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The force exerted by the gravitational field on a Casimir cavity in terms of Archimedes force of vacuum
is discussed, the force that can be tested against observation is identified, and it is shown that the present
technology makes it possible to perform the first experimental tests. The use of suitable high-Tc

superconductors as modulators of Archimedes force is motivated. The possibility is analyzed of using
gravitational wave interferometers as detectors of the force, transported through an optical spring from the
Archimedes vacuum force apparatus to the gravitational interferometer test masses to maintain the two
systems well separated. The use of balances to actuate and detect the force is also analyzed, the different
solutions are compared, and the most important experimental issues are discussed.
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I. INTRODUCTION

One of the striking and long-standing problems of funda-
mental physics is the irreconcilability among the two main
theories of last century, general relativity andquantumtheory.
Amanifestation of this tension is thevalue that quantum field
theory attributes to the vacuum energy density, enormously
larger than the value constrained from general relativity by
considering the radius of our Universe. This problem, known
as the cosmological constant problem[1], hasbeen facedover
the past decades with profound theoretical investigations,
following also the evolution of the most important quantum
gravity theories, like string theories, loop quantum gravity,

and many others [2–4]. None of the theoretical efforts has so
far succeeded in findinga consensual solution, so that it is still
questionable whether vacuum energy does interact with
gravity, and what its contribution is to the cosmological
constant [5,6]. In spite of the common belief by the scientific
community in theexistenceof an interactionbetweenvacuum
energy and gravity, not a single experimental test of this
interaction exists.
About a decade ago, it was pointed out that a possible

way to verify the interaction of vacuum fluctuations with
gravity was to weigh a (suitably realized, layered) rigid
Casimir cavity [7]. At that time it was yet unclear whether
Casimir energy could be modulated in a rigid cavity.
Furthermore, the most important macroscopic detectors
of exceedingly small forces, the gravitational wave detec-
tors with which we compared our force, were still under
construction. Nowadays, thanks to many activities in the
various fields mentioned, the situation has been remarkably
improved so that it is possible to step from the initial
idealistic experiment to a road map towards the measure-
ment of the effect.
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The paper is organized as follows. In Sec. II the theory of
the experiment is recalled and discussed to clearly identify
the measured quantity. In Sec. III the need for super-
conductors as actuators of modulation of the Casimir
stress-energy tensor is proposed. In particular, the use of
High-Tc superconductors is pointed out. The first part of the
section is devoted to describe the theory and method of the
evaluation of vacuum energy in the well-established case of
type-I superconductors. This makes it possible to discuss, in
the second part, the hypothesis and approximations assumed
for the case of type-II superconductors. Finally, the force
exerted by gravity on a multilayer superconductor Casimir-
cavity system will be considered. In Sec. IV the expected
force is compared with the sensitivity of advanced gravi-
tational wave detectors: an optical technique to link the
force on the Casimir-test mass with the test mass of
gravitational wave detectors is presented, and the noises
are discussed in detail. In Sec. V the possibility to perform
the measurement in the superconductors’ transition-favored
low-frequency regime is discussed by analyzing the use of a
suitable seismic isolated balance. The comparison of the
two experimental ways is discussed in light of the most
critical experimental issues.

II. THEORETICAL ASPECTS

Let us consider a rigid Casimir cavity in a weak
gravitational field, like the one, for instance, of a laboratory
at rest on the surface of the Earth. To first order, the
reference system is the Fermi system for which, neglecting
rotations, one can write the line element as [7–9]

ds2 ¼ −ð1þ 2AjxjÞðdx0Þ2 þ δjkdxjdxk

þOαβðjxjj2Þdxαdxβ: ð2:1Þ

The term c2 ~A, c being the speed of light, is the observer’s
acceleration with respect to the local freely falling frame. It
has components ð0; 0; j~gjÞ), where g is the gravitational
acceleration. The term −2Ajxj is proportional to the
distance along the acceleration direction; x3, which we
also denote by z, is positive in the upwards direction.
The force exerted by the gravitational field on a rigid

Casimir cavity, with plates of proper area A, separated by
the proper distance a and placed orthogonal to the
gravitational acceleration ~g, has been calculated in different
ways [7–13]. To clarify the proposed measurement we
briefly recall the main points.
When a force is applied to a stressed body it is in general

expected that also the spatial components of the stress-
energy tensor contribute to the mass. This was first shown
by Einstein [14] and it is reported, for example, in Ref. [15],
Eqs. (5.53) and (5.54) where one considers a stressed
body in a locally inertial frame that is accelerated with
ak ¼ dvk

dt . The mass density is described by the tensor

mik ¼ T 0̂ 0̂δik þ Tî k̂, where the hat over the indices denotes

the stress tensor in the rest frame of the medium and the
force is defined as Fj ¼ P

km
jk dvk

dt . In analogy, since the
Casimir cavity is a stressed body, one could expect that
the measurement of its weight would end in measuring the
stressed-body mass and not simply the mass associated with
the T 0̂ 0̂ term. In this case, considering that the rest frame
stress-energy tensor of a Casimir cavity is given by Ref. [16],

hTμνi ¼ π2ℏc
180a4

�
1

4
ημν − ĥμĥν

�
; ð2:2Þ

where ĥμ ¼ ð0; 0; 0; 1Þ is the unit spacelike 4-vector
orthogonal to the plates’ surface; one could expect that
the cavity of volume V ¼ aA, placed with plates parallel
to the Earth’s surface, would have a mass mh ¼
VðT 0̂ 0̂ þ T 3̂ 3̂Þ ¼ 4aAT 0̂ 0̂ ¼ 4 Ecas

c2 , where Ecas ¼ −A ℏπ2c
720a3

is the energy of the system, the Casimir energy. This would
result in the force ~Fh ¼ 4 Ecas

c2
~g exerted by the gravitational

field on the cavity. Although this result is compliant with
general relativity, it is nevertheless somewhat surprising,
because usually one is accustomed to attributing, to a body
of rest energy E, the weight ~F ¼ E

c2 ~g. The surprise is indeed
correct, because in fact the previous result does not
correspond to the actual force measured in a weight
experiment where the cavity is rigid and hanged at a single
fixed point (or placed on a plate of a balance). To correctly
evaluate the force measured in these cases, the force
densities acting on the various points must be redshifted:
Refs. [8] and in particular [13] clarified that, if the total
force acting on an extended body is defined as the sum of
redshifted force densities, the mass is independent of the
spatial stress-energy tensor.
To very well clarify the measured quantity, we consider

the forces on each plate, expanded to first order in ϵ≡ 2 ga
c2 ,

derived in Ref. [9]. In that work the regularized and
renormalized energy-momentum tensor Tμν has been
obtained from the Hadarmard Green function of a
Casimir apparatus in a weak gravitational field. The forces
on the plates are the components of the resulting stress-
energy tensor and, for the z direction, have been evaluated
as (hereafter Q2 refers to the upper plate and Q1 to the
lower plate)

~fQ2
≈ −

π2

240

Aℏc
a4

�
1 −

g
c2

�
2

3
a

��
ẑ; ð2:3Þ

while for the lower plate we get

~fQ1
≈

π2

240

Aℏc
a4

�
1þ g

c2

�
2

3
a

��
ẑ: ð2:4Þ

The mere addition of such forces (as it might be obtained
by independently measuring the forces acting on the two
plates of a nonrigid system) would lead to the quantity ~find
equal to
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~find ¼ ~fQ1
þ ~fQ2

≈
�jEcasj

c2
ðgÞ þ Fcasδϕ

�
ẑ; ð2:5Þ

where Pcas ¼ A ℏπ2c
240a4 is the Casimir pressure, where Fcas ¼

APcas is the Casimir force, and where ga
c2 ¼ δϕ has been

explicitly written as the variation of the gravitational
potential on passing from the lower to the upper plate. By

some algebra Eq. (2.5) reads as ~find ¼ 4 Ecas
c2

~g corresponding
to the case of the nonrigid cavity. Interestingly, Eq. (2.5) is
the sum of two contributions: the vacuum weight part Ecas

c2 g
and the Casimir pressure difference, multiplied by the
surface, APcasδϕ, on passing from one plate to the other.

This difference in pressure is physical, and it implies the
redshifting of vacuum density in the gravitational field. It is
similar to the Tolman-Ehrenfest effect [17,18] where the
same dependence is found in the temperature of a gas at
equilibrium in a gravitational field.
In the measurement we are interested in, however, the

plates are weighed by acting on one and the same point, i.e.,
the suspension point of the rigid Casimir apparatus. In this
case, as shown in Ref. [13], the gravitional redshift must be
taken into account when summing the force to obtain the
total force acting on the body. By redshifting the force up to
the common pointQ2, the total force is given by (recall that
ẑ and ~g have the opposite direction)

~F ¼ ~fQ2
þ rQ2

ðQ1Þ~fðCÞQ1
≈ Fcas

�
−
�
1 −

g
c2

�
2

3
a

��
þ
�
1 −

g
c2

a

��
1þ g

c2

�
2

3
a

���
ẑ

≈
1

3

ga
c2

Fcasẑ ¼
Ecas

c2
~g: ð2:6Þ

This condition is the case of the experiment here proposed,
where a rigid (multi)cavity system is suspended in the
gravitational field of the earth. This is the force that must be
tested against observation, and it is in full agreement with
the expectation of the equivalence principle. It is directed
upwards, and it is equal to the weight of the modes of the
vacuum that are removed from the cavity. Therefore it can
be interpreted as an Archimedes buoyancy force in vacuum.

III. SUPERCONDUCTORS

The measurement of the effect cannot be performed
statically. This would make it necessary to compare the
weight of the assembled cavity with the sum of the weights
of its individual parts, which cannot be performed. Thus, it
becomes necessary to modulate the Casimir energy con-
tained in the cavity to be weighed, so as to perform the
measurement in a region of frequency where the macro-
scopic detectors of small forces have good sensitivity.
Furthermore, to actually perform the measurement, the
cavity should be a rigid body, so as to be weighed as a
whole, and consisting of a multilayer of many cavities to
enhance the effect. A key point in modulation is that the
energy supplied to the system should be at most of the same
order of magnitude of the Casimir energy modulation;
otherwise it will be extremely difficult to recover the
Casimir contribution to the weight. Some recent tech-
niques, as an example, even if very interesting for studying
the Casimir force [19,20], cannot be applied in our case
because the efficiency is very low: only a few parts in a
billion of the energy supplied to the system are converted in
Casimir energy variation.
One possible way is to use superconductors. To show the

foundation of the theory and method of evaluation of
vacuum energy, in the first part of the section we show

some known results in case of type-I superconductors. This
will allow one, in the second part of the section, to discuss
both the motivation for using type-II superconductors and
the present limits and approximations in evaluating the
vacuum energy in that case. To fix the ideas consider a
double cavity, consisting of two identical plane parallel
mirrors, made of a nonsuperconducting and nonmagnetic
metal, between which a plane superconducting film of
thickness D (order of few nanometers) is placed, separated
by a nonconducting material gap of equal width L (order
few nanometers) from the two mirrors, as in Fig. 1. If the
supercondutor is of type I, for any temperature T lower than
the transition temperature Tc the transition Gibbs free
energy ΔF can be written as the sum of the condensation
energy EðTÞ and the variation of Casimir energy ΔEcasðTÞ,

FIG. 1. Five-layer cavity: a thin superconducting film of
thickness d is placed between two thick metallic slabs, which
constitute the plates of the cavity. The gaps of width a that
separate the film from the plates are filled with insulating
material.
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ΔF ¼ EðTÞ þ ΔEcasðTÞ: ð3:1Þ

Inwritingtheseequations,wehaveexploitedthefact thatall
quantities referring to the film, like the penetration depth,
condensation energy, etc., are not affected by virtual photons
in the surrounding cavity. This is a very good approximation,
since the leading effect of radiative corrections is a small
renormalization of the electron mass as discussed in

Refs. [21,22].ThevariationofCasimirenergyat the transition
canbecalculated starting fromthe theoryofCasimirenergy in
stratified media, derived in Ref. [19]. We consider first the
T ¼ 0 case. The Casimir energy is given by the sum over the
cavity modes; the wave numbers k are discretized in the z
direction (orthogonal to the plates) and continuous in the
parallel directions (the xy plane). The variation of Casimir
energy ΔE0

casða; dÞ at the transition can then be written as

ΔE0
casða; dÞ ¼ A

ℏ
2

Z
dk1dk2
ð2πÞ2

�X
p

ðωðn;TMÞ
k⊥;p þ ωðn;TEÞ

k⊥;p Þ −
X
p

ðωðs;TMÞ
k⊥;p þ ωðs;TEÞ

k⊥;p Þ
�
; ð3:2Þ

whereA ≫ a2 is the area of the cavity,k⊥ ¼ ðk1; k2Þ denotes
the two-dimensional wave vector in the xy plane, while

ωðn=s;TMÞ
k⊥;p (ωðn=s;TEÞ

k⊥;p ) denote the proper frequencies of the
TM (TE) modes, in the n=s states of the film, respectively.
By exploiting the Cauchy integral formula, and by

subtracting the contribution corresponding to infinite sep-
aration a (for details, we refer the reader to Chap. 4 of the
first source of Ref. [19]), one can rewrite the renormalized
sums in Eq. (8) as integrals over complex frequencies iζ,

�X
p
ωðn;TMÞ
k⊥;p −

X
p
ωðs;TMÞ
k⊥;p

�
ren

¼ 1

2π

Z
∞

−∞
dζ

�
log

Δð1Þ
n ðiζÞ

~Δð1Þ
n∞ðiζÞ

− log
Δð1Þ

s ðiζÞ
~Δð1Þ
s∞ðiζÞ

�
; ð3:3Þ

where Δð1Þ
n=sðiζÞ is the expression in Eq. (4.7) of Ref. [19]

(evaluated for ϵ0 ¼ ϵn=s) and ~Δð1Þ
n=s∞ðiζÞ denotes the asymp-

totic value of Δð1Þ
n=sðiζÞ in the limit a → ∞ (corresponding

to the limit d → ∞with the notation of Ref. [19]). A similar
expression can be written for the TE modes, which involves
the quantity Δð2Þ

n=sðiζÞ defined in Eq. (4.9) of [19]. Upon
inserting Eq. (3.3), and the analogous expression for TE

modes, into Eq. (3.2) one gets the following expression for
the (renormalized) variation ΔEðCÞða; dÞ of the Casimir
energy:

ΔEcas ¼A
ℏ
2

Z
dk⊥
ð2πÞ2

Z
∞

−∞

dζ
2π

�
log

QTE
n

QTE
s

þ log
QTM

n

QTM
s

�
; ð3:4Þ

where we set

QðTM=TEÞ
I ðζÞ≡ Δð1=2Þ

I ðiζÞ
~Δð1=2Þ
I∞ ðiζÞ

; I ¼ n; s: ð3:5Þ

The dk⊥ integration can be reexpressed through the dp
integration by means of the standard formula k2⊥ ¼
ðp2 − 1Þζ2=c2. The above expression for ΔEcasða; dÞ turns
therefore into

ΔEcas ¼
ℏA

4π2c2

Z
∞

1

pdp
Z

∞

0

dζζ2
�
log

QTE
n

QTE
s

þ log
QTM

n

QTM
s

�
;

ð3:6Þ

where the coefficients QðTM=TEÞ
I read as

QTE=TM
I ðζ; pÞ ¼ ð1 − ΔTE=TM

1I ΔTE=TM
12 e−2ζK1L=cÞ2 − ðΔTE=TM

1I − ΔTE=TM
12 e−2ζK1L=cÞ2e−2ζKID=c

1 − ðΔTE=TM
1I Þ2e−2ζKID=c

;

ΔTE
jl ¼ Kj − Kl

Kj þ Kl
; ΔTM

jl ¼ KjϵlðiζÞ − KlϵjðiζÞ
KjϵlðiζÞ þ KlϵjðiζÞ

;

Kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵjðiζÞ − 1þ p2

q
; I ¼ n; s; j; l ¼ 1; 2; n; s: ð3:7Þ

The generalization of these formulas to the case of finite
temperature T can be done with the well-known technique
of Matsubara frequencies. This consists in replacing in
Eq. (3.4) the integration

R
dζ=2π by the summation

kT=ℏ
P

l over the Matsubara frequencies ζl ¼ 2πl=β,
where β ¼ ℏ=ðkTÞ. This leads to the following expression
for the variation ΔEcasðTÞ of Casimir free energy:

ΔEcasðTÞ¼A
kT
2

X∞
l¼−∞

Z
dk⊥
ð2πÞ2

�
log

QTE
n

QTE
s
þ log

QTM
n

QTM
s

�
: ð3:8Þ

Equations (3.6)–(3.8) involve the dielectric functions
ϵðiζÞ of the various layers evaluated at imaginary frequen-
cies iζ.
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For the outermost metal plates, the Drude model for the
dielectric function can be used,

ϵDðωpÞ ¼ 1 −
Ω2

ωðωþ iγÞ ; ð3:9Þ

where Ωp is the plasma frequency and γ ¼ 1=τ, with τ the
relaxation time. We denote by Ωp2 and τp2 the values of
these quantities for the outer plates. As is well known, the
Drude model provides a very good approximation in the
low-frequency range ω ≈ 2kTc=ℏ≃ 1011–1012 rad= sec,
which is involved in the computation of ΔEcasðTÞ. The
continuation of Eq. (3.9) to the imaginary axis is, of course,
straightforward and gives

ϵDðiζÞ ¼ 1þ Ω2

ζðζ þ γÞ : ð3:10Þ

For the insulating layers, a constant dielectric function can
be taken, as a good approximation [19,22], equal to the
static value,

ϵ1ðωÞ ¼ ϵ1ð0Þ: ð3:11Þ

As far as the film is concerned, in case of type-I
superconductors, the Drude expression, Eq. (3.9), can be
used in the normal state, with appropriate values for the
plasma frequency Ωn and the relaxation time τn.
In the superconducting state, the technical details are

more involved, but the theory is still based on firm ground.
The real part of the conductivity σðωÞ has a semiexplicit
form, derived by the Bardeen-Cooper-Schrieffer theory,
that we report in Appendix A, and it shows the lowering of
the absorption component for frequencies ℏω less than the
condensation energy gap ΔðTÞ and tends to the Drude
expression for higher frequencies. (See Appendix A for
details.)
From the real part of the conductivity σ0ðωÞ one can

obtain the imaginary part of the dielectric function ϵ00ðωÞ
with the standard relation

ϵ00ðωÞ ¼ 4π

ω
σ0ðωÞ: ð3:12Þ

Last, from the dispersion relation, the dielectric function at
imaginary frequency can be found in the form

ϵsðiζÞ − 1 ¼ 2

π

Z
∞

0

dω
ωϵ00s ðωÞ
ζ2 þ ω2

: ð3:13Þ

With this recipe it is possible to calculate the variation of
free energy at the transition. In general, for a stand-alone
superconductor, not being part of a Casimir cavity, the free
energy variation at the transition is equal to the source
magnetic energy necessary to destroy the superconductivity,

V
2μ0

�
Bc∥ðTÞ

ρ

�
2

¼ EcondðTÞ; ð3:14Þ

where V is the volume of the superconducting film. The
term ρ takes into account that for a thin film, of thickness
d ≪ λ, ξ (with λ the penetration depth and ξ the correlation
length), placed in a parallel magnetic field, expulsion of
the magnetic field is incomplete, and consequently the
critical field increases from Bc (the bulk value) to Bc∥.
Following the Ginzburg-Landau theory, the transition is a
second-order transition (no latent heat) and as B approaches
Bc∥ the order parameter (energy gap, “number of super-
conducting electrons,” or Ginzburg-Landau ψ function)
approaches zero continuously while the penetration depth
λ increases from λðTÞ, the value at zero field, to infinity [23].
The coefficient ρ has the approximate expression

ρ ≈
ffiffiffiffiffi
24

p λ

d

�
1þ 9d2

π6ξ2

�
; ð3:15Þ

where the second term inside the brackets accounts for
surface nucleation.
If the film is part of a cavity, the variation of energy at the

transition is the sum of the condensation energy and the
Casimir energy, so that the previous equation becomes

V
2μ0

�
Bcav
c∥ ðTÞ
ρ

�
2

¼ EcondðTÞ þ ΔEcasðTÞ: ð3:16Þ

This equation shows that it is possible to measure the
contribution of Casimir energy to the total free energy
variation: it consists in measuring the critical magnetic field
for a stand-alone film and comparing it with a film that is
part of a Casimir cavity. The relative shift is

δBc∥

Bc∥
≈

ΔEcas

2EcondðTÞ
: ð3:17Þ

For a suitable choice of the parameters, like superconduc-
tor, metal, and dielectric materials, thicknesses, temper-
atures, it is possible to show experimentally that the
Casimir effect enhances the critical field. The measurement
has indeed been performed and shown to be fully com-
patible with the expectations [24].
The use of type-I superconductors for measuring the

vacuum energy at the transition is thus meaningful and
relies upon firm ground. Nevertheless, since the type-I
superconductors are good conductors also in the normal
state, the modulation of Casimir energy, with respect to
total Casimir energy, η ¼ ΔEcas

Ecas
, is quite small, of order

η ≈ 10−8 for a few nanometers thicknesses and temper-
atures of order 1 K [22]. With this tiny modulation it is
possible to measure the effect on the critical field and on the
variation of transition energy, because also the condensa-
tion energy, in type-I superconductors, is small. But it is not
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sufficient to prove the weight of the vacuum, because it is in
absolute too small. It is therefore necessary to consider
high-Tc superconductors.
Someof theirpropertiesareofparticular interest:generally

high-Tc superconductors, particularly cuprates, are by con-
struction multilayered cavities, being composed by Cu-O
planes, that perform the superconducting transition, sepa-
rated by nonconducting planes.More important, in a normal
state, also the Cu-O planes are poor conductors, so that the
variation of Casimir energy is high at the transition.
In these systems the evaluation of Casimir energy is not

yet completely exploited. A first important step has been
the recent analysis on the Casimir energy of a cavity
composed by two flat plasma sheets at zero temperature
[19,25]. The theoretical foundation is the same as for
dielectric materials and conductors described above, and it
is based on the summation over zero-point energies of
electric modes. The approximations of the plasma sheet,
with no internal dissipation, and zero temperature give to
the result the status of a work that can be used as providing
the order of magnitude of the effect. The calculation of the
renormalized energy Ecas brings thus to the usual formula
for two planes separated by a distance a

Ecas ¼ −
ℏc
2

Z
dk⊥
ð2πÞ2

Z
∞

k0

dk
π

k
ωðk⊥; ikÞ

log tðikÞ; ð3:18Þ

where the lower integration boundary k0 ¼ k⊥ and the
transmission coefficients t, for plasma sheets, for the TE
and TM modes are given by [19]

ðtðikÞÞ−1 ¼ 1 −
�

Ω
kþ Ω

�
2

e−2ka; ðTEÞ; ð3:19Þ

and

ðtðikÞÞ−1 ¼ 1 −
�

Ωk
k⊥2 − k2 − Ωk

�
2

e−2ka; ðTMÞ:

ð3:20Þ

The parameterΩ is proportional to the density of the carrier
in the plasma sheet [19,25],

Ω≡ nq2

2mc2ϵ0
; ð3:21Þ

where n is the surface density of delocalized particles, q
their electric charge, andm their mass. For small separation
a the above integrals lead to the expression for energy

EcðaÞ ¼ −5 × 10−3ℏ
cA

a5=2
ffiffiffiffi
Ω

p
: ð3:22Þ

An estimate of the parameter Ω has been proposed recently
by [26] with the aim of evaluating the Casimir effects in

high-Tc cuprates. The particles’ density is estimated as
n ¼ 1014 cm−2, the charge q ¼ 2e, and the mass m ¼
2αme with α ¼ 5. Inserting these values in Eq. (3.22), the
reduction factor of Casimir energy with respect to the ideal
case, at typical separation a ≈ 1 nm turns out to be
ηðaÞ ¼ 4 × 10−4 ×

ffiffiffiffiffiffiffiffi
a

1 nm

p
. Considering that in the normal

state the layer is very poorly conductive, this factor is
(almost) equal to the variation of Casimir energy in the
transition. Thus, the use of high-Tc superconductors leads
to the gain of about 4 orders of magnitude in the
modulation of Casimir energy.
The other key point is the ratio between the variation in

Casimir energy at the transition and the total energy
variation. In his paper [26], Kempf, checking his hypoth-
esis with a calculation of the critical temperature Tc, has
conjectured that in cuprates the whole energy variation at
the transition could be due to Casimir energy. A check of
this hypothesis can be done by comparing the estimated
variation of Casimir energy with the total variation of the
energy of the superconductor at the transition. As reported
in Appendix B, in type-II superconductors the energy
variation is determined by the thermodynamical critical
field BcðTÞ. In cuprates the critical field is of the order of
1 T (for a detailed description and calculation see
Appendix B). The energy density variation ΔU is about

ΔU ≈
B2
c

2μ0
≈ 4 × 105 J=m3: ð3:23Þ

The variation of Casimir energy densityΔUcas is, following
the Kempf estimate,

ΔUcas ≈ ηðaÞNπ2

720

ℏc
a3

≈ 2 × 105 J=m3; ð3:24Þ

where N ≈ 109 is the number of cavities per unit height.
The two energies are indeed, roughly, of the same order of
magnitude.
Notice that, as stated in Ref. [26], the separation among

the plates being of order of 1 nm, the “Casimir” energy is
dominated by plasmons (i.e., by the Van der Waals) energy
with respect to vacuum energy. Thus, our assumption of
Kempf’s hypothesis should be regarded also as a starting
point for further investigations on high-Tc superconduc-
tors, to be performed in the near future, directed in two
ways. First, regarding the present analysis as an order of
magnitude estimate, evaluate more accurately the Casimir
energy variation at the transition and its contribution to total
energy; second, extend it to superconductors with higher
spacing among conducting planes until the conditions
already studied in previous measurements with metallic
plates [21,22,24] are recovered.
The actual modulation of the effect can be performed in

two ways: (1) By applying a time dependent magnetic field
that spoils the superconducting state so as to have zero
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magnetization in both initial and final states; in this
condition the actual measurement can be performed in a
nonvanishing applied field, because the magnetization is
brought to zero and the interaction with the magnetic field
is minimized also at the final state. (A further possibility is
to put the sample in two different conditions of super-
conductivity, with more or fewer regions where the sample
is superconducting, both at a vanishing applied field: this
can be obtained by using hysteretic superconductors.
Among them, as an example, are the cuprates.) (2) By
temperature modulation in a vanishing field. Both cases
have no latent heat (see also Appendix B).
The quantity that will generate the variation of gravita-

tional force on the sample is (the variation of) the internal
energy UV, where V is the volume of the sample of the
superconductor. The variation of internal energy density U
is evaluated for the two modulation cases in Appendix B. It
is given by the equation (see (B13)

ΔU ¼
Z

Tc

T
CndT þ B2

0

2μ0
½1 − ðT=TcÞ2�2

þ 2

�
T
Tc

�
2

½1 − ðT=TcÞ2�: ð3:25Þ

This is the sum of three terms: the internal energy variation
of the normal state (present only in the case of temperature
modulation), the contribution of the Gibbs energy, and the
contribution of entropy. The third term, for temperatures
near Tc, gives the biggest contribution. This equation
shows that the variation of internal energy is proportional
to and roughly of the same order of magnitude of the energy
of the thermodynamical critical field and, under the Kempf
estimate, it is expected to be of the same order of magnitude
of Casimir energy variation. Thus, as stated before, we
assume the Kempf hypothesis and estimate the energy
variation as totally due to the Casimir effect. It is very
important to stress that, as will be shown in Secs. III and IV,
even if the contribution of Casimir energy were of order of
just a few over a thousand of the total energy at the
transition, we might ascertain whether it gravitates.
In the following sections the detection of small forces by

using the best of current optical techniques will be
considered. The use of high-Tc superconductors in high
sensitivity optical devices is a field yet to be investigated, in
particular in macroscopic devices. Nevertheless, present
superconductors can be deposited on quite large surface
optical elements: YBCO is well deposited on aluminum
(Al2O3) substrates, which are the best substrates also for
optics at low temperature. Indeed, a 300 nm thick YBCO
layer deposited on a 3 in. diameter, 5 mm thick Al2O3

substrate produced by CERACO is presently under test in
our laboratory. Notice that, even if the first test will be
performed with YBCO for its robustness, the use of low
upper critical field superconductors should be preferred,
since they allow simpler magnetic modulation at equal

values of the thermodynamical critical field (see also
Appendix B for definitions of thermodynamical and upper
critical field). Furthermore, much larger thicknesses can be
reached by using superconducting crystals.

IV. USE OF GRAVITATIONAL WAVE
DETECTORS

The force exerted by the gravitational field when the
Casimir energy contained in the superconductor system is
modulated should be compared with the up-to-date tech-
nology in the detection of small forces in macroscopic
systems. Two main ways might be followed. The first way
is to make use of the present most sensitive apparatuses in
the detection of small forces, the gravitational wave
detectors; the second is to go towards lower frequencies
and use torsion pendulums. In the following we will
consider first the use of gravitational wave detectors.
The main reason to explore this way is the possibility of
making use of a very well developed technology in force
detection and seismic attenuation. Another not negligible
reason is that money can be saved if a replica of many
instruments and methods already available is avoided. In
this case, it is necessary to recover an experimental method,
discussed later, to apply a force on such detectors (only at a
given frequency) without perturbing the gravitational wave
measurement in the other frequencies of the spectrum. Our
comparison can start with the present state of the art of
gravitational wave detectors. Over the past decades, this
field has known many impressive technical improvements
and developments. The two most sensitive detectors of
gravitational waves, LIGO and Virgo, have demonstrated
the feasibility of all foreseen techniques, by reaching, and
in some frequency regions superseding, the sensitivities
expected for the first generation detectors [27,28].
Moreover, many important techniques already compliant
or extremely useful in the next generation detectors have
been demonstrated worldwide, i.e., in LIGO [29], in Virgo
[30], or in the medium-scale detectors like GEO [31] or still
in development like Kagra [32]. In light of all this progress
it is very reasonable to expect, for the second generation of
such detectors, the so-called advanced detectors, presently
under construction, to reach the design sensitivities in the
next few years [33,34].
In this case the frequency region of highest sensitivity ~SF

to the force lies in the range from 20 to 40 Hz; if a
gravitational wave test mass of 42 kg is considered, the
value, in this region, is of order of ~SF ≈ 10−13N=

ffiffiffiffiffiffi
Hz

p
.

Glancing at future detectors, the so-called third-
generation detectors, like the Einstein Telescope (ET),
we see that they will benefit of low seismic sites, low
temperature, and suitably injected power for low-frequency
detection. The expected sensitivity in the amplitude of the
force will gain about 2 orders of magnitude, showing the
region of best force sensitivity at frequencies slightly
smaller than 10 Hz [35].
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Two main conditions, in our opinion, constrain and
define the use of gravitational wave detectors also for a
measurement of the weight of vacuum. The first is that no
modifications are allowed to the gravitational wave detector
that in any case risk to reduce the gravitational wave
sensitivity. In particular, no changes of the suspensions
chain, of the payloads, of the actuators will be allowed: the
system providing the force should be “external” and
sufficiently far from the gravitational wave test masses
so as to avoid introducing spurious signals. The second is
that the vacuum weight force is vertical (i.e., orthogonal to
the Earth’s surface) while the gravitational detectors are
designed to detect horizontal forces (i.e., almost parallel to
the Earth’s surface, with a small coupling factor with
the vertical due to Earth’s curvature and mechanical
imperfections).
A possible way to face both points is to build an ad hoc

apparatus, lying several meters from the gravitational wave
detectors test masses; let us call it the Archimedes system.
In this system, a mass, over which the superconducting
material is deposited, is suspended and is free to move
vertically for frequencies above a few Hz. By applying the
modulation technique discussed previously, a force is
exerted on the mass. To transport this force from the mass
of the Archimedes system to the test mass of the gravita-
tional wave detector, the ideal way would be to link them
with a spring. It is not possible, for the reasons discussed
above, to use a mechanical spring but, as we shall see, it is
possible to link the two masses via the radiation pressure,
by realizing an optical cavity that, in a properly detuned
configuration, acts as an optical spring [36].
To show the behavior of an optical spring, let us consider

a Fabry-Perot cavity with a suspended perfectly reflective
end mirror and a fixed highly reflective input mirror, and
analyze it in the static approximation, valid for frequencies
lower than cavity linewidth. Suppose that it is illuminated
by a laser light with frequency ω0 and power I0. Assuming
the cavity to be close to resonance, we list several quantities
characterizing the state of the cavity, i.e., its linewidth γ,
finesse F, circulating power W, and phase shiftΦ gained by
the light as it comes out from the cavity, in terms of more
basic parameters,

γ ¼ cTI

4L
; ð4:1Þ

F ¼ 2π

TI
; ð4:2Þ

WðI0; δγÞ ¼
4I0
TI

1

ð1þ δ2γÞ
; ð4:3Þ

ΦðδγÞ ¼ −2tan−1ðδγÞ: ð4:4Þ

Here L is the cavity length and TI the input-mirror power
transmissivity. The detuning parameter δγ,

δγ ≡ δ

γ
; ð4:5Þ

is defined in terms of δ≡ ωres − ω0, the difference between
the cavity resonant frequency and laser frequency. The
ponderomotive force Fp, the radiation pressure, is given by

Fp ¼ 2W
c

: ð4:6Þ

If the suspended mirror moves by an amount δx, since the
cavity is not perfectly on resonance, the amount of light
inside the cavity changes, and hence the radiation pressure
on the mirror: a restoring force Fr is produced equal to
Fr ¼ −Koptδx, where Kopt is the optical spring constant,
given by

Kopt ¼
2

c

∂WðI0; δγÞ
∂δγ

∂δγ
∂x ¼ −

4ω0W
γLc

δγ
ð1þ δ2γÞ

: ð4:7Þ

With some algebra it can be written as

Kopt ¼ −
4ω0I0δγ

c2

�
2F
π

1

ð1þ δ2γÞ
�
2

: ð4:8Þ

The optical spring constant can be positive or negative,
depending on the sign of the detuning δγ. We choose a
negative detuning so that the constant is positive.
Remarkably, the optical spring constant, for sufficiently
high finesse, can be quite high. For example, suppose we
have a cavity with finesse F ¼ 6 × 105, input power
I0 ¼ 0.16 mW, detuning δγ ¼ −0.3, and laser frequency
ω0 ¼ 3 × 1014 Hz (corresponding to laser yttrium alumi-
num garnet wavelength of 1.064 μm); the optical spring
constant is then equal to K ¼ 7.8 × 104 N=m. If the cavity
is composed by two or more suspended mirrors, a similar
analysis applies and the light acts as a spring. The other key
feature of the optical spring is the low noise reintroduced: if
we assume that the laser is shot noise limited, the
fluctuation power incident on the cavity is
~I0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏω0I0

p
, and this induces a fluctuating noise force

~Fn ¼
2

c

∂WðI0; δγÞ
∂I0

~I0 ¼
�
2F
π

1

ð1þ δ2γÞ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏω0I0

p
c

¼ 6 × 10−15
Nffiffiffiffiffiffi
Hz

p : ð4:9Þ

This small value of injected noise arises from the small
amount of light that circulates in the cavity, even in the
presence of a high spring constant, a condition that can be
reached by using high finesse cavities. The actual apparatus
is sketched in Fig. 2: the cavity is composed by 5 optical
elements. An input mirror is coated with superconducting
material, except for a small area to let the light pass. This
mirror has the surface parallel to the ground. A 45°
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reflective mirror lying below the input mirror sends the
beam to the back surface of the gravitational wave detector
test mass. The beam impinges upon the mirror at a few
degrees in the horizontal plane; hence it is reflected towards
a second Archimedes apparatus that closes the cavity. The
mirrors of the Archimedes apparatuses coated with the
superconductor have masses m ¼ 5 kg and are suspended
to a seismic isolation system similar to Virgo ones. The 45°
mirrors are suspended to the same attenuation system, but
at an upper stage, to be independent of the mirrors coated
with the superconductor: they act merely as deflection
mirrors. They are quite heavy, of the same order of
magnitude of the gravitational wave test mass. The super-
conductor covers on the two faces of each coated mirror an
area S ¼ 0.23 m2, on each mirror, with a thickness of about
250 μm. The substrate is Al2O3, which is particularly well
suited to low temperature work. The area is similar to the
present beam splitter of the Virgo detector.
The amplitude of forcemodulationFm can be evaluated as

Fm≈NηðaÞEðCpÞ
c2

g≈N
�
−5×10−3ℏ

cA

a5=2
ffiffiffiffi
Ω

p �
≈10−15N;

ð4:10Þ
where η is the reduction factor with respect to the perfectly
reflectingplatesCasimirenergyEðCpÞ [26],N ¼ 1.6 × 105 is
the totalnumberof layers,anda ¼ 1.17 nmis theconducting
layersseparationinYBCO.Tocomparetheeffectof this force

with the sensitivity of thegravitationalwavedetector,wewill
compare the displacement induced in the gravitational test
masswith respect to thedisplacement sensitivity.Note that, if
the gravitational wave detector test mass is linked by an
optical spring to other free masses, under the condition
presently assumed of small distances, with respect to arm
length (and not considering the region of frequency around
the optical spring resonance frequency), the displacement of
the gravitational wave test mass induced by a gravitational
wave will not change because all masses will accelerate at
once.Note that this statement also assumes that themasses of
thegravitationalwavedetector are free.This is not strictly the
case: themass is linkedby the arm-cavityoptical spring to the
rest of themassesof thegravitationalwave interferometer.To
reach a precise statement, and not an order of magnitude
expectation, a complete simulation of theArchimedes cavity
coupled to the interferometer should be performed, which
because of the complexity, is outside the aim of the present
paper andwill be investigated in the near future.At present, a
complete simulation of the Archimedes cavity has been
performed. The system has been simulated by using the
OPTICKLE code [37]. Under the assumptions and the param-
eters discussed above, the expected signal for an integration
timeof6months,a typical timescaleofarun, isgiveninFig.3.
The signal is above the sensitivity by 2 orders of

magnitude at low frequency, while it falls under the
Advanced Virgo sensitivity around 100 Hz. As expected,

FIG. 2 (color online). The optical link. The cavity acting as an optical spring is composed by the Archimedes cavity input mirror,
ACIM, by the steering mirror ACS1, by the back surface of the gravitational wave detector test mass, AD-Virgo EM, by a second steering
mirror ACIM and closed by the Archimedes cavity end mirror ACIM. Also a top view of the apparatus and the gravitational wave
detectors is sketched in the top-left box, not to scale, to show a complete view. The cavity is illuminated by a laser reflecting on the upper
stage that suspends the input mirror, as shown.
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the noise due to power fluctuations is negligible. Indeed,
the power inside the cavity is about 60 W, to be compared
with the 0.6 MW of light circulating in the gravitational
wave arm cavity. In conclusion, the use of the optical spring
to transport the force from the actuator system to the
gravitational wave mass makes it possible to locate the
actuator several meters away from the gravitational wave
detector mass, avoiding possible spurious interactions. The
suspension system of the Archimedes force apparatus can
be a replica of the ones of gravitational wave detectors, and
the cryogenic system can benefit from the several exper-
imental studies and realizations now making progress in the
world [32]. In this way, the optical system reduces to the
optical spring actuator, which is relatively simple, being
just a laser suitably locked on the cavity.
Note that, if the same system were applied to the next

generation of gravitational wave detectors, in particular
Einstein Telescope low-frequency [35,38], a remarkable
improvement is expected. This is shown in Fig. 4. The
cavity considered to perform the optical spring is similar to
the previous one, with masses of 10 kg and a larger
finesse ¼ 1.5 × 106, that is not far from the current
technological achievements. The input power is Pin ¼
1.6 × 10−4 (not critical). The input power noise has been
taken as the shot-noise limit of the input power, equivalent
to the noise-to-power ratio of about 5 × 10−81=

ffiffiffiffiffiffi
Hz

p
: the

power noise is more critical in this case but is negligible,
remaining an order of magnitude lower than the sensitivity.
Figure 4 shows that with an integration time of 6 months,
the signal-to-noise ratio of about S=R ¼ 104 is reached.
This means that a signal-to-noise ratio of 1000 might be
reached in a couple of days.
With such high signal-to-noise ratios, measurements with

differentmaterials anddifferent layer separations up to tensof
nanometers would then be possible, allowing a complete
campaign of studies. This possibility clarifies also our

working case on the Kempf hypothesis. According to that
recipe, all the condensation energy, at both small and larger
layer separations, results from Casimir energy. With this
sensitivity, considering the accuracyof thegravitationalwave
detectors,evenif thecontributionofCasimirenergywereonly
afewpartsovera thousand,wemighttestwhether itgravitates.

V. USE OF BALANCES

The use of balances might be favored by the possibility
to go towards low frequencies. Indeed, the modulation of
superconducting phase transitions in macroscopic bodies is
expected to be easier at lower frequencies. Furthermore, we
will consider here the possibility of performing force
modulation also by temperature modulation. We evaluate
the thermal noise at the temperature working point of
100 K, near the YBCO transition temperature. The main
experimental point that has to be faced in going towards
low frequencies is that a proper seismic attenuation system
for balances does not yet exist.
A possible way to reduce seismic noise at frequencies

lower than 0.1 Hz is to hang the balance to a cascade
formed by an inverted pendulum followed by a blade’s
isolation stage, as shown in Fig. 5. The inverted pendulum
is efficient in the two horizontal translational degrees of
freedom and the rotation around the vertical axis, while the
blades’ stage is efficient in the vertical degree of freedom
and in the rotations [30,39]. The Virgo inverted pendulum
has already been demonstrated to have a resonant fre-
quency of 0.03 mHz, and work is ongoing to further reduce
it to the value of 0.01 Hz. Also the blades’ stage resonance
can be tuned, by careful tuning of magnetic antispring
stiffness, to similar values.
The control of this top stage can be done either at a

very low frequency, with a unity gain of the feedback lower
than the resonance, or in high bandwidth, with a unity
gain of about 1 Hz. Here we assume to close the loop in
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FIG. 3 (color online). Expected signal for the YBCO actuator
described in the previous section.
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high gain and reach, at the suspension point of the
balance, the electronic noise floor of the accelerometers
as ≈ 4 × 10−10 m2=s

ffiffiffiffiffiffiffiffiffiffiðHzÞp
, corresponding to the dis-

placement noise of 1 nm=
ffiffiffiffiffiffiffiffiffiffiðHzÞp

at 0.1 Hz, and flat for
a frequency less than 0.1 Hz [39]. To calculate the expected
signal and noises at the balance, we have considered a
balance having arms of length L ¼ 0.1 m, a plate at each
arm’s end of massM ¼ 0.4 kg, a total massMb ¼ 1.25 kg,
a moment of inertia I ¼ 0.01 kgm2, and a resonance
frequency Fres ¼ ωb=2π ¼ 5 mHz, with mechanical inter-
nal loss angle ϕ ¼ 10−6. The resonance value is higher than
the typical torsion pendulum (horizontal) ones already
existing [40] and takes into account the feasibility of a
real vertical balance: in particular, the resonance of 5 mHz
corresponds to a careful setting of the bending point
distance from the balance center of mass of about
hb ≈ 1 μm. (The bending point is the physical point around
which the balance rotates. Its position depends upon the
point where the wire is fixed on the balance, the mass of the
balance, and the wire section and Young’s modulus. The
distance hb of the bending point from the balance center of
mass determines the balance’s resonance frequency ωb,
with the relation ω2

b ¼ Mbghb
I . This distance can be tuned

mechanically, by regulating the ballasts’ position, and in
feedback, with the help of external forces.)
The material to be used for the suspension fiber (and for

the balance itself) cannot be fused silica, which is the

material of choice for the test masses of all first-generation
gravitational wave detectors, because it has a high dis-
sipation at low temperatures [41,42]. Sapphire has already
been proposed as an alternative material also for the
suspension fiber, and here we assume it is the final material
[43]. The wire length considered in our simulation is of 1 m
and the diameter d ¼ 50 μm. The end plates have radius
R ¼ 0.15 m, made by a sapphire substrate, and one is
coated with 250 μm of YBCO on both faces: the force
modulation on the plate is Fa ¼ 4 × 10−16 N. As expected,
simulations show that the most critical noise is the seismic
noise injected through the coupling of the transversal
motion of the suspension point to the tilt of the balance.
The simulated transfer function is shown in Fig. 6 for the
case of 5 mHz and for a very optimistic case, similar to
torsion pendulum value, of 1 mHz to show that this
parameter is critical for reaching a significant attenuation.
The tilt signal can in principle be read off in various

ways. A high-sensitivity possibility is to use a second
balance and read the ends’ differential displacements with a
Michelson interferometer having a Fabry-Perot cavity at the
ends of the balances’ arms. For an interferometer having
arm cavity finesse Fb ¼ 100, input power Pb ¼ 0.01 W,
the sensitivity is reported in Fig. 7 where the radiation
pressure noise and shot noise are plotted. The signal (blue
curve) is obtained by integrating for 6 months and is
approximately 2 orders of magnitude larger than the total
noise (black curve).
Under the assumption on seismic noise reduction the

sensitivity is limited at low frequency by suspension thermal
noise and by seismic noise for frequencies larger than
30 mHz. The radiation pressure noise and shot noise curves
ensure that fundamental noiseswill notmake it impossible to
perform the measurement of the vacuum-gravity force.

FIG. 5 (color online). Thebalancewith theoptical leverdetection
readout. The seismic attenuation chain is composed by the three-
legs inverted pendulumandby the blades-attenuation element. The
readout is composed by a laser beam that reflects on the bottom of
the bar and impinges on a quadrant photodiode.
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Nevertheless, the noise is so lowwith respect to other noises
that other tilt detection methods, even if noisier, can be
exploited if simpler. As an example, optical lever systems or
capacitors used in torsion pendulums have already shown
remarkable sensitivities; they are not yet fully compatible
with our needs, but surely deserve careful study and attention
[40,44].Theuseof suchadetection systemis also sketched in
Fig. 5: a low power laser beam is sent to the balance and
reflected towards a quadrant photodiode; a tilt of the balance
displaces the impingingpoint of the beamon the photodiode,
and a signal is hence generated.
The corresponding signal and noises in N=

ffiffiffiffiffiffi
Hz

p
are

plotted in Fig. 8. The coupling of suspension point
acceleration as can be interpreted as producing a moment
of inertia Ms ¼ Mb · as · hb, equivalent to the noise force

Mb · as · hb=Lb, that again shows how the setting of the
bending point is critical. The plot reports (dashed line) also
the readout noise of an optical lever demonstrated in
Ref. [44]: such a system makes it mandatory to perform
the measurement in the neighborhood of the resonance (at
the price of slightly reducing the sensitivity), but leads to a
remarkable simplification of the detection method.

VI. CONCLUSIONS

We have shown that it is by now possible to begin the
experimental path to check against observation whether
virtual photons do gravitate and to verify the Archimedes
force of vacuum. Various experimental techniques must be
investigated and refined, i.e., deposition of thick layers of
high-Tc superconductors in optical substrates, application of
optical springs toconnect different apparatuses, and improve-
ments in low-frequency seismic isolation. If these improve-
ments, not far from the present technological achievements,
will be successful, a first answer will be given to one of the
deepest and long-lasting problems of fundamental physics.
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APPENDIX A: DIELECTRIC CONDUCTIVITY
IN TYPE-I SUPERCONDUCTORS

In the case of a Bardeen-Cooper-Schrieffer conductor
at a temperature T < Tc, the expression of σ0sðωÞ can be
written as

σ0sðωÞ ¼ κδðωÞ þ σ̂0sðωÞ: ðA1Þ

For ω > 0, σ̂0sðωÞ reads as [45]

σ̂0sðωÞ ¼
ℏne2

2mωτn

�Z
∞

Δ
dEJT þ θðℏω − 2ΔÞ

Z
−Δ

Δ−ℏω
dEJD

�
;

ðA2Þ

where

JT ≔ gðω; τn; EÞ
�
tanh

Eþ ℏω
2KT

− tanh
E

2KT

�
; ðA3Þ

JD ≔ −gðω; τn; EÞ tanh
�

E
2KT

�
; ðA4Þ

with K the Boltzmann constant. Defining
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FIG. 7 (color online). Expected signal and noises for the
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signal is about 2 orders of magnitude above the noise.
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FIG. 8 (color online). Force signal and noises. The dashed line
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ENRICO CALLONI et al. PHYSICAL REVIEW D 90, 022002 (2014)

022002-12



P1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ ℏωÞ2 − Δ2

q
; P2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p
; ðA5Þ

the function gðω; τn; EÞ is

g ≔
�
1þ EðEþ ℏωÞ þ Δ2

P1P2

�
1

ðP1 − P2Þ2 þ ðℏ=τnÞ2

−
�
1 −

EðEþ ℏωÞ þ Δ2

P1P2

�
1

ðP1 − P2Þ2 þ ðℏ=τnÞ2
:

The coefficient κ of the Dirac delta in Eq. (A1) is
determined so as to satisfy the sum rule

Z
∞

0

dωσ0ðωÞ ¼ πne2

2m
; ðA6Þ

where n ¼ ns þ nn is the total electron density and can be
computed exactly according to [45]

κ ¼ πne2

m

�
πτnΔ
ℏ

tanh
Δ

2KT
− 4Δ2

Z
∞

Δ
dE

tanhðE=2KTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p
½4ðE2 − Δ2Þ þ ðℏ=τnÞ2�

�
: ðA7Þ

APPENDIX B: INTERNAL ENERGY VARIATION
IN TYPE-II SUPERCONDUCTORS’

TRANSITIONS

Measuring the variation of weight of the superconductor
when it undergoes a transition means to measure the
variation of its internal energy among the two states,
normal and superconducting. The internal energy differ-
ence of the system in different states can be evaluated by
means of the thermodynamical potentialsH0 (enthalphy),G
(Gibbs free energy), and S (entropy).
For a magnetic material the differential of the internal

energy dU may be written in terms of the temperature T,
the applied magnetic field B, and the magnetization M of
the material as

dU ¼ TdSþ B · dM: ðB1Þ
The enthalpy is defined as

H0 ≡U − B ·M; ðB2Þ

and finally the Gibbs free energy as

G≡H0 − TS; ðB3Þ
with differential form

dG ¼ −SdT −M · dB: ðB4Þ

In type-II superconductors, for applied field BðTÞ,
where T is the temperature, they are defined as the lower
critical field, such that if B ≤ Bc1ðTÞ the field does not
penetrate in the sample, and the upper critical field
Bc2ðTÞ such that if B ≥ Bc2ðTÞ, the superconductivity is
destroyed. In analogy with type-I superconductors, a
thermodynamical critical field BcðTÞ is defined such that
the difference of Gibbs free energies, at given temperature,
among the superconducting and normal states at zero
applied field is

GsðT; 0Þ − GnðT; 0Þ ¼
ðBcðTÞÞ2

2μ0
: ðB5Þ

Following the Ginzburg-Landau theory the lower critical
field Bc1 and the upper critical field Bc2 are linked to the
thermodynamical critical field Bc by the dimensionless
parameter k ¼ λðTÞ

ξðTÞ,

Bc1 ¼
Bc log kffiffiffi

2
p

k
; ðB6Þ

and

Bc2 ¼ Bc

ffiffiffi
2

p
k: ðB7Þ

The temperature dependence of the critical field BcðTÞ is
well approximated by

BcðTÞ ¼ Bcð0Þ
�
1 −

�
T
Tc

�
2
�
; ðB8Þ

and similarly for Bc1ðTÞ and Bc2ðTÞ.
In high-Tc superconductors like YBCO, k is of order of

100. The entropy of the superconductor in the applied field,
to take heuristically into account the magnetization of the
superconductor and fit experimental data [46], is approxi-
mated as

SsðT; BÞ ¼ SnðTÞ þ χ0ðTÞ ðBc2ðTÞ − BÞ
μ0

dBc2

dT
; ðB9Þ

where χ0ðTÞ ¼ μ0
∂M
∂B is called the differential susceptibility.

It takes into account the anisotropy of type-II supercon-
ductors and maintains the entropy at the vanishing field
independent of the anisotropic value of Bc2. This expres-
sion for the entropy shows that in type-II superconductors,
unlike the type-I case, the transition obtained by applying
an external field at fixed temperature T ≤ Tc is of second
order, with no latent heat. The transition in the vanishing
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field for T ¼ Tc is of second order, since Bc2ðTcÞ ¼ 0.
Thus, both modulation techniques proposed show an
absence of latent heat. Let us observe that, if the applied
field B ≤ Bc1ðTÞ and the transition is obtained by increas-
ing the temperature T, the superconductor behaves like a
type-I superconductor (the field does not penetrate and
there is an entropy variation). The transition is thus of first
order, with latent heat Lh equal to

Lh ¼ TcðBÞðSn − SsÞ

¼ B2
c1

2μ0

�
TcðBÞ
Tc

�
2

×

�
1 −

�
TcðBÞ
Tc

�
2
�
: ðB10Þ

As stated in Sec. II, the transitions considered in the
present paper are two: the first is a transition by temperature

variation in the vanishing field. The second is a field
variation up to Bc2ðTÞ at constant T. Both cases have no
latent heat. To evaluate the internal energy variation ΔU, in
the first case, considering the vanishing field and noticing
that GsðTcÞ ¼ GnðTcÞ, we can write

SsðTÞ − SnðTÞ ¼ −
dGsðT; 0Þ

dT
þ dGnðT; 0Þ

dT

¼ 1

2μ0

d½BcðTÞ�2
dT

¼ BcðTÞ
μ0

dBðTÞ
dT

: ðB11Þ

In the vanishing field the variation of internal energy ΔU
is equal to the variation of enthalpy. By using (B3) this
variation can be written as

ΔU ¼ H0
nðTcÞ −H0

sðTÞ ¼ H0
nðT; 0Þ þ

Z
Tc

T
CndT −H0

sðT; 0Þ

¼
Z

Tc

T
CndT þGnðTÞ þ TSnðTÞ −GðT; 0Þ − TSsðT; 0Þ

¼
Z

Tc

T
CndT þ BcðTÞ2

2μ0
− T

BcðTÞ
μ0

dBcðTÞ
dT

: ðB12Þ

Considering that BcðTÞ ¼ B0½1 − ðT=TcÞ2�, the variation
of energy can be written as the sum of three terms: the
internal energy variation of the normal state, the contribu-
tion of the Gibbs free energy, and the contribution of
entropy. The third term, for temperatures near Tc, gives the
biggest contribution, and one has

ΔU ¼
Z

Tc

T
CndT þ B2

0

2μ0
½1 − ðT=TcÞ2�2

þ 2

�
T
Tc

�
2

½1 − ðT=TcÞ2�: ðB13Þ

This equation shows that the variation of internal energy is
proportional to, and roughly of the same order of magni-
tude as, the energy of the thermodynamical critical field.

The second transition is provided by keeping the temper-
ature T fixed and by varying the applied field from zero to
the critical field Bc2ðTÞ. Notice that, being the energy scale
given by the thermodynamical critical field, the use of low-
k materials should be preferred, to maintain the upper
critical field as manageable. Notice that in this transition the
magnetization of the sample is zero both at the start and at
the end of the transition; hence it is expected that the
variation of internal energy due to the superconductive
contribution is equal to the previous case. The normal-state
contribution, on the contrary, is zero because there is no
temperature variation. The above expectations can be
verified by noticing that U ¼ GþB ·Mþ TS. The differ-
ential reads

dU ¼ TdSþ B · dM ¼ TdSþ B · dMþM · dB −M · dBþ SdT − SdT

¼ dðTSÞ þ dðM · BÞ þ dG: ðB14Þ

By integration among the two final states we obtain

ΔU ¼ TðSnðTÞ − SsðTÞÞ þGnðTÞ −GsðT; 0Þ; ðB15Þ
which gives the same result of (B13) without the contribution of the normal state.
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