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We present a novel method for revealing the equation of state of high-density neutron star matter through
gravitational waves emitted during the postmerger phase of a binary neutron star system. The method relies
on a small number of detections of the peak frequency in the postmerger phase for binaries of different
(relatively low) masses, in the most likely range of expected detections. From such observations, one can
construct the derivative of the peak frequency vs the binary mass, in this mass range. Through a detailed
study of binary neutron star mergers for a large sample of equations of state, we show that one can
extrapolate the above information to the highest possible mass (the threshold mass for black hole formation
in a binary neutron star merger). In turn, this allows for an empirical determination of the maximum mass of
cold, nonrotating neutron stars to within 0.1M⊙, while the corresponding radius is determined to within a
few percent. Combining this with the determination of the radius of cold, nonrotating neutron stars of
1.6M⊙ [to within a few percent, as was demonstrated in Bauswein et al. Phys. Rev. D 86, 063001 (2012)],
allows for a clear distinction of a particular candidate equation of state among a large set of other
candidates. Our method is particularly appealing because it reveals simultaneously the moderate and very
high-density parts of the equation of state, enabling the distinction of mass-radius relations even if they are
similar at typical neutron star masses. Furthermore, our method also allows us to deduce the maximum
central energy density and maximum central rest-mass density of cold, nonrotating neutron stars with an
accuracy of a few percent.
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I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2]
gravitational-wave detectors are expected to observe
between 0.4 and 400 mergers of binary neutron stars
(NSs) per year, when they start operating at their design
sensitivity [3].1 The Einstein Telescope design [5] promises
roughly (103) times higher detection rates. The merger of
NSs is a consequence of gravitational wave (GW) emission,
which extracts energy and angular momentum from the
binary and thus forces the binary components on inspiral-
ing trajectories. Events within a few tens of Mpc are
particulary interesting because they bear the potential to
constrain the (still largely unknown) equation of state (EoS)
of neutron star matter (see Refs. [6–10] for reviews and,
e.g., Refs. [11,12] for a discussion of the current EoS and
NS constraints). The properties of cold, high-density matter
are encoded in the stellar properties of nonrotating NSs,
since the EoS uniquely defines the stellar structure via the
Tolman–Oppenheimer–Volkoff (TOV) equations [13,14].
Since the dynamics of a merger is crucially affected by the
properties of NSs, the GW signal carries information on the
binary parameters and the EoS (e.g., Refs. [15–37]).
For sufficiently nearby events, the chirplike inspiral GW

signal reveals the total binary mass and the mass ratio of the

merging NSs (e.g., Refs. [38–43]). During the late inspiral
phase, deviations from the point-particle behavior may be
used to determine stellar properties of the inspiraling NSs
(NS radii or the NS moment of inertia) with some accuracy
(e.g., Refs. [44–55]). As an additional method, one may
detect the dominant oscillations of the postmerger remnant,
which [unless there is prompt collapse to a black hole (BH)]
is a hot, massive, differentially rotating NS (which is
observationally the most likely case) [15–35,37,56–61].
The dominant peak in the gravitational wave spectrum of
the postmerger phase originates from a fundamental quad-
rupolar (m ¼ 2) fluid oscillation mode (see Ref. [25] for
an extraction of the mode pattern, which confirms this
description), which appears as a pronounced peak in the
GW spectrum, in the range between 2 and 3.5 kHz.
Recently, it was found that for binaries with a total mass
of about 2.7M⊙ the frequency of this peak determines the
radius of a cold, nonrotating NS with a mass of 1.6M⊙ to
within a few percent [29,30],2 which was confirmed in
Ref. [33]. Even a single such detection would thus tightly
constrain the EoS in the density range of 1.6M⊙.
Observations of more massive binaries would provide
estimates for the radii of more massive nonrotating NSs,
since they probe a higher density regime [30].

1Similar rates are estimated for the upcoming KAGRA
instrument [4].

2Note that the radii of NSs with masses somewhat different
than 1.6M⊙ are also obtained with good accuracy.
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The detection of binary NS mergers with masses larger
than 2.7M⊙ is particularly interesting because the deter-
mination of the threshold binary mass to BH collapse sets a
tight constraint on the maximum mass of cold, nonrotating
NSs, as was shown recently in Ref. [32] (notice that current
pulsar observations provide a lower limit to the maximum
mass of about 2M⊙ [62,63]). For a given EoS, the threshold
binary mass to BH collapse depends in a clear way on the
maximum mass of cold, nonrotating NSs and on the radius
of a star with 1.6M⊙ [32]. Thus, given an estimate for R1.6
(e.g., from the inspiral GW signal or from the postmerger
GW peak frequency), the determination of the threshold
mass to BH collapse yields a constraint on the maximum
mass of cold, nonrotating NSs.
For most EoSs, the threshold mass to BH collapse is in

the range of 3–4M⊙ [32]. This implies a serious obstacle
for directly determining the threshold mass, if NS mergers
are taking place more frequently with a lower total binary
mass of about 2.7M⊙ (as is suggested by the mass
distribution of observed NS binaries, see Ref. [12] for a
compilation, and by theoretical population synthesis stud-
ies, see, e.g., Ref. [64]). Moreover, for binary masses very
near to the threshold mass for prompt collapse to a BH, the
duration of the postmerger signal becomes shorter, decreas-
ing further the expected detection rate.
In this work, we show that the detection of the postmerger

GW emission of two low-mass NS binary mergers with
slightly different masses can be employed to estimate the
thresholdmass. Thus, the binary systems that aremost likely
to be detected, may reveal the thresholdmass to BH collapse
and, in turn, themaximummass of cold, nonrotatingNSs (to
within 0.1M⊙). The corresponding radius is determined to
within a few percent. Combining this with the determination
of the radius of cold, nonrotating neutron stars of 1.6M⊙ [30]
allows for a clear distinction of a particular candidate
equation of state among a large set of other candidates.
In this paper, NS masses refer to the gravitational mass

in isolation, and binary masses are reported as the sum of
the gravitational masses in isolation of the individual
binary components. We use the term “low-mass binaries”
for systems with binary masses of about 2.7M⊙ to
distinguish them from “high-mass binaries” with binary
masses closer to or above the threshold mass.
The paper is organized as follows. In Sec. II, we briefly

review the simulations investigated in this study. Section III
outlines the main idea. The method and its results are des-
cribed in Sec. IV. We close with a summary and conclusions.

II. EOS AND SIMULATIONS

In this study, we further analyze the neutron-star merger
simulations that were presented in Ref. [32] and previous
publications.The numerical calculations are performedwith a
relativistic smoothed particle hydrodynamics code, which
incorporates the conformal flatness condition to solve for the
spacetimemetric [65,66]. More details on the physical model

and on the numerical implementation can be found in
Refs. [19,30,67,68]. Information on the general dynamics
of the models, the convergence properties, and a comparison
to fully general relativistic studies are provided in
Refs. [29,30,32] (see also Refs. [33,37] for a comparison
of the dominant GWoscillation frequency). At present, we do
not include the effects of neutrino cooling or magnetic fields.
We consider microphysical, temperature-dependent EoSs

(see Table I, which also provides the references to the
individual models), which is essential for an accurate
description of the merger process and of the stability
properties of the remnant. The mass-radius relations result-
ing from these high-density models cover essentially the full
range of possible stellar parameters, with cold, nonrotating
1.35M⊙ models having radii in the range of 11.92 to
14.74 km (see Fig. 6 for the mass-radius relations). The
maximum masses of nonrotating NSs described by these
EoSs vary between 1.94 and 2.79M⊙ (see Table I). Except
for the IUF EoS, all high-density models are compatible with
the current lower limit on the maximum mass of NSs given
by Refs. [62,63]. Note that, in contrast to our previous
work, we do not include here the Shen [69] and the GS1 [70]
EoSs because we use the TM1 [71,72] and the NL3 [73,74]
EoSs, which result in very similar mass-radius relationships.
For every EoS, we perform simulations with systemati-

callyvaried total binarymassMtot, focusingmostlyonequal-
mass systems. The GW emission is analyzed, and the
dominant postmerger GW frequency, which occurs as a
pronounced peak in the GW spectrum, is extracted. For a
consistent comparison between the different models, we
consider a fixed duration of 10 ms after merger and apply a
Hannwindow to the GWstrain.3 For somemodels, applying
theHannwindowcauses a slight shift of the peak frequencies
compared to previous publications [29,30,32].

III. MAIN IDEA

The idea underlying this study becomes clear from
Fig. 1. It shows the dominant GW frequency as a function
of the total binary mass for different EoSs considering
equal-mass systems. Every EoS corresponds to one solid
line, for which the end point marks the most massive binary
configuration (Mthres), which leads to a differentially
rotating NS merger remnant. (More massive binary systems
collapse promptly to a BH on a dynamical time scale.4) For
a given EoS, the dominant GW frequency of the postmerger
phase increases with the total binary mass until it reaches

3Certain models close to the instability limit have a lifetime
shorter than 10 ms, and thus the GW spectrum is only computed
until collapse takes place.

4The prompt collapse is identified by a continuous decrease of
the minimum lapse function after the onset of the merging. The
formation of a (possibly short-lived) NS merger remnant (“de-
layed collapse”) is distinguished by an increase of the minimum
lapse after the initial drop and a (possibly small) number of
subsequent oscillations in the minimum lapse function.
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the end point at a binary massMthres (the threshold mass to
BH collapse).
It was shown in Ref. [32] that there exists a relation

between the binary mass Mthres (resulting in the most
massive NS remnant) and the corresponding GW oscilla-
tion frequency fthrespeak. (The crosses in Fig. 1 are identical to
the right panel of Fig. 3 in Ref. [32]). For all EoSs, the data
points ðMthres; fthrespeakÞ form a “stability line” (thick dashed
line in Fig. 1) beyond which binary mergers lead to the
direct formation of a BH. Our definition of the threshold
massMthres is motivated by the observation that simulations
with Mthres yield (at least transiently) stable remnants,
whereas simulations with Mthres þ 0.1M⊙ result in prompt
BH formation. (Note that in Ref. [32] an intermediate value
of Mthres þ 0.05M⊙ was denoted as Mthres, which only
reflects the uncertainty in determining Mthres with our
current set of simulated binary masses.)
It was also pointed out in Ref. [32] that the determination

of Mthres and fthrespeak may yield important insights into the
maximum mass of nonrotating NSs and on the radius of the
maximum-mass configuration. As argued in the introduc-
tion, Mthres might be difficult to determine directly because
the merger of binary systems with masses near Mthres
(which would be suitable for directly probing the approach
to collapse) is expected to be less frequent, according to
population synthesis studies and observations (e.g.,
Refs. [12,64]). Moreover, several detections with different
binary masses above and below the threshold would be
required to deduce Mthres with a certain precision.
It is evident from Fig. 1 that (at least) two measurements

of fpeak at slightly different masses yield the slope dfpeakðMtotÞ
dMtot

and can be used for an extrapolation along the correspond-
ing solid line. For a given EoS, the extrapolation yields the
intersection with the stability line, i.e., the line formed by
the Mthres points for different EoSs (dashed line). In

particular, to determine the slope dfpeakðMtotÞ
dMtot

, detections in
the most likely range of binary parameters with Mtot ∼
2.7M⊙ can be employed. In Fig. 1, we notice that for all
sequences of different EoSs the slope (of the solid lines)
becomes steeper toward the (dashed) stability line atMthres.
Hence, a linear extrapolation in general will tend to over-
estimate Mthres and underestimate the corresponding fthrespeak.
The increasing slope with the binary mass can be

understood because the dominant GW emission of the
postmerger phase is produced by the fundamental quad-
rupolar (m ¼ 2) fluid mode [25], for which the frequency
scales approximately with the mean density, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mremnant=R3

remnant

p
[29,81]. For a given EoS, radii of

massive NSs decrease with mass, which explains the
steeper increase of fpeak at higher Mtot.
Themain idea of thiswork is to introduce an extrapolation

procedure, which employs GW detections of binaries at
masses of about 2.7M⊙, in order to estimate the properties ofTA
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mergers at higher masses. Throughout this paper, crosses
mark data that have been obtained by numerical calculations
and are considered to be the “true” (actual) values for a given
EoS. Circles are used whenever a quantity is estimated by
means of the extrapolation method, i.e., when only infor-
mation fromGWmeasurements ofmergers with total binary
masses of about 2.7M⊙ are used to estimate its value.

IV. EXTRAPOLATION PROCEDURE

A. Predicting the threshold mass and
the maximum mass

In this paper, we explore what can be inferred from (at
least) two measurements of the dominant postmerger GW
frequency at two relatively low, slightly different binary
masses in the range of about 2.7M⊙. We thus work under

the condition that the frequency and the slope dfpeak
dMtot

at
Mtot ¼ 2.7M⊙ have been determined observationally (see
Refs. [82,83]).
The stability line (dashed line in Fig. 1) can be

analytically approximated by a simple broken straight line,
which is obtained by a fit to the data points with fthrespeak >
3.1 kHz and another fit for the data points located at lower
frequencies. The function fthrespeakðMthresÞ is then obtained as

fthrespeakðMthresÞ¼
�
−0.328 ·Mthresþ4.093; Mthres<3.32M⊙
−1.546 ·Mthresþ8.140; Mthres>3.32M⊙

;

ð1Þ

withMthres in solar masses and fthrespeak measured in kHz. Note
that the intersection of the two line segments (as defined
above) occurs below 3.1 kHz. After obtaining the two line
segments, the individual ðfpeak;MtotÞ data points at Mtot ≈
2.7M⊙ are extrapolated linearly toward the stability line.
A simple linear extrapolation onto the curve given by

Eq. (1) certainly underestimates Mthres because the slope
becomes steeper toward the stability line (see Fig. 1). We
obtain a better estimate, by accounting for this bending by
slightly shifting upward the extrapolating line. Specifically,
we find an upward shift of 0.1 kHz to satisfactorily
counteract the bending of the lines.
The estimates for Mthres can be further refined for models

that are relatively far away from the intersection with the
stability line [i.e., models with low peak frequencies
fpeakð2.7M⊙Þ]. At a fixed binary mass of 2.7M⊙, in general,
the gradient is larger for higher fpeak. This can be seen in
Fig. 3, which shows for all EoSs the slope as a function of
the peak frequency at Mtot ¼ 2.7M⊙. However, at lower
frequencies, one observes in Fig. 1 that EoSs that have a
relatively flat slope with respect to their peak frequency tend
to extend slightly to the right of the stability line. To
accommodate this behavior, we found empirically that it
is useful to choose a shift that depends on the relative slope.
Thus, our final recipe is to apply for models with

fpeakð2.7M⊙Þ < 2.7 kHz (on the left of the vertical dotted
line in Fig. 3) a shift of 0.01 kHz, if they have a relatively
small slope, while we use a shift of 0.24 kHz for a steeper/
normal increase of fpeakðMtotÞ. The shift for the steep/
normal slope for models with fpeakð2.7M⊙Þ < 2.7 is higher
than our default choice because the extrapolation is
performed over a larger interval and thus has to compensate
an overall stronger bending. The models that show a
relatively small slope can be identified in Fig. 3 as the
points located below the approximately straight line formed
by the majority of EoSs. Quantitatively, we distinguish
whether a data point below 2.7 kHz is above or below the
line 1.21 · fpeak − 2.17 (indicated in Fig. 3).
Using the definitions f2.7 ¼ fpeakð2.7M⊙Þ and

f02.7 ¼ dfpeak
dMtot

ð2.7M⊙Þ, the extrapolating curve thus reads

fpeakðMtotÞ ¼ f2.7 þ f02.7ðMtot − 2.7M⊙Þ þ σ; ð2Þ

with the shift σ given by

σ ¼
8<
:

0.1; f2.7 > 2.7 kHz
0.01; f2.7 < 2.7 kHz and f02.7 < 1.21f2.7 − 2.17
0.24; f2.7 < 2.7 kHz and f02.7 ≥ 1.21f2.7 − 2.17:

ð3Þ

It is important to note that the results are rather
insensitive to the exact details of this extrapolation method
or to the precise fit to approximate the stability line. Such
details influence the final results only on the level of a few
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FIG. 1. Dominant GW frequency fpeak of the postmerger phase
as a function of the total binary mass Mtot for all EoSs. Different
EoSs are distinguished by different solid lines. The highest
frequency fthrespeak for a given EoS is highlighted by a thick cross.
The dashed line approximates the dependence of fthrespeak on the
maximum binary mass Mthres, which still produces an (at least
transiently) stable merger remnant.
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percent. Further improvements may certainly be possible
by more sophisticated procedures, but our study is meant as
a proof of principle, and refinements only make sense when
more EoSs are considered (even though our sample already
extends over a rather wide range of candidate EoSs).
The results of the extrapolation procedure described in

detail above are summarized in Table I. Figure 2 visualizes
the estimated (circles) and the actual values (crosses). We
find that the extrapolated values forMthres match the actual
Mthres with an accuracy of 2% or better. Hence, the
threshold mass can be estimated with high accuracy from
extrapolations of GW detections of lower-mass binaries
(with total mass in the range of about 2.7M⊙).
The above estimate of the threshold mass can now be

converted to a determination of the maximum mass of cold,
nonrotating NSs by an inversion of the empirical fit

Mthres ¼
�
−3.606 ·

GMmax

c2R1.6
þ 2.380

�
Mmax − 0.05M⊙;

ð4Þ

which was recently found in Ref. [32] to describe the
relation between these two masses, independently of the
EoS, with an accuracy of at least 0.1M⊙. [Masses in Eq. (4)
are in solar masses, and radii are in km]. R1.6 denotes the
radius of a cold, nonrotating NS with 1.6M⊙.
In turn, the radius R1.6 is given by the peak frequency

measured at Mtot ¼ 2.7M⊙ [29,30], which exhibits a tight

correlation with R1.6, as shown in Fig. 4.5 We implement
the empirical relation seen in Fig. 4 by a quadratic least-
squares fit, which yields

R1.6 ¼ 1.099 · f2peak − 8.574 · fpeak þ 28.07: ð5Þ

This fit slightly deviates from the expression given in
Ref. [29] because here we consider a different set of
representative EoSs, taking into account only the fully
temperature-dependent EoSs.
With R1.6 given by Eq. (5) the inversion of Eq. (4) yields

the maximum mass with a maximum deviation of 0.1M⊙
from the actual value (see Table I). The estimated and the
actual values of the maximum-mass configuration are
shown in Fig. 5. The estimates for the corresponding radii
of the maximum-mass configuration are presented below.
We visualize the deviations of the estimated values from the
actual values in Fig. 6 by drawing boxes around the actual
maximum-mass configurations such that they include the
estimated values. The width and height of the boxes are
defined by the overall maximum positive and negative
deviation of estimated masses and radii from their actual
values, within the sample of EoSs we consider. Here, we
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FIG. 3. Derivative of fpeakðMtotÞ with respect to Mtot at Mtot ¼
2.7M⊙ as a function of fpeakð2.7M⊙Þ for different EoSs. The thin
solid line separates models with a normal/steep relative slope
(above) from models with flat relative slopes (below). The
vertical dotted line distinguishes low frequencies and high
frequencies (see the main text).
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FIG. 2 (color online). Dominant GW frequency fthrespeak of the
most massive NS merger remnant as a function of the corre-
sponding total binary mass Mthres for different EoSs (crosses).
Nearby circles with the same shade denote the estimated values
for fthrespeak and Mthres extrapolated entirely from GW information
from low-mass NS binary mergers using Eqs. (2) and (3). The
solid line represents the fit to the stability limit [Eq. (1)].

5Based on a smaller set of investigated EoSs, in Ref. [33], it
was suggested that a fiducial NS mass of 1.8M⊙ yields the
smallest scatter in the relation between the peak frequency and
the radii of nonrotating NS. Which exact fiducial mass leads to
the smallest scatter certainly depends somewhat on the exact set
of EoSs under consideration, given that the radii of NSs with
masses of 1.6M⊙ and 1.8M⊙ are very similar.
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distinguish EoSs that terminate on the lower segment of the
stability line in Fig. 1 from EoSs that terminate on the upper
line segment. The latter models exhibit smaller deviations
in their estimated radii.
Note that for many individual EoSs the deviations of the

estimated mass and radius of the maxium-mass model are
significantly smaller than indicated by the boxes (see
Fig. 5). Also, note that for the models of the upper branch
of Eq. (1) the largest deviations are found for the IUF and
the TMA EoSs, which are already excluded or marginally
compatible with pulsar observations [62,63]. The remain-
ing EoSs of the upper branch appear to have smaller
deviations, which can be understood because the stability
line is steeper and closer to the measured data at
Mtot ¼ 2.7M⊙.
Moreover, in Fig. 6, we use horizontal error bars to

indicate the deviations of the R1.6 estimate via fpeakðMtot ¼
2.7M⊙Þ when employing Eq. (5). A powerful feature of our
method is that it allows us to distinguish (by estimating the
maximum mass model) two EoSs that cross at around
1.6M⊙. This is demonstrated clearly in Fig. 7, where the
two EoSs LS375 and TMA have very similar radii of about
13.8 km at 1.6M⊙ [and thus an individual radius estimate,
based on only Eq. (5) would be degenerate with respect to
the underlying EoS]. In contrast, having also the estimate
on the mass and radius of the maximum mass model (based
on the novel extrapolation procedure described above)
clearly distinguishes the two EoSs. More examples of this
type can be identified in Fig. 6.
Note that the extrapolation proposed here is also useful

to identify lower and upper limits on the maximum mass of

cold, nonrotating NS. The data points forming the stability
line in Fig. 1 can be embraced by displacing Eq. (1)
downwards by 0.2 kHz, to obtain a lower limit and by
adding 0.2 kHz to obtain an upper limit consistent with our
current sample of models.

B. Estimating the radius of the
maximum-mass configuration

As mentioned already in the previous sections, Mthres or
fthrespeak determine also other stellar properties of NSs [32],
and we proceed by discussing further insights that can be
obtained by applying our extrapolation method of GW
information obtained from low-mass binary NS mergers.
The intersection of the curves in Fig. 1 with the stability
line also provides an estimate for the GW oscillation
frequency at Mthres. This peak frequency fthrespeak scales well
with the radius Rmax of the maximum-mass configuration
of cold, nonrotating NSs (see the left panel of Fig. 3 in
Ref. [32] and Fig. 8). (The relation can be understood by
noting that fthrespeak should scale approximately withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mthres=R3

max

p
, where the variation in R3

max dominates over
the relatively small change in Mthres.) In Fig. 8, we display
the extrapolated fthrespeak (circles) and the actual frequency
obtained in the simulations (crosses) as a function of Rmax
for different EoSs. Using the linear fit to the simulation data

Rmax ¼ −3.065 · fthrespeak þ 21.57ð�0.7Þ; ð6Þ
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FIG. 4. Relation between the radii R1.6 of cold, nonrotating NSs
with a gravitational mass of 1.6M⊙ and the dominant postmerger
GW frequency fpeak for a total binary mass of 2.7M⊙ for different
EoSs. The line displays a quadratic fit to the data.
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FIG. 5 (color online). Mass-radius relations for the EoSs
considered in this study with the circumferential radius R and
the gravitational mass M. Crosses at higher masses mark
maximum masses of nonrotating NSs. Nearby circles with the
same shade indicate the values estimated by the extrapolation of
GW data of low-mass NS mergers and use of Eq. (4) to obtain
Mmax from theMthres estimate. The crosses at 1.6M⊙ mark the radii
of 1.6M⊙ NSs. Circles at 1.6M⊙ indicate the radius estimate via
the dominant postmerger GW frequency of a 2.7M⊙ NS merger.
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the extrapolated frequency determines the radius of the
maximum-mass configuration with an accuracy of typically
4% or better. Only for the NL3 EoS does the estimated Rmax
deviate by 5%. The somewhat larger difference is under-
standable, considering that for NL3 the extrapolation is

performed over the largest distance between data measured
at 2.7M⊙ and at the intersection at Mthres ≈ 3.8M⊙. The
results of the extrapolation procedure are listed in Table I,
together with the actual values of Rmax. The estimated and
actual radii of the maximum-mass configuration are also
shown in Fig. 5. The shifts denoted in parentheses in Eq. (6)
define curves that lead to upper and lower limits for Rmax,
when used in the extrapolation procedure.

C. Estimating the maximum central density

For maximum-mass TOV solutions, it is empirically
known and intuitive that the stiffness of an EoS, quantified
by the ratio heimax=ec;max between the mean density and the
central density, roughly scales linearly with the compact-
ness Cmax ¼ GMmax

c2Rmax
[12,84] (see also Fig. 2 in Ref. [32]).

Here, e refers to the energy density, which, however, is
related to the rest-mass density through the EoS, and
therefore the following analysis yields analogous results
when applied to the rest-mass density (see Table I).
Adopting heimax ¼ 3

4π
Mmax
R3
max

implies that the central density

should scale roughly as 1=R2
max. Consequently, it is

possible to employ our extrapolation method to estimate
the maximum central density of NSs and to establish lower
and upper limits. The linear relation in Fig. 8 suggests a
relation between ec;max and fthrespeak, which is shown in Fig. 9.

FIG. 6 (color online). Mass-radius relations for the EoSs considered in this study with the radius R and the gravitational mass M.
Boxes illustrate the maximum deviation of the estimated properties of the maximum-mass configuration, which are inferred from GW
detections of low-mass binary NS mergers. The size of the boxes is chosen to be the largest deviation found in the sample of EoSs with
low maximum masses (Mmax < 2.2M⊙) and the sample of EoSs with high maximum masses (Mmax > 2.2M⊙). Bars at 1.6M⊙ indicate
the maximum deviation of the estimated radius inferred from a single GW detection of a low-mass binary NS merger. The size of the
bars is chosen to be the largest deviation from the actual value found in the whole sample of EoSs.

FIG. 7 (color online). Same as Fig. 6 for two EoSs with similar
stellar properties in the intermediate mass range around 1.6M⊙,
where the two mass-radius relations cross. Using the extrapola-
tion procedure described in the main text (Sec. IV), the two EoSs
can clearly be distinguished.
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In addition, Fig. 9 provides fthrespeak, estimated with the
extrapolation of GW data measured in low-mass NS binary
mergers. Again, we employ a linear fit to the (actual)
simulation data (crosses) and convert the extrapolated
values for fthrespeak to an estimate for ec;max. The function
fitting the data is given by

ec;max ¼ 1.166 · fthrespeak − 1.668ð�0.2Þ: ð7Þ

Here, ec;max is given in 1015 g=cm2, while frequencies are
measured in kHz.
In Table I, the estimated central energy densities are

compared with the actual ones. The estimated values and
the actual values agree within 7% (except for the NL3 EoS,
which deviates by 11%). By using fit formulas that embrace
the numerical data [shifting the fit in Eq. (7) by �0.2 kHz],
one can define upper and lower limits for the given set
of EoSs.
We point out that the relation between ec;max and fthres

can be used to deduce a strict upper limit on the maximum
mass. It has been shown that causality requires

Mmax ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.358 × 1016 g=cm2=ec;max

q
M⊙; ð8Þ

which was derived in Ref. [85] considering the causal-limit
EoS of Ref. [84]. An estimate of fthrespeak by our extrapolation
procedure thus provides a proxy for ec;max and an upper

bound onMmax via Eq. (8). Table II shows that, in particular
for stiff EoSs with highMmax, the estimated limits represent
strong constraints, which are only a few percent above the
actual value. The importance of these limits lies in the fact
that they are independent of the empirical relation con-
necting the threshold mass and TOV properties [Eq. (4)] but
instead rely only on an estimate of fthrespeak and the relation
shown in Fig. 9.
Estimates for the central rest-mass density can be

obtained by the fit

ρc;max ¼ 0.828 · fthrespeak − 1.130ð�0.1Þ; ð9Þ

with the same units for quantities as in Eq. (7). The fit is
based on the data shown in Fig. 10. The maximum
deviation of the estimated central rest-mass density from
its actual value is below 5% (expect for the NL3 EoS,
which shows a deviation of 14%) (see Table I). In
parentheses, we provide the modifications to Eq. (9) for
obtaining upper and lower limits on the central rest-mass
density, using the extrapolation method.
It is important to note that the relation between fthrespeak and

Mthres means that Rmax or the maximum central density also
relates to Mthres. This is illustrated in Fig. 11 for the rest-
mass density (the corresponding plot for the energy density
is very similar). The relation implies that not only Rmax but
also ρc;max can be estimated or constrained from any
determination or limit on Mthres. This is important because

10 11 12 13

2.8

3

3.2

3.4

3.6
f pe

ak
th

re
s  [k

H
z]

R
max

 [km]

FIG. 8. Dominant GW frequency fthrespeak of the most massive NS
merger remnant as a function of the radius Rmax of the maximum-
mass configuration of cold, nonrotating NSs for different EoSs
(crosses). The diagonal solid line is a fit to RmaxðfthrespeakÞ. Circles
denote the estimated values for fthrespeak, estimated entirely from GW
information from low-mass NS binary mergers. The estimated
values for Rmax can be inferred by projecting horizontally, i.e.,
following the short lines to the diagonal line representing the fit to
the numerical data (crosses).
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FIG. 9. Dominant GW frequency fthrespeak of the most massive NS
merger remnant as a function of the maximum central energy
density ec;max of the maximum-mass configuration of nonrotating
NSs for different EoSs (crosses). The diagonal solid line is a fit to
ec;maxðfthrespeakÞ. Circles denote the estimated values for fthrespeak,
extrapolated entirely from GW information from low-mass NS
binary mergers. The estimated values for ec;max can be inferred by
projecting horizontally, i.e., following the short lines to the
diagonal line representing the fit to the numerical data (crosses).
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a bound on the threshold mass may be deduced from any
observational identification of a prompt collapse event for
high-mass binaries. Also, any identification of a delayed
collapse immediately implies a corresponding lower limit
on the threshold mass. Observationally, such cases might
be distinguished by their electromagnetic counterparts
[86,87], which are expected to be much weaker in cases
of prompt collapse to a BH [88]. The involved binary
masses, which will set the limit on the threshold mass, can
be inferred from the GW inspiral signal.

D. Further considerations

The details of the extrapolation procedure described
above should be considered to be empirically motivated by
the behavior of the curves in Fig. 1 and the outlying
behavior of data points in Fig. 3. We stress that the
precision of the procedure does not depend strongly on
these particular choices. Also, the specific forms of the fit
formulas do not change the results significantly and might
possibly be optimized to yield even better estimates. Note
that the uncertainties of the mass estimates are of the order
of the numerical determination of the threshold mass,
which in this study is achieved only to a certain accuracy.
Given a finite sampling of the binary masses, the numerical
value of Mthres can only represent a lower bound to the
actual value, which, however, lies at most 0.1M⊙ above.
Clearly, this numerical inaccuracy is inherent and reflected
in the uncertainty of the extrapolation procedure, which
thus may be further improved. We also expect that the fit
formulas may be modified and tuned to even better estimate
high-mass NS properties, e.g., for specific mass regimes.
Enlarging the set of EoSs will also be a good test for the
accuracy of our method.
Recently, two new temperature-dependent EoSs have

become available, which include a phase transition to
hyperonic matter [89] (the BHBΛ EoS has Mmax ¼
1.95M⊙ and Rmax ¼ 11.75 km, while the BHBΛϕ model

leads to Mmax ¼ 2.10M⊙ and Rmax ¼ 11.30 km). We use
these models as important test cases to assess the appli-
cability of our method to “unknown” EoSs that were not

TABLE II. Upper limits on the maximum mass for different
EoSs. Mmax and M̂max are the actual values and the estimate via
our extrapolation procedure, respectively. M̂upper

max represents a
strict upper limit on the maximum mass established by the
estimate of ec;max only via Eq. (8).

EoS Mmax (M⊙) M̂max (M⊙) M̂upper
max (M⊙)

NL3 2.79 2.68 2.85
LS375 2.71 2.69 2.80
DD2 2.42 2.40 2.73
TM1 2.21 2.28 2.76
SFHX 2.13 2.19 2.41
GS2 2.09 2.07 2.41
SFHO 2.06 1.97 2.28
LS220 2.04 1.98 2.37
TMA 2.02 2.12 2.66
IUF 1.95 2.05 2.41
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FIG. 11. Threshold NS binary mass distinguishing the prompt
collapse to a BH from the formation of a (at least transiently)
stable merger remnant as a function of the maximum central
energy density ec;max of the maximum-mass configuration of
cold, nonrotating NSs, for different EoSs.
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FIG. 10. Dominant GW frequency fthrespeak of the most massive
NS merger remnant as a function of the maximum central rest-
mass density ρc;max of the maximum-mass configuration of
nonrotating NSs for different EoSs (crosses). The diagonal solid
line is a fit to ρc;maxðfthrespeakÞ. Circles denote the estimated values for

fthrespeak, extrapolated entirely from GW information from low-mass
NS binary mergers. The estimated values for ρc;max can be
inferred by projecting horizontally, i.e., following the short line
to the diagonal line representing the fit to the numerical data
(crosses).
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included in the determination of the empirical relations
employed by our extrapolation procedure [Eqs. (1) to (9)].
These EoSs are a particular challenge because they involve
phase transitions and thus represent rather extreme cases.
Using GW data of low-mass binaries, the properties of the
maximum mass configurations are recovered by our
extrapolation procedure within the same error bars (of a
few percent) as for the EoS sample introduced in Sec. II. In
Appendix A, we estimate how a larger set of EoSs
including also very extreme cases might affect the antici-
pated error bars under the pessimistic assumption that no
further refinement of our method is possible.
The final accuracy of the extrapolation procedure

depends on the errors of the slope and of the frequency
determination. The error of the slope will be affected by the
uncertainty of the individual frequency measurements
[29,30], by the number of measurements, by the EoS,
and in particular by the uncertainty of the values and the
exact separation of the distinct binary masses for which
GWs are detected. Considering, for example, only two
detection events with Mtot ¼ 2.4M⊙ and Mtot ¼ 2.8M⊙,
one can infer the error on the slope determination. If we
assume that the peak frequencies at both binary masses can
be measured with a precision of 10 Hz [83], we can
quantify the expected error on the intersection of the
extrapolating curve with the stability line. We find errors
inMthres above and below 1% strongly sensitive to the EoS
and correspondingly the proximity of the detection to the
stability line. It is important to stress that the extrapolation
scheme becomes more accurate if the slope is determined at
even higher binary masses.
In the present study, we do not investigate unequal mass

binaries, but we note that for fairly unequal 1.2–1.5M⊙
systems the peak frequency is at most 90 Hz smaller than
the dominant GW frequency of the corresponding equal-
mass merger of the same total binary mass. Known NS
binaries show smaller mass inequalities (see, e.g., Ref. [12]
for a compilation of the measured masses), and we thus
argue that the most likely GW observations will have
smaller deviations from the equal-mass case than the
mentioned example. Moreover, we expect that the impact
of the mass ratio can be taken into account, once the full
dependence of fpeak on the mass inequality and on the EoS
is worked out, which we leave for future work.
Finally, we stress that the viability of our procedure to

estimateMmax and Rmax does not depend on whetherMthres
is an accurate measure of the threshold mass for prompt
collapse or not. Equations (1), (4), and (6)–(9) could be
considered as empirically (i.e., numerically) established
relations, for which the applicability does not depend on the
exact meaning of the stability line fthrespeakðMthreshÞ; i.e., it
does not require that this line defines the boundary for BH
formation. However, the procedure relies on the accurate
determination of the peak frequency and its slope
at Mtot ∼ 2.7M⊙.

V. SUMMARY AND OUTLOOK

Starting from the observation that for a given EoS the
dominant GW frequency of the postmerger phase is an
increasing function of the binary mass, we construct an
extrapolation procedure, which estimates the threshold
mass to BH formation from GW observations of low-mass
binary NS mergers. In turn, the threshold mass for prompt
collapse can be converted to an estimate of the maximum
mass of cold, nonrotating NSs [32]. We find that two (or
more) postmerger GW measurements of binaries with
masses of about 2.7M⊙ can be used to infer the maximum
mass of nonrotating NSs within a few percent. In addition,
the estimate of the dominant GWoscillation frequency for a
binary at the threshold mass constrains the radius of the
maximum-mass configuration of nonrotating NSs with an
accuracy of a few percent. Combining this with the
determination of the radius of cold, nonrotating neutron
stars of 1.6M⊙ (to within a few percent) from the measured
GW peak frequencies allows for a clear distinction of a
particular candidate equation of state among a large set of
other candidates. Our method is particularly appealing
because it reveals simultaneously the moderate and very
high-density part of the EoS.
Moreover, our method yields estimates for the maximum

central energy density and the maximum central rest-mass
density of NSs. Hence, it sets a limit on the highest possible
density, which can stably exist at the center of relativistic
stars. These estimates may also serve to establish an
additional upper limit on the maximum mass, which is
required by causality and which is independent of the
conversion of the threshold mass to the maximum mass.
It is important to stress that the procedure outlined in this

work will become more accurate if GW detections become
available for binary masses higher than the 2.7M⊙ that
were adopted in this study. The closer the final remnant is to
the threshold mass, the better the accuracy of our extrapo-
lation procedure will be.
We also point out that the maximum central density

scales with the threshold mass distinguishing the prompt
merger collapse from the formation of a NS remnant. This
relation implies that any identification of a prompt collapse,
e.g., by electromagnetic observations, imposes a limit on
the maximum density, apart from constraints on the
maximum mass and the radius of the maximum-mass
configuration of nonrotating NSs.
The merger models may be improved by taking into

account other effects, such as neutrino emission and
magnetic fields. Also, the impact of the initial stellar
rotation should be explored [34]. The values for Mthres
used here represent lower limits because of the finite
sampling of the binary parameter space but are within at
most 0.1M⊙ of the actual values. Hence, the threshold mass
may be determined somewhat more accurately by a finer
grid of sampled binary parameters. A better determination
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of the threshold mass may reduce the (already very small)
uncertainties of the extrapolation method proposed here.
Extending the set of microphysical EoSs beyond what

was considered here will refine our method. A different,
larger set of EoSs may slightly shift the empirical relations
between various quantities that we constructed. One may
find slightly better descriptions for certain regimes or for a
specific quantity under consideration. For more than two
measurements, one should consider the possibility of a
higher-order extrapolation. Also, the effects of unequal-
mass binaries should be investigated in more detail. Finally,
it will be crucial to explore the detectability and the
expected observational error bars of the postmerger GW
emission (see Refs. [82,83]) in order to determine the
overall uncertainty of the procedure in experimental
applications.
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APPENDIX: IMPACT OF AN EXTENDED
EOS SAMPLE

Given the still limited set of available temperature-
dependent EoSs, at this stage, we cannot fully exclude
that a larger sample of EoSs may to some extent increase
the error bars of our method or require a certain refinement
of our procedure. To address this issue, we note that fthrespeak
scales approximately with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mthres=R3

max

p
, while the thresh-

old mass Mthres is approximately given by Mthres ¼
ð−3.38 · Cmax þ 2.43Þ ·Mmax with Cmax being the com-
pactness GMmax=ðc2RmaxÞ of the maximum-mass configu-
ration [32]. Hence, both fthrespeak and Mthres can be
approximately determined by the stellar properties of cold,
nonrotating NSs, namely, Mmax and Rmax. In Fig. 12, we
show the stability line (similar to Fig. 2) computed by
means of the approximate expressions for fthrespeak and Mthres
employingMmax and Rmax from a larger set of EoSs. Apart
from the estimated values for the temperature-dependent
microphysical EoSs considered in this paper (plus signs),
we also display the approximate threshold properties for the
EoSs employed in Ref. [30], which cover the full range

including in particular the extreme cases (see Fig. 4 in
Ref. [30]). It is apparent from Fig. 12 that the larger sample
leads only to a small broadening of the relation at
intermediate threshold masses, where our method achieves
a good accuracy.
From Fig. 12, one may conclude that, compared to the

stability limit found in this work (represented by the plus
signs), a new stability limit fitted to a larger set of EoSs (all
data points in Fig. 12) may be shifted by about 0.05M⊙ to
higher Mthres compared to the original line. Shifting the
stability limit [Eq. (1)] by 0.05M⊙ to higher Mthres, our
procedure estimates Mmax from the low-mass binary GW
signals with a maximum deviation from the actual values of
at most 0.15M⊙. For most of the available models, the
maximum mass is overestimated. Since some of the
available models are located at the extreme left with respect
to the new stability (plus signs in Fig. 12), the resulting
error bar of 0.15M⊙ should be considered to be the
maximum possible deviation. Note, however, that some
kind of tuning of the procedure for a new function
describing the stability limit is likely to reduce this error
bar substantially. Employing the modified stability limit for
the estimate of Rmax yields essentially the same deviations
from the actual values as our original procedure (650 m for
the NL3 EoS, while for all other models, Rmax is recovered
to within 420 m or even better). These estimates show that,
even for the pessimistic case that no further refinements of
our method are applied, two EoSs like in Fig. 7 are clearly
distinguishable by means of our extrapolation procedure.
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FIG. 12. Approximate dominant GW frequency fthrespeak of the
most massive NS merger remnant as a function of the corre-
sponding estimated total binary mass Mthres for a large sample of
EoSs. The estimates are entirely based on the stellar properties of
cold, nonrotating NSs (see the text). The plus signs represent the
estimated properties for the set of EoSs employed in this work.
The squares display the estimated threshold properties for a larger
set of EoSs, which covers also the extreme cases.

REVEALING THE HIGH-DENSITY EQUATION OF STATE … PHYSICAL REVIEW D 90, 023002 (2014)

023002-11



The precision of the radius determinations remains practi-
cally unchanged, while only the error bars on the maximum
mass are somewhat enlarged.
We point out that a possible refinement of our method

could consist of describing the stability line as a band
embracing all models. For the limited set of EoSs explored
in this paper, we notice that models that have a relatively
steep slope in fpeakðMtotÞ yield fpeakðMtotÞ relations that
tend to terminate at the lower left edge of the band. For
EoSs that result in a relatively flat slope, the fpeakðMtotÞ
relations extend until the right edge of the band describing
the stability line (see the discussion in Secs. III and IV).

Thus, the slope fpeakðMtotÞ may serve to pick an appro-
priate description of the stability line.
Finally, we note that the approximate scaling relations

for fthrespeak and Mthres tentatively explain the flattening of the

stability line at higher threshold masses (see Fig. 2; this is
also visible in Fig. 12). To first order, the relation
MmaxðRmaxÞ for different EoSs may be approximated by
a linear function or a mildly convex function (see Fig. 5 or
Fig. 4 in Ref. [30]). Inserting a linear or convex function
MmaxðRmaxÞ into the approximate formulas for the thresh-
old properties yields a concave stability line.
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