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We discuss a nonlocal modification of gravity obtained adding a term m2R□−2R to the Einstein-Hilbert
action. We find that the mass parameter m only affects the nonradiative sector of the theory, while the
graviton remains massless, there is no propagating ghostlike degree of freedom, no vDVZ discontinuity,
and no Vainshtein radius below which the theory becomes strongly coupled. For m ¼ OðH0Þ the theory
therefore recovers all successes of GR at solar system and lab scales, and only deviates from it at
cosmological scales. We examine the cosmological consequences of the model and we find that it
automatically generates a dynamical dark energy and a self-accelerating evolution. After fixing our only
free parameter m so to reproduce the observed value of the dark energy density today, we get a pure
prediction for the dark energy equation of state, wDE ≃ −1.14. This value is consistent with the existing
data, and could also resolve the possible tension between the Planck data and local measurements of the
Hubble parameter.
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I. INTRODUCTION

The experimental observation of the accelerated expan-
sion of the Universe [1,2] has stimulated an intense search
for modifications of General Relativity (GR) at cosmo-
logical scales. The construction of a consistent infrared
deformation of GR turns out however to be extremely
challenging. A natural way to proceed is to introduce a
mass scalem of the order of the present value of the Hubble
parameter H0. However such attempts must face a number
of difficulties, related to the possible appearance of new
ghostlike degrees of freedom (or of ghostlike excitations
over nontrivial backgrounds), the appearance of classical
or quantum strong coupling regimes, potential problems
with causality, while at present it is also unclear whether
acceptable cosmological solutions emerge (see [3,4] for
recent reviews).
In a recent series of papers [5–9] our group has proposed

an approach in which a mass parameter enters the theory
as the coefficient of a suitable nonlocal term. At the level
of the general idea, our approach was inspired by the
observation that nonlocal operators provide a way of
writing a mass term, both in massive electrodynamics
and in linearized massive gravity, without breaking the
gauge invariance of the massless theory [10] and they can
also play an important cosmological role through the
degravitation mechanism [11]. In practice, this general
idea can be implemented in different ways. The one closest
to the original degravitation idea involves the addition of a
term m2ð□−1GμνÞT to the Einstein equations [5]. The
superscript T denotes the extraction of the transverse part,
which is necessary for consistency with energy-momentum
conservation (see also [12] for related ideas). It was then

realized in [6,7,13] that such tensor nonlocalities generate
instabilities in the cosmological evolution. Similar con-
clusions were obtained in [14] studying a nonlocal
model with a term of the form Rμν□

−1Rμν in the action.
In Refs. [6–9] we have then turned our attention to a model
in which a term m2ðgμν□−1RÞT is added to the Einstein
equations, and we found that it passes a number of tests
of theoretical consistency, and has an interesting cosmo-
logical phenomenology. In this paper we turn our attention
to a related model, in which again the □

−1 operator acts
on the Ricci scalar, but which is defined by the nonlocal
action

SNL ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

d − 1

4d
m2R

1

□
2
R

�
; ð1Þ

where d is the number of spatial dimensions and the factor
ðd − 1Þ=4d is a convenient normalization of the mass
parameter m. We will see that this model is quite interest-
ing, both at the theoretical level and for its cosmological
consequences. Nonlocal cosmological models of different
type, not involving a mass scale, have also been studied
recently [14–31].

II. EQUATIONS OF MOTIONS

The equations of motion of the theory can be obtained
introducing two scalar fields

U ¼ −□−1R; ð2Þ
and

S ¼ −□−1U ¼ □
−2R; ð3Þ
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and rewriting Eq. (1) as

SNL ¼ ð16πGÞ−1
Z

ddþ1x
ffiffiffiffiffiffi
−g

p

× ½Rð1 − μSÞ − ξ1ð□U þ RÞ − ξ2ð□Sþ UÞ�; ð4Þ

where we introduced μ ¼ ½ðd − 1Þ=ð4dÞ�m2, and ξ1; ξ2 are
two Lagrange multipliers. The variation is then straightfor-
ward and gives (adding also the matter action)

Gμν ¼ μKμν þ 8πGTμν; ð5Þ

□U ¼ −R; □S ¼ −U; ð6Þ

where

Kμν ¼ 2SGμν − 2∇μ∂νS − 2Ugμν þ gμν∂ρS∂ρU

− ð1=2ÞgμνU2 − ð∂μS∂νU þ ∂νS∂μUÞ: ð7Þ

It is straightforward to check explicitly that ∇μKμν ¼ 0, as
it should, since it has been derived from a diff-invariant
action.

III. RADIATIVE AND NONRADIATIVE
DEGREES OF FREEDOM

A crucial point, which we already discussed in detail in
[6,8] (see also the related discussion in [26,31–33]), is that,
despite the appearance of a Klein-Gordon operator, Eq. (6)
do not describe radiative degrees of freedom. This can be
understood as follows. In general, an equation such as
□U ¼ −R is solved by U ¼ −□−1R, where

□
−1R ¼ UhomðxÞ −

Z
ddþ1x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
Gðx; x0ÞRðx0Þ;

ð8Þ
with UhomðxÞ any solution of □Uhom ¼ 0, and Gðx; x0Þ a
Green’s function of the □ operator. The choice of the
homogeneous solution is part of the definition of the □−1

operator and therefore of the original nonlocal theory. For
instance, in a FRW background, on a scalar function fðtÞ,
we have □f ¼ −a−d∂0ðad∂0fÞ. Then one immediately
verifies that a possible inversion of the □−1 operator is
given by

ð□−1RÞðtÞ ¼ −
Z

t

t�
dt0

1

adðt0Þ
Z

t0

t�
dt00adðt00ÞRðt00Þ; ð9Þ

where t� is some initial value of time, that can be taken for
instance deep into the radiation dominance (RD) epoch
(observe that, since in RD the Ricci scalar R vanishes, this
definition is independent of the exact value of t�, as long as
it is deep in RD). This definition corresponds to a specific
choice of Gðx; x0Þ and UhomðxÞ in Eq. (8) and, in particular,

with this definition for t > t� we have U ¼ 0 if R ¼ 0, so it
corresponds to setting UhomðtÞ ¼ 0. In contrast, in the local
formulation based on Eqs. (5) and (6), given a solution for
U we can add to it an arbitrary solution of the homogeneous
equation □U ¼ 0. However, such a general solution of the
local equation is not a solution of the integro-differential
equation of motion of the original nonlocal model. For
instance, with the definition (9) of the □−1 operator, the
original nonlocal model only admits the solution

UðtÞ ¼ −
Z

t

t�
dt0

1

adðt0Þ
Z

t0

t�
dt00adðt00ÞRðt00Þ; ð10Þ

with UhomðtÞ ¼ 0. All other solutions of the local formu-
lation are spurious, and do not satisfy the original integro-
differential equation. More generally, whatever definition
one takes for □−1, the corresponding homogeneous sol-
ution is uniquely fixed. Thus, UhomðxÞ is not a free field
that can be expanded in plane waves which, at the quantum
level, would corresponds to creation and annihilation
operators of some particle.
This is a crucial difference between a nonlocal model

defined by Eq. (1) and a quintessence model in which the
starting point is given by the local equations (5) and (6).
If we start from Eqs. (5) and (6) and we consider them as
the classical equation of motion of a quantum field theory,
the homogeneous equations □U ¼ 0 and □S ¼ 0 have
solutions corresponding to superposition of plane waves,
with arbitrary coefficients ak and a�k. Once we move to a
quantum description, these would become the creation
and annihilation operator of the corresponding particles,
so U and S would give rise to radiative degrees of freedom.
In contrast, if the starting point is the nonlocal theory (1),
the auxiliary fields are by definition nonradiative, and there
is no quantized field associated to them.
This is particularly important because, if it were a

radiative degree of freedom, U would turn out to be a
ghost, see [6,8]. As discussed in [8], in general a ghost has
two quite distinct effects: at the classical level, it can give
rise to classical instability, while at the quantum level it
corresponds to a particle with negative energy, which
induces a decay of the vacuum, through processes in which
the vacuum decays into ghosts plus normal particles.
Classical instabilities are not necessarily a source of
trouble. Actually, in a cosmological context they can even
be welcome, because a phase of accelerated expansion is in
a sense an instability of the classical evolution. Indeed,
ghosts have been suggested as models of phantom dark
energy [34,35]. One must therefore study the classical
equations of motion, and see if the consequences of an
instability are actually dangerous, or not. This is what we
will do in this paper at the level of the background
evolution, where we will see that there is indeed a classical
instability in the cosmological evolution, which however is
nothing but a phase of accelerated expansion, with features
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well compatible with the observations. In [36] we will
present the study of the classical cosmological perturbation
for this model, and we will see again that the perturbations
are well-behaved and consistent with existing data. In
contrast, as mentioned above, models in which the □

−1

operator is applied to tensors such as Gμν generates
classical instabilities that are inconsistent with an accept-
able cosmological evolution [6,7,13].
The issue of quantum vacuum decay is different. If, at the

quantum level, the vacuum is unstable because of ghost
emission, the theory is simply inconsistent. In our case,
however, this does not happen because the auxiliary fieldU
is not a radiative field, and does not correspond to particles
in the quantum theory. This advantage over a quintessence
model in which one takes the local equations (5) and (6) as
the starting point, comes however at a price. Namely, a
nonlocal theory such as that defined by Eq. (1) cannot be
taken as a fundamental theory. It must rather be understood
as an effective classical theory, obtained from some
fundamental (and local) QFT after a suitable classical or
quantum smoothing procedure. As discussed in [6], an
example of situations in which the equation of motion
involve an □

−1 operator constructed with a retarded
Green’s function is given by the effective equations that
govern the dynamics of the in-in matrix elements of
quantum fields, such as h0injϕ̂j0ini or h0injĝμνj0ini, and
encode quantum corrections to the classical dynamics
[37,38]. Causal nonlocal equations also emerge as a result
of a purely classical smoothing, when one separates the
dynamics of a system into a long-wavelength and a short-
wavelength part, see e.g. [39] for a recent example in the
context of cosmological perturbation theory.
In this paper we consider Eq. (1) as an effective nonlocal

classical theory, and we explore its consequences. It would
of course be of great interest to understand how such a
nonlocal model can be derived from a fundamental theory.

IV. LINEARIZATION OVER FLAT SPACE

To study the physical content of the nonlocal model and
to complement the above discussion, it is useful to linearize
the equations of motion over Minkowski space. Writing
gμν ¼ ημν þ hμν we get

Eμν;ρσhρσ −
d − 1

d
m2PμνPρσhρσ ¼ −16πGTμν; ð11Þ

where Eμν;ρσ is the Lichnerowicz operator (conventions and
definitions are as in [5]),

Pμν ¼ ημν −
∂μ∂ν

□
; ð12Þ

and□ is now the flat-space d’Alembertian. This is the same
result that was found in [6] linearizing the theory obtained
adding directly a term m2ðgμν□−1RÞT to the Einstein

equations. Thus, the two theories are equivalent at the
linearized level. At the fully nonlinear level they are however
different, as can be seen by comparing the respective
equations of motion.1

In order to study what radiative and nonradiative degrees
of freedom are described by Eq. (11) we proceed as in GR.
We henceforth restrict to d ¼ 3, we consider first the scalar
sector, and we use the diff-invariance of the nonlocal theory
to fix the Newtonian gauge

h00 ¼ 2Ψ; h0i ¼ 0; hij ¼ 2Φδij: ð13Þ

We also write the energy-momentum tensor in the scalar
sector as

T00 ¼ ρ; T0i ¼ ∂iΣ; ð14Þ

Tij ¼ Pδij þ ½∂i∂j − ð1=3Þδij∇2�σ: ð15Þ

A straightforward generalization of the standard computa-
tion performed in GR (see e.g. [40]) gives four independent
equations for the four scalar variables Φ;Ψ, U and S,

∇2½Φ − ðm2=6ÞS� ¼ −4πGρ; ð16Þ

Φ −Ψ − ðm2=3ÞS ¼ −8πGσ; ð17Þ

ð□þm2ÞU ¼ −8πGðρ − 3PÞ; ð18Þ

□S ¼ −U: ð19Þ

Equations (16) and (17) show that Φ and Ψ remain
nonradiative, just as in GR. This should be contrasted with
what happens when one linearizes massive gravity with a
Fierz-Pauli mass term, in which case Φ becomes a radiative
field that satisfies ð□ −m2ÞΦ ¼ 0 [40–42]. Furthermore,
in local massive gravity with a mass term that does not
satisfies the Fierz-Pauli tuning, in the Lagrangian also
appears a term ð□ΦÞ2 [40], signaling the presence of a
dynamical ghost. In our nonlocal model, in contrast, Φ
and Ψ satisfy Poisson equations and therefore remain

1Observe that in Ref. [13] it was studied an action proportional
toGμν□

−2Rμν and it was claimed that, below the Planck scale, the
theory reduces to that obtained by adding a term ð□−1GμνÞT
directly to the Einstein equations. By the same token one would
conclude that at sub-Planckian curvatures the theory (1) reduces
to obtained adding directly a term m2ðgμν□−1RÞT to the Einstein
equations. Unfortunately, in both cases the argument is incorrect.
The nonlinearities [e.g. the term U2 in Eq. (7)] are suppressed,
with respect to the linear terms, by a factor Oð□−1RÞ, which is
justOðhÞ, and not byOðR=M2

PlÞ. They are on the same footing as
the usual nonlinearities of GR, and contribute whenever we are
not close to flat Minkowski space. We will indeed see that the
model (1) has cosmological predictions that are numerically
different from that of the model obtained adding directly a term
m2ðgμν□−1RÞT to the Einstein equations, studied in [6].

NONLOCAL GRAVITY AND DARK ENERGY PHYSICAL REVIEW D 90, 023005 (2014)

023005-3



nonradiative. The equations for U and S might fool us to
believe that we have two radiative scalars. However,
Eq. (18) is just the linearization of □U ¼ −R where, as
we have discussed, the radiative solution is a spurious one,
introduced when the original nonlocal model is written in a
local form using the auxiliary fields U and S. In a quantum
treatment, there are no annihilation and creation operators
associated to them, and they do not represent radiative
degrees of freedom of the original nonlocal theory (see also
the discussion in [8]). Observe that the argument on the
absence of radiative ghostlike degrees of freedom is not
restricted to the linearized approximation. The full non-
linear equations (6) by definition must be supplemented
with a given fixed choice of the homogeneous solutions, so
they never describe propagating fields.
The full content of the theory beyond the scalar sector

can be obtained from the computation of Ref. [6] of the
matter-matter interaction mediated by the theory (11).
In d ¼ 3 the result is proportional to

~Tμνð−kÞ
1

2k2
ðημρηνσ þ ημσηνρ − ημνηρσÞ ~TρσðkÞ

þ 1

6
~Tð−kÞ

�
1

k2
−

1

k2 −m2

�
~TðkÞ: ð20Þ

The term in the first line is the usual GR result due to the
exchange of a massless graviton. The term in the second
line is due to the fields U and S. If U were a radiative field,
its contribution would correspond to that of a ghost, and at
the quantum level the vacuum would get destabilized.
However, the previous analysis show that there is no
radiative degree of freedom associated to these terms.

V. ABSENCE OF VDVZ DISCONTINUITY AND OF
A VAINSTHEIN MECHANISM

Equation (20) shows that, in the limit m → 0, the matter-
matter interaction reduces smoothly to that of GR.
Therefore there is no vDVZ discontinuity, and no
Vainshtein mechanism is needed. Of course, by itself this
does not necessarily mean that nonlinearities will remain
small down to the Schwarzschild radius rS, where also the
classical nonlinearities of GR get large. However, this can
be checked computing the metric generated by static
sources in the nonlocal theory. This computation has been
performed in detail in [9] for the model defined adding a
term m2ðgμν□−1RÞT to the Einstein equations, and can be
simply adapted to our case. We write the most general static
spherically symmetric metric in the form

ds2 ¼ −e2αðrÞdt2 þ e2βðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ:
ð21Þ

In GR two independent equations for α and β are usually
obtained taking the combinations e2ðβ−αÞR00 þ R11 and R22

(see e.g. [43]). In our nonlocal theory, using Eq. (5) we get,
respectively,

ð1 − 2μSÞðα0 þ β0Þ ¼ −μr½S00 − ðα0 þ β0 −U0ÞS0�; ð22Þ

(where f0 ≡ df=dr), and

ð1 − 2μSÞf1þ e−2β½rðβ0 − α0Þ − 1�g
¼ μr2ðU þU2=2Þ − 2μre−2βS0; ð23Þ

which reduce to their GR counterparts for μ ¼ 0. Finally, in
the metric (21) Eq. (6) becomes

r2U00 þ ½2rþ ðα0 − β0Þr2�U0 ð24Þ

¼ −2e2β þ 2½1þ 2rðα0 − β0Þ þ r2ðα00 þ α02 − α0β0Þ�;
S00 þ ðα0 − β0 þ 2=rÞS0 ¼ −e2βU: ð25Þ

Equations (22)–(25) provide four independent equations
for the four functions α; β; U; S. As discussed in [9], we can
study these equations with two different expansions: in
the region r ≪ m−1 we can perform a low-m expansion, in
which we solve the equation iteratively taking m as a small
expansion parameter. The solution in the region r ≫ rS,
with no limitation of the parameter mr, can instead be
obtained considering the effect of the source as a pertur-
bation of Minkowski space, adapting the standard analysis
performed in GR to recover the Newtonian limit. The low-
m expansion is valid for mr ≪ 1 while the Newtonian
analysis is valid for r ≫ rS. The two expansions therefore
have an overlapping domain of validity rS ≪ r ≪ m−1,
where they can be matched, and this allows us to fix
uniquely all the coefficients that appears in the solutions,
see the discussion in [9].
Repeating for our model the computations performed in

[9] we find that, to first order in the low-m expansion and
for r ≫ rS, the result for α and β is the same as that found
in [9]. Concerning the Newtonian expansion, we have
already seen that the theory (1) and that based on the
m2ðgμν□−1RÞT term become identical when they are both
linearized over Minkowski space. Thus, also the result in
this limit is the same, and the matching procedure discussed
in [9] goes through without any modification. Thus, we can
simply read the result from [9]: writing AðrÞ ¼ e2α and
BðrÞ ¼ e2β, the solution for r ≫ rS (and mr generic) is

AðrÞ ¼ 1 −
rS
r

�
1þ 1

3
ð1 − cosmrÞ

�
; ð26Þ

BðrÞ ¼ 1þ rS
r

�
1 −

1

3
ð1 − cosmr −mr sinmrÞ

�
: ð27Þ

In particular, for rS ≪ r ≪ m−1 we have
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AðrÞ≃ 1 −
rS
r

�
1þm2r2

6

�
; ð28Þ

and BðrÞ≃ 1=AðrÞ. This should be compared with the
analogous result obtained in massive gravity, when one
considers the Einstein-Hilbert action plus a Fierz-Pauli
mass term, which reads [3,44]

AðrÞ ¼ 1 −
4

3

rS
r

�
1 −

rS
12m4r5

�
: ð29Þ

The factor 4=3 in front of rS=r gives rise to the vDVZ
discontinuity. In contrast, no vDVZ discontinuity is present
in Eq. (28). Furthermore, in Eq. (29) the linearized
expansions breaks down for r below the Vainshtein radius
rV ¼ ðGM=m4Þ1=5, while in Eq. (28) the correction
becomes smaller and smaller as r decreases. Thus the
theory (1) (as well as the theory defined adding a term
m2ðgμν□−1RÞT to the Einstein equations) remain linear
down to r ∼ rS, where eventually also GR becomes non-
linear. This means that, taking m ∼H0, these nonlocal
theories pass with flying colors all solar system tests. We
have found that, for r ≪ m−1, the corrections to the GR
result are 1þOðm2r2Þ. Form ∼H0 and r ∼ 1 a:u:we have
m2r2 ∼ 10−30, and the predictions of these nonlocal theo-
ries are indistinguishable from that of GR.

VI. COSMOLOGICAL EVOLUTION
AND DARK ENERGY

We next study the cosmological consequences of the
model, at the level of background evolution (the corre-
sponding study of cosmological perturbations will be
presented in [36]). We consider a flat FRW metric

ds2 ¼ −dt2 þ a2ðtÞdx2; ð30Þ

in d ¼ 3. We introduce WðtÞ ¼ H2ðtÞSðtÞ and
hðtÞ ¼ HðtÞ=H0, where HðtÞ ¼ _a=a and H0 is the present
value of the Hubble parameter. We use x ¼ ln a to para-
metrize the temporal evolution, and henceforth
f0 ≡ df=dx. From Eqs. (5) and (6) we get

h2ðxÞ ¼ ΩMe−3x þΩRe−4x þ γY; ð31Þ

U00 þ ð3þ ζÞU0 ¼ 6ð2þ ζÞ; ð32Þ

W00 þ 3ð1 − ζÞW0 − 2ðζ0 þ 3ζ − ζ2ÞW ¼ U; ð33Þ

where γ ¼ m2=ð9H2
0Þ, ζ ¼ h0=h and

Y ≡ 1

2
W0ð6 −U0Þ þWð3 − 6ζ þ ζU0Þ þ 1

4
U2: ð34Þ

We see that there is an effective dark energy density
ρDE ¼ ρ0γY. As in [6], we can first study the equations

perturbatively, assuming that in the early Universe the
contribution of U;V to ζ is negligible, and we then check
a posteriori the self-consistency of the procedure. In this
case, in each given era ζðxÞ can be approximated by a
constant ζ0, with ζ0 ¼ f−2;−3=2; 0g in RD, MD and in a
De Sitter inflationary epoch, respectively. We find that the
inhomogeneous solutions for U andW are both linear in x,
and therefore as x → −∞ their contribution is indeed
negligible with respect to the terms ΩMe−3x and ΩRe−4x.
Furthermore, the corresponding homogeneous solution for
U is u0 þ u1e−ð3þζ0Þx, while forW is w1e−ð3−ζ0Þx þ w2e2ζ0x.
In the early Universe we have −2 ≤ ζ0 ≤ 0 and all these
terms are either constant or exponentially decreasing,
which means that the solutions for both U and W are
stable in MD, RD, as well as in a previous inflationary
stage. In contrast, the homogeneous solutions of the model
constructed with ðgμν□−1RÞT are stable in MD and RD, but
not in an inflationary stage [6,7].
The result of the numerical integration of Eqs. (31)–(33)

is shown in Figs. 1–3. We start the integration in RD
(matter-radiation equilibrium is a x≃ −8.1) with initial
conditions U ¼ S ¼ 0, as in [6]. On the left panel of
Fig. 1 we show the effective dark energy density
ρDE ¼ ρ0γY. We see that it starts from zero in RD and
then grows during MD. Choosing γ ≃ 0.00891 (corre-
sponding to m≃ 0.283H0) we reproduce the observed
value ΩDE ≃ 0.68 today. The quantities ΩRðxÞ ¼ ρRðxÞ=
ρtotðxÞ, ΩMðxÞ ¼ ρMðxÞ=ρtotðxÞ and ΩDEðxÞ ¼ ρDEðxÞ=
ρtotðxÞ are shown on the right panel of Fig. 1.
In Fig. 2 (left panel) we see that hðxÞ becomes a growing

function when the DE density begins to dominate. Having
fixed γ so that ΩDE ≃ 0.68 we have no more free param-
eters, and we then obtain a pure prediction for the dark
energy equation of state parameter wDE, defined from

ρ0DE þ 3ð1þ wDEÞρDE ¼ 0: ð35Þ

The result is shown on the right panel in Fig. 2 and, on a
larger horizontal scale, in Fig. 3, which shows that in the
asymptotic future wDE → −1. For comparison with the
observations the most relevant region is the recent past,
where the DE density start to become important.
Comparing with the standard fit of the form [45,46]

10 8 6 4 2 0 2
0.0

0.5

1.0

1.5

2.0

x

D
E

x

15 10 5 0

0.0

0.2

0.4

0.6

0.8

1.0

x

i
x

FIG. 1 (color online). Left panel: the function γYðxÞ ¼
ρDEðxÞ=ρ0, against x ¼ ln a. Right panel: the quantities ΩRðxÞ
(brown, dot-dashed), ΩMðxÞ (red, dashed) and ΩDEðxÞ (blue,
solid line).
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wDEðaÞ ¼ w0 þ ð1 − aÞwa; ð36Þ
(where aðxÞ ¼ ex) in the region −1 < x < 0, we find the
best-fit values,

w0 ¼ −1.144; wa ¼ 0.084: ð37Þ
The fact that the EOS turns out to be on the phantom side is
a general property of these nonlocal models, due to the fact
the DE density starts from zero in RD and then grows
during MD. Thus, in this regime ρDE > 0 and ρ0DE > 0,
and then Eq. (35) gives ð1þ wDEÞ < 0. The exact values in
Eq. (37) depend of course on the value chosen for the
matter density today, ΩM, or equivalently on the value
ΩDE ¼ 1 − ΩM − ΩR that we require at the present time. In
turn, the value of ΩM predicted by this nonlocal model
should be determined self-consistently from a global fit to
the data, which takes into account the specific form of the
perturbations in this model. However, varying ΩM within
the rather broad range ΩM ∈ ½0.20; 0.36� we find that w0

remains within the relatively narrow interval ½−1.165;
−1.135�, while wa ∈ ½0.07; 0.11�, so the prediction for
these quantities is quite stable (see [36] for details).
The numerical values in (37) are quite interesting,

considering that the result of Planck+WP+SNLS for a
constant wDE (which is appropriate to our case since we
predict jwaj ≪ 1) is

wDE ¼ −1.13þ0.13
−0.14 ; ð38Þ

at 95% C.L. [47]. Observe also that the Pan-STARRS1
data, combined with BAO+Planck+H0, give [48]

wDE ¼ −1.186þ0.076
−0.065 ; ð39Þ

while, when combined with WMAP9 instead of Planck,
give [48]

wDE ¼ −1.142þ0.076
−0.087 : ð40Þ

As discussed in detail in [49], the result depends on the
prior on H0, and for a prior H0 ≳ 71 km s=Mpc, at the 2σ
level one can state that either the SNLS and Pan-STARRS1
data both have systematics that remain unaccounted for, or
the DE equation of state is indeed phantom. Of course, it
should be kept in mind that the above experimental values
have been inferred from the data assuming wCDM as a
cosmological model (which assumes no dark energy
perturbations), and again a precise comparison of our
model with the data requires the inclusion of the specific
form of the perturbations of the nonlocal model.
Another elements that makes the values (37) potentially

interesting is that, as discussed in the official Planck
analysis [47], in the framework of ΛCDM there is a tension
between the value of H0 derived from the Planck meas-
urement and that derived from direct measurements in the
local Universe [50,51]. It has been argued that the dis-
crepancy could be resolved at the level of data analysis
[52]. It is however in principle possible that it could rather
be a signal of deviations from ΛCDM. Ref. [53] has studied
the impact of various extensions of ΛCDM (such as
curvature, neutrino masses, effective neutrino species or
wDE) on such a discrepancy. It has been found that the only
parameter that can reduce the tension to a statistically
nonsignificant value is indeedwDE, and this requires a value
of wDE approximately in the range −1.3 < wDE < −1.1.
Our prediction (37) is therefore able to bring this discrep-
ancy down to a statistically not significant value. It is quite
remarkable that such a value of wDE is predicted by a
relatively simple and theoretically consistent modification
of GR.
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