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A gravitational wave inspiral search with a global network of interferometers when carried in a phase
coherent fashion mimics a search with two effective synthetic data streams. The streams are constructed by
the linear combination of the overwhitened data from individual detectors. We demonstrate here that the
two synthetic data streams pertaining to the two polarizations of the gravitational wave can be derived prior
to the maximum-likelihood analysis in a most natural way using the technique of singular-value
decomposition applied to the network signal-to-noise ratio vector. The singular-value technique combined
with the matched filtering in network plus spectral space enables the construction of the synthetic streams.
We further show that the network log likelihood ratio is then the sum of the log-likelihood ratios of these
synthetic streams. In this formalism, the four extrinsic parameters of the nonspinning inspiral signal,
namely, amplitude, initial phase, binary inclination, and the polarization fA0;ϕa; ϵ;Ψg, are mapped to the
two amplitudes and two phases, namely, fρL; ρR;ΦL;ΦRg. We show that the maximization over the new
extrinsic parameters is a straightforward exercise closely linked to the single detector approach in the
literature. Toward the end, we connect all the previous works related to the multidetector gravitational wave
inspiral search and present in the same notation.
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I. INTRODUCTION

A global network of broadband advanced gravitational
wave (GW) detectors such as Advanced LIGO and
Advanced Virgo [1,2] will be ready in next few years.
Japanese detector KAGRA is under construction and will
be functioning in the next decade [3]. In addition, there is a
proposal for a detector in India, namely, LIGO-India.
Coalescing compact binaries are promising sources for
these advanced detectors. These detectors with an individ-
ual average distance reach of 200 Mpc for neutron star
binaries would detect few GW inspiral events per
month [1,4].
The inspiral search for the compact binary (with com-

ponent masses m1 and m2) is carried out by a phase
matching technique well known as the matched filtering
applied to the output data from a single detector. The
inspiral signal is characterized by many physical param-
eters; for example, in case of nonspinning inspiraling
binaries, the parameter space is ðM; η;A0; ta;ϕaÞ. Here,
ϕa is the phase of the signal at the time of arrival ta. The
mass M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass,
and η ¼ m1m2=ðm1 þm2Þ is the symmetric mass ratio. A0

is the constant overall amplitude. The detection is carried
out by laying the templates in the multidimensional
parameter space and then maximizing the filtered output.
This is technically known as maximum likelihood ratio

(MLR) analysis, which is close to optimal when signal-to-
ratio is large and signal is buried in Gaussian noise [5–7].
In the global multidetector network mentioned above,

each interferometer is differently oriented due to its
location on the Earth’s globe. Thus, they have different
responses to the incoming GW from a given direction.
There are two distinct ways to carry out a GW search with a
network of detectors. The first one is the coincidence
approach. In this approach, data from each interferometer
is processed individually followed by a list of coincident
event triggers based on the coincidence windows in the
mass and time of arrival parameters [8].1 On the contrary,
the second approach, the phase coherent search, involves
combining the inspiral signal from different detectors in a
phase coherent fashion into a single effective network
statistic, and a detection would be carried out by applying a
threshold on it. In the literature, it has been demonstrated
that the coherent search performs better than the coinci-
dence search for coalescing binaries [9]. This is understood
since the phase information is retained in the coherent
approach. In this work, our main focus is the multidetector
phase coherent approach.
From the coherent approach perspective, different detec-

tors in the network respond differently, which removes the
parameter degeneracy present in the single detector signal.
As a result, for nonspinning binaries, the search parameter

*haris@iisertvm.ac.in
†archana@iisertvm.ac.in

1This was the basic nature of the coincidence search in the
science run data.
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space expands to ðM; η;A0; ta;ϕa; θ;ϕ; ϵ;ΨÞ, where
ðθ;ϕÞ2 represents the source location, ϵ is the binary
inclination angle, and Ψ is the polarization angle of the
binary system. To give an example, two independent
detectors can measure GW polarization predicted by
Einstein’s general relativity, and hence the polarization
becomes an explicit parameter. Similarly, at least four
detectors are necessary to measure the source location
by the triangulation method [10].
The multidetector coherent GW inspiral search based on

the MLR analysis has been developed in the literature for
more than a decade by various groups around the world
[11–13]. In Ref. [11], the network log-likelihood ratio
(LLR) is maximized over the four extrinsic parameters out
of the above-mentioned nine total parameters; namely,
ðA0;ϕa; ϵ;ΨÞ were maximized using the rotation group
symmetries and Gel–Fand functions. The maximized
network LLR was shown to be the sum-square of the
projected network correlation function vectors on the (two-
dimensional) polarization plane. In Ref. [12], the coherent
formalism was developed for a general case of correlated
noise (to treat the noise correlation between the two LIGO-
Hanford detectors). In Ref. [13], the coherent formalism
was developed based on the F statistic [14,15], where the
four physical parameters ðA0;ϕa; ϵ;ΨÞ are mapped to
the four amplitude parameters, namely ðA1;A2;A3;A4Þ.
The authors showed that the freedom of polarization angle
Ψ allows one to set the dominant polarization frame in
which the two GW polarizations are separable. For more
reference on the dominant polarization frame, see Ref. [16].
Finally, the authors show that the MLR analysis gives two
terms which can be interpreted as the matched filtering
output of the two synthetic streams constructed from the
output of the multiple detectors, e.g., Eq. (2.35) of
Ref. [13]. For more references on the synthetic streams
in the GW burst context, see Ref. [17], and for GW
unmodeled chirps, see Ref. [18].
As indicated in earlier literature [11,13], the MLR

analysis gives two synthetic data streams which mimic
the multidetector network. The number 2 corresponds to
the two polarizations in the Einstein’s gravity. These
synthetic streams act like the building blocks for the multi-
detector coherent analysis. In electromagnetic window,
techniques are developed for effectively combining data
from different telescopes to improve the source localization,
which is generically termed as aperture synthesis [19,20]. In
particular in optical/radio windows, the signals are com-
bined from distinct telescopes with the directional depen-
dent coefficients or data correlated among the detector pairs
to improve source localization. In the same spirit, the
multidetector detector coherent analysis performed with

synthesis streams can be viewed as an aperture synthesis
technique in the GW window.
In this paper, we show that the synthetic streams is a

natural way to combine the data streams in a phase coherent
fashion and which can be constructed much before doing
MLR analysis. This is obtained using the singular-value
decomposition (SVD) of the multidetector signal-to-noise
ratio (SNR) vector in a much more straightforward way.
The highlights of the paper are as follows:
(1) The singular vectors of the network SNR vector

naturally gives the dominant polarization (DP)
frame.

(2) The new formalism imposes the simultaneous
matched filtering in the spectral as well as network
space and is hence termed as the network matched
filter. This gives a pair of synthetic streams, which is
similar in nature to the ones obtained in earlier
literature through the MLR [13].

(3) The network LLR expressed in terms of the syn-
thetic streams corresponding to the two singular
vectors is the sum of the LLRs of the two effective
synthetic data streams.

(4) In this framework, the four physical extrinsic
parameters ðA0;ϕa; ϵ;ΨÞ are uniquely mapped to
four new parameters, namely, ðρL; ρR;ΦL;ΦRÞ.

(5) The network MLR amounts for maximizing the
network LLR over the two effective amplitudes
ðρL; ρRÞ and two effective phases, ðΦL;ΦRÞ. This
is a clear extension of the MLR approach with single
detector data stream to MLR analysis of two
effective synthetic streams (corresponding to two
GW polarizations). Thus, the synthetic streams
effectively mimic the multidetector network search.

The approach gives an elegant way to obtain and
construct the synthetic streams in multidetector analysis.
Further, we connect this work to all the existing works,
namely, Refs. [11,13], bringing different notations under
the same umbrella.
The paper is organized as follows. Section II briefly

outlines the binary signal with two polarizations in the
multidetector network. In Sec. III, we define a SNR vector
ϱ for which the norm is the optimal network SNR. Using
the SVD technique, we show that its norm square can also
be split as the sum of the two distinct quantities, ρ2L and ρ2R.
In Sec. IV, we obtain two synthetic streams as linear
combinations of network signal such that their respective
SNRs are ρL and ρR. In Sec. V, we construct the network
likelihood statistic, Λ in terms of synthetic streams. Further,
we show that the extrinsic physical parameters are mapped
into ðρL; ρR;ΦL;ΦRÞ. Thus, the network MLR analysis is
equivalent to the MLR analysis of the two independent
network synthetic streams, and the maximization is equal to
maximizing the two effective amplitudes and the two
effective phases. In Sec. VI, we compare our approach
to the existing literature [11,13].

2Spherical polar coordinates ðθ;ϕÞ are related to the equatorial
coordinates, right ascension (RA) and declination (Dec), as RA¼
ϕ and Dec¼θ−π=2.
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II. INSPIRALING BINARY GW SIGNAL IN A
MULTIDETECTOR NETWORK

In this section, we introduce the inspiral GW signal
arriving at the network of I interferometric GW antennas.
The time series of two polarizations of GW from a

nonspinning compact binary with masses m1; m2 and
located at a distance r which enter the interferometric
detector band at time ta with the phase ϕa is

hþðtÞ ¼ Aðm1; m2; r; tÞ
1þ cos2ϵ

2
cos ½Φðt − taÞ þ ϕa�;

h×ðtÞ ¼ Aðm1; m2; r; tÞ cos ϵ sin ½Φðt − taÞ þ ϕa�; ð1Þ

where Φðt − taÞ is the phase restricted to 3.5 PN order and
the inclination angle ϵ is the angle between the orbital
angular momentum vector and the observer’s line of sight.
The corresponding strain (response) measured by any

interferometric GW detector is

sðtÞ≡ FþhþðtÞ þ F×h×ðtÞ; ð2Þ

where Fþ and F× are the antenna pattern functions which
describe the angular response of an antenna to a given
source location. These antenna pattern functions depend on
the source location with respect to the detector’s site.
In a multidetector network, we represent the antenna

patterns as I-dimensional vectors, namely,Fþ;× ¼ fFþ;×mg,
where the subscript m varies from 1 to I. In addition,
different detectors receive the hþ;×m with time delays
depending on the location of the detector on the Earth’s
globe. Thus, the signal at the mth detector site is
smðtÞ ¼ srefðt − τmÞ, where srefðtÞ is the GW signal in the
geocentric frame, which we treat as reference here, and τm is
the time delay between the signal in themth detector and the
geocentric frame with respect to the source location.
However, for the context of this paper, henceforth we
assume that we compensate for the delays and consider
the delayed signal keeping the same notation to construct the
network signal.3

The antenna pattern vectors when measured in the
geocentric frame Fþ;× are the functions of the polarization
angle Ψ, source location ðθ;ϕÞ, and detector’s Euler angles
with respect to the geocentric frame. We use ðαm; βm; γmÞ to
represent the mth detector’s Euler angles following the
convention in the literature [11,13,18].
In the discrete domain, we express the delayed and

sampled signal arrived at the mth detector with 2N number
of time samples as a 2N dimensional vector,4

sm ¼ Fþmhþ þ F×mh× ≡ℜ½F�mh�; ð3Þ

where h ¼ hþ þ ih× and Fm ¼ Fþm þ iF×m is the com-
plex antenna pattern.
In the frequency domain, the signal becomes

~sm ¼ Fþm
~hþ þ F×m

~h×; ð4Þ

where N-dimensional vectors ~hþ and ~h× are the discrete
versions of frequency domain GW polarizations ~hþðfÞ and
~h×ðfÞ for the positive frequencies. From Eq. (1), it can be
shown5 that

~hþðfÞ ¼ A0

1þ cos2ϵ
2

h0ðfÞeiϕa ;

~h×ðfÞ ¼ A0 cos ϵ hπ=2ðfÞeiϕa ; ð5Þ

with ~h0ðfÞ ¼ i ~hπ=2ðfÞ ¼ f−7=6eiφðfÞ, the stationary phase
approximated frequency domain waveform. Here A0 is the
constant which depends on the masses and the distance,
and φðfÞ is the 3.5 PN corrected phase of the inspiral
signal [22]. In the coming sections, we use ~h0 and ~hπ=2

to represent discrete versions of ~h0ðfÞ and ~hπ=2ðfÞ,
respectively.
Thus, the incoming signal to a multidetector network of I

interferometric detectors with N number of frequency
samples expressed as a N × I matrix,

~SN×I ≡ ½~s1 ~s2…~sI�: ð6Þ

III. NETWORK SNR

We assume the noises in individual detectors to be
independent, additive, stationary Gaussian. Thus, the net-
work optimal SNR square is the sum of squares of optimal
SNRs of the individual detectors [11,13,18] as

ρ2 ¼
XI

m¼1

ρ2m ¼ 4
XI

m¼1

�XN
j¼1

j ~Sjmj2
N jm

�
;

¼ A2
0

�XI

m¼1

g2mF2þm

�
1þ cos2ϵ

2

�
2

þ g2mF2×mcos2ϵ

�
; ð7Þ

where N jm is the jth frequency component of one sided
noise power spectral density (PSD) vector of mth antenna6

[23] and g2m ¼ hh0jh0im.7 Here subscript m denotes the
noise PSD of the mth detector to be used. The gm’s depict

3Note that for construction of the likelihood this is reasonable.
However, if one needs to place the templates in the directional
space [21], one has to explicitly incorporate the delays in the
formalism.

4We take 2N time samples so that there would be N positive
frequency samples as we work in the frequency domain for the
rest of the paper.

5The Fourier transform is ~GðfÞ ¼ R
∞
−∞ GðtÞe−2πiftdt.

6E½j ~njmj2� ¼ 1
2
N jm, where ~njm is the jth frequency component

of noise in the mth detector.
7The scalar product hajbim ¼ 4ℜ

P
N
j¼1

~aj ~b
�
j

N jm
≡ 4ℜ

P
N
j¼1

~~aj ~b
�
j .

~~a is the frequency domain vector for the overwhitened signal a.
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the scaling in SNR arising solely due to the different noise
PSDs. When all the noise PSD’s are identical, then gm ¼ g,
a constant. Note that this gm is proportional to the one
defined in Ref. [11], Eq. (3.12).

A. Network SNR vector

The form of ρ2 in Eq. (7) motivates us to define an
I-dimensional SNR vector ϱ such that ρ2 ¼ ϱHϱ as below:

ϱ≡ A0½d d� �

264
�
1þcos ϵ

2

�
2
e−2iΨ�

1−cos ϵ
2

�
2
e2iΨ

375: ð8Þ

In Eq. (8) the I-dimensional vector d and its conjugate d�
characterize the network angular response with respect to
the source location and noise weights as below:

F0m ≡ gmFm ¼ dmðθ;ϕ; αm; βm; γmÞe−2iΨ: ð9Þ

Here, components of F0 are the noise weighted complex
antenna pattern functions constructed from Fþm, F×m and
gm. We note that Eq. (8) separates the masses in A0 and the
ðϵ;ΨÞ in the two circular polarizations. Further, d and d�
together form a two-dimensional complex plane in the
I-dimensional complex space. As long as the source and the
network is fixed, this plane remains fixed. The network
SNR vector ϱ is located in this complex plane.8

In general d and d� are not orthogonal to each other;
hence, the network SNR square, which is the Euclidean
norm square of ϱ, will have the cross term between these
vectors. Thus, we use SVD technique to express ϱ as sum
of two orthogonal vectors, such that the network SNR
square ρ2 becomes sum of norm squares of two orthogonal
vectors.
The SVD of the matrix ½d d� � is

½d d� � ¼ ½ û1 û2 �|fflfflfflfflffl{zfflfflfflfflffl}
U

24 ∥u1∥ffiffi
2

p 0

0 ∥u2∥ffiffi
2

p

35
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Σ

1ffiffiffi
2

p
�
ei

δ
2 e−i

δ
2

iei
δ
2 −ie−iδ2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VH

;

ð10Þ

where ðU;Σ;VÞ have similar form as described in Sec. IV
of Ref. [18]. The columns of U, û1, and û2 are the left
singular vectors, and those of V are the right singular
vectors of matrix ½d d� �. The diagonal elements of Σ are
the singular values.
The orthogonal pair fu1;u2g can be written down in

terms of the antenna pattern functions as

u1 ≡ 2ℜ½F0e2iχ �; u2 ≡ 2ℑ½F0e2iχ �; ð11Þ

with9 ∥u1;2∥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdHd�jdTdjÞ

p
and the phase χ ¼ Ψ − δ

4
.

Here, δ ¼ argðdTdÞ solely depends on the multidetector
network orientation with respect to the source location.
Thus, for different sky-positions, the χ would vary for a
given network configuration.
Substituting back in Eq. (8), we obtain the network SNR

vector as a linear combination of two orthogonal vectors

ϱ ¼ A0

2

�
1þ cos2ϵ

2
cos 2χ − i cos ϵ sin 2χ

�
u1

þ A0

2

�
1þ cos2ϵ

2
sin 2χ þ i cos ϵ cos 2χ

�
u2: ð12Þ

By using the orthogonality property of u1 and u2, we can
show that ρ2 can be written as the sum of two individual
terms arising from the orthogonal vectors in the network
SNR vector. Please note that unlike Eq. (7) the above
equation is expressed in terms of orthogonal fu1;u2g pair.
For the sake of completeness, we give below the coherent
network SNR in terms of the individual SNRs:

ρ2¼ϱHϱ¼ρ2Lþρ2R

¼A2
0∥u1∥2

4

��
1þcos2ϵ

2

�
2

cos22χþcos2ϵsin22χ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P2L

þA2
0∥u2∥2

4

��
1þcos2ϵ

2

�
2

sin22χþcos2ϵcos22χ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P2R

:

ð13Þ
In Eq. (12) we can see that the two linear polarizations

ðþ;×Þ are linearly combined to form a pair of left (L) and
right (R) circular polarizations. More discussion on circular
polarizations is given in Sec. IV.
This motivates us to construct two synthetic streams

which would each give an individual SNR, ρL and ρR. We
address this in the subsequent Sec. IV.

B. Connection to dominant polarization frame

The DP frame is a specific choice of wave frame in
which the the real and imaginary parts of the noise
weighted complex network antenna pattern vector F0DP ¼
F0DPþ þ iF0DP

× become orthogonal to each other, i.e.,

XI

m¼1

F0DPþm F0DP
×m ¼ 0: ð14Þ

8The vector d is the noise weighted version of the one defined
in Ref. [18]. The complex plane formed by d and d� is called the
“polarization plane” or “helicity plane” in the literature. For
further details, see Refs. [11,18]. 9∥:∥ represents the Euclidean norm of a vector.
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In Eq. (9), it is apparent that the Ψ dependence in the
complex antenna pattern is in the phase. This ensures
freedom in the choice of Ψ via the orientation of the wave
frame with respect the reference frame. If we rotate the
wave plane by an additional angle ΔΨ about the line of
sight (Z axis), the network antenna pattern for this newly
rotated wave frame can be obtained by applying an
equivalent transformation on F as F exp ð−2iΔΨÞ. That
would also transform the signal as h exp ð−2iΔΨÞ keeping
the response Eq. (3) invariant. This freedom in the choice of
Ψ is explored to obtain the DP frame. In other words, the
DP frame is obtained by a certain choice of polarization
angle ΨDP of the wave frame with respect to the geocentric
frame such that it will satisfy the condition given in
Eq. (14). The phrase “dominant polarization frame” was
coined in the context of the detection of bursts by Klimenko
et al. [16] and recently in the inspiral search with multi-
detector network in Ref. [13].
Thus, the noise weighted complex network antenna

pattern vector in DP frame can be written as

F0DP ¼ de−2iΨ
DP
: ð15Þ

However, from Eq. (11) we note that the vector F0e2iχ has
orthogonal real and imaginary component vectors, which is
precisely the condition for antenna pattern vectors in the DP
frame. Thus, the SVD provides a natural connection to the
DP frame through its construction, where the singular
values are in descending order.
In summary,

F0DP ¼ F0e2iχ ¼ u1 þ iu2

2
¼ de−i

δ
2;

F0DPþ ¼ u1

2
and F0DP

× ¼ u2

2
; ð16Þ

and ΨDP ¼ δ=4. The DP frame is obtained by rotating the
wave frame about the z axis by an angle χ ¼ Ψ − δ=4 in the
clockwise direction. The DP frame pertains to the source;
i.e., if one changes the source location, the d-d� plane will
be different. The χ will change via δ. Further when the
source location remains the same but the polarization angle
Ψ changes, then also χ changes via Ψ.

IV. APERTURE SYNTHESIS IN GW
INSPIRAL SEARCH

As mentioned earlier, more than one detector is neces-
sary to determine GW polarization as well as the locali-
zation of the sources [24]. In the following discussion, we
construct two effective synthetic data streams out of I
detector data streams in the network; they together carry the
full network SNR as given in Eq. (7). Since GWs carry two
polarizations in the Einsteinian gravity, the signal resides in
the two-dimensional subspace of I-dimensional network
space, and hence only two independent data streams are

sufficient to provide information about the polarization in
the network formalism. We show that the constructed data
streams provide that information. In the past [11,13,18], the
synthetic data streams were shown to be the byproduct of
maximizing the network LLR over the four extrinsic
parameters ðA;ϕa; ϵ;ΨÞ. However, here in this section,
we show that the synthetic streams can be constructed prior
to the MLR analysis. This is similar to the spirit of aperture
synthesis technique in the electromagnetic window such as
optical or radio used in very large telescope interferometer
[25] or very long baseline interferometry [26], where an
effective antenna is constructed out of a linear combination
of data from different telescopes.
Below, we construct the synthetic data streams using u1

and u2 and show that they individually give the matched
filter SNR equal to ρL and ρR.

A. Signal sm in the DP frame

In the rest of the paper, we work in the new frame
provided by the SVD, also known as the DP frame. We
rewrite the antenna pattern F in terms of u1 and u2 and then
express the network signal as below.
Using Eqs. (3) and (16), the time domain signal vector at

the mth detector is

sm ¼ 1

2
ℜ

�
he2iχ

u1m
gm

�
þ 1

2
ℑ

�
he2iχ

u2m
gm

�
;

¼ ℜ

�
he2iχ

�
u1m þ iu2m

2gm

���≡ℜ½hDPFDP�
m �; ð17Þ

where hDP ¼ h expð2iχÞ and FDP ¼ F expð2iχÞ are the
complex GWs as well as the network antenna pattern
function in the DP frame, respectively.
From Eqs. (4) and (16), the jth frequency component of

the frequency domain signal in the mth detector ½~sm�j ¼
~Sjm can be expressed in terms of the linear combination of
FDPþ;× in the DP frame. Further, the amplitude A0, initial
phase ϕa, and frequency dependent part, namely, ~h0, are
factored out as shown below:

~Sjm ¼ A0eiϕa ~h0j

��
1þ cos2ϵ

2
cos 2χ þ i cos ϵ sin 2χ

�
FDPþm

þ
�
1þ cos2ϵ

2
sin 2χ − i cos ϵ cos 2χ

�
FDP
×m

�
≡ A0

~h0j½PLFDPþme
iΦL þ PRFDP

×meiΦR �: ð18Þ

The PL;R are the polarization amplitudes in the DP frame as
defined in Eq. (13). This carries the effect of rotation by 2χ
of the signal which mixes the two linear GW polarizations
into a pair of L and R circular polarizations. The
polarization phases are
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ΦLðϵ; χÞ ¼ tan−1
�
tanð2χÞ 2 cos ϵ

1þ cos2ϵ

�
þ ϕa; ð19Þ

ΦRðϵ; χÞ ¼ ΦL

�
ϵ; χ þ π

4

�
: ð20Þ

As expected the ΦR phase is obtained by rotating χ by π=4
in ΦL, the property of GW polarization pairs. The above
polarization terms, namely, fPL;ReiΦL;Rg, can be shown to
be equal to

PLeiΦL ¼ ½T�
2þ2ðχ; ϵ; 0Þ þ T�

2−2ðχ; ϵ; 0Þ� ð21Þ

PReiΦR ¼ i½T�
2−2ðχ; ϵ; 0Þ − T�

2þ2ðχ; ϵ; 0Þ�; ð22Þ

respectively, which describe the circular polarizations
expressed in terms of rank-2 Gel–Fand function Tmn [27].

10

In the next subsection, we use this separation feature of
the signal to construct the synthetic streams.

B. Network matched filter

In this section, we introduce the notion of a matched
filter designed for a the multidetector analysis which not
only combines the spectral but also the network features.
We call this filter as the network matched filter.
Let the frequency domain delayed network data stream

be given by ~X ¼ ½ ~x1 ~x2… ~xI� with ~xm ¼ ~sm þ ~nm and ~nm
be the frequency domain noise vector corresponding tomth
detector. To proceed further, we make the following
constructs:
(1) Overwhitened data stream: Construct the overwhit-

ened data stream incorporating the noise PSD of the

individual antennas denoted by ~~X jm ¼ ~X jm

N jm
.

(2) Synthetic data stream: The overwhitened synthetic
data stream ~~z is constructed from the linear combi-
nation of individual overwhitened data streams as

~~zj ≡
XI

m¼1

αm
~~X jm; ð23Þ

with real linear coefficients αm. The overwhitened data
are used for the synthetic data stream construction in
order to incorporate the individual noise PSDs.

We show in the rest of the section that using the classical
idea of matched filtering, we can tune αm such that the

resulting synthetic data stream would extract either L or R
circular polarization.
In the next subsection, we remind the reader that the

classical derivation of the matched filter used for the single
detector context.

1. Single detector matched filter

If ~k is a filter, then the filtered output of ~z through this
filter is hzjki. Here (in order to avoid the excess notations)
for this subsubsection, let us assume that ~z denotes the
unwhitened data of the single detector.
The SNR of the filtered output is [28]

SNR ¼ E½hzjki�
σ½hzjki�j~s¼0

¼ 4ℜ½PN
j¼1Eð~~zj ~k�jÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ð4ℜ½PN
l¼1

~~zl ~k
�
l �Þ2�j~s¼0

q ; ð24Þ

where E½:� represents the expectation and σ½:� represents
the standard deviation. The single detector SNR further
simplifies to

Single detector SNR ¼ 4ℜ½PN
j¼1

~~sj ~k
�
j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
P

N
j¼1

j~kjj2
N j

r ¼ hsjk̂i: ð25Þ

Here N j is the jth frequency component of one sided
noise power spectral density vector.
The filter norm is

ffiffiffiffiffiffiffiffiffiffiffiffihkjkip
. As is known, the above SNR

would be optimal when the filter vector is aligned to the
signal vector, i.e., ~kj ∝ ~sj, known as the matched filter.
Now, let us explore these ideas in the context of the

multidetector scenario.

2. Network matched filter

The matched filter is that filter which gives the optimum
SNR in Gaussian noise. However, the signal in DP frame is
separated in such a way that the noise weighted antenna
patterns are orthogonal. Let us apply the matched filter
notion with the aim that the resultant combined spectral as
well as network filter via αm would capture the individual
polarizations. We show below that in this exercise, this
amounts to constructing a combined spectral-network
matched filter.
Consider Eq. (24) with ~z as the synthetic stream defined

in Eq. (23). Then, Eq. (24) can be simplified to

SNR ¼ 4ℜ½PN
j¼1

P
I
m¼1

~~Sjm
~K�
jm�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
P

N
j¼1

P
I
m¼1

j ~Kjmj2
N jm

r ; ð26Þ

where the matrix ~K ¼ ~k ⊗ α, i.e., ~Kjm ¼ ~kjαm, and the
mth column vector ~Km ¼ αm ~k.

10The rank-2 Gel–Fand functions

T2
2�2ðχ; ϵ; 0Þ ¼

ð1� cos ϵÞ2
4

exp ð∓2iχÞ:

Since throughout the paper we use only rank-2 Gel–Fand
functions, we drop the superscript 2 from T2

mn.

K. HARIS AND ARCHANA PAI PHYSICAL REVIEW D 90, 022003 (2014)

022003-6



Further, the denominator of Eq. (26),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
XN
j¼1

XI

m¼1

j ~Kjmj2
N jm

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

m¼1

α2mhkjkim

vuut ; ð27Þ

is the Frobeinus matrix norm of ~KN×I in the combined
spectral-network (N × I) space defined as ∥ ~K∥2 ≡
Trðh ~Km; ~KniÞ, which is same as the right-hand side of
Eq. (27). The subscript m in hkjkim denotes the noise PSD
is that of mth detector.
It is interesting to note that Eq. (26) has the same

structure of a conventional single detector matched filter
SNR in Eq. (25). For a single detector, the filter is a one-
dimensional vector in the spectral direction. As the matched
filter is that filter which gives the maximum SNR, which
should be aligned along the signal, i.e., ~kj ∝ ~sj for the
single detector case.
While in the multidetector case, ~K is a two-dimensional

ðN × IÞ combined spectral network filter. Since ~S can be
decomposed into frequency and network components,
the optimal combined filter should match with ~S (or part
of ~S) in the same spirit as that of the single detector
case described above. Owing to the facts that were detailed
in Eq. (18), we recall that the network signal has two
constituent parts.Here,we construct that filterwhich captures
either of the two circular polarizations as shown below:
(1) ~KL: Network matched filter for left circular polari-

zation: To capture the plus polarization of the DP
frame (left circular polarization) in Eq. (18), ~KL
should be aligned to the Left polarization part of the
~S, which we call ~KL ≡ ~kL ⊗ αL. The alignment
condition demands that it should satisfy

~kLj ∝ ~h0jeiΦL and αLm ∝ FDPþm ð28Þ

together. Since the Frobeinus norm of ~KL is ∥F0DPþ ∥,
the components of the normalized network plus filter
~KL become

~kLj ¼ ~h0jeiΦL ; αLm ¼ FDPþm

∥F0DPþ ∥
: ð29Þ

Using Eqs. (26) and (29), the corresponding SNR
becomes

4ℜ

�XN
j¼1

XI

m¼1

~~Sjm
~KLjm

�
¼ ρL: ð30Þ

(2) ~KR: Network matched filter for right circular
polarization: To capture the cross polarization of
the DP frame (right circular polarization) in Eq. (18),
we construct another filter, ~KR ≡ ~kR ⊗ αR, such
that together it should satisfy

~kRj ∝ ~h0jeiΦR and αRm ∝ FDP
×m: ð31Þ

The Frobeinus norm of ~KR is ∥F0DP
× ∥ gives the

components of normalized network cross filter ~KR,

~kRj ¼ ~h0jeiΦR ; αRm ¼ FDP
×m

∥F0DP
× ∥

; ð32Þ

with the corresponding SNR as given by

4ℜ

�XN
j¼1

XI

m¼1

~~Sjm
~KRjm

�
¼ ρR: ð33Þ

In summary, the synthetic streams constructed from the
overwhitened data streams which capture the individual
polarizations in the DP frame are

~~zL ¼
XI

m¼1

FDPþm

∥F0DPþ ∥
~~Xjm; ~~zR ¼

XI

m¼1

FDP
×m

∥F0DP
× ∥

~~Xjm: ð34Þ

They together give the total network SNR as the sum
squares of individual SNRs. The total signal power in the
individual detectors of the network is now distributed
among the synthetic streams ~zL and ~zR, which when
processed with filters ~kL and ~kR independently captures
the two polarizations in the DP frame. By using Eqs. (29),
(30), (32), and (33), we can write the respective SNRs as

ρL ¼ hzLjkLijn¼0; ρR ¼ hzRjkRijn¼0: ð35Þ

Thus, we have shown that extending the concept of the
matched filter to the network gives us two effective
synthetic data streams which can be further processed.

C. Special case: Same noise for all detectors

In this subsection, we consider an idealistic situation
where all the detectors have same noise PSD, i.e., gm
becomes equal to a constant g for all detectors. Then from
Eq. (34), we can see that the “noise free” synthetic streams
~zsL;R are nothing but the projections of the network signal

matrix ~S on the orthonormal vectors F̂DP
þ;× with an overall

weight 1=g. If we expand ~S as in Eq. (18), we can further
simplify ~zsL;R into a linear combination of GW polarizations
~hþ;× similar to a pair of ordinary interferometric detector
signals as shown below:

~zsL ¼ ∥FDPþ ∥
g

ð ~hþ cos 2χ − ~h× sin 2χÞ;

~zsR ¼ ∥FDP
× ∥
g

ð ~hþ sin 2χ þ ~h× cos 2χÞ: ð36Þ

Please note the equivalent antenna pattern of ~zsR is π=4 out
of phase with that of ~zsL.
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V. MULTIDETECTOR MAXIMUM LIKELIHOOD
RATIO AND NETWORK SYNTHETIC STREAMS

In this section, we carry out MLR analysis for the
inspiral detection with a multidetector network. This has
been already done in the literatures [11,13,18] in different
contexts as well as notations. Here, we construct MLR
statistic in a much more straightforward way. We further
compare this work with the previous works and thus bring
all earlier multidetector inspiral related search formalisms
under the same notations.
In the multidetector network MLR detection technique,

the network LLR is maximized over signal parameters, and
a test statistic is obtained, which is then compared with the
threshold for the detection. For high SNR cases, the MLR
technique is known to be optimal.

A. Network likelihood ratio

Assuming the Gaussian, additive noise in each detector
data, the LLR for a multidetector network with I constitu-
ent detectors is the sum of LLRs of individual antennas and
is given by [13]

Λ ¼
XI

m¼1

hxmjsmi −
1

2
hsmjsmi: ð37Þ

Rearranging terms and a little algebra as given in
Appendix A, we can reexpress the above equation in terms
of the synthetic data streams as

2Λ ¼ ½2ρLhzLjh0eiΦLi − ρ2L� þ ½2ρRhzRjh0eiΦRi − ρ2R�:
ð38Þ

We note that Eq. (38) can be viewed as the sum of the
LLRs of two independent synthetic detectors, where ΦL;R
carries the constant phase which incorporates the initial
phase plus the polarization angles and ρL;R are the SNRs of
the two synthetic data streams.
We note that, in terms of synthetic streams, the four

extrinsic parameters ðA0;ϕa; ϵ;ΨÞ are now mapped in to a
set of two effective SNRs and two effective phases,
namely, ðρL; ρR;ΦL;ΦRÞ.

B. Maximization of network LLR

Now we maximize Λ over the new extrinsic parameters
ðρL; ρR;ΦL;ΦRÞ to obtain the maximum log likelihood
ratio, Λ̂ [11,13,18]. The new extrinsic parameters give the
reparametrized physical parameters ðA0;ϕa; ϵ;ΨÞ where
the relation between them is summarized in Appendix B.
Below, we maximize Λ over the new set; first over the
amplitudes and then over the phase, respectively:
(1) Amplitude maximization: Maximization over ρL;R is

the same as that in the case of a single detector [7],
and it results in

2Λ̂jρL;ρR ¼ hzLjh0eiΦLi2 þ hzRjh0eiΦRi2; ð39Þ

and the MLR amplitude estimates become

ρ̂L ¼ hzLjh0eiΦLi; ρ̂R ¼ hzRjh0eiΦRi: ð40Þ

(2) Phase maximization: Since ΦL and ΦR are indepen-
dent, maximization of LLR over them amounts to
individually maximizing each term of the sum in
Eq. (39). Thus, the maximum likelihood estimates of
ΦL;R are

Φ̂L ¼ arg

�XN
j¼1

~~zL;j ~h
�
0j

�
; Φ̂R¼ arg

�XN
j¼1

~~zR;j ~h
�
0j

�
:

ð41Þ
In summary,

2Λ̂ ¼ 16

�				XN
j¼1

~~zL;j ~h
�
0j

				2 þ 				XN
j¼1

~~zR;j ~h
�
0j

				2�: ð42Þ

We write one individual term in Eq. (42) as follows:				XN
j¼1

~~zL;Rj ~h
�
0j

				2

¼
�
ℜ

�XN
j¼1

~~zL;Rj ~h
�
0j

��2

þ
�
ℜ

�XN
j¼1

~~zL;Rj ~h
�
π=2j

��2

:

¼ hzL;Rjh0i2 þ hzL;Rjhπ=2i2
16

: ð43Þ

Thus, the MLR simplifies to

2Λ̂ ¼ hzLjh0i2 þ hzLjhπ=2i2 þ hzRjh0i2 þ hzRjhπ=2i2:
ð44Þ

This can be described as a quadrature sum of powers in
synthetic streams ~zL and ~zR. This is similar to the single
detector statistic which contains the quadrature sum of
powers in a single detector data stream. From Eqs. (35) and
(42), we can see under no noise condition [11,13,18]

2Λ̂ ¼ ρL2 þ ρR2: ð45Þ

VI. CONNECTION TO THE EXISTING
LITERATURE

In the GW multidetector inspiral search, network MLR
statistics maximized over four extrinsic parameters has
been formalized in the literature [11,13]. Though the
problem is same, the parametrization depends on the
way the problem is cast. However, the final network
MLR maximized over the extrinsic parameters is the same.
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In this section, we carry out a comparison between various
formalisms under the same notations as given here, which
till now has not been done in the literature so far.

A. Synthetic streams and Harry–Fairhurst
[13] approach

In Ref. [13], the authors cast the multidetector MLR
problem into the F statistic. The polarizations were
written down in terms of the linear combination of the
four amplitudes on which the extrinsic parameters are
mapped, i.e.,

ðA0;ϕa; ϵ;ΨÞ ⇒ ðA1;A2;A3;A4Þ: ð46Þ
For explicit relations, please visit Appendix B. Later the
maximum likelihood analysis is carried out in DP frame,
where 2Λ̂ is simplified to quadrature sum of powers in þ
and × polarizations. Here, the maximization of network
LLR over the four amplitudes is performed in a single step.
Below, we derive the multidetector MLR of Ref. [13],

Eq. (2.33), starting from the notations in this paper.
In Eq. (39),

hzL;Rjh0i ¼
4

∥F0DPþ;×∥
ℜ

"XN
j¼1

XI

m¼1

~~Xjmh0�jF
DPþ;×m

#

¼ 1

∥F0DPþ;×∥

XI

m¼1

hxmjh0FDPþ;×mi;

and hzL;Rjhπ=2i ¼
1

∥F0DPþ;×∥

XI

m¼1

hxmjhπ=2FDPþ;×mi: ð47Þ

Further,

∥F0DPþ;×∥2 ¼
XI

m¼1

g2mF2þ;×m ¼
XI

m¼1

hh0Fþ;×mjh0Fþ;×mi:

Now substituting back in Eq. (44),

2Λ̂ ¼ ½Pmhxmjh0FDPþmi�2 þ ½Pmhxmjhπ=2FDPþmi�2P
mhh0Fþmjh0Fþmi

þ ½Pmhxmjh0FDP
×mi�2 þ ½Pmhxmjhπ=2FDP

×mi�2P
mhh0F×mjh0F×mi

: ð48Þ

Absorbing the summation over m following the definition
Eq. (2.21) of Ref. [13], Eq. (48) becomes Eq. (2.33) of
Ref. [13].11 Also one can show that ~~zL;R are related to
overwhitened synthetic streams oþ;× defined in Eq. (2.35)
of Ref. [13] as follows:

oþ;× ¼ ∥F0DPþ;×∥~~zL;R: ð49Þ

The two pairs of synthetic streams differ by constants, which
is different for both the synthetic streams. The final maxi-
mized multidetector LLR matches Eq. (44) as expected.

B. Synthetic streams and Pai et al. [11] approach

In Ref. [11], the multidetector coherent statistic was
obtained by successive maximization of amplitude A0,
initial phase ϕa similar to the single detector statistic.
The polarization angles ðϵ;ψÞ are maximized at a time
using the symmetry properties of the rotation group and
Gel–Fand functions. The maximized network LLR thus
obtained contains the sum square of four terms as is shown
in Eq. (4.11) of Ref. [11] similar to Eq. (2.33) of Ref. [13]
and Eq. (44) above. We explicitly give the Eq. (4.11) of
Ref. [11],

2Λ̂ ¼ jv̂þ · Cj2 þ jv̂− · Cj2
¼ ðcþ0 Þ2 þ ðcþπ=2Þ2 þ ðc−0 Þ2 þ ðc−π=2Þ2 ð50Þ

where the elements of I-dimensional complex vector C,

Cm ¼ cm0 þ icmπ=2; ð51Þ

combine the correlations of the two quadratures of the
normalized template with the data with cm0 ¼ 1

gm
hh0jxmim

and cmπ=2 ¼ 1
gm
hhπ=2jxmim. Further,

v̂� ¼ v�

∥v�∥
¼

dℜðdÞ � dℑðdÞ
∥ð dℜðdÞ � dℑðdÞÞ∥ ð52Þ

is a pair of real unit vectors which span the two-
dimensional polarization plane in the I-dimensional space.
Thus, if we take a representative individual term in
Eq. (50), it becomes

ðcþ0 Þ2 ¼
�XI

m¼1

vþm
gm∥vþ∥

hxm;h0im
�2

≡ hzþjh0i2: ð53Þ

Thus, based on Eq. (53), the corresponding synthetic
streams are

~~zþj ≡
XI

m¼1

vþm
gm∥vþ∥

~~Xjm; ~~z−j ≡
XI

m¼1

v−m
gm∥v−∥

~~Xjm; ð54Þ

which give the SNR’s ρþ and ρ− such that in the no noise
case

2Λ̂ ¼ ρ2þ þ ρ2−: ð55Þ

C. SNRs in two pairs of synthetic data streams

In the previous sections, we show that the network SNR
square can be split into the sum of squares of SNRs of two11hajbi is same as ðajbÞ defined in Eq. (2.17) of Ref. [13].
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FIG. 1 (color online). Directional SNR squares ρ2L, ρ
2
R, ρ

2þ, ρ2−, and ρ2net for various three network configurations with m1, m2 ¼ 1.4,
ϵ ¼ π=4, Ψ ¼ π=4, and r ¼ 150 Mpc. with the same noise spectral densities for all detectors.
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FIG. 2 (color online). Directional SNR Squares ρ2L, ρ
2
R, ρ

2þ, ρ2−, and ρ2net for various four detector network configurations with m1,
m2 ¼ 1.4, ϵ ¼ π=4, Ψ ¼ π=4, and r ¼ 150 Mpc. with the same noise spectral densities for all detectors.
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distinct pairs of synthetic streams, Eqs. (34) and (54). This
can be understood as follows.
We recall that the network SNR vector ϱ is located in the

complex 2-plane formed by the vectors d and d� as in
Eq. (8). In general any orthogonal complex vector pair
which spans this 2-plane would capture the norm of ϱ. The
above-mentioned synthetic stream pairs zL;R as defined in
Eq. (34) and z� as defined in Eq. (54) are constructed using
two different pairs of real orthogonal vectors, name-
ly;,fF0DPþ;×g and fv�g, respectively. Below, we give the
expressions for these real vectors as the linear combinations
of d and d�,

F0DPþ ¼ ℜ½de−iδ2�; F0DP
× ¼ ℑ½de−iδ2�; ð56Þ

vþ ¼ ℜ½de−iα�; v− ¼ ℜ½deiα�; ð57Þ

with α ¼ 1
2
cos−1½- jdTdj cos δdHd � and δ ¼ argðdTdÞ as defined

earlier.
In the following figures, we pictorially compare the

SNRs of the two synthesis stream pairs, ρL;R and ρ�, as
well as the network SNR ρ for different multidetector
networks. We consider the binary system with component
masses ð1.4; 1.4ÞM⊙, polarization ψ ¼ π=4 and inclination
ϵ ¼ π=4 located at the distance of 150 Mpc. For this
exercise we consider various networks with constituent
detectors LIGO-Livingston (L), LIGO-Hanford (H), Virgo
(V), KAGRA (K), and the detector in India denoted by
(I).12 We assume all the detectors with a “zero-detuning,

high-power” Advanced LIGO noise curve given by
Eq. (4.7) of Ref. [29]. Figure 1 gives the SNRs correspond-
ing to three representative 3-detector networks, namely,
LVH, LVI, and LHI. Similarly Fig. 2 is for three 4-detector
networks LHVK, LHVI, and LVKI, and Fig. 3 is for
a 5-detector network LHVKI.
Several distinct features are noted in the SNR figures of

the two synthetic stream pairs. As expected the total
network SNR square for both the pairs is the same, namely,
ρ2L þ ρ2R ¼ ρ2þ þ ρ2− ¼ ρ2. Please see the corresponding
pannels in Figs. 1, 2, and 3. In most of the cases, ρL is
higher than ρR, and it carries the features of the network
SNR, ρ. In the case of ρ� pairs, on average the network
SNR seemed to have distributed between the ρþ and
ρ−more or less equally. These features can be used to
construct a consistency test for the targeted directional
search, which we are currently investigating.

VII. CONCLUSION

The interferometric multidetector GW network can be
described as a pair effective multidetector antennas which
captures most of the features of multidetector coherent
analysis. The number 2 pertains to the two polarizations of
Einstein’s gravity.
In past, the multidetector coherent compact binary

coalescence inspiral MLR analysis was formulated by
various groups, in particular Ref. [11] using Gel–Fand
functions and Ref. [13] using the F statistic. In both these
works, the network LLR was maximized over four extrinsic
parameters ðA0;ϕa; ϵ;ΨÞ and the network maximum LLR
statistic was obtained. It was noted that maximum LLR
statistic can be interpreted in terms of two synthetic

FIG. 3 (color online). Directional SNR squares ρ2L, ρ
2
R, ρ

2þ, ρ2−, and ρ2net for network LHVKI with m1, m2 ¼ 1.4, ϵ ¼ π=4, Ψ ¼ π=4,
and r ¼ 150 Mpc, with the same noise spectral densities for all detectors.

12Hypothetically we take Pune, India, as the location for the
detector in India.
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streams, which are linear combinations of the overwhitened
data from individual detectors with directional network
dependent coefficients pertaining to the two polarizations.
Thus, the synthetic streams emerge in the MLR statistic
only after the maximization. However, since in Einstein’s
gravity a GW carries two polarizations, it is more natural to
expect two effective data streams (independent of the
detection statistic) to capture the polarizations when we
have more than one detector.
In this work, we have derived the network synthetic data

streams much before the construction of LLR statistic using
the matching filtering idea applied to the network data and
the singular-value-decomposition technique applied to the
network SNR vector. These streams individually capture the
two circular polarizations. Then, the network LLR naturally
emerges as the sumof theLLRs of the synthetic streams. The
four physical parameters, namely, ðA0;ϕa; ϵ;ΨÞ getmapped
to two amplitude and two phase parameters pertaining
to the circular polarizations in the signal. The MLR
analysis over these new parameters ðρL; ρR;ΦL;ΦRÞ is a
straightforward task.
The DP frame is a specific choice of wave frame in

which the the real and imaginary parts of noise weighted
complex network antenna pattern vector becomes orthogo-
nal to each other. We have demonstrated that the dominant
polarization frame naturally emerges out of the SVD of the
SNR vector.
Connecting this work to the existing literature, namely,

Refs. [11] and [13], we explicitly show that the two
synthetic streams discussed in the earlier works are distinct,
and they can be related through the network constructs. In
both the works, the authors use a pair of orthonormal
complex vectors which span the d-d� complex plane to
construct two synthetic data streams. Though the choice of
the basis vector pairs, which span the two-dimensional
complex plane, are different, the total network SNR is the
same. This work aims to combine all the existing formal-
isms of the multidetector pertaining to the compact binary
coalescence and show that the two synthetic streams can be
obtained using the network SNR vector.

The above formalism allows us to study the properties of
the network synthetic streams more effectively. The multi-
detector SNR can be decomposed into two pieces pertaining
to two synthetic stream SNRs, which individually carry the
multidetector features. We are currently investigating the
properties of these streams and their individual contribution
in the angular resolution improvement in the multidetector
context. Another directionwe are investigating is to use their
properties in the inspiraling binary search, namely, to
develop the consistency tests as well as to carry out an
efficient all-sky search with a global detector network.
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APPENDIX A: LIKELIHOOD RATIO

The network log likelihood ratio is

Λ ¼
XI

m¼1

hxmjsmi −
1

2
hsmjsmi

¼
XI

m¼1

4ℜ
�XN
j¼1

~~X jm
~S�
jm

�
− 2

�XN
j¼1

j ~Sjmj2
N jm

�
: ðA1Þ

We use Eq. (34) to express the network LLR in terms of
(PL; PR;ΦL;ΦR), and we get

XI

m¼1

4ℜ

�XN
j¼1

~~X jm
~S�jm

�
¼ 4A0PLℜ

�XN
j¼1

XI

m¼1

~~X jmFDPþm
~h�0je−iΦL

�

þ4A0PRℜ

�XN
j¼1

XI

m¼1

~~X jmFDP
×m

~h�0je−iΦR

�
¼A0½PL∥F0DPþ ∥hzLjh0eiΦLiþPR∥F0DP

× ∥hzRjh0eiΦRi�: ðA2Þ

Equations (13) and (16) give

A0PL∥F0DPþ ∥ ¼ ρL; A0PR∥F0DP
× ∥ ¼ ρR: ðA3Þ

Also, from Eq. (7) one can easily show that the second
terms in Eq. (A1) are half of network SNR square, ρ2L þ ρ2R.
Substituting back in Eq. (A1),

2Λ¼½2ρLhzLjh0eiΦLi−ρ2L�þ½2ρRhzRjh0eiΦRi−ρ2R�: ðA4Þ

APPENDIX B: RELATION BETWEEN OLD AND
NEW EXTRINSIC PARAMETERS

The maximum log likelihood ratio is obtained by
maximizing the network LLR over the four extrinsic
parameters, which are the functions of physical parameters
ðA0;ϕa; ϵ;ΨÞ. As we discussed earlier, the choice of
these functions depends on the formalism. In this appendix,
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we relate the extrinsic parameter set ðA0;ϕa; ϵ;ΨÞ
with ðA1;A2;A3;A4Þ.
The extrinsic parameters used in this paper are

ρL ¼ A0∥FDPþ ∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ cos2ϵ

2

�
2

cos22χ þ cos2ϵ sin22χ

s
;

ρR ¼ A0∥FDP
2 ∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ cos2ϵ

2

�
2

sin22χ þ cos2ϵ cos22χ

s
;

ΦL ¼ tan−1
�
tanð2χÞ 2 cos ϵ

1þ cos2ϵ

�
þ ϕa;

ΦR ¼ tan−1
�
-cotð2χÞ 2 cos ϵ

1þ cos2ϵ

�
þ ϕa: ðB1Þ

In Ref. [13], the maximization of LLR is done over a set of
derived amplitude parameters,

A1 ¼ A0

�
1þ cos2ϵ

2
cosϕa cos2Ψ− cos ϵ sinϕa sin2Ψ

�
;

A2 ¼ A0

�
1þ cos2ϵ

2
cosϕa sin2Ψþ cosϵ sinϕa cos2Ψ

�
;

A3 ¼ A0

�
−
1þ cos2ϵ

2
sinϕa cos2Ψ− cos ϵ cosϕa sin2Ψ

�
;

A4 ¼ A0

�
−
1þ cos2ϵ

2
sinϕa sin2Ψþ cosϵ cosϕa cos2Ψ

�
:

ðB2Þ

These are related to ðρL; ρR;ΦL;ΦRÞ as follows:

ðA1 − iA3Þcos
δ

2
þðA2− iA4Þsin

δ

2
¼ ρL
∥F0DPþ ∥

eiΦL ;

ðA2− iA4Þcos
δ

2
− ðA1− iA3Þsin

δ

2
¼ ρR
∥F0DP

× ∥
eiΦR : ðB3Þ

This implies

A1 ¼
ρL

∥F0DPþ ∥
cos

δ

2
cosΦL −

ρR
∥F0DP

× ∥
sin

δ

2
cosΦR;

A2 ¼
ρL

∥F0DPþ ∥
sin

δ

2
cosΦL þ ρR

∥F0DP
× ∥

cos
δ

2
sinΦR;

A3 ¼ −
ρL

∥F0DPþ ∥
cos

δ

2
sinΦL þ ρR

∥F0DP
× ∥

sin
δ

2
sinΦR;

A4 ¼ −
ρL

∥F0DPþ ∥
sin

δ

2
sinΦL −

ρR
∥F0DP

× ∥
cos

δ

2
sinΦR: ðB4Þ

For Eq. (B4), the map between ðA0;ϕa; ϵ;ΨÞ and
ðA1;A2;A3;A4Þ is one to one.

APPENDIX C: LIKELIHOOD ESTIMATES OF
POLARIZATION ANGLES

As we discussed earlier, a network of detectors can
recover the polarization information of GW. Since zL and
zR are the equivalent detectors of the network, we can
obtain the estimates of polarization angles ϵ̂ and Ψ̂ in terms
of their SNRs. By using Eqs. (13) and (16) and the
definition of ΦL;R, we define

Y ≡ ρL∥FDP
× ∥eiΦL

ρR∥FDPþ ∥eiΦR
¼ cos 2χ 1þcos2 ϵ

2
þ i sin 2χ cos ϵ

sin 2χ 1þcos2 ϵ
2

− i cos 2χ cos ϵ

¼ i
T�
2þ2ðχ; ϵ; 0Þ þ T�

2−2ðχ; ϵ; 0Þ
T�
2þ2ðχ; ϵ; 0Þ − T�

2−2ðχ; ϵ; 0Þ
: ðC1Þ

This implies

T2−2ðχ; ϵ; 0Þ
T2þ2ðχ; ϵ; 0Þ

¼ iY� − 1

iY� þ 1
: ðC2Þ

Then polarization angles can be expressed in terms of Y
as follows:

cos 4Ψ ¼ cos

�
arg

�
T2−2

T2þ2

�
þ δ

�
¼ cos

�
arg

�
iY� − 1

iY� þ 1

�
þ δ

�
; ðC3Þ

and

cos ϵ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffi
j T2−2
T2þ2

j
q

1þ
ffiffiffiffiffiffiffiffiffiffiffi
j T2−2
T2þ2

j
q ¼

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j iY�−1
iY�þ1

j
q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j iY�−1
iY�þ1

j
q : ðC4Þ

However, when the noise is present, ρL; ρR;ΦL;ΦR are
estimated using the MLR approach. Then using Eq. (C1), Y
is constructed out of ρ̂L; ρ̂R; Φ̂L; Φ̂R estimates. Thus, ðϵ̂; Ψ̂Þ
is obtained by Eqs. (C3) and (C4), with newly con-
structed Y.
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