
Wavefront twisting by rotating black holes: Orbital angular momentum
generation and phase coherent detection

Huan Yang1,2,* and Marc Casals3,†
1Perimeter Institue for Theoretical Physics, Waterloo, Ontario N2L2Y5, Canada

2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
3Institute of Cosmology, Relativity and Astrophysics, Centro Brasileiro de Pesquisas Físicas,

Rio de Janeiro CEP 22290-180, Brazil
(Received 12 April 2014; published 17 July 2014)

In this paper we study wave propagation and scattering near a black hole. In particular, we assume a
coherent emission source near the black hole and investigate the wavefront distortion as seen by a distant
observer. By ignoring the spin nature of the electromagnetic radiation we model it by a complex scalar
field. Then, the propagating wave near the observer can be decomposed using the Laguerre-Gaussian mode
basis and its wavefront distortion can be characterized by the decomposition coefficient. We find that this
decomposition spectrum is symmetric with respect to the azimuthal quantum number in the case that the
wave source is located near a nonrotating (Schwarzschild) black hole, whereas the spectrum is generically
asymmetric if the host black hole is rotating (Kerr). The spectral asymmetry, or the net orbital angular
momentum carried by the wave, is intimately related to the black-hole spin and mass, the wave frequency
and the locations of the source and the observer. We present semianalytical expressions and numerical
results for these parameter dependences. If the emitted radiation is temporally coherent, our results show
that the secondary images (arising from the orbiting of the wavefront around the black hole) of the source
can be almost as bright as its primary image. Separately, in the case of temporally incoherent radiation, we
show that the nonfundamental spectrum components in the primary image could be resolved by spatially
separated telescopes, although that would be degenerate with the telescope direction. Finally, our results
suggest that the black-hole-induced spectral asymmetry is generally too weak to be observed in radio
astronomy, even if the observer is located near an optical caustic.
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I. INTRODUCTION

Photon orbital angular momentum (POAM), as compared
to photon spin angular momentum, was less known in optics
up until about two decades ago, mostly due to the technical
difficulties in generating light with definite POAM states and
in finding appropriate applications for such light. In 1990,
Tamm and Weiss [1] first managed to produce Laguerre-
Gaussian (LG) laser beams in the laboratory, which have
helical phase front and quantized POAM.1 Their studies
paved the way for later proposals on applications of LG
modes, including applications on quantum information
processing and quantum cryptography [2–5], or even on
future generations of gravitational wave detectors [6].
In addition, Harwitt [7] proposed several astrophysical

sources or mechanisms that possibly introduce nonzero
POAM to light. These sources and mechanisms include
maser beams that pass through inhomogeneous interstellar
medium, luminous pulsars or quasars, and waves passing
through the vicinity of a rotating black hole. Recently,

Tamburini et al. [8] performed a numerical simulation of
radio emissions from an accretion disk surrounding a
rotating black hole, assuming that different radiative
sources in the disk are spatially coherent. In the simulation,
they observed nontrivial POAM generation and asymmetric
spectra in terms of the LG-mode basis depending on the
spin of the host black hole and the observer’s location in
the sky. It remains physically important to understand the
physical mechanism for the generation of light with
POAM near black holes, and obtain estimates for the
POAM magnitude, which apparently encodes information
about the host black hole.
In this study we analyze the scalar wave emission from a

coherent point source near a Kerr or a Schwarzschild black
hole. We note that although the case of the electromagnetic
wave which is considered in the above studies is a spin-1
field, in this paper we consider instead a complex scalar
field, which has zero spin. We use the scalar field as a
model for the electromagnetic field when its spin character
is neglected. We employ this scalar model since it is a
technically simpler case to study than the electromagnetic
case and yet it is sufficient in order to understand the
generation of POAM spectra. By assuming the wavelength
of the radiation (not greater than mm scale) to be much
smaller than the size of the black hole (not less than km
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1LG modes are spatial eigenmodes of a wave which is freely

propagating under the paraxial approximation and which has
integer orbital angular momentum. See Sec. II for further details.
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scale), we calculate the wave received by a distant observer
on the celestial sphere and the corresponding POAM
spectrum. We investigate both cases where the emission
is temporally coherent and incoherent, as the two cases
produce different POAM spectra. For completeness, we
also study the scenario where the observer is located near
an optical caustic of the background space-time, in which
case the POAM asymmetry could be amplified, in addition
to the wave itself.
Part of the wave emitted from the vicinity of the black

hole immediately propagates outwards and reaches the
faraway observer, thus yielding the so-called primary
image. However, other parts of the wave will typically
orbit around the black hole a number of times before
leaving the vicinity of the black hole and propagating
outwards to reach the faraway observer; these wave signals
will correspond to secondary images. We obtain the
propagation of the wave via the calculation of an approxi-
mation to the retarded Green function of the wave equation
in Kerr space-time. For the primary image we approximate
the Green function by using the so-called Hadamard form
(see, e.g., [9]) and a calculation of the so-called van Vleck
determinant, a biscalar which measures the degree of
focusing of neighboring null geodesics. As for the later
images—for which the Hadamard form is not valid—we
instead approximate the Green function by a calculation
of the quasinormal modes in Kerr space-time in the
high-oscillation-frequency limit (see, e.g., [10]).
We shall show that, although the emission from a single

nonrotating star in flat space-time generally contains only
the fundamental LG mode (which contains zero angular
momentum) at far distances, the presence of a rotating
black hole near the star will generate a nontrivial POAM
spectrum. Such spectrum is symmetric with respect to the
LG basis (i.e., with respect to the azimuthal quantum
number) for nonrotating Schwarzschild black holes and
generically asymmetric for rotating Kerr black holes. That
is, the asymmetric part of the spectrum contains the spin
information of rotating black holes. As we shall show in
Sec. II C, the symmetric part of a POAM spectrum may be
affected by the direction of the observation plane of a
telescope array. This further emphasizes the importance of
measuring the asymmetric part of the spectrum.
An important difference between the case we study in

this paper and that in [8] is that here, as opposed to [8], we
have a pointlike emission source. Therefore, the interfer-
ence between waves emitted from sources at different
spatial locations that occurs in [8] is absent here. In our
case, the main effect comes only from gravitationally
twisting/merging the light bundles from a single emission
source and we therefore expect the spectral asymmetry to
be much smaller than in [8] (see Secs. IVand V for details).
This paper is organized as follows. In Sec. II we review

the decomposition of a paraxial wave with respect to the
LG basis, the definition of a POAM spectrum and the

related quantity for detection. In Sec. III we describe the
methods used for the calculation of the Green function.
In Sec. IV we analyze the wave emitted by a source near a
black hole, using the Green function approach, and present
our POAM results. In Sec. V we investigate the setting
where the observer is located near an optical caustic and
we conclude in Sec. VI. Throughout this paper, we use
geometric units G ¼ c ¼ 1, the black-hole mass M is also
set to 1, unless otherwise specified, and the metric signature
is taken to be ð−þþþÞ.

II. OVERVIEW OF POAM AND SPECTRAL
DECOMPOSITION

In this section, we present a cursory review of the LG
modes of light and the corresponding POAM-spectrum
decomposition, which is useful for later sections. Interested
readers may find a detailed discussion in [11] on topics
such as POAM observables in astronomy, the propagation
or map of POAM from the celestial sphere onto detectors,
the detection of POAM using existing astronomical instru-
ments, etc.

A. Mode decomposition

Let us consider a light beam propagating on a general
space-time. We now describe two approximations. We
will apply the first to the propagation of the beam all the
way from the source to the observer (i.e., throughout
the curved space-time), while will apply the second one
only near the observer (i.e., where the space-time is
asymptotically flat).
The first approximation is the “scalar field approxima-

tion,” under which the vector character of the electromag-
netic field is neglected. Under this approximation, the
electromagnetic field is just described by a distribution of
the field amplitude and phase, which is given by a complex
scalar wave function ΨðxÞ that satisfies the Klein-Gordon
equation:

□ΨðxÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨðxÞÞ

¼ −4πμðxÞ; ð2:1Þ

where x is a space-time point, gμν is the background space-
time metric, gðxÞ≡ detðgμνðxÞÞ and μðxÞ is the source of
the field. Physically, this approximation is valid, for
example, when one of the components of the traverse field
dominates over the other one. In flat space-time (such as
near the observation plane in an astrophysical context),
where it is a common approximation (e.g., [11,12]), one
may alternatively view the scalar field Ψ as representing
one of the Cartesian components of the electric or magnetic
field. In curved space-time, we expect this approximation
to be valid in the high-frequency limit that we adopt in this
paper, particularly in the situation of Sec. IV B where only
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the part of the wave on, or closely near, one single image
(the primary one) is considered. In the situation of
Sec. IVA, where various images—which follow different
paths around the black hole—are considered this approxi-
mation may be less valid, because the polarization of the
electromagnetic field could rotate differently along differ-
ent path. In that case, more careful analysis has to be done
to take into account the rotation of field polarizations.
Let us now carry out a Fourier-mode decomposition of

the complex scalar field ΨðxÞ and denote its Fourier modes
by ψω ¼ ψωðxÞ, where x denotes the spatial coordinates of
x and ω the frequency. Since in this paper we will be
considering a source radiating with a single frequency,
the spatial part of the total field ΨðxÞ will be given by a
single Fourier mode [see Eq. (3.6) below; the only
exception will be in Eq. (4.9)].
In order to introduce the LG mode decomposition now

and for the rest of this subsection we assume flat space-
time. Even though in this paper we deal with the presence
of a black hole, the emitted wave will propagate from the
strong field near the black hole all the way to Earth, where
the space-time is asymptotically flat. Here, a connection
can be made between the emitted wave as detected on Earth

and the LG basis defined in flat space-time. In flat space-
time, the Fourier modes satisfy the Helmholtz equation:

ð∇2 þ ω2Þψω ¼ 0; ð2:2Þ
where ω ¼ jj~kjj, ~k is the wave vector and ∇2 is the
Laplacian operator in flat space-time.
The LG basis requires a second approximation: the

paraxial approximation, under which the wave propagates
approximately along an axis, say the Z axis (i.e., kX,

kY ≪ kZ≈ jj~kjj using Cartesian coordinates). This is gen-
erally a good approximation when the light (even though
strictly speaking we are now dealing with a scalar field,
we use it to model light—within the scalar field
approximation—and so at times we might still refer to
the wave as “light”) is far away from its emission source.
This approximation is well justified in the astrophysical
setting when the wave has reached a distant observer after
traveling all the way from near the black hole and so the
celestial sphere is locally a plane. Under the paraxial
approximation the spatial wave function ψω can be
expanded as a family of LG modes upl, which have the
following form (e.g., [13]):

uplðZ; ρ;φÞ ¼
C

wðZÞ
�
ρ

ffiffiffi
2

p

wðZÞ
�jlj

e−ρ
2=wðZÞ2Ljlj

p

�
2ρ2

wðZÞ2
�
eiωρ

2=ð2RðZÞÞeilφeið2pþjljþ1ÞξðZÞþiωZ; ð2:3Þ

where we use a cylindrical coordinate system ðZ; ρ;φÞ for
the spatial point x, C is a normalization constant, Ljlj

p is a
Laguerre polynomial, l is the azimuthal quantum number
and p is the radial quantum number. We have defined the
functions

wðZÞ≡ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2=z2R

q
;

RðZÞ≡ Z

�
1þ Z2

R

Z2

�
;

ξðZÞ≡ arctanðZ=ZRÞ; ð2:4Þ

where w0 is the size of the beam waist, ZR ≡ πw2
0=λ is the

Rayleigh length and λ ¼ 2π=k is the wavelength of the
light.
Because of the eilφ factor, the phase fronts of LG modes

(except for the fundamental mode l ¼ 0) are helical, and
the mode with indices fl; pg carries a definite orbital
angular momentum lℏ per photon. This can be intuitively
understood by noticing that the wave vectors are spiraling
around the propagation (Z) axis (kX and kY are small but
nonzero). It can also be shown that LG modes form a
complete basis for all the paraxial waves with the same
frequency. Therefore, at a given value of Z, any spatial
wave function ψω can be decomposed in the basis of
LG modes as

ψωðZ; ρ;φÞ ¼
X∞
p¼0

X∞
l¼−∞

cplðZÞuplðZ; ρ;φÞ; ð2:5Þ

where the coefficients are given by

cplðZÞ ¼ hupljψωi; ð2:6Þ
where the product of any two spatial functions u and ψω is
defined on the constant-Z plane as

hujψωi≡
Z

2π

0

dφ
Z

∞

0

dρρu�ðZ; ρ;φÞψωðZ; ρ;φÞ: ð2:7Þ

For the purpose of understanding the generation of
POAM spectra, there is limited interest in distinguishing
the radial profile of the wave function. As a result, we sum
up all the radial components for each value of l, so that the
decomposition becomes

ψωðZ; ρ;φÞ ¼
X∞
l¼−∞

eilφψω;lðZ; ρÞ; ð2:8Þ

where ψω;l is given by

ψω;lðZ; ρÞ ¼
1

2π

Z
2π

0

dφe−ilφψωðZ; ρ;φÞ: ð2:9Þ

We further define the spectra weight wl of the POAM
decomposition as
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wl ¼
2π

I

Z
∞

0

dρρjψω;lj2; ð2:10Þ

I ≡
Z

∞

0

dρ
Z

2π

0

ρdφjψωj2: ð2:11Þ

Based on their definition, it is easy to verify that the
weights wl satisfy the normalization condition

P
lwl ¼ 1,

and so the averaged POAM per photon is given by

L̄Z ¼ ℏ
X∞
l¼−∞

lwl: ð2:12Þ

The definition of wl can easily be generalized [11] to
incoherent light by decomposing the wave function as a
summation of coherent pieces and dropping the mutual-
interference terms. Its physical properties can be further
elaborated by studying the two following simple examples.

B. Examples

In the first example, we note that a plane wave, with its
propagation direction orthogonal to the observation plane,
satisfies wl ¼ δl0, i.e., all modes have zero spectra weight
except for the fundamental mode. This fact is important as
any initially distorted wavefront always tends to flatten out
during propagation in free space, because of the diffraction
effect. Since real telescopes have a finite collection area,
which also means that the integration upper bound for ρ in
Eqs. (2.10) and (2.11) should be replaced by the instru-
ment’s size, the spectra weights for the modes with jlj > 0
always decrease as we increase the distance between the
detector and the source.
In the second example, if the wave function has a

dependence ψω ¼ eiΦðZ;ρ;φÞ, where ΦðZ; ρ;φÞ is a real-
valued function, it can be shown that the wl’s are generi-
cally nonzero and the spectrum must be symmetric, i.e.,
wl ¼ w−l (see Sec. IV B for a proof in the case l ¼ �1; the
generalization to higher jlj is trivial). In fact, if we draw the
normal vectors to the constant-phase plane of a LG mode
with l ≠ 0, it shows a spiraling pattern which geometrically
resembles a twisted light bundle. This twisting of light
can be generated, for example, by the frame dragging
caused by a rotating black hole (Sec. IV B), by merging
adjacent light bundles near an optical caustic (Sec. V), or
even by the offset interference between previously far-apart
geometric rays (Sec. IVA)—see Fig. 1. In all these
scenarios, we observe variations in both the phase and
the amplitude. This is also true for the LG modes as shown
in Eq. (2.3), where we find zero intensity at the origin
(ρ ¼ 0) and nonzero amplitude elsewhere.
When dealing with actual observables, it is more

convenient to use
ffiffiffiffiffi
wl

p
rather than wl, because

ffiffiffiffiffi
wl

p
is

directly proportional to the wave amplitude at each l, which
is an observable obtainable by Eq. (2.9) or physically using
an antenna array as illustrated in [14]. As a consequence,

although we shall refer to j ffiffiffiffiffi
wl

p − ffiffiffiffiffiffiffi
w−l

p j as the spectral
asymmetry throughout this paper, more strictly speaking it
corresponds to the “amplitude” asymmetry. This amplitude
asymmetry can be measured by comparing phases on
different sites of the telescope array, and its detectability
is closely related to the phase sensitivity of the telescope
array. The ground-based radio telescopes suffer from
air-turbulence-induced phase errors, and by implementing
novel techniques, such as measuring the closure phase
[15], the phase sensitivity can be improved to a scale of
multiple wavelengths [16].

C. Spectral degeneracy

A symmetric weight spectrum can be generated by tilting
the observation plane with respect to the optical axis, as this
generally introduces an eiωrfðαx1þβx2Þ factor into the wave,
depending on the tilt angles α and β, where rf is the radius
between the source (or approximately the black hole) and the
observation plane, and x1;2 are coordinates on the observa-
tion plane defined in Sec. IVA. Even for an incoming plane
wave, this phase factor will generate a symmetric POAM
spectrum, with w1 ¼ w−1 ∝ ω2b2ðα2 þ β2Þ, where b is the

FIG. 1 (color online). An illustration of the three scenarios
discussed in Secs. IVA, IV B and V respectively. (a) The
interference between two distinct rays that emit from E and meet
each other at the observer O. (b) No interference between different
rays. The light bundle of the primary ray is slightly twisted by the
rotating black-hole space-time. (c) Interference between adjacent
light bundles. This only happens when the observer O is located
near an optical caustic of the emission from E.
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size of the detector. Unless the tilt angles are known within
an accuracy of M=rf, which is an unrealistic requirement,
it generates a much larger symmetric POAM spectrum than
the l ≠ 0 components of the POAM spectrum induced by a
rotating black-hole geometry. Thus, the physics carried by a
symmetric POAM is degenerate with the tilt angle of the
observation plane, and is not likely to be decoded via radio
observations alone.

III. GREEN FUNCTION METHOD

In order to determine the wave emission by a point
source, we shall make use of the retarded Green function of
the wave equation (2.1) satisfied by the field propagating in
the background space-time. The retarded Green function
can also be used to calculate the self-force on a small
compact object moving on the background of a massive
black hole (see, e.g., [9]) and the associated radiation
backreaction. Techniques for the calculation of the Green
function for field perturbations of different spin in
Schwarzschild, Kerr or other more exotic background
space-times have been recently developed [10,17–21]
and applied [22–24] with success to the calculation of
the self-force. In this paper we will employ some of these
techniques for the calculation of the Green function to
calculate the propagation of a scalar wave in Kerr space-
time and we refer the reader to this literature for further
details on the techniques.
As explained in Sec. II A, we use a massless, complex

scalar fieldΨðxÞ to model the electromagnetic field when its
spin character is neglected. This scalar field propagating on a
curved space-time obeys the Klein-Gordon equation (2.1).
The retarded Green function satisfies this equation with an
invariant Dirac-delta distribution in the source

□Gretðx; x0Þ ¼ −4π
δ4ðx − x0Þffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ; ð3:1Þ

subject to causal boundary conditions:Gretðx; x0Þ is zero if x
does not lie in the causal future of x0. The propagation of the
massless scalar wave is determined by the retarded Green
function via

ΨðxÞ ¼
Z

d4x00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx00Þ

p
μðx00ÞGretðx; x00Þ: ð3:2Þ

From now on we will focus on the case that the background
space-time is Kerr space-time. Let us assume that there is an
emitter following a worldline given by x0ðτÞ, where τ is the
proper time of the emitter, which is located near a rotating
Kerr black hole and is radiating scalar waves with frequency
ω0with respect to its proper reference frame.Specifically,we
take the source to be

μðxÞ ¼
Z

∞

−∞
dτ

δ4ðx − x0ðτÞÞffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp e−iω0τ: ð3:3Þ

From Eq. (3.2), the wave that an observer located at the
space-time point x receives is simply given by

ΨðxÞ ¼
Z

∞

−∞
dτe−iω0τGretðx; x0ðτÞÞ: ð3:4Þ

Although the integration upper bound is here taken to be∞,
the integration actually contains only the causal contribu-
tions because the retardedGreen function is zero ifxdoes not
lie in the causal future of x0. For simplicity, we assume
hereafter that the emitter stays at a fixed spatial location x0 at
all times. Despite the fact that this is not a very physical
scenario, it does not harm the main physical results and it
simplifies the calculations.Wedefine the time-dilation factor
N and the rescaled frequency ω to be

N ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðx0Þ

p
; ω≡ Nω0: ð3:5Þ

We also note that the time-translational symmetry of
Kerr space-time implies Gretðx; x0Þ ¼ Gretðx;x0; t − t0Þ
(with a slight abuse of notation). Using the fact that the
proper time of the static emitter satisfies dτ ¼ Ndt0 and
plugging Eq. (3.5) into Eq. (3.4), we obtain

ΨðxÞ ¼ eiωtψωðxÞ;

ψðxÞ ¼
Z

∞

−∞
dt0N × e−iωðt−t0ÞGretðx; x0Þ

¼ N Gω
retðx;x0Þ; ð3:6Þ

where Gω
ret are the Fourier modes of the retarded Green

function.
In the following subsections we will describe two

different techniques for calculating the Fourier modes
Gω

ret, one technique being valid for the calculation of the
primary image and the other for the calculation of the later,
secondary images. Even though we develop the techniques
for general Fourier frequencies, at some point in the
analysis we will carry out approximations correspond-
ing to the high-frequency limit for the radiation (i.e.,
ω ≫ 1=M) which, as mentioned in the Introduction, is
the physical limit of interest in this paper.

A. Primary image: Hadamard form

In a “sufficiently” small neighborhood called a normal
neighborhood2 of the point x0 of emission of the primary
pulse, the retarded Green function can be calculated via the
Hadamard form [9,25],3

2A normal neighborhood of x0 is a region containing x0 such
that every point x in this region is connected to x0 by a unique
geodesic in that region.

3In principle, it should also be possible to express the Green
function in the normal neighborhood via the spectroscopic
decomposition of Eq. (3.16). However, in practice the conver-
gence of GQNM and GBC is usually poor at very early times [26],
and it is preferable to use the Hadamard form instead.
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Gretðx; x0Þ ¼ ½Uðx; x0Þδðσðx; x0ÞÞ
þ Vðx; x0ÞHð−σðx; x0ÞÞ�Hþðx; x0Þ: ð3:7Þ

Here, Uðx; x0Þ and Vðx; x0Þ are both smooth biscalars,HðxÞ
is the Heaviside distribution andHþðx; x0Þ equals 1 if x lies
to the future of x0 and equals 0 otherwise. Synge’s world
function σðx; x0Þ is given by

σðx; x0Þ ¼ 1

2
ðλ̄f − λ̄iÞ

Z
λ̄f

λ̄i

dλ̄gμνðz̄Þtμtν; ð3:8Þ

where the integration is performed along the unique
geodesic z̄ðλ̄Þ connecting x0 and x, with λ̄ being an affine
parameter and z̄ðλ̄iÞ ¼ x0 and z̄ðλ̄fÞ ¼ x. Based on its
definition, it is immediate to find that σ is positive if the
geodesic joining x and x0 is spacelike, negative if it is
timelike and zero if it is null. Consequently, the term
“UδðσÞHþ” in Eq. (3.7) only has support along the “direct”
null wavefront that propagates from x0 to x and so we will
refer to it as the “direct part.” We will refer to the points
where this direct part of the null wavefront has support as
the (future) light cone. The direct part of the Hadamard
form, therefore, describes the primary image of a source at
x0 that an observer at x will detect.
The Fourier modes Gω

dir of the direct part of the
Hadamard form correspond to the leading order of the
Fourier modes of the full Green function in the geometrical
optics limit (or under the WKB approximation). Thus,
according to [21] they are given by

Gω
dirðx;x0Þ ¼ A0ðx;x0ÞeiωT0ðx;x0Þ; ð3:9Þ

where ωT0ðx;x0Þ is the geometric phase for the direct null
geodesic connecting x and x0. The amplitude A0ðx;x0Þ is
discussed in [21] in the context of mapping the areas of
light bundles in a general curved space-time. In the
remaining of this subsection we focus on the calculation
of A0ðx;x0Þ and T0ðx;x0Þ in Kerr space-time.
By taking the Fourier transform of the direct part in

Eq. (3.7) and comparing it with Eq. (3.9), it is straightfor-
ward to find that

A0ðx;x0Þ ¼ Uðx0; xÞ
j∂σ=∂tjt¼T0

; ð3:10Þ

and σ ¼ 0 when t − t0 ¼ T0ðx;x0Þ. In order to evaluate
∂σ=∂t, we use a family of timelike geodesics for a particle
with rest mass m → 0 to asymptote to the null geodesic.
For timelike geodesics, we take the affine parameter λ̄ to be
the proper time τ̄ along the timelike geodesic connecting
x0 and x, with z̄ðτ̄iÞ ¼ x0 and z̄ðτ̄fÞ ¼ x. Therefore, for
timelike geodesics it is σ ¼ −ðτ̄f − τ̄iÞ2=2 and we have

∂σ
∂t
����
t¼T0

¼ − lim
m→0

ðτ̄f − τ̄iÞ
∂ τ̄
∂t
����
t¼T0;fixedx0

¼ − lim
m→0

ðτ̄f − τ̄iÞut

¼ lim
m→0

ðτ̄f − τ̄iÞ
E
m

¼ λ̄f − λ̄i: ð3:11Þ

Here, ut ¼ ∂t · u ¼ −E=m, where u is the 4-velocity, and E
is the energy of the massive particle. Geodesics for
any massless particle can be obtained by integrating out
the equations of motion, which are separable in Boyer-
Lindquist coordinates fr; θ;ϕ; tg in Kerr space-time and
they are given by [27]

dt
dλ̄

¼ ½−aðaEsin2θ − LzÞ þ ðr2 þ a2ÞΔ−1P�
r2 þ a2cos2θ

;

dϕ

dλ̄
¼ ½−ðaE − Lz=sin2θÞ þ aΔ−1P�

r2 þ a2cos2θ
;

dθ
dλ̄

¼ ½Q − cos2θð−a2E2 þ L2
z=sin2θÞ�1=2

r2 þ a2cos2θ
;

dr

dλ̄
¼ fP2 − Δ½Qþ ðLz − aEÞ2�g1=2

r2 þ a2cos2θ
: ð3:12Þ

Here, E is the energy of the massless particle, Lz is the
angular momentum of the particle along the z axis
(the symmetric axis of the black hole, not to be confused
with the Z axis, which is the axis of propagation of the
wave used in Sec. II; similarly, here ϕ is the azimuthal angle
with respect to the symmetry axis of the black hole whereas
φ used in Sec. II was the azimuthal angle with respect to the
axis of propagation of the wave) and Q, which shows up in
the expressions for dθ=dλ̄ and dr=dλ̄, is Carter’s constant of
motion. The functions Δ and P are given by

Δ≡ r2 − 2Mrþ a2; P≡ Eðr2 þ a2Þ − Lza; ð3:13Þ

where M and a are, respectively, the mass and the angular
momentum of the Kerr black hole. We integrate the set of
coupled, first-order ordinary differential equations
Eq. (3.12) in order to obtain ðλ̄f − λ̄iÞ (and therefore
∂σ=∂tjt¼T0

) along the desired direct null geodesic z̄ðλ̄Þ.
Further below [namely in order to calculate ∂T0=∂ζjx0 in
Eq. (4.5)], we will also need the values of ∂T0=∂θf and
∂T0=∂ϕf, where θf ≡ θðλ̄fÞ and ϕf ≡ ϕðλ̄fÞ. In order to
calculate these partial derivatives, we give small variations
to E and Lz and find how T0, θf and ϕf vary and we then
apply the chain rule. We note that these variations in θf and
ϕf allow us to find (an approximation to) the Jacobian
∂fθf;ϕfg
∂fE;Lzg , which allows us to calculate the values of E and Lz

required in order for the final spatial point x to remain the
same as we vary the black-hole angular momentum a.
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As for the bitensor Uðx; x0Þ, in four-dimensional space-
times it is related to the van Vleck determinant Δz̄ðx; x0Þ as
Uðx; x0Þ ¼ Δ1=2

z̄ ðx; x0Þ and it obeys the following transport
equation [9,17]:

dΔ1=2
z̄

dλ̄
¼ ð4 − σααÞ

2λ̄
Δ1=2

z̄ ; ð3:14Þ

where σαβ ≡∇β∇ασ. We obtain the van Vleck determinant
along the null geodesic z̄ðλ̄Þ connecting x0 and x in Kerr
space-time by solving a system of transport equations:
Eq. (3.14) together with transport equations for σαβ—we
refer the reader to [17] for details. In principle, we expect
the van Vleck determinant Δz̄ðx; x0Þ to diverge when x and
x0 are connected by more than one null geodesic. In a
spherically symmetric space-time such x0 points correspond
to points which lie along ϕ ¼ 0 or π, and Δz̄ðx; x0Þ diverges
there [17,22,28]; in Kerr space-time the distribution of such
points is a lot richer—see Sec. V. In any case, we calculate
Δz̄ðx; x0Þ only along a direct null geodesic, which does not
reintersect any other null geodesic that started off at the
same initial space-time point x0. Therefore, we find that
Uðx; x0Þ ¼ Δ1=2

z̄ ðx; x0Þ does not diverge anywhere where
we need to evaluate it for the results in this paper.
Finally, the biscalar Vðx; x0Þ may be expressed (in a

normal neighborhood) in the following form (e.g., [18]):

Vðx; x0Þ ¼
X∞
k¼0

vkðx;x0Þðt − t0 − T0ðx;x0ÞÞk; ð3:15Þ

where the coefficients vk are regular biscalar functions.
Under a Fourier transformation and after taking the high-
frequency limit (Mω ≫ 1), any terms with k > 0 will yield
contributions of order Oð1=ðωMÞÞ, and so the main effect
of Vðx; x0Þ under this limit is given by v0.

B. Later images: Spectroscopy decomposition

After the primary signal arrives at the observer,
subsequent signals will continue arriving due to the fact
that part of the null wavefront emitted by the source orbits
around the black hole an unlimited number of times. These
subsequent signals, however, cannot be described by the
Hadamard form Eq. (3.7) since they do not lie in a normal
neighborhood of the emission point. The technique that we
will use in order to calculate an approximation to the Green
function for points corresponding to the subsequent images
is a spectroscopy decomposition in the complex-frequency
plane.
When deforming the Fourier integral in the complex-

frequency plane, the retarded Green function for a field
propagating on a black-hole background space-time (see,
e.g., [23,29,30] in Schwarzschild and [10] in Kerr) can be
decomposed into three parts:

Gret ¼ GHF þ GQNM þGBC: ð3:16Þ
The first part in Eq. (3.16), GHF, corresponds to an

integral along a high-frequency arc. It is believed [23,30] to
describe the direct pulse that travels near the future light
cone and to vanish after a certain finite time corresponding
to a point not lying beyond the boundary of the normal
neighborhood. Since we will only use the spectral decom-
position (3.16) for points lying outside the normal neigh-
borhood, we can ignore the contribution GHF.
The second part in Eq. (3.16), GQNM, corresponds to a

sum over the residues at the poles (the so-called quasi-
normal mode frequencies) of the Fourier modes of the
Green function. This “quasinormal mode (QNM) part” is
related to wave scattering in the strong-gravity region.
In particular, QNMs in the limit of high-oscillation fre-
quency (i.e., large real part of the QNM frequency or,
equivalently, L≡ lþ 1=2 ≫ 1, where l is the index for
the polar angle eigenvalue in Boyer-Lindquist coordinates)
in Schwarzschild and Kerr space-times are intimately
connected with null geodesics on the photon spheres
(e.g., [31,32]), and there is a one-to-one mapping that
relates conserved quantities of these null geodesics to the
QNM’s frequency, angular eigenvalue, azimuthal quantum
number, etc. Furthermore, it has been shown [10,19,23]
that the QNM part yields the singularity of the Green
function Gretðx; x0Þ whenever the two space-time points x
and x0 are connected via a null geodesic. The null wavefront
emitted at x0 will wrap itself around the black hole an
unlimited number of times. Each time that the wavefront
orbits around the black hole one more time, a null geodesic
which is part of the wavefront will travel outwards to reach
the spatial point x. At each instant of time when a null
geodesic reaches x the retarded Green function Gretðx; x0Þ
diverges. Following this correspondence, it is clear that it is
the high-oscillation-frequency limit of QNMs that we need
to evaluate in order to obtain the null wavefront for the
secondary images (in fact, we expect the high-oscillation-
frequency approximation for the QNM contribution to
work better as the real radiation frequency ω becomes
larger, which is the physical limit of interest in this paper).
In Kerr space-time the “QNM contribution” is derived
in [10] in the high-oscillation-frequency limit and it is
expressed as an asymptotic expansion

GQNMðx; x0Þ ∼
X∞
k¼1

Gkðx; x0Þ: ð3:17Þ

The time-domain functions Gkðx; x0Þ are given by

Gk ¼
( ð−1Þk=2πχeδ½πkþ geðμeÞ�; k even;

ð−1Þðkþ1Þ=2 χoH½−πk−geðμeÞ�
−πðkþ1Þ−goðμoÞ ; k odd;

ð3:18Þ

where μe=o characterize the “shape” of a geodesic connect-
ing x and x0, ge=o are the phase functions and χe=o are the

WAVEFRONT TWISTING BY ROTATING BLACK HOLES: … PHYSICAL REVIEW D 90, 023014 (2014)

023014-7



excitation amplitudes—they are all regular functions of x,
x0 and the parameters of the black hole (their physical
meanings and detailed expressions are given in Sec. V of
[10]). The asymptotic expansion of Eq. (3.17) is valid in
the limit when the space-time points x and x0 are joined
by a null geodesic. Here, k is a positive integer index that
labels the singularities of the Green function at different
times as the wavefront orbits around the black hole. In
Schwarzschild space-time, k is also a label for the number
of times that the null geodesic joining x and x0 has crossed a
caustic and we expect this to still be true in Kerr space-time.
We note that here and throughout this subsection by
“caustic” we mean a space-time point (say, x) where two
or more null geodesics that started off at the same space-
time point (say, x0) meet. This meaning is different from that
generally used in optics, which we define in Sec. V and use
in the rest of the paper, where the optical phase is required to
be stationary. We shall therefore refer to the latter as an
“optical caustic” to differentiate it from the caustic that we
have just defined and that we use in this subsection.
By applying a Fourier transform to the time-domain

functionsGk we find that the even-kmodes scale asOð1Þ in
the frequency domain, whereas the odd-k modes scale as
Oð1=ðωMÞÞ for large-frequency ωM. As mentioned in the
Introduction, we assume the wavelength of the radiation to
be much smaller than the size of the black hole and,
therefore, in this ω ≫ 1=M limit we neglect the odd-k
modes. The total contribution from the even-kmodes in the
frequency domain is just4

Gω
QNM;e ¼

X∞
even k¼2

ð−1Þk=2 πχe
ΩRðμeÞ

eiωT
e
kðx;x0Þ

¼
X∞

even k¼2

ð−1Þk=2Ae
kðx;x0ÞeiωTe

kðx;x0Þ; ð3:19Þ

where ΩR ¼ ΩRðμeÞ is the real part of the QNM frequency
(in the large-L limit) divided by L [32], Ae

k ≡ πχe=ΩRðμeÞ
and Te

k is the value of the Boyer-Lindquist time such that
geðμeÞ ¼ −πk. That is, Te

k corresponds to an approximation
of the time at which the null geodesic that starts at x0 and
passes through k caustics reaches the point x.
The third and last5 of the contributions to the Green

function in Eq. (3.16), GBC, corresponds to the branch cut
of the modes Gω

retðx;x0Þ starting at the origin in the
complex-frequency plane (e.g., [20,29,30]). This contribu-
tion is related to wave scattering by the Coulomb-type

potential and it yields the well-known power-law tail decay
at late times [20,29,33,34]. This part of the Green function
is smooth in the time domain at least after the time when the
first, direct null geodesic has joined x and x0 [20,23,26,35].
Furthermore, any divergence of GBC before the arrival of
the direct null geodesic is purely due to the exponential
Fourier factor and so the contribution in the frequency
domain from the Fourier transform of GBC is of little-oh
order oð1Þ [26]. As a result, we neglect this piece of the
Green function in the high-frequency limit.

IV. EVALUATING THE WAVE PROPAGATION
AND POAM

The analysis in the previous section implicitly assumes
that the wave emission is coherent within any time interval
we are considering, as we have taken the integration lower
bound to be “−∞” in Eq. (3.4). This assumption may not
be astrophysically realistic, because the typical radio tele-
scope’s bandwidth is of the order of GHz, and the time
difference between the direct pulse and all the later pulses
linearly scales with the black-hole mass M, which is of
the order of microseconds if M ∼M⊙ (solar mass). In
particular, for supermassive back holes with masses
≥105M⊙, the coherence time of the wave is much shorter
compared to M, in which case the contributions from the
δ-Dirac distributions in the GQNM are no longer important.
Nevertheless, for the sake of completeness, in the following
analysis we shall consider two limiting cases: the coherence
length of the wave being much longer or shorter than the
black-hole size. We shall find that the POAM spectra that a
distant observer receives are completely different in these
two scenarios.

A. “Infinite” coherence length

With the coherence length much longer than the black-
hole size, the coherent part of the wave that arrives at an
observer can be described by the sum of terms in Eqs. (3.9)
and (3.19). These terms all contain fast-oscillating phase
factors which are proportional to ω, and slowly varying
amplitude factors. From now on we will consider the
observer to be located far away from the black hole and
the source of radiation. The observation plane is orthogonal
to the direction of propagation of the wave, i.e., constant-r
surface (locally a plane), r ¼ rf. For a fixed emitter
location x0, the phase factors T0 and Te

k are just functions
of the observer location x ¼ ðrf; θf;ϕfÞ, in Boyer-
Lindquist coordinates ðr; θ;ϕÞ. We choose a point with
coordinates x0 ¼ ðrf; θ0;ϕ0Þ on the observation plane as
the origin, and expand the phase functions as

TðxÞ ≈ Tðx0Þ þ
∂T
∂θf

����
x0

δθf þ
∂T
∂ϕf

����
x0

δϕf; ð4:1Þ

where x is a point on the observation plane, TðxÞ
generically denotes T0 and Te

k, and from now on we omit

4After the Fourier transformation, the t dependence of μe and
χe is replaced by the specific value of t such that the correspond-
ing δ-Dirac distribution in Eq. (3.18) becomes singular. There-
fore, in the frequency domain they are functions of k, x and x0.

5We note that in Kerr space-time there may be extra branch
cuts in the complex-frequency plane due to the spheroidal
eigenfunctions and eigenvalue but, in that case, we also expect
their Fourier transform to be of order oð1Þ for large frequency.

HUAN YANG AND MARC CASALS PHYSICAL REVIEW D 90, 023014 (2014)

023014-8



x0 from the argument of TðxÞ and from that of the
amplitudes [it is understood in Eq. (4.1) and similar
expressions below that x0 and rf are fixed].
For later convenience, we further define a new coor-

dinate system on the observation plane to be ðx1; x2Þ≡
ðδθf; sin θ0δϕfÞ and we define ζ≡ x1 þ ix2, with its
complex conjugate given by ζ� ¼ x1 − ix2 and its absolute
value by jζj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. The latter is related to the

cylindrical radial coordinate introduced in Sec. II as
ρ ¼ jζjrf. The expansion of the phase in terms of the
new coordinates is just

TðxÞ ≈ Tðx0Þ þ
∂T
∂θf

����
x0

x1 þ
∂T
∂ϕf

����
x0

x2
sin θ0

¼ Tðx0Þ þ
∂T
∂x1

����
x0

x1 þ
∂T
∂x2

����
x0

x2: ð4:2Þ

As the detector is usually far away from the source, the
characteristic values of x1;2 or jζj are of the scale of b=rf
where, as introduced earlier, b is the size of the detector.
In addition to the “high frequency” assumption ωM ≫ 1,
we further assume that

η≡ ωMb=rf ≪ 1; ð4:3Þ

which is equivalent to saying that the instrument size b is
much smaller than the Airy disk size λrf=M ∼ 2πrf=ðωMÞ
of the diffraction pattern. For a given radiation frequency ω,
in order to maximize η, one can either build longer
telescope arrays or target the black holes with the largest
angular sizes M=rf in the sky. The best known super-
massive black-hole candidates would be the one in the
galaxy Messier 87 or Sagittarius A* in our own Galaxy.
Take, for example, the millimeter-wavelength sources near
Sagittarius A* if the size of the telescope array is compa-
rable to the Earth radius, i.e., b ∼ 6 × 103 km, the resulting
η is about 0.6.
Under the above assumptions, we can expand the phase

factors as

eiωTðxÞ ≈ eiωTðx0Þ
�
1þ iω

�∂T
∂x1

����
x0

x1 þ
∂T
∂x2

����
x0

x2

��
: ð4:4Þ

It is straightforward to show that Eq. (4.4) only generates
l ¼ �1 components in the POAM spectrum (it also
generates an l ¼ 0 component but it has zero orbital
angular momentum), because of the linear dependence in
x1;2. If we included higher order terms in x1;2 in the power
series expansion in Eq. (4.2), the jlj ≥ 2 components would
also show up in the POAM spectrum, but with weaker
spectra weights since

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wl=w1

p
∝ ηjlj−1 ≪ 1, ∀jlj ≥ 2.

Therefore, in the following analysis we focus on the l ¼ �1
components of the spectrum.

Combining Eqs. (3.9), (3.19), (2.9) and (3.6) and
Eq. (4.4) in Eq. (3.6), we obtain the following expression
for ψω;�1:

ψω;1 ¼
iNjζjω

2
A0ðx0ÞeiωT0ðx0Þ ∂T0

∂ζ
����
x0

þ iNjζjω
2

X∞
evenk ¼2

ð−1Þk=2Ae
kðx0ÞeiωTe

kðx0Þ ∂Te
k

∂ζ
����
x0

;

ð4:5Þ

ψω;−1 ¼ ψω;1ðζ → ζ�Þ; ð4:6Þ

where A0ðx0Þ and Ae
kðx0Þ are approximations to A0ðxÞ and

Ae
kðxÞ, respectively (omitting the argument x0). For any

real-valued function Tðx1; x2Þ ¼ Tðζ; ζ�Þ, we notice that
the following relation always holds:

�∂T
∂ζ

��
¼ ∂T

∂ζ� : ð4:7Þ

1. Schwarzschild black hole

In the case that the host black hole is a Schwarzschild
black hole, the phase functions T0 and Te

k are symmetric
with respect to the plane spanned by the emitter, the center
of the black hole and the receiver. Due to this mirror
symmetry, the function TðxÞ in Eq. (4.2) only depends on
one variable, which is the projection of ðx1; x2Þ onto the
mirror-symmetry plane—see Fig. 2. This one-parameter
dependence directly leads to the finding that all the
complex numbers ∂T=∂ζ in Eq. (4.5) share the same
argument in the complex plane, i.e., the ratio between
any two of these numbers is real. Combining this fact with
Eq. (4.7), it is straightforward to show that jψω;1j ¼ jψω;−1j,
and similarly for the POAM-spectrum weights with jlj ≥ 1.
In other words, Schwarzschild POAM spectra are always
symmetric.

FIG. 2 (color online). An illustration of the relative positions of
the emitter E (at x0), the origin of the observation plane O (at x0)
and a Schwarzschild black hole centered at the point C. The
arrow points to a point with coordinates ðx1; x2Þ on the obser-
vation plane. The triangle that contains the points E;O; C lies on
the mirror-symmetry plane.

WAVEFRONT TWISTING BY ROTATING BLACK HOLES: … PHYSICAL REVIEW D 90, 023014 (2014)

023014-9



2. Kerr black hole

It is however reasonable to expect asymmetric POAM
spectra for radiation sourced near generic Kerr black holes,
as originating from the interference between the direct
signal and the secondary signals. In the geometrical optics
picture, in order to generate nonzero POAM along the
optical axis, the propagation directions of these rays must
not lie on the same plane6 (this condition is not satisfied in
the case of a Schwarzschild black hole) and the rays with
constant phase have to offset each other at the places where
a detection is made. The first condition is satisfied if
∂T0=∂ζ and ∂Te

k=∂ζ do not have the same argument in the
complex plane, and the second condition is true when
ωT0ðx0Þ and ωTe

kðx0Þ are not in phase. It is generic to meet
both conditions for emitters near a rotating black hole.
Since, on dimensional grounds, the phase functions T0

and Te
k are proportional to M, we find that ψω;�1 ∼ jζjωM

and
ffiffiffiffiffiffiffiffi
w�1

p ∼ ωMb=rf ¼ η for small η. In order to illustrate
this asymmetry, we choose the emitter’s and receiver’s
locations to be, respectively, x0 ¼ ðri; θi;ϕiÞ ¼ ð8M;
π=2; 0Þ and x ¼ ðrf; θf;ϕfÞ ¼ ð104M; 2π=3; 0Þ, the radi-
ation frequency to be ω ¼ 4π=M, and, using the techniques
described in Sec. III we calculate Ae

k, A0, ψω;�1 and w�1.
In the top Fig. 3 we plot

ffiffiffiffiffiffiffiffi
w�1

p
=η with varying black-hole

spin a. This plot shows that the spectral asymmetry
j ffiffiffiffiffiffi

w1

p − ffiffiffiffiffiffiffiffi
w−1

p j is of the order of 10−2η. In making this
plot, we only kept the primary pulse and the secondary
pulse with k ¼ 2 [note geðμeÞ ¼ −πk does not have a
solution for k ¼ 0 in this case, and the summation in
Eq. (4.5) starts from k ¼ 2]. In the bottom of Fig. 3 we plot
Ae
k¼2=A0 with varying black-hole spin a. This plot shows

that the secondary images can be almost as bright as the
primary image: Ae

k=A0 ¼ Oð0.1Þ, depending on the emitter’s
and receiver’s locations, as well as the spin of the black hole.
Although it is unnatural to expect the coherence length of

the wave to be longer than the size of astrophysical black
holes (a coherence length which is comparable to the size of
a solar-mass black hole requires the detection bandwidth to
be below MHz; for supermassive black holes, such as
Sagittarius A*, the corresponding bandwidth is below
0.1 Hz), the primary and secondary signals from the
same-time emission are still coherent with each other,
and they arrive at Earth at different times. This means that
there is nonzero correlation within the time-series data of
the field hEðtÞEðtþ τ0Þi (where E is the electromagnetic
field and we here neglect its polarization), if we set the
delay time τ0 to be the time lag between the direct signal
and other secondary signals [36]. The significance of this
correlation should be comparable to Ae

k=A0, which could be
at least of order Oð0.1Þ.

B. Incoherent emission

In this subsection, we consider a more realistic scenario
where the coherence length of the emission is much shorter
than the size of the black hole. In this case, the signal has a
contribution from the primary pulse that travels on the light
cone and from the coherent follow-ups [which here they
correspond to the tail Vðx; x0Þ, not to the secondary pulses]
which lag only a short amount of time (compared to the
characteristic time lag between different pulses) after the
primary pulse.
Because of the finite-coherence effect, we shall only

consider the contribution from the primary pulse and the
follow-up signal described by Vðx; x0Þ. Physically, this is
justified by noticing that the part of the follow-up signal
which lags far behind the primary signal contributes insig-
nificantly to the total coherent wave. Mathematically, this
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FIG. 3 (color online). Top figure:
ffiffiffiffiffiffi
w1

p
=η (blue solid line) andffiffiffiffiffiffiffiffi

w−1
p

=η (red dashed line) for different black-hole spins. The
emitter and the receiver are respectively located at ðri; θi;ϕiÞ ¼
ð8M; π=2; 0Þ and ðrf; θf;ϕfÞ ¼ ð104M; 2π=3; 0Þ. For illustration
purposes, ω is chosen to be 4π=M to avoid too many oscillations.
The spectral asymmetry vanishes for Schwarzschild black hole
(a ¼ 0), and oscillates as varying black-hole spin, because of the
changing phase difference between the primary image and the
secondary image k ¼ 2. Bottom figure: the ratio between Ae

k¼2

and A0 for the same parameter settings.

6The propagation direction of these rays is not along the r axis,
because the phase functions Tðx1; x2Þ of these rays are not
constant on the celestial sphere.
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may be achieved, for example, by assigning a small
imaginary part to the wave frequency, i.e., replacing ω by
ωþ iϵ with ϵ > 0, and, at the end of the calculation, taking
the limit ϵ → 0þ. As a result of this operation, the coherent
wave is evaluated to be

ψωðxÞ ≈ N

�
A0ðx;x0Þ þ v0ðx;x0Þ

iω

�
e−iωT0 : ð4:8Þ

In order to fully incorporate the finite-coherence effect,
the monochromatic emission from the source should be
generalized to one with a frequency spectrum. In this case,
the wave arriving at the distant observer would be

ΨðxÞ ¼
Z

dωfðωÞψωðxÞe−iωt; ð4:9Þ

where hfðωÞf�ðω0Þi ¼ 1=ð2πÞSωδðω − ω0Þ (hi stands for
the ensemble average in random process) and Sω is the
normalized frequency-spectra density of the source:R
dωSω ¼ 1. In the following analysis, however, we shall

stick to the monochromatic approximation in discussing
the effect of interference—it is straightforward to include
multiple frequencies using Eq. (4.9), and it turns out that
the monochromatic case already captures the main physics
(about POAM spectrum) here.
The spectra components ψω;0 [which plays a part via the

overall normalization I in Eq. (2.11)] and ψω;�1 can be
obtained by performing the angular integration described in
Eq. (2.9), thus yielding

ψω;0 ≈ N

�
A0ðx0Þ −

v0
iω

�
eiωT0 ;

ψω;þ1 ≈
iNjζjω

2

�
A0 −

v0
iω

�
eiωT0

∂T0

∂ζ
����
x0

þ Njζj
2

eiωT0
∂A0

∂ζ
����
x0

; ð4:10Þ

ψω;−1 ≈ ψω;1ðζ → ζ�Þ: ð4:11Þ

The above expressions show that in the large-frequency
limit these tail effects are subdominant to those from
the direct wavefront. That is, ψω;�1 are still dominated
in the high-frequency limit by the direct pulse that travels
on the light cone, with a magnitude of order jζjωM.
However, the term with ∂T0=∂ζ in Eq. (4.10) and the
corresponding term in Eq. (4.11) contribute evenly to the
magnitude of ψω;�1 or w�1. Therefore, the POAM spectral
asymmetry arises from the beating between the amplitude
and phase variations of the direct signal, the latter variation
being suppressed by a 1=ðωMÞ factor. In other words,
although the spectrum weight is still

ffiffiffiffiffiffiffiffi
w�1

p ∼ η, the spectral
asymmetry scales as j ffiffiffiffiffiffi

w1

p − ffiffiffiffiffiffiffiffi
w−1

p j ∼ b=rf for small η.
In fact, this net POAM is expected to originate from

the frame-dragging effect of rotating black holes, and it
vanishes in a Schwarzschild background. As suggested by
Eq. (4.10), if the amplitude modulation does not follow
the same direction as the phase modulation on the celestial
sphere, these “unbalanced” rays will generate a nonzero
contribution to the angular momentum along the r axis.
From another point of view, the black-hole rotation breaks
the mirror symmetry in detection that we discussed for
Schwarzschild black holes, and the beating of phase and
amplitude modulations introduces a net POAM, even
though it is extremely small.
For millimeter-wavelength sources near Sagittarius A*,

even if the size of the telescope array is of the scale of the
Earth radius 6 × 103 km, the spectral asymmetry b=rf is of
the order of 10−14 which is way too weak to be measured.
On the other hand, the pure spectrum weights

ffiffiffiffiffiffiffiffi
w�1

p ∼ η are
of the order of 0.6. Therefore, it seems feasible that these
l ≠ 0 spectrum components could be resolved by coherent
detection by spatially separated telescopes. However, as we
recall from the discussion in Sec. II, the symmetric part of
the POAM spectrum is degenerate with the tilt angle of the
observation plane. In order to extract information about
the black hole from the POAM measurement, it might be
necessary to use the asymmetric part of the spectrum,
which is extremely small in this case.
We note that the result we have obtained in this subsection

of weak POAM-spectrum asymmetry is different from that
obtained in [8]. The reason is that, as mentioned, the physical
settings are different, since in [8] they consider an extended
source, as opposed to our pointlike source, while they
assume the emission from the whole accretion disk around
a black hole to be spatially coherent. Thus, their main
asymmetry effect comes from the interference between the
radiation from different parts of the disk, as opposed to it
being due to the light-twisting effect that we have studied
in this subsection (or to interference between different rays
emitted from the same point and arriving at different times
as we saw in the previous subsection).

V. RECEIVERS NEAR AN OPTICAL CAUSTIC

The analysis in Sec. IV is invalid if the receiver is located
close to an optical caustic (defined below). At such a point,
the Hadamard form Eq. (3.7) for the Green function and
the high-oscillation-frequency asymptotics of Eq. (3.17)
for the QNM contribution to the Green function both fail.
As we shall show below, the wave intensity is amplified
near an optical caustic, which increases the detectability of
the source. While for a pointlike source7 near a black hole
we expect the chance of Earth being located near an optical
caustic point of its radiation to be small, we expect the
chances to be significantly higher if the source is extended.
It still remains physically interesting to understand the

7It could be star, or a flare with extraordinary brightness in the
accretion disk.
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wave near an optical caustic and to exploit the correspond-
ing POAM spectrum.
In the following analysis, we shall heavily apply the

techniques and results of catastrophe optics, which is
expounded in the excellent text by Berry and Upstill [37].
Interested readers can also find detailed numerical inves-
tigations of the optical caustic structure in Kerr space-time in
[38], and its relation with x-ray variability in [39]. We now
briefly introduce the main concepts and terminology.
At a given distance, the receiver’s sky location can be

characterized by the two-parameter family ðθf;ϕfÞ or
ðx1; x2Þ, which are often referred to as control parameters
in catastrophe optics and which we denote by Ci, ∀i. In its
turn, the angles of the emitted rays are usually referred to as
state variables and we denote them generically by sj, ∀j.
The “action function” T0ðx;x0Þ [see Eq. (3.9)], when
viewed as a function of the null rays (for fixed x and
x0) is generally a multivalued function. It can be made into a
single-valued function by including a functionality on the
state variables (which allow us to uniquely characterize a
null ray). Such single-valued function is called a “generat-
ing function” and we denote it by Φðsj;CiÞ. Null rays are
those paths that extremize the generating function, i.e., such
that ∂Φ=∂sj ¼ 0, ∀j. Optical caustics, then, correspond to
singularities of this gradient map. A structurally stable
singularity is a singularity of the above gradient map such
that if it is perturbed, it is related to the new singularity by
a diffeomorphism of Ci. For example, the singularities or
optical caustics in Schwarzschild space-time are structur-
ally unstable, as they are susceptible to small perturbations
of the space-time. However, a fold line or a cusp point
(described below and illustrated in Fig. 4) in Kerr space-
time are generically stable singularities. As explained in
[37], all the structurally stable singularities can be classified
into different equivalence classes called catastrophes, with
a generating function associated to each class.

A. Cusp point

It turns out that the only catastrophe with a two-
dimensional control-parameter space has the following
generating function:

Φðs;C1; C2Þ ¼
s4

4
þ s2

2
C2 þ sC1; ð5:1Þ

where s refers to the state variable that matters for the
singularity classes (the other state variable does not affect
the singularity class) and C1;2 are the control variables. In
the case we are considering, C1;2 can be mapped to x1;2
under proper rotation and rescaling (here, C1;2 and x1;2 are
all dimensionless, so the rescaling factors should also be
dimensionless). The singularity point at C1;2 ¼ 0 is usually
called a “cusp” in catastrophe theory. It is also worth noting
that one can always add any additional independent state
variable s0, with associated generating functions that are at
most quadratic (for example s02), and it does not affect
the singularity structure. With this generating function, the
wave function8 near a cusp is approximately

ψωðC1; C2Þ ∝
ffiffiffiffi
ω

p Z
∞

−∞
dseiωΦðs;C1;C2Þ: ð5:2Þ

The proportionality factor in Eq. (5.2) is independent of ω;
we will not write out such proportionality factor throughout
this section. See Fig. 5 for an illustration of the wave
function near a cusp point. In order to extract the frequency
dependence of ψω, we make a transformation of the
variables s and C1;2:

FIG. 4 (color online). An illustration of potential optical caustic
structure on the celestial sphere/observation plane, due to an
emission source EE near a spinning black hole centered at C.
Fold lines meet each other at a cusp point.

�10 0 10
�10

0

10

C'2

C
' 1

FIG. 5 (color online). A contour plot of the integral in Eq. (5.4)
(which is proportional to the wave function near a cusp point),
where a darker region corresponds to a region with a higher wave
amplitude and where the axis corresponds to generic rescaled
control parameters C0

1;2.

8Strictly speaking, ψω in Eq. (5.2) should be referred to as the
spatial part of the wave function, but given the simple relation
Eq. (3.6), in this section we will loosely refer to it as the wave
function itself.
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s0 ≡ ω1=4s; C0
1 ≡ ω3=4C1; C0

2 ≡ ω1=2C2: ð5:3Þ

Then ψω becomes

ψωðC1; C2Þ ∝ ω1=4

Z
∞

−∞
ds0eiΦðs0;C0

1
;C0

2
Þ; ð5:4Þ

which implies that the amplitude of the wave is amplified
by a ðωMÞ1=4 factor near a cusp. For millimeter-wavelength
sources near a supermassive black hole with mass com-
parable to Sagittarius A*, this is an order of 107 amplifi-
cation in the intensity.
We can also determine the POAM spectrum from

Eq. (5.2) or Eq. (5.4). Let us denote by ðC0
1; C

0
2Þ the

control variables corresponding to the location of the origin
of the telescope array. We then expand the control variables
as C1 ¼ C0

1 þ δC1; C2 ¼ C0
2 þ δC2. Correspondingly, the

wave function on the observation plane can be expanded as

ψω ∝ ω1=4

Z
∞

−∞
ds0

�
1þ i

∂Φ
∂C0

1

δC0
1 þ i

∂Φ
∂C0

2

δC0
2

�
eiΦ0 ;

ð5:5Þ

where we have defined Φ0 ≡ Φðs0;C00
1; C

00
2Þ.

Performing the POAM decomposition with respect to the
above wave function, we find that the main contribution
comes from the term with δC0

1 in Eq. (5.5), which givesffiffiffiffiffiffiffiffi
w�1

p ∼ ðωMÞ3=4b=rf. The interference between the terms
with δC0

2 and with δC0
1 generates the asymmetry in the

POAM spectrum, which is j ffiffiffiffiffiffi
w1

p − ffiffiffiffiffiffiffiffi
w−1

p j ∼ ðωMÞ1=2b=rf.
For a millimeter-wavelength source near Sagittarius A*, if
Earth happens to be close to a cusp point in the celestial
sphere, the inferred POAM spectral asymmetry is about
10−7, which is still too weak to be measured.

B. Fold line

There is another possibility, perhaps with a higher
chance than a cusp, which is that Earth is located close
to the singularity described by a fold line. This happens
when only one of the two coordinates on the celestial
sphere is the “control variable,” and the phase is linear in
the other variable. According to catastrophe theory, there is
only one catastrophe that has a one-dimensional control
space, and its characteristic polynomial is given by

Φðs;C1Þ ¼
s3

3
þ sC1; ð5:6Þ

with the line associated with C1 ¼ 0 usually referred to as a
“fold” line. Let us denote the coordinate along the fold line
as C2 (for a specific value of C2 we have a fold point, and
as the value of C2 varies continuously we have a fold line)
and the generating function along the fold line as ΘðC2Þ.
Then the wave function near a fold line is

ψωðC1; C2Þ ∝
ffiffiffiffi
ω

p Z
∞

−∞
dseiω½Φðs;C1ÞþΘðC2Þ�

¼ ω1=6

Z
∞

−∞
ds0ei½Φðs0;C0

1
ÞþωΘðC2Þ�

¼ 2πω1=6AiðC0
1ÞeiωΘðC2Þ; ð5:7Þ

where AiðxÞ denotes the Airy function which is real
valued—see Fig. 6 for an illustration. The new variables
s0 and C0

1 are here defined as

s0 ≡ ω1=3s; C0
1 ≡ ω2=3C1: ð5:8Þ

We can see from Eq. (5.7) that the wave intensity is
amplified by a factor of ðωMÞ1=3 near a fold line, which is
brighter than a generic point on the celestial sphere, but
dimmer than a cusp point. Similar to the analysis performed
near a cusp point, we expand the celestial coordinates in the
observation plane as C1 ¼ C0

1 þ δC1; C2 ¼ C0
2 þ δC2, and

the wave function can also be expanded as

ψωðC1; C2Þ − ψωðC0
1; C

0
2Þ ∝ 2π×

ω1=6

�∂AiðC0
1Þ

∂C0
1

δC0
1 þ i

∂Θ
∂C2

δC2AiðC0
1Þ
�
eiωΘ: ð5:9Þ

Correspondingly, we obtain the strength of
ffiffiffiffiffiffiffiffi
w�1

p
to be

proportional to η, which comes from the phase variation
along the fold line; the asymmetry j ffiffiffiffiffiffi

w1

p − ffiffiffiffiffiffiffiffi
w−1

p j is
directly proportional to ðωMÞ2=3b=rf and it is attributed
to the phase beating between Φ and Θ. For a millimeter-
wavelength source near Sagittarius A*, if Earth happens to
be close to the fold line in the celestial sphere, the inferred
POAM spectral asymmetry is about 10−5.
As we have already seen from the wave behavior near a

fold line or a cusp point, the generating functions are not
proportional to ω along the control variables’s direction,

10 8 6 4 2 0 2 4
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i
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FIG. 6 (color online). Plot of the Airy function, which describes
the wave function dependence on a control variable C near a fold
point via Eq. (5.7).
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and the amplitudes usually oscillate fast. This happens
because a family of light rays merges with each other at the
optical caustic, and their interference gives these unusual
frequency dependences. It is the same merging interference
which also generates the net POAM shown here.

VI. CONCLUSION

In this work, we have studied a wave that is emitted near
a rotating black hole and eventually reaches a distant
observer. We demonstrated that measuring the distortion
of the wavefront provides an independent channel for
obtaining information about the source, in addition to
light bending or other spectroscopic measurements. In
order to characterize the wavefront distortion, we have
adopted the previously established POAM decomposition
and we have applied it to the wave, which we have
computed using the retarded Green function in Kerr
space-time. While the POAM spectra of waves scattered
by Schwarzschild black holes are shown to be always
symmetric, any rotation in the host black hole generically
generates asymmetry in the POAM spectrum. Since the
symmetric part of the spectrum is degenerate with the tilt
angle of the observation plane, we have concluded that it
is more likely to extract information about the source from
the asymmetric part.
The resulting POAM spectrum strongly depends on the

temporal coherence of the emission source and the sky
location of the receiver. On the one hand, we found that the
main contribution to the symmetric spectrum weight comes
from the phase variation in the sky of the direct signal. For
generic receiver locations, the magnitude of the square root
of the weight

ffiffiffiffiffiffiffiffi
w�1

p
is of order of η, which is roughly the

ratio between the size of the telescope and the Airy disk
size of the image, and it could be as large as 0.6 for
millimeter-wavelength sources near Sagittarius A*. If the
receiver is located near a cusp point on the sky, we have
shown, using techniques developed in catastrophe optics,
that

ffiffiffiffiffiffiffiffi
w�1

p ∼ η=ðωMÞ1=4; if the receiver is near a fold line
in the sky, we have shown that

ffiffiffiffiffiffiffiffi
w�1

p ∼ η instead.

On the other hand, we have shown that the asymmetric
part of the POAM spectrum could be generated by the
beating between phase and amplitude variation of the
primary signal, or by the beating between the phase
variation of the primary and secondary signals. This beat-
ing reflects the physical origin of nonzero POAM, either
by coherently combining rays misaligned optical axis, or by
the interference of adjacent light bundles. Nevertheless, we
find that the spectral asymmetry is generally too weak to be
measured. This is in part due to the large distances between
Earth and astrophysical black holes, which serve as strong-
gravity lenses or “phase plates.” The best candidate for
detection might be an extended region in the accretion disk
near Sagittarius A* such that Earth lies near a fold line of
its radiation. In this case, the spectral asymmetry for the
jlj ¼ 1 mode can be as large as 10−5. However, even with
advanced techniques available to cancel the effects from
atmosphere turbulence, e.g., adaptive optics methods, this
signal is still far below the sensitivity of current radio
telescopes, such as millimeter-wavelength very long base-
line interferometry arrays.

ACKNOWLEDGMENTS

We thank Barry Wardell, Latham Boyle, Avery
Broderick and Haixing Miao for many helpful discussions.
H. Y. thanks Yanbei Chen for introducing this project and
providing valuable comments on the manuscript. This
research is funded by NSF Grants No. PHY-1068881
and No. PHY-1005655, CAREER Grants No. PHY-
0956189 and No. PHY-1055103, NASA Grant
No. NNX09AF97G, the Sherman Fairchild Foundation,
the Brinson Foundation, and the David and Barbara Groce
Startup Fund at Caltech. H. Y. acknowledges supports from
the Perimeter Institute for Theoretical Physics and the
Institute for Quantum Computing. M. C. thanks the
Perimeter Institute for Theoretical Physics for hospitality
and financial support. Research at Perimeter Institute is
supported by the Government of Canada and by the
Province of Ontario though the Ministry of Research
and Innovation.

[1] C. Tamm and C. O.Weiss, J. Opt. Soc. Am. B 7, 1034 (1990).
[2] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature

(London) 412, 313 (2001).
[3] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold,

and J. S. Courtial, Phys. Rev. Lett. 88, 257901 (2002).
[4] G. Molina-Terriza, J. P. Torres, and L. Torner, Phys. Rev.

Lett. 88, 013601 (2001).
[5] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pasko,

S. Barnett, and S. F. Arnold, Opt. Express 12, 5448 (2004).

[6] J. Y. Vinet, Phys. Rev. D 82, 042003 (2010).
[7] M. Harwitt, Astrophys. J. 597, 1266 (2003).
[8] F. Tamburini, B. Thide, G. M. Terriza, and G. Anzolin, Nat.

Phys. 7, 195 (2011).
[9] E. Poisson, A. Pound, and I. Vega, Living Rev. Relativity

14, 7 (2011).
[10] H. Yang, F. Zhang, A. Zimmerman, and Y. Chen, Phys. Rev.

D 89, 064014 (2014).
[11] N. M. Elias II, Astron. Astrophys. 492, 883 (2008).

HUAN YANG AND MARC CASALS PHYSICAL REVIEW D 90, 023014 (2014)

023014-14

http://dx.doi.org/10.1364/JOSAB.7.001034
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.88.013601
http://dx.doi.org/10.1103/PhysRevLett.88.013601
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1103/PhysRevD.82.042003
http://dx.doi.org/10.1086/378623
http://dx.doi.org/10.1038/nphys1907
http://dx.doi.org/10.1038/nphys1907
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.1103/PhysRevD.89.064014
http://dx.doi.org/10.1103/PhysRevD.89.064014
http://dx.doi.org/10.1051/0004-6361:200809791


[12] K. S. Thorne and R. D. Blandford, Modern Classical Phys-
ics: Optics, Fluids, Plasmas, Elasticity, Relativity, and
Statistical Physics (Princeton University Press, Princeton,
NJ, 2014).

[13] A. E. Siegman, Lasers (University Science Books,
Sausalito, CA, 1986), Chap. 16.

[14] B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman,
T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and
R. Khamitova, Phys. Rev. Lett. 99, 087701 (2007).

[15] A. E. E. Rogers, S. S. Doeleman, and J. M. Moran, Astron.
J. 109, 1391 (1995).

[16] A. Broderick (private communication).
[17] A. C. Ottewill and B. Wardell, Phys. Rev. D 84, 104039

(2011).
[18] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.

Rev. D 79, 124044 (2009).
[19] S. R. Dolan and A. C. Ottewill, Phys. Rev. D 84, 104002

(2011).
[20] M. Casals and A. Ottewill, Phys. Rev. Lett. 109, 111101

(2012).
[21] A. Zenginoglu and C. R. Galley, Phys. Rev. D 86, 064030

(2012).
[22] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.

Rev. D 79, 124043 (2009).
[23] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.

Rev. D 88, 044022 (2013).

[24] B. Wardell, C. R. Galley, A. Zenginoglu, M. Casals, S. R.
Dolan, and A. C. Ottewill, Phys. Rev. D 89, 084021
(2014).

[25] F. G. Friedlander, The Wave Equation on a Curved Space-
Time (Cambridge University Press, Cambridge, England,
1975).

[26] M. Casals and A. Ottewill, Phys. Rev. D 86, 024021 (2012).
[27] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman and Co., San Francisco, 1973).
[28] M. Casals and B. C. Nolan, Phys. Rev. D 86, 024038

(2012).
[29] E.W. Leaver, Phys. Rev. D 34, 384 (1986).
[30] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,

Phys. Rev. D 52, 2118 (1995).
[31] B. Mashhoon, Phys. Rev. D 31, 290 (1985).
[32] H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman,

Z. Zhang, and Y. Chen, Phys. Rev. D 86, 104006 (2012).
[33] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[34] S. Hod, Phys. Rev. Lett. 84, 10 (2000).
[35] M. Casals and A. Ottewill, Phys. Rev. D 87, 064010

(2013).
[36] L. Boyle and M. Russo, arXiv:1110.2789.
[37] M. V. Berry and C. Upstill, in Progress in Optics, edited by

E. Wolf (Elsevier, New York, 1980), Vol. 18.
[38] V. Bozza, Phys. Rev. D 78, 063014 (2008).
[39] K. Rauch and R. Blanford, Astrophys. J. 421, 46 (1994).

WAVEFRONT TWISTING BY ROTATING BLACK HOLES: … PHYSICAL REVIEW D 90, 023014 (2014)

023014-15

http://dx.doi.org/10.1103/PhysRevLett.99.087701
http://dx.doi.org/10.1086/117371
http://dx.doi.org/10.1086/117371
http://dx.doi.org/10.1103/PhysRevD.84.104039
http://dx.doi.org/10.1103/PhysRevD.84.104039
http://dx.doi.org/10.1103/PhysRevD.79.124044
http://dx.doi.org/10.1103/PhysRevD.79.124044
http://dx.doi.org/10.1103/PhysRevD.84.104002
http://dx.doi.org/10.1103/PhysRevD.84.104002
http://dx.doi.org/10.1103/PhysRevLett.109.111101
http://dx.doi.org/10.1103/PhysRevLett.109.111101
http://dx.doi.org/10.1103/PhysRevD.86.064030
http://dx.doi.org/10.1103/PhysRevD.86.064030
http://dx.doi.org/10.1103/PhysRevD.79.124043
http://dx.doi.org/10.1103/PhysRevD.79.124043
http://dx.doi.org/10.1103/PhysRevD.88.044022
http://dx.doi.org/10.1103/PhysRevD.88.044022
http://dx.doi.org/10.1103/PhysRevD.89.084021
http://dx.doi.org/10.1103/PhysRevD.89.084021
http://dx.doi.org/10.1103/PhysRevD.86.024021
http://dx.doi.org/10.1103/PhysRevD.86.024038
http://dx.doi.org/10.1103/PhysRevD.86.024038
http://dx.doi.org/10.1103/PhysRevD.34.384
http://dx.doi.org/10.1103/PhysRevD.52.2118
http://dx.doi.org/10.1103/PhysRevD.31.290
http://dx.doi.org/10.1103/PhysRevD.86.104006
http://dx.doi.org/10.1103/PhysRevD.5.2419
http://dx.doi.org/10.1103/PhysRevLett.84.10
http://dx.doi.org/10.1103/PhysRevD.87.064010
http://dx.doi.org/10.1103/PhysRevD.87.064010
http://arXiv.org/abs/1110.2789
http://dx.doi.org/10.1103/PhysRevD.78.063014
http://dx.doi.org/10.1086/173625

