðtÞ; ð27aÞ

and

_hðtÞ þ 3H⋆ðtÞhðtÞ ¼ −
1

4Φ⋆

�
1þ 1

2A⋆Φ⋆

�
_x2ðtÞ
xðtÞ

þ 1

2Φ⋆
H⋆ðtÞ_xðtÞ

−
3

2
ð1 − 2nÞA⋆H2⋆ðtÞxðtÞ

þ
�

~W⋆ þ
1 − 2n

4

V⋆
Φ⋆

�
A⋆xðtÞ; ð27bÞ5Note that, if we relax this assumption, we can also relax the

assumptions (c) and (d) that are no longer needed.
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with V 0⋆ ¼ dV=dΦðΦ⋆Þ and

W⋆ ¼ 2V⋆ − Φ⋆V 0⋆ ð28aÞ

~W⋆ ¼ Φ⋆V 0⋆ − V⋆
4A⋆Φ2⋆

−
W⋆
2

¼ V 0⋆
4A⋆Φ⋆

ð1þ 2A⋆Φ2⋆Þ −
V⋆

4A⋆Φ2⋆
ð1þ 4A⋆Φ2⋆Þ: ð28bÞ

In general, it is not possible to find an analytical solution
of Eq. (27). It is nevertheless still possible to study the
asymptotic behavior of these equations. The asymptotic
behaviors of Eq. (27) is obtained by replacing H⋆ðtÞ by its
asymptotic expression given by (26):

ẍðtÞ ¼
t→∞

− 3H⋆∞ _xðtÞ þ _x2ðtÞ
2xðtÞ þ A⋆W⋆xðtÞ ð29aÞ

_hðtÞ þ 3H⋆∞hðtÞ ¼
t→∞

−
1

4Φ⋆

�
1þ 1

2A⋆Φ⋆

�
_x2ðtÞ
xðtÞ

þ 1

2Φ⋆
H⋆∞ _xðtÞ þ ~W⋆A⋆xðtÞ: ð29bÞ

It is remarkable that, due to an exact cancellation of several
terms, these asymptotic equations are now completely
independent of n—which means that the form of the
coupling function fðΦÞ does not have any influence on
the asymptotical cosmological evolution. This is explained
by the fact that, asymptotically, the influence of the
potential will always be stronger than the influence of
the matter density ρ. Therefore, the system will asymp-
totically behave as if there is no matter (ρ ¼ 0). Hence, for
V ≠ 0, it is quite logical that the scalar-to-matter coupling
has no influence asymptotically.
As a consequence, when considering a potential in the

action (1), the asymptotical solutions are the same as in
standard generalized Brans-Dicke theory characterized by
n ¼ 0 [or fðΦÞ ¼ 1]. This case has been studied in [35,41].
In particular, the solutions depend on a new critical
parameter6

C ¼ 2A⋆W⋆ þ
3V⋆
2Φ⋆

¼ 2A⋆W⋆ þ C1

¼ V⋆
2Φ⋆

ð3þ 8A⋆Φ⋆Þ − 2A⋆V 0⋆Φ⋆; ð30Þ

with

C1 ¼
3V⋆
2Φ⋆

: ð31Þ

As mentioned, the solutions are the same as in [41].
Nevertheless, for the sake of completeness, they are
recalled in Appendix B 2. Three behaviors can be exhibited
(see [41] for a detailed study):

(i) C > 0: The solutions are exponential [see (B5)].
They are exponentially converging towards GR
if A⋆W⋆ < 0.

(ii) C ¼ 0: The solutions are linear exponential [see
(B6)]. They converge towards GR.

(iii) C < 0: The solutions are damped oscillations [see
(B7)]. They converge towards GR.

These asymptotic solutions applied for the dilaton as well
as for the pressuron.

E. Pressuron with a potential

In this section, wewill study more carefully the case of the
pressuron. First, the solutions of the full GR limit equa-
tions (27) take an analytical form given in Appendix B 3.
They give a more detailed evolution than the asymptotic
behavior computed from Eq. (29). Nevertheless, the behav-
ior is similar to what is described in the previous section.
As mentioned in Sec. III C 2, the pressuron does not need

to satisfy the GR limit because this theory automatically
satisfies solar system tests independently of the function
ωðΦÞ [29]. Therefore, we can relax the assumptions (a), (c),
and (d) similarly to what was done in Sec. III C 2 and
develop the equations around any given constant scalar-
field value ΦðtÞ ¼ Φ⋄ > 0 as it is done in Eq. (20). In order
to use such an expansion, ΦðtÞ ¼ Φ⋄ has to be a solution of
the zeroth order perturbation of Eq. (11a). This is only the
case for particular potentials satisfying the condition

W⋄ ¼ 2V⋄ − Φ⋄V 0
⋄ ¼ 0; ð32Þ

with V⋄ ¼ VðΦ⋄Þ and V 0
⋄ ¼ dV=dΦðΦ⋄Þ.

Using the perturbation scheme (20), Eqs. (11) at first
order can be written

ẍðtÞ ¼ −3H⋄ðtÞ_xðtÞ þ
W0

⋄

2ω⋄ þ 3
xðtÞ

_hðtÞ þ 3H⋄ðtÞhðtÞ ¼
H⋄ðtÞ_xðtÞ

2Φ⋄
−
1

2

W0
⋄

2ω⋄ þ 3
xðtÞ ð33aÞ

þV⋄ −W⋄

4Φ2
⋄

xðtÞ; ð33bÞ

with ω⋄ ¼ ωðΦ⋄Þ and

W0
⋄ ¼ V 0

⋄ − Φ⋄V 00
⋄: ð34Þ

6This parameter is the same as in [41]. Notice that the potential
VJKS used in [41] is related to the one used in this paper by a
multiplicative constant 2κVJKS ¼ V.
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Finally, H⋄ðtÞ is the zeroth order solution of Eq. (11a)
that becomes identical to Eq. (24). The solution of this
equation is given by Eq. (25) if V⋄ ≠ 0 and by (15)
when V⋄ ¼ 0.
The condition (32) can be satisfied in different manners:
(1) 2V⋄ ¼ Φ⋄V 0

⋄ ≠ 0: this is the case for VðΦÞ ¼ aΦ2

for any Φ⋄ ≠ 0, which is a little bit particular since
W0

⋄ ¼ 0 too. Note that, for every function gðΦÞ,
the potential defined by VðΦÞ ¼ gðΦÞ − gðΦ⋄Þ þ
Φ⋄
2
g0ðΦ⋄Þ will satisfy this condition.
In this case, the solution of the zeroth order

equation gives (25)

H⋄ðtÞ ¼
ffiffiffiffiffiffiffiffi
V⋄

6Φ⋄

s
tanh

 ffiffiffiffiffiffiffiffiffiffiffi
3V⋄

8Φ⋄
t

s !
¼

t→∞

ffiffiffiffiffiffiffiffi
V⋄

6Φ⋄

s
; ð35Þ

where the integration constant K has been set up
to 0 (which corresponds to a redefinition of the time
origin). The solution of Eqs. (33) depends on a new
critical parameter

B ¼ 4
W0

⋄

2ω⋄ þ 3
þ 3V⋄

2Φ⋄
¼ 4

W0
⋄

2ω⋄ þ 3
þ C1; ð36Þ

with C1 given by (31).
For the sake of conciseness, the solutions are

developed in detail in Appendix B 4.
(a) B > 0: The solutions are exponential [see

Eqs. (B11)]. In particular, the solution will
converge towards a constant scalar field only
if W0

⋄
2ω⋄þ3

≤ 0 (which is the case of a quadratic
potential). In the other cases, the solution will
diverge.

(b) B ¼ 0 or W0
⋄

2ω⋄þ3
¼ − 3V⋄

8Φ⋄
: The solutions are linear

exponential [see Eqs. (B12)]. They always con-
verge towards a constant scalar field.

(c) B < 0: The solutions are damped oscillating
[see Eqs. (B13)]. They always converge towards
a constant scalar field.

In conclusion for this first case, the solutions will
diverge exponentially if W0

⋄
2ω0

⋄þ3
> 0 and will converge

in all the other cases: exponentially if 0 ≥ W0
⋄

2ω0
⋄þ3

≥
− 2V⋄

3Φ⋄
and following damped oscillations

if − 2V⋄
3Φ⋄

> W0
⋄

2ω0
⋄þ3

.
(2) V⋄ ¼ V 0

⋄ ¼ 0 andW0
⋄ ¼ −Φ⋄V″

⋄ ≠ 0: this is the case
of quadratic and quartic potential that can be
interesting in the context of Higgs field [47]. In
fact, any potential of the form VðΦÞ ¼Pi>1αiðΦ −
Φ⋄Þi would satisfy the mentioned conditions.
In this case, the solution of the zeroth order

equation gives (15)

H⋄ðtÞ ¼
2

3t
; ð37Þ

where the integration constant has been set
up to 0 for convenience. The solution of Eqs. (33)
depends on a critical parameter that is simply
W0

⋄
2ω⋄þ3

¼ − Φ⋄V″
⋄

2ω⋄þ3
.

(a) W0
⋄

2ωcþ3
> 0 or V″

⋄
2ωcþ3

< 0: The solutions are ex-
ponentially divergent [see Eq. (B14)].

(b) W0
⋄

2ωcþ3
< 0 or V″

⋄
2ωcþ3

> 0: The solutions are
damped oscillations [see Eq. (B15)]. They al-
ways converge towards a constant scalar field.

In conclusion, if V″
⋄

2ωcþ3
> 0, the solution will always

converge towards a constant scalar field.
(3) V⋄ ¼ V 0

⋄ ¼ V″
⋄ ¼ W0

⋄ ¼ 0: in this case, the per-
turbed equations (33) are similar to the ones without
potential (22). This means the potential is too
smooth to have any influence at first order. The
perturbative approach used here is not informative in
this case and the cosmological behavior is similar to
the one developed in Sec. III C 2.

Finally, let us stress that the perturbative approach is
limited, as one can see with Eq. (32). Thus, one should not
be too conclusive with respect to the massive pressuron
stability/convergence at this stage. However, the present
result seems to indicate that the cosmological evolution of
the pressuron is very stable since it converges towards a
constant value for a large class of cases. Further non-
perturbative approaches should be considered in order to
figure this out.

F. Nonperturbative result

The results presented up to now rely on a perturbation
scheme. In particular, we always study the case where the
GR limit is valid (or in the case of the pressuron where the
slow variation of the scalar field is valid). In this section,
we present an analytical way to treat the problem of the
convergence of the scalar field in a nonperturbative way in
the case where no potential is present. The procedure is
inspired by [38]. It corresponds to study the evolution of
the scalar field in the so-called Einstein frame where the
gravitational part of the action takes the same form as in
GR. This frame, obtained by a conformal transformation,
can be useful in particular to study the convergence of the
scalar field. Nevertheless, the GR limit is not defined in this
frame. The full conformal transformation is explicitly
detailed in [48].
We define the parameter p ¼ ln ð ffiffiffiffi

Φ
p

aÞ as in [38]. Then,
from Eqs. (7), one can derive a decoupled scalar-field
equation that writes (the detailed calculations are similar to
the ones in [38])

2ðW1=2ψ 0Þ0
1 −Wψ 02 þ 3ð1 − wÞψ 0W1=2 ¼ 1 − 3w − 2n

W1=2 ; ð38Þ
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where

ψ ¼ 1

2
lnΦ; ð39aÞ

WðψÞ ¼ 3þ 2ωðΦÞ
3

¼ 3þ 2ωðe2ψÞ
3

; ð39bÞ

with w ¼ P=ϵ and X0 ≡ dX=dp. One can see that the
source term vanishes for n ¼ 1=2 (pressuron) and w ¼ 0
(dust matter).
A conformal transformation gμν ¼ Φ−1g�μν ¼ B2ðφÞg�μν,

where B is a conformal factor depending on a rescaled
scalar field φ, allows us to put the last equation in a more
convenient form by working in the Einstein representation.7

The new rescaled scalar field φ is defined from the
differential relation

αðφÞ ¼ ∂ lnBðφÞ
∂φ ¼ −

1

2

∂ lnΦ
∂φ ¼ −

∂ψ
∂φ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2ω
p :

ð40Þ
The insertion of the last expression into (38) leads to the
following equation:

2φ00

3 − φ02 þ ð1 − wÞφ0 ¼ −ð1 − 2n − 3wÞαðφÞ: ð41Þ

This equation is a generalization of the one found in [38]
recovered when n ¼ 0 and is also in agreement with the
developments done in [33]. This equation is exact and gives
the evolution of the rescaled scalar field φ as a function of
the p variable.
The solution for a pressuron (n ¼ 1=2) in the matter era

(w ¼ 0) is given by an exponential damping and writes

φðpÞ ¼ φ∞ � 2ffiffiffi
3

p ln ½Ke−
3
2
p þ ð1þ K2e−3pÞ1=2�; ð42Þ

where φ∞ is the constant value of φ at p → ∞ and K is a
constant of integration depending on the initial conditions

K ¼ φ0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − φ02
0

p : ð43Þ

This nonperturbative result confirms that the pressuron
converges and tends to a constant in any case in the matter
era, independently of the initial conditions or of the
function ωðΦÞ.
The dilaton characterized by n ¼ 1 will have a con-

vergence mechanism depending on the coupling function
[49]. An example often used consists in considering
BðφÞ ¼ ekφ

2=2, which leads to α ¼ kφ and corresponds
to 3þ 2ωðΦÞ ¼ −ðk ln Φ

Φ0
Þ−1. The integration of (41) in the

nonrelativistic limit (i.e., 3 − φ02 → 3 [33]) shows that the
behavior of the scalar field depends on a critical parameter
D ¼ 1þ 8k=3 that corresponds to the critical parameter
(17). We have three different regimes that exactly corre-
spond to the solutions presented in Sec. III A. In particular,
the convergence towards GR appears when D < 1 or
when k < 0. A positive value of k leads to divergent
scenarios only.

IV. OBSERVABLES

As mentioned in the introduction, since the coupling
between the scalar field and matter is nonminimal, the
observables are not necessary derived in the same way as in
GR. In this section, we derived two types of observables
related to the late-time cosmological evolution of the
theory: the temporal variation of the fundamental constants
and the distance-luminosity versus redshift relation. We
derive these observables from first principles. Afterwards,
we use the evolutions derived in Sec. III to quantitatively
compare the predictions with the observations.

A. Time variation of the fundamental
coupling constants

1. The fine structure constant

The fine structure constant is the one for which time
variation is the best constrained [19]. According to the
general action (1), the fine structure constant α ¼ e2=ℏc is
proportional to f−1 [5,9] such that

_α

α
¼ −

_f
f

����
0

¼ −n
_Φ
Φ

����
0

¼ −n
_x0
Φ⋆

; ð44Þ

where the subscript 0 indicates that we deal with values at
the present epoch, Φ⋆ is the asymptotic value of the scalar
field,8 and xðtÞ is the first order solution that has been
developed in detail in the previous section. The constraints
on the temporal variation of the fine structure constant
[18,19] therefore give a constraint that can be written���� _x0Φ⋆

����≲ 10−16 yr−1: ð45Þ

This impressive constraint seems to favor the behaviors
converging towards a constant scalar field in the zoo of all
the solutions developed in the previous section.

2. The gravitational constant

Scalar-tensor theories generically predict a variation of
the effective constant of gravitation. Such an effective
constant appears in the Poisson equation at the zeroth order

7The stars indicate quantities expressed in the Einstein frame.

8Note that, in the case of the pressuron, we have denoted
Φ⋆ by Φ⋄.
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in the post-Newtonian perturbative development of the
theory. It depends on the cosmological background value of
the scalar field. The effective gravitational constant for a
general universal multiplicative coupling is given by [48]

Geff ¼
c4κ
8π

�
1þ 1 − 2n

2ω0 þ 3

�
fðΦ0Þ
Φ0

: ð46Þ

Therefore, the time derivative of this expression leads to

_Geff

Geff
¼ ðn − 1Þ

_Φ0

Φ0

−
1 − 2n

ðω0 þ 2 − nÞð2ω0 þ 3Þω
0
0
_Φ0

¼ ðn − 1Þ
_Φ0

Φ0

þ 2ω0 þ 3

2ω0 þ 4 − 2n
ð1 − 2nÞA0

_Φ0; ð47Þ

where AðΦÞ is defined by (8).
In particular, the specific case of the pressuron (n ¼ 1=2)

gives

Geff ¼
c4κ
8π

1ffiffiffiffiffiffi
Φ0

p : ð48Þ

In this last case, the variation of the gravitational constant is
given by

_Geff

Geff
¼ −

1

2

_Φ0

Φ0

¼ −
1

2

_x0
Φ⋆

: ð49Þ

Hence, a lunar laser ranging constraint on the variation of
the gravitational constant [24] gives the following con-
straint on the pressuron cosmological perturbation at the
present epoch:

���� _x0Φ⋆

���� ¼ ð8� 18Þ10−13 yr−1: ð50Þ

On the other hand, for Damour and Polyakov’s dilaton [5]
(n ¼ 1), one has

Geff ¼
κc4

8π

�
2ω0 þ 2

2ω0 þ 3

�
ð51Þ

and

_Geff

Geff
¼ 2ω0 þ 3

2ω0 þ 2
A0

_Φ0: ð52Þ

Given the fact that equivalence principle violation con-
straints (from composition-dependent effects) are pretty
strong on a massless dilaton (ω0 > 1010) [50], a lunar laser
ranging constraint on the gravitational constant variability
gives

_Geff

Geff
∼ A0 _x0 ¼ ð4� 9Þ × 10−13yr−1: ð53Þ

From Eqs. (45), (50), and (53), we can see that the
constraint on the fine structure constant is the one that gives
the stringent constraint on the present value of the deriva-
tive of the scalar field.9 While the constraint (45) does not
strictly exclude solutions where the scalar field does not
converge towards a constant (one can imagine an unlikely
scenario where the divergence is very slow), this is a strong
indication that the scalar field needs to converge in the late-
time cosmological evolution.
Let us remind the reader that the pressuron (n ¼ 1=2)

converges towards a constant in the matter era independ-
ently of the function ωðΦÞ. The theories characterized by
other coupling functions converge if D < 1, which is
equivalent to

ð1 − 2nÞA⋆Φ⋆ < 0: ð54Þ

B. Distance luminosity and supernovae Ia data

In this section, we show how to compute the distance
luminosity from the action (1). The procedure is similar to
what is done in GR in [52]. In order to derive the distance-
luminosity relation, we have to determine how light
propagates in the theory parametrized by the action (1).
Introducing the electromagnetic Lagrangian in the action
(1) and varying this action with respect to the four-potential
Aμ leads to modified Maxwell equations. In a vacuum,
these equations reduce to

∇νðfðΦÞFμνÞ ¼ 0; ð55Þ

where Fμν ¼ Aν;μ − Aμ;ν is the standard Faraday tensor.
Following the analysis made in [53], we expand the four-
vector potential as

Aμ ¼ ℜfðbμ þ ϵcμ þOðϵ2ÞÞexpiθ=ϵg: ð56Þ

The introduction of this expansion in (55) and the use of
the Lorenz gauge leads to the usual null-geodesic equation
at the geometric optic limit (see [29,40]). The next-to-
leading order of the modified Maxwell equations (see the
procedure used in [40,53]) is given by

kν∇νb ¼ −
1

2
b∇νkν −

1

2
bkν∂ν ln fðΦÞ ð57aÞ

kν∇νhμ ¼
1

2
kμhν∂ν ln fðΦÞ; ð57bÞ

9Note that, in the case of a standard generalized Brans-Dicke
theory (n ¼ 0), there is no variation of the fine structure constant.
Therefore, the constraint on the variation of the gravitational
constant is important (see [51]).
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where 10b is the amplitude of bμ, hμ is the polarization
vector given by bμ ¼ bhμ and kμ ≡ ∂μθ. From there, it
follows that the conservation law of the number of photons
(or intensity) is modified:

∇νðb2kνÞ ¼ −b2kν∂ν ln fðΦÞ: ð58Þ
Now, let us take a radial light ray emitted in coordinates
ðcte; re ¼ 0; 0; 0Þ (in spherical coordinates) and observed
in coordinates ðct0; r0; 0; 0Þ. The coordinates of the wave
vector are given by

kμ ¼ dxμ=dλ ¼ ðk0; kr; 0; 0Þ ¼ ð−k0; kr=a2ðtÞ; 0; 0Þ;
with λ being an affine parameter on the null geodesic. The
fact that the wave vector is a null vector implies that
kr ¼ aðtÞk0. Since the metric is independent of the radial
coordinate, the geodesic equation tells us that kr is
conserved. Finally, let us notice that

dt
dλ

¼ k0 ¼ −k0 ¼ −
kr
aðtÞ : ð59Þ

The equation of the amplitude of the electromagnetic
signal (57a) in flat FLRW geometry for a radial light ray
can be written as

db
dλ

þ b
2

1

r2a3ðtÞ
dðr2a3ðtÞk0Þ

dt
þ b

2

d ln fðΦÞ
dλ

¼ 0: ð60Þ

Using the fact that k0 ¼ −kr=aðtÞ, the fact that kr is
constant on the light ray trajectory and (59), the last
equation becomes

d ln b
dλ

þ 1

2

d ln r2a2ðtÞ
dλ

þ 1

2

d ln fðΦÞ
dλ

¼ 0; ð61Þ

which means the quantity K ¼ bðt; rÞraðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðΦðtÞÞp

is
constant along the light ray.
The flux of energy measured by an observer is given

by [52,53]

F0 ¼ juμnνTμνj; ð62Þ
where uμ is the four-velocity of the observer
[uμ ¼ ð−1; 0; 0; 0Þ for a static observer], nν is a unit vector
pointing in the direction of the light ray [nν ¼ ð0; aðtÞ; 0; 0Þ
in the case of a radial light propagation], and Tμν is the
standard stress-energy tensor for electromagnetism:

Tμν ¼ FμαFν
α −

1

4
gμνFαβFαβ;

which gives at leading order

Tμν ¼ ℜfieiθ=ϵb2kμkνg; ð63Þ

using the expansion (56). The flux of energy measured is
thus given by

F0 ¼ ja0b2k0krj ¼
k2rb2

a20
¼ k2rK2

r20a
4
0fðΦ0Þ

¼ C
r20a

4
0fðΦ0Þ

;

ð64Þ
where C is a constant over the null geodesic and indices 0
refer to the measurement (made at the present epoch). A
similar expression can be computed for the emitted flux

Fe ¼
C

r2ea4efðΦeÞ
;

where indices e refer to the emission of the signal. The
angular integral of this emitted flux gives the emitted
luminosity Le,

Le ¼
4πC

a2efðΦeÞ
:

Also, the expression of the distance luminosity is
defined by

dL ¼
�

Le

4πF0

�
1=2

¼ a0
ae

a0r0

ffiffiffiffiffiffiffiffiffiffiffiffi
fðΦ0Þ
fðΦeÞ

s
:

Finally, using ds2 ¼ 0 and integrating over the null
geodesic, we get r0 ¼ c

R t0
te

dt
a ¼ c

a0

R
z
0

dz
HðzÞ where z is the

redshift defined as 1þ z ¼ νe
ν0
¼ a0

ae
. The last equation can

then be written as11

dL ¼ cð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðΦðz ¼ 0ÞÞ
fðΦðzÞÞ

s Z
z

0

dz
HðzÞ : ð65Þ

If we introduce the conformal time η defined by
dt ¼ a=a0dη, we get

dL ¼ cð1þ zÞðη0 − ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðΦðη0ÞÞ
fðΦðηÞÞ

s

¼ c
a0
a
ðη0 − ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðΦðη0ÞÞ
fðΦðηÞÞ

s

¼ c
~a0
~a
ðη0 − ηÞ; ð66Þ

where, in the last expression, we introduced an effective
cosmic scale factor ~a ¼ a

ffiffiffiffiffiffiffiffiffiffi
fðΦÞp

. First of all, this expres-
sion reduces to the standard GR expression when
fðΦÞ ¼ 1. As we can see, SNe Ia data are sensitive to
the evolution of ~a and not to the evolution of the cosmic

10Note that there is a typo in (30) in [40].

11Note that a similar expression can be derived in curved
FLRW space-time following the same reasoning.
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scale factor a. This means it might be conceivable to have
an acceleration of the effective cosmic scale factor ~a able
to reproduce SNe Ia data while the cosmic scale factor a is
not accelerated. In order to study such a possibility, let us
define

~H ¼
_~a
~a
¼ H þ 1

2

f0ðΦÞ
fðΦÞ

_Φ ¼ H þ n
2

_Φ
Φ
; ð67Þ

and introduce the perturbative results obtained in Sec. III.
By denoting HGR ¼ H⋆ ¼ H⋄, we have

~H ¼ HGRðtÞ þ hðtÞ þ n
2

_xðtÞ
Φ⋆

: ð68Þ

The last term comes from the fact that the coupling between
the scalar field and matter is not minimal (in particular, it
vanishes for minimal coupling characterized by n ¼ 0).
In the same spirit, we can define the observed accel-

eration parameter by

~q ¼
̈~a

~a ~H2
¼ 1þ

_~H
~H2

: ð69Þ

Inserting (68), the acceleration parameter is given at first
order by

~q ¼ qGRðtÞ þ
_hðtÞ

H2
GRðtÞ

þ n
2

ẍðtÞ
Φ⋆H2

GRðtÞ
; ð70Þ

where qGR ¼ 1þ _HGR
H2

GR
is the acceleration parameter

obtained in GR. The observed acceleration parameter needs
to be positive in order to explain the apparent acceleration
of the cosmic expansion as observed by SNe Ia data. We
can distinguish two cases among the solutions studied in
the previous section:

(i) HGR given by (15). This case appears when no
potential is considered in the action (1) and in the
case of the pressuron (n ¼ 1=2) with a potential
characterized by VðΦ⋄Þ ¼ V 0ðΦ⋄Þ ¼ 0 and W⋄ ≠ 0
[see case (ii) from Sec. III E]. In this case,
qGR ¼ −1=2. The observed acceleration parameter
is then given by

~q ¼ −
1

2
þ 9t2

4

�
_hðtÞ þ n

2

ẍðtÞ
Φ⋆

�
: ð71Þ

In order to have ~q > 0 for a large value of t, the term
in parenthesis needs to be asymptotically larger than
1=t2. This means that, asymptotically, xðtÞ needs to
be larger than ln t and hðtÞ needs to be larger than
1=t. The solutions developed in Sec. III show that
these conditions are satisfied only for theories where
the scalar field does not converge towards a constant.
Therefore, the modification of the expression of the

distance luminosity (66) does not allow one to
explain the acceleration of the cosmic expansion
for theories where the scalar field converges towards
a constant—which is required from the constraints
on the variation of the fundamental coupling
constants.

(ii) HGR given by (25). This case appears for theories
with potential. In this case, qGR is given by

qGRðtÞ ¼ 1þ 2

3 sinh2
� ffiffiffiffiffiffiffi

3V⋆
8Φ⋆

q
tþ K

� ; ð72Þ

which asymptotically tends towards 1. In this case,
the behavior of the perturbation in (69) is not
important since the acceleration of the cosmic
expansion is produced by the potential that plays
the role of a cosmological constant.

Therefore, in the class of theories presented in this paper,
the late-time cosmic expansion can only be produced by a
potential as soon as one wants to also satisfy the constraints
on the temporal variations of the constants of nature.

V. CONCLUSION

In this paper, we have studied the late-time cosmological
evolution (in the matter era) of scalar-tensor theories with a
multiplicative coupling between the scalar field and the
matter Lagrangian. This class of theory parametrized by
the action (1) encompasses the case of the massless string
dilaton considered in [5] as well as the pressuron [29]. In
general, solar system constraints on the gravitation theory
imply that the interesting cosmological evolutions are the
ones close to GR (with the exception of the pressuron that
naturally satisfies the solar system tests due to a decoupling
mechanism [29]). Therefore, following the procedure
presented in [36], we have studied the cosmological
evolution of these theories in the GR limit.
First, we have considered the case where no potential is

present. We have shown that the solutions depend on a
critical parameterD (17) that is shifted compared to the one
appearing in theories with minimal coupling studied in
[36]. The solutions are therefore similar to the ones found
in [36] and depend on D: they can be polynomial,
logarithmic, or with damped oscillations. In particular,
the solutions converge towards GR if D < 1. Since the GR
limit is not justified for the pressuron, we have studied the
solutions in the vicinity of a constant scalar field (justified
by constraints on temporal variations of the constants of
nature). We have shown that the pressuron always con-
verges towards a constant scalar field. This is a conse-
quence of the fact that the source term in the Klein-Gordon
equation for the scalar field does not depend on the matter
density but only on the pressure, which vanishes in the
matter era. This result has also been confirmed by a
nonperturbative approach.
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We have also considered the case where the scalar field is
self interacting. Once again, we have used the so-called GR
limit to study the cosmological evolution in the matter era. It
turns out that, asymptotically, the solutions do not depend on
the coupling function fðΦÞ between the scalar field and the
matter Lagrangian. Therefore, the solutions are asymptoti-
cally exactly the same as in the standard generalized Brans-
Dicke theory whose GR limit has been studied in [41]. The
solutions depend on a critical parameter C (30) and present
three behaviors, similarly to the case with no potential. In
particular, a convergence towards GR appears if A⋆W⋆ < 0
[with A⋆ defined by (8) and W⋆ by (28a)]. Here again, the
pressuron does not have to satisfy the GR limit conditions.
Therefore, we have studied the evolutions of the pressuron in
the vicinity of a constant scalar field. In the case of a massive
pressuron, the solutions fall into two classes depending
on the potential. If the potential satisfies 2V⋄ ¼ Φ⋄V 0

⋄, the
behavior of the solutions can be of three types depending on
the critical parameter B (36). In particular, they converge
towards GR if W0

⋄
2ω⋄þ3

≤ 0. If the potential satisfies V⋄ ¼
V 0
⋄ ¼ 0 but V 00

⋄ ≠ 0, then two types of solutions can appear:
exponentially divergent solutions in the case where V 00

⋄
2ω⋄þ3

<
0 and damped oscillating solutions in the opposite case.
We have considered the observations that are related to

the late-time cosmological evolution: the constancy of the
constants of nature and the apparent acceleration of the
cosmic expansion as observed by SNe Ia data. As expected,
the temporal evolution of the constants of nature is directly
related to the derivative of the scalar field. Stringent
constraints on the variations of the fine structure constant
(and also on the gravitational constant) favor solutions
converging towards a constant scalar field and exclude
divergent solutions.
Because of the nonminimal coupling between the scalar

field and matter, the distance-luminosity relation is modi-
fied with respect to GR. We have derived the expression of
the distance luminosity from first principles and have
shown that it explicitly depends on the coupling function
fðΦÞ. In particular, SNe Ia data are not sensitive to the
evolution of the cosmic factor a but to the effective cosmic
factor ~a ¼ a

ffiffiffiffiffiffiffiffiffiffi
fðΦÞp

. Therefore, the acceleration of the
effective cosmic expansion measured with SNe Ia data is
not necessarily the result of an acceleration of a, and it can
be an effect due to the nonminimal coupling instead.
Nevertheless, we have shown that the conditions in order

to have an acceleration of the effective cosmic factor
[measured by the paremeter ~q defined in (69)] are of
two types: if there is no potential, the solutions have to
diverge from GR; if there is a potential, the acceleration is
driven by the potential (playing the role of a cosmological
constant) and convergent solutions can be found. As a
conclusion, the only way to produce acceleration of the
effective cosmic factor while having a convergence of
the scalar field needed to satisfy the constraints on the

variations of the fundamental constants is to consider a
potential and to keep only the converging solutions.
Even if the interesting solutions are converging towards

GR, they still have small deviations from the standard
ΛCDM scenario. The quantification of these deviations and
the comparison with actual data is left for future work [54].
In this context, it will be interesting to know the initial
conditions at the beginning of the matter era. This requires
us to study the behavior of the solutions during the
radiation era. Finally, other cosmological observations (like
cosmic microwave background or the growth of perturba-
tions) can also be studied to refine the current analysis.

APPENDIX A: STRING DILATON

At tree level, the dilaton is massless and couples in a
universal multiplicative manner to all other fields [5]. In
the string representation,12 the tree level effective action
directly considered in four dimensions writes [5]

Stree ¼
1

c

Z
d4x

ffiffiffiffiffiffi
−g

p
e−2Ψ

×

�
1

2κ
½Rþ 4□Ψ − 4ð∂σΨÞ2� þ Lm

�
: ðA1Þ

However, taking into account higher loop contributions, the
coupling is expected to be modified such that [5,9,55]

e−2Ψ → e−2Ψ þ
X
n¼1

cne2ðn−1ÞΨ; ðA2Þ

where n corresponds to the contribution of the nth genus
string loop. Assuming, however, that the coupling keeps its
universality, the full loop expansion would write [5]

Sloop ¼
1

c

Z
d4x

ffiffiffiffiffiffi
−g

p
BðΨÞ

×

�
1

2κ
½Rþ 4□Ψ − 4ð∂σΨÞ2� þ Lm

�
; ðA3Þ

where

BðΨÞ ¼ e−2Ψ þ
X∞
n¼1

cne2ðn−1ÞΨ: ðA4Þ

Now defining Φ¼BðΨÞ, assuming that B is invertible such
that Ψ ¼ AðΦÞ, and using

ffiffiffiffiffiffi−gp
B□Ψ¼− ffiffiffiffiffiffi−gp

B;Ψð∂σΨÞ2
up to a divergence, the action (A3) can be rewritten as
follows:

Sloop ¼
1

c

Z
d4x

ffiffiffiffiffiffi
−g

p 1

2κ

×

�
ΦR −

ωðΦÞ
Φ

ð∂σΦÞ2 þ 2κΦLm

�
; ðA5Þ

12This is also known as the string frame.
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with

ωðΦÞ≡ 4Φ2
∂A
∂Φ
�∂A
∂Φþ 1

Φ

�
: ðA6Þ

Therefore, Damour and Polyakov’s dilaton [5] corre-
sponds to fðΦÞ ¼ Φ in (1), or, equivalently, n ¼ 1.
Note that at tree level (A1), however, one has AðΦÞ ¼

− 1
2
lnΦ and therefore ω ¼ −1. Hence, (A1) is not viable as

an effective action of gravitation since it cannot converge
towards general relativity.

APPENDIX B: SOLUTIONS OF THE
PERTURBED EQUATIONS

1. General case in the GR limit with no potential

The solutions of Eqs. (16) depend on a critical parameter
D given by (17):

(i) D > 0: Polynomial solution for the scalar field:

�xðtÞ ¼ 1

t
ðM1t

ffiffiffi
D

p
=2 −M2t−

ffiffiffi
D

p
=2Þ2; ðB1aÞ

�hðtÞ ¼ 2

3t2

�
M3 þM2

1

�
−a

ffiffiffiffi
D

p
þ b −

cffiffiffiffi
D

p
�
t
ffiffiffi
D

p

þM2
2

�
a
ffiffiffiffi
D

p
þ bþ cffiffiffiffi

D
p

�
t−
ffiffiffi
D

p

þ 2M1M2c ln t

�
; ðB1bÞ

whereMi are integration constants (their expressions
can be found in [36]) and where a; b; c are constants
characterizing the underlying scalar-tensor theory

a ¼ 3þ 6A⋆Φ⋆
8A⋆Φ2⋆

b ¼ 3þ 10A⋆Φ⋆
8A⋆Φ2⋆

c ¼ n
Φ⋆

:

ðB2Þ

These solutions extend the ones from [36] recovered
when n ¼ 0. Let us mention that the behavior
depends highly on the value of D.

(ii) D ¼ 0∶ Logarithmic solution for the scalar field:

�xðtÞ ¼ 1

t
ð ~M1 ln t − ~M2Þ2; ðB3aÞ

�hðtÞ ¼ 1

3Φ�t2

�
~M3 −

2

3
~M2
1nðln tÞ3

þ 1

2
ð ~M2

1 þ 4n ~M1ð2 ~M1 þ ~M2ÞÞðln tÞ2

þ ð ~M2
1 − ~M1

~M2 − 2nð2 ~M1 þ ~M2Þ2Þ ln t
�
;

ðB3bÞ

where ~Mi are integration constants (whose expres-
sions can be found in [36]). These expressions
extend the ones from [36] recovered when n ¼ 0.

(iii) D < 0∶ Oscillating damped solution for the scalar
field:

�xðtÞ ¼ 1

t

�
N1 sin

�
1

2

ffiffiffiffiffiffiffi
jDj

p
ln t

�

− N2 cos

�
1

2

ffiffiffiffiffiffiffi
jDj

p
ln t

��
; ðB4aÞ

�hðtÞ¼ 2

3t2

	
N3− ðN2

1þN2
2Þ
c
2
lntþcosð

ffiffiffiffiffiffiffi
jDj

p
lntÞ

×

�
N1N2

�
a
ffiffiffiffiffiffiffi
jDj

p
−

cffiffiffiffiffiffiffijDjp �
þðN2

2−N2
1Þ
b
2

�

þ
�
ðN2

2−N2
1Þ
�
a
2

ffiffiffiffiffiffiffi
jDj

p
−

c

2
ffiffiffiffiffiffiffijDjp �

−N1N2b

�

×sinð
ffiffiffiffiffiffiffi
jDj

p
lntÞ



; ðB4bÞ

where a; b; c are constants given by (B2) character-
izing the underlying scalar-tensor theory and Ni
are integration constants whose expressions can be
found in [36]. The last expressions extend the ones
from [36], recovered when n ¼ 0 (and thus c ¼ 0).
The behavior of these solutions is developed in
detail in [36]. Basically, they approach the GR
solution in the manner of damped oscillations.

2. General case in the GR limit with potential

The solutions of the asymptotic equations (29) are
exactly the same as in [41]. They depend on a critical
parameter C given by (30):

(i) C > 0: exponential solutions:

�xðtÞ ¼
t→∞

e−
ffiffiffiffi
C1

p
t½M1e−

1
2

ffiffiffi
C

p
t þM2e

1
2

ffiffiffi
C

p
t�2: ðB5Þ

(ii) C ¼ 0: linear exponential solutions:

�xðtÞ ¼
t→∞

e−
ffiffiffiffi
C1

p
t½M1t −M2�2: ðB6Þ

(iii) C < 0: damped oscillating solutions:

�xðtÞ ¼
t→∞

e−
ffiffiffiffi
C1

p
t

�
N1 sin

�
1

2

ffiffiffiffiffiffi
jCj

p
t

�

−N2 cos

�
1

2

ffiffiffiffiffiffi
jCj

p
t

��
2

: ðB7Þ

3. Case of the pressuron with a potential in the GR limit

The solution of the full equations (27) with n ¼ 1=2
depends on the critical parameter C given by (30):
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(i) C > 0: the solution is exponential and can be
written as

�xðtÞ ¼
 
M1e

ffiffiffi
C

p
t=2 −M2e−

ffiffiffi
C

p
t=2

cosh
�
K þ

ffiffiffiffiffiffi
3V⋆
2Φ⋆

q
t
2

�
!

2

; ðB8Þ

where K is the integration constant appearing in (25)
and Mi are constants of integration.

(ii) C ¼ 0: the solution is a linear exponential,

�xðtÞ ¼ M1

 
M2 þ t

cosh
�
K þ

ffiffiffiffiffiffi
3V⋆
2Φ⋆

q
t
2

�
!

2

: ðB9Þ

(iii) C < 0: the solution is damply oscillating,

�xðtÞ ¼
"
N1 sin ð12

ffiffiffiffiffiffijCjp
tÞ − N2 cos ð12

ffiffiffiffiffiffijCjp
tÞ

cosh
�
K þ

ffiffiffiffiffiffi
3V⋆
2Φ⋆

q
t
2

�
#
2

:

ðB10Þ
These solutions asymptotically converge towards the one
derived in [41].

4. Case of the pressuron with a potential
(not in the GR limit)

a. Case with 2V⋄ = Φ⋄V0
⋄ ≠ 0

The asymptotic solutions of Eqs. (33) depend on the
critical parameter B given by (36):

(i) B > 0 : exponential solutions:

xðtÞ ¼ 2
M1e−

ffiffi
B

p
2
t þM2e

ffiffi
B

p
2
t

cosh ð
ffiffiffiffi
C1

p
2

tÞ
ðB11aÞ

xðtÞ ¼
t→∞

e−
1
2

ffiffiffiffi
C1

p
t½M1e−

1
2

ffiffiffi
B

p
t þM2e

1
2

ffiffiffi
B

p
t� ðB11bÞ

hðtÞ ¼
t→∞

e−
1
2

ffiffiffiffi
C1

p
t

�
M1e−

1
2

ffiffiffi
B

p
t

� ffiffiffiffi
B

p

4
þ

ffiffiffiffiffiffi
C1

p 2þ 3Φ⋄

Φ⋄

�

þM2e
1
2

ffiffiffi
B

p
t

�
−

ffiffiffiffi
B

p

4
þ

ffiffiffiffiffiffi
C1

p 2þ 3Φ⋄

Φ⋄

��

þM3e−
ffiffiffiffi
C1

p
t; ðB11cÞ

where Mi are integrations constant.
(ii) B ¼ 0 or W0

⋄
2ω⋄þ3

¼ − 3V⋄
8Φ⋄

: linear exponential solutions:

xðtÞ ¼ 2
M1 þM2t

cosh ð
ffiffiffiffi
C1

p
2

tÞ
ðB12aÞ

hðtÞ ¼
t→∞

e−
ffiffiffiffi
C1

p
tM3 þ e−

1
2

ffiffiffiffi
C1

p
t

×

�
2þ 3Φ⋄

12Φ⋄

ffiffiffiffiffiffi
C1

p
ðM1 þM2tÞ −

M2

2

�
;

ðB12bÞ

where Mi are integration constants. These solutions
always converge towards a constant scalar field.

(iii) B < 0: damped oscillating solutions:

xðtÞ ¼ 2
N1 cos ð12

ffiffiffiffiffiffijBjp
tÞ þ N2 sin ð12

ffiffiffiffiffiffijBjp
tÞ

cosh ð1
2

ffiffiffiffiffiffi
C1

p
tÞ

ðB13aÞ

hðtÞ ¼
t→∞

e−
ffiffiffiffi
C1

p
tN3 þ e−

1
2

ffiffiffiffi
C1

p
t

×

��
2þ 3Φ⋄

12Φ⋄
N1

ffiffiffiffiffiffi
C1

p
−
N2

4

ffiffiffiffi
B

p �

× cos

�
1

2

ffiffiffiffiffiffi
jBj

p
t

�

þ
�
N1

4

ffiffiffiffi
B

p
þ 2þ 3Φ⋄

12Φ⋄
N2

ffiffiffiffiffiffi
C1

p �

× sin

�
1

2

ffiffiffiffiffiffi
jBj

p
t

��
; ðB13bÞ

where Ni are constants of integration. These sol-
utions converge towards a constant scalar field.

b. Case with V⋄ = V0
⋄ = 0 and W 0

⋄ = −Φ⋄V00
⋄ ≠ 0

The solution of Eqs. (33) depends on a critical parameter
that is simply W0

⋄ ¼ −Φ⋄V 00
⋄.

(i) W0
⋄

2ωcþ3
> 0 or V 00

⋄
2ωcþ3

< 0: exponential divergent
solutions:

xðtÞ ¼ 1

t

�
M1e

ffiffiffiffiffiffiffiffi
W0
⋄

2ωcþ3

q
t þM2e

−

ffiffiffiffiffiffiffiffi
W0
⋄

2ωcþ3

q
t
�
: ðB14Þ

(ii) W0
⋄

2ωcþ3
< 0 or V 00

⋄
2ωcþ3

< 0: oscillating damped solution:

xðtÞ ¼ 1

t

"
N1 cos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� W0
⋄

2ωc þ 3

����
s

t

!

þ N2 sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� W0
⋄

2ωc þ 3

����
s

t

!#
: ðB15Þ
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