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Apparently convergent contributions of resummed perturbative series at the next-to-leading order of the
1=N expansion in the OðNÞ model are reanalyzed in terms of renormalizability. Compared to our earlier
article [G. Fejős et al., Phys. Rev. D 80, 025015 (2009)], an additional subtraction is performed. We show
numerically that this is indispensable for diminishing the cutoff sensitivity of some integrals below the scale
of the Landau pole. Following the method of our earlier article, an improved counterterm Lagrangian is
constructed in the two-particle irreducible formalism, with and without the use of an auxiliary field
formulation.
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I. MOTIVATION

The study of the renormalizability of the OðNÞ model at
next-to-leading order (NLO) of the 1=N expansion started
fairly early [1]. Recently an attempt to renormalize the
effective potential at this level of the expansionwas reported
in [2], where the pressure of the pion-sigma gas at finite
temperature was calculated with its help. In that article the
auxiliary field formulation of the model was used and
the renormalization was achieved only at a given point of
the auxiliary field configurations obtained by exploiting its
saddle point equation explicitly. In [3] we presented an
explicit construction of the NLO counterterms with and
without the introduction of the auxiliary field and found that
the model is actually renormalizable for arbitrary values of
the field expectation values. The zero temperature diver-
gence structure of the dynamical equations derived from the
two-particle irreducible (2PI) effective action was inves-
tigated. This form of the action depends independently on
the fields and the corresponding propagators. A strict 1=N
expansion of the pion propagator has been performed which
changes the self-consistent nature of the 2PI − 1=N approxi-
mation into a hierarchical structure. An important feature of
this procedure is that, at the NLO level of the approximation
scheme, the propagators are given explicitly in terms of the
leading order (LO) expressions and this makes the analysis
of the asymptotic behavior of various loop integrals more
transparent than of the 2PI − 1=N approximation whose
renormalization was treated in [4,5].

The appearance of a tachyonic pole (the Landau
singularity) has been observed to be a fundamental
feature of the large-N approximation already in the
pioneering publications [1,6,7]. Thorough studies led to
the understanding of the effective nature of the renormal-
ized OðNÞ model in which the cutoff cannot be sent to
infinity. The 1=N expansion turned out to be a valuable
tool for studying phenomena dominated by momentum
scales well below the cutoff, which is chosen to be
substantially smaller than the scale of the Landau singu-
larity [8–10].
In our previous work [3] we analyzed the integrals

exploiting the asymptotic behavior of their integrands for
infinitely large momenta, which is a customary procedure
in the perturbative analysis of divergences. However, this
approach turns out to be somewhat ambiguous and needs to
be corrected, since due to the explicit presence of the
Landau pole in these integrals, actually it is not possible to
send any momenta to infinity. In particular, this limitation
restricts the range of cutoff values applied for the regu-
larization of divergent integrals. In this context, the mean-
ing of renormalization is actually to achieve a practical
cutoff insensitivity below the scale of the Landau pole,
similarly to the cases discussed in [11–13]. The Landau
singularity affects both the structure and the explicit
expression of the counterterms. As it will become clearer
in the next section, taking it into account becomes
necessary because in the counterterm functional we omitted
to include contributions of the form

Z
d4p

1

ðp2 −M2
0Þ2ln2ðp=ΛpÞ

∼
Z

Λ dp
p

1

ln2ðp=ΛpÞ
; ð1Þ
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where on the right-hand side, valid for large momenta, a
cutoff regularization was used. In this integral one
cannot neglect the presence of Λp, which is the value
of the Landau pole and conclude, as in [3,4], that the
integral behaves as 1= lnΛ. Actually, the integral
diverges as Λ → Λp and the right question to be asked
is in which part of the region Λ < Λp the Landau pole
influences the cutoff dependence of the integral. Of
course, if one asked what the cutoff dependence of the
integral beyond the scale of the Landau pole is, and in
fact this is what we did in [3], then one would conclude
that this behavior is 1= lnΛ. But even though in a
mathematical sense correct, this would be an answer in
a rather unphysical situation.
The most important goal of this paper is to complete our

divergence analysis presented in [3] by investigating
whether the subtraction throughout the calculation of a
previously omitted integral, similar to that in (1), can be
done in a way consistent with the requirements of the
counterterm renormalization applied to the resummed
perturbative series provided by the 1=N expansion. In
the next section we shall analyze some of the relevant
integrals and study numerically the changes observed in
their cutoff dependence after performing appropriate sub-
tractions. For these integrals we shall use cutoff regulari-
zation, with a cutoff chosen below the scale of the Landau
pole. Although in this case all the integrals are strictly
finite, we shall still call an integral “divergent” (“conver-
gent”) if for increasing momentum p < Λ < Λp, its inte-
grand decreases slower (faster) than 1=p4 (up to logs). In
Sec. III we summarize those results of Ref. [3] which are
directly needed for our present purpose, but we also provide
guidance to the relevant parts of the original paper. The
renormalization procedure presented in Sec. IV requires
appropriate subtractions to be imposed on any integral
called divergent in the above sense in order to diminish its
cutoff sensitivity for increasing Λ, already below the
Landau pole. Only by sending the cutoff to infinity in
some finite integrals entering the integrand of divergent
integrals, we could obtain analytical expressions for the
divergent part. We shall discuss in the concluding Sec. V
the criterion a consistent cutoff regularization should
satisfy and the calculational difficulties posed by a regu-
larization, in which all propagator momenta in an integral
are kept below the value of the cutoff. Also, the possibility
of oversubtractions, further diminishing the sensitivity of
specifically chosen n-point functions to the presence of the
Landau pole, is shortly assessed.

II. SUBTRACTION METHOD AND CUTOFF
DEPENDENCE OF THE INTEGRALS

The NLO equations of the 1- and 2-point functions can
be written in terms of an effective momentum-dependent
coupling (λ is the renormalized coupling)

λðpÞ ¼ λ

1 − λ
6
IFπ ðpÞ

; ð2Þ

which reflects that the LO solution of the 1=N expan-
sion effectively resums an infinite series of pion bub-
bles. The analysis presented in [3] shows that the
divergences in these equations are momentum indepen-
dent and given by local integrals which are elements
of a class of integrals characterized by integers j; k
satisfying j ≥ 1; k ≥ 0:

Ij;k ¼ ð−iÞj−1
Z
p
Dj

πðpÞλkðpÞ; ð3Þ

where we used the shorthand notation
R
p≡

R d4p
ð2πÞ4

and DπðpÞ ¼ i=ðp2 −M2Þ is the tree-level pion
propagator. The finite part of the bubble integral
IπðpÞ¼−i

R
kDπðkÞDπðpþkÞ is defined as IFπ ðpÞ ¼

−i
R
k ½DπðkÞDπðpþ kÞ −G2

0ðkÞ�, where G0ðkÞ ¼ i=ðp2 −
M2

0Þ is an auxiliary propagator in whichM0 plays the role of
the renormalization scale.
One has to investigate carefully the asymptotic behavior

of the integrands in (3) in order to find out which of them
needs subtraction and to assess those appropriate subtrac-
tions which efficiently diminish the sensitivity of the
integrals with respect to an increasing cutoff, but still
below the (Landau) pole of the effective coupling (2). For
us, the most important element of the set Ij;k is I2;2 because
it was left unsubtracted in [3] due to a formal logarithmic
power counting, which was not careful enough, as
explained in the previous section.
Formal power counting based on the asymptotic behav-

ior of the integrands in (3) for p → ∞ suggests that if
j > 3 (j ≤ 2), then Ij;k should be considered convergent
(divergent). This is certainly true for k ¼ 0, a case in which
I1;0 is the tadpole integral and I2;0 is the bubble integral at
vanishing external momentum. Their respective finite parts
can be defined through the minimal subtraction renormal-
ization scheme used in [3]. To see what is to be subtracted
we expand DπðpÞ around G0ðpÞ

Dπ ¼ G0 − iðM2 −M2
0ÞG2

0 − ðM2 −M2
0Þ2DπG2

0: ð4Þ

Using the quadratically and logarithmically divergent
integrals introduced in [3],

Tð2Þ
d ¼

Z
k
G0ðkÞ; Tð0Þ

d ¼ −i
Z
k
G2

0ðkÞ; ð5Þ

and the notation

tdðM2Þ ¼ Tð2Þ
d þ ðM2 −M2

0ÞTð0Þ
d ; ð6Þ

the subtraction implied by (4) gives the following finite
integrals:

G. FEJŐS, A. PATKÓS, AND ZS. SZÉP PHYSICAL REVIEW D 90, 016014 (2014)

016014-2



TF
π ≔ I1;0F ¼

Z
p
DπðpÞ − tdðM2Þ; ð7aÞ

IFπ ðk ¼ 0Þ ≔ I2;0F ¼ −i
Z
p
D2

πðpÞ − Tð0Þ
d : ð7bÞ

As already discussed in the previous section, for k ≠ 0
one has to perform a more careful analysis because the
integrands explicitly display the Landau pole at a value of
the momentum which depends on the coupling approx-
imately as Λp ≈M0 expð1þ 48π2=λÞ. In this case, in
addition to (4), one needs also to expand1 λðpÞ around
λ0ðpÞ ¼ λ=ð1 − λIF0 ðpÞ=6Þ,

λðpÞ ¼ λ0ðpÞ þ
1

6
λ0ðpÞλðpÞ½IFπ ðpÞ − IF0 ðpÞ�; ð8Þ

where IF0 ðpÞ is obtained by replacing Dπ with G0 in the
definition of IFπ ðpÞ given below (3). To analyze the
divergence of some integrals, e.g. of I1;1, one needs to
know explicitly the expansion of the difference IFπ ðpÞ −
IF0 ðpÞ for large momenta, which is given later in (24).
However, for the integrals I2;1 and I2;2 presented in this
section to illustrate the effect of the Landau pole, we only
need to know that this difference is Oð1=p2Þ. Using this
fact and the leading order terms in the expansions (4) and
(8), one finds for the respective minimally subtracted finite
parts:

I2;1F ¼ I2;1 þ i
Z
p
G2

0ðkÞλ0ðkÞ ¼ I2;1 − λta; ð9aÞ

I2;2F ¼ I2;2 − λ2Tð0Þ
a ; ð9bÞ

where we introduced the notation

ta ¼ Tð0Þ
a −

λ

6
TðIÞ
a ð10Þ

for the combination of the two integrals in terms of which
the subtractions are defined. The integral,

TðIÞ
a ¼ −i

Z
k
G2

aðkÞIF0 ðkÞ; ð11Þ

was already defined in [3] with the auxiliary propagator
GaðkÞ ¼ i=½ðk2 −M2

0Þð1 − λIF0 ðkÞ=6Þ�, while

Tð0Þ
a ¼ −i

Z
k
G2

aðkÞ; ð12Þ

introduced in analogy with Tð0Þ
d , is a new integral which

was not subtracted in our previous analysis. The last
divergent integral we shall use from [3] is

Tð2Þ
a ¼

Z
k
GaðkÞ: ð13Þ

In the remaining of this section we study numerically the
cutoff dependence of the simplest integrals of the Ij;k set. In
the upper part of Fig. 1 we see that just like I2;1, the integral
I2;2 does not show any practical cutoff insensitivity below
the Landau pole Λp, therefore similarly to I2;1, it has to be
considered divergent and an appropriate subtraction has to
be applied to it. This shows explicitly that from a physical
point of view the renormalization of the OðNÞ model at
next-to-leading order in the 1=N expansion presented in [3]

is incomplete: the subtraction of Tð0Þ
a is needed and its effect

has to be taken into account in the divergence analysis of
other integrals, as well.
In the lower part of Fig. 1 we see that after applying the

subtractions introduced in (9) a practical cutoff insensitivity
is reached for Λ < Λp. We can roughly say that the region
of apparent convergence is limited from above by the
inflection point of Ij;kF ðΛÞ for j ¼ 2 and of Ij;kðΛÞ for j > 2,
and that as the cutoff is increased above this point the Λ
dependence of the subtracted integrals becomes clearly
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FIG. 1 (color online). The cutoff dependence of divergent
integrals (upper part) and subtracted or convergent integrals
(lower part) computed by taking Λ → ∞ in the finite bubble
integrals IFπ ðpÞ and IF0 ðpÞ, with the exception of the dashed curve
corresponding to j ¼ k ¼ 2, for which the cutoff regularization
given in (59) is applied. The bar on Ij;k indicates that the integrals
are scaled by the value taken at the inflection point (inflection of
I1;1=Λ2 when j ¼ k ¼ 1) and, for the sake of the presentation,
also by an additional factor in the case of j ¼ k ¼ 2. We set
M ¼ 1, M0=M ¼ 2, and used λ ¼ 65 for the coupling, except
where indicated.

1The expansion induces a new pole related to M0, but unless
there is a huge difference between the masses, the two poles are
very close to each other. The location of the new pole is lower
(higher) than the original for M0 > M (M0 < M). Since the pion
massM vanishes in the chiral limit, we chooseM0 > M, in which
case, for a given λ, the singularity of a subtracted integral is
basically determined by M0.
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dominated by the Landau pole. Note that we divide the
integrals with the value taken at the corresponding inflec-
tion point, in order to be able to show their cutoff
dependence in a single plot. As expected, for a given λ
and j, the plateau-like behavior of the subtracted integrals is
more visible at smaller values of k (compare at j ¼ 2 the
curves for k ¼ 1 and k ¼ 2). Also, decreasing λ makes the
Λ dependence more flat. As visible in Fig. 1 for the j ¼
k ¼ 2 case, below the inflection point of I2;2ðΛÞ it is
practically irrelevant if the finite bubble integrals IFπ and IF0
are computed with the actual finite cutoff or with an infinite
one. This is an important observation because the diver-
gence analysis of the next section needs some explicit
expressions and we could obtain them only in the
latter case.
For j > 2, a practical cutoff insensitivity is expected at

high enough values of the cutoff, but we would like to
stress that this only happens if the value of the coupling,
which governs the location of the Landau pole, is not too
big. For example, by increasing the coupling from λ ¼ 65
to λ ¼ 80, we see in Fig. 1 that the slope of I3;3 increases
and that the integral becomes sensitive to the presence of
the Landau pole at lower values of the cutoff. Therefore,
even though each individual term of the series obtained

with an expansion of I3;3 in powers of λ is finite, one may
even try to treat these integrals as divergent and define their
finite parts with appropriate subtractions. One can imagine
doing this procedure gradually, that is starting with
convergent integrals having the smallest j value. The
question whether this kind of oversubtraction can be
realized without any restriction on the choice of the
renormalized couplings and for general values of the
backgrounds (v of the σ field and α̂ of the auxiliary field
introduced below) is beyond the scope of the present
investigation. It might be of physical interest, therefore we
return to this point in the concluding Sec. V. Throughout
the paper we shall assume that the coupling is not very
large, meaning that the position of the Landau pole in
momentum space is much larger than the physically
relevant scales. In this case no subtraction has to be
applied to the integrals Ij>2;k.

III. THE MODEL IN THE AUXILIARY
FIELD FORMULATION

The next-to-leading order 2PI effective potential of the
OðNÞ model in the 1=N expansion (denoted by
Γ½α̂; v; Gπ;G� in [3]) has the following expression:

V½α̂; v; Gπ;G� ¼
N
2
M2v2 þ 3N

2λ
α̂2 −

i
2

Z
k
½ðN − 1ÞðlnG−1

π ðkÞ þD−1
π ðkÞGπðkÞÞ þ Tr lnG−1ðkÞ þ TrðD−1ðkÞGðkÞÞ�

þ i
λ

12

Z
k

Z
p
GααðkÞGπðpÞGπðpþ kÞ þ ΔV½α̂; v; Gπ;G�: ð14Þ

We refer to [3] (see also [14,15]) for details concerning
its derivation with the usual rules of the 2PI formalism from
the Lagrangian of the model obtained after the elimina-
tion of the quartic interaction term through a Hubbard-
Stratonovich transformation. Here it is sufficient to know
that v is the vacuum expectation value of the dynamical
field pointing in the σ direction, m2 and λ represent
the renormalized mass and coupling constant, α̂ is the
(rescaled) auxiliary field, and that we use the shorthand
notation

M2 ¼ m2 − iα̂: ð15Þ

Dπ is the tree-level pion propagator introduced
below (3), while D and G are the tree-level and the
full 2 × 2 symmetric propagator matrices in the coupled
σ − α sector, respectively. The matrix elements of
the inverse D−1 are ðD−1ÞσσðpÞ ¼ D−1

π ðpÞ, ðD−1Þαα ¼ i,
and ðD−1Þασ¼vðλ=3Þ1=2.
The components of G−1 are obtained from the statio-

narity condition δV=δG ¼ 0. Inverting the matrix G−1 at LO
[that is in the case without the last integral of (14)] the
components of Gð0Þ are given explicitly in Eq. (15) of [3].

The expressions of the σσ, αα, and ασ matrix elements of
the LO propagator matrix in the α − σ sector can be
conveniently rewritten for the next discussion in the
following form:

Gð0Þ
σσ ðpÞ ¼ DπðpÞ − i

v2

3
λðpÞDπðpÞGð0Þ

σσ ðpÞ; ð16aÞ

λGð0Þ
αα ðpÞ ¼ −iλðpÞD−1

π ðpÞGð0Þ
σσ ðpÞ; ð16bÞ

ffiffiffi
λ

3

r
Gð0Þ

ασ ðkÞ ¼ i
v
3
λðkÞGð0Þ

σσ ðkÞ: ð16cÞ

We shall call Gð0Þ
σσ ðpÞ the LO sigma propagator.

The expressions (16a) and (16b) prove useful if one
wants to see how the integrals Ij;k introduced in (3) are

generated. With Gð0Þ
αα taken from (16b) and with Gð0Þ

σσ ðpÞ
used iteratively from (16a) one sees that Ij;k with j ¼ k ≥ 1
appears through the integral

iλ
Z
p
Gð0Þ

αα ðpÞDπðpÞ; ð17Þ
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which appears in the NLO pion self-energy, as we shall see
shortly.
Integrals with j ¼ kþ 1; k ≥ 1 will be shown to emerge

in the functional derivative of the effective action with
respect to α̂ through the integral

i
2

Z
p
ðGð0Þ

αα ðpÞ−DπðpÞÞ¼
v2

6

Z
p
λðpÞDπðpÞGð0Þ

σσ ðpÞ; ð18Þ

again with the iteration of Gð0Þ
σσ ðpÞ from (16a).

The counterterm functional ΔV in (14) contains all the
counterterms we need to determine in order to renormalize
the effective potential, its functional derivatives with
respect to v and α̂, and the propagators. It is convenient
to split ΔV into several pieces:

ΔV ¼ ΔVN
α þ ΔV0

Gαα
þ ΔV0

Gπ
þ ΔV0

v þ ΔV0
α; ð19Þ

each corresponding to the renormalization of a specific
functional derivative of V, denoted by the corresponding
subscript. The upper indices distinguish between terms
corresponding to different orders of the large-N hierarchy.
Our task in what follows is to analyze the divergences of the
functional derivatives of (14) in order to find the appro-
priate choice of terms in (19) which renders these quantities
finite.
The leading order renormalization remains unchanged

compared to [3], thus we just recall that

ΔVN
α ¼ iα̂

N
2
tdðm2Þ þ α̂2

N
4
Tð0Þ
d ; ð20Þ

ΔV0
Gαα

¼ λ

12
Tð0Þ
d

Z
k
Gð0Þ

αα ðkÞ; ð21Þ

with the function tdðxÞ introduced in (6) and Tð0Þ
d given

in (5).
At NLO we have to deal with three quantities: the pion

propagator and the derivatives δV=δv and δV=δα̂. We
expect that, although renormalizability should not work
for arbitrary propagators, as the proof of perturbative
renormalizability strongly relies on their asymptotic behav-
ior, there must be no restriction concerning the value of the
background fields v and α̂. For this reason, we shall analyze
the corresponding derivatives of the effective potential
instead of the field equation for v and the saddle point
equation for α̂ which arise by equating the respective
derivatives to zero.
We would like to note that, since we employ, as did also

in [3], a strict 1=N expansion in the pion propagator, the
divergence analysis at NLO could be equally well per-
formed within the 1PI formalism. In particular, the

counterterms determined here are not the ones rendering
finite the effective potential of the 2PI formalism trun-
cated at two-loop level and the self-consistent pion
propagator derived from it, but rather they should be
understood as approximating those. For the determination
of the full 2PI counterterms using self-consistent equa-
tions the reader should consult Ref. [5]. Our use of the
2PI formalism is motivated by the fact that the highly
nontrivial resummation of infinite classes of diagrams in
the effective potential can be rather compactly formulated
by combining it with the auxiliary field formulation of
the model. This is because at the NLO level of the 1=N
expansion only the contribution of a single two-loop 2PI
integral has to be taken into account in (19). In [3], the
fact that field and propagator are independent variables of
a common 2PI effective potential was used as a tool for
organizing our analysis. It facilitates tracking the influ-
ence of a counterterm piece determined from a certain
derivative of the effective potential on the renormalization
of another derivative. The introduction of the auxiliary
field explicitly provided guidance for the renormalization
of the pion self-energy also in the case when the auxiliary
field was not used, as it indicated that the right strategy
to follow is to independently renormalize the momentum-
dependent and momentum-independent parts of the
self-energy.

IV. NEXT-TO-LEADING ORDER
RENORMALIZATION

Before presenting the detailed renormalization steps
leading to the completion of the list of counterterms
determined in [3], we point out the changes in the final
result, as compared to our previous analysis:

(i) The divergence of the pion propagator equation
changes in two ways. First, the expression of
~TdivðM2Þ given in Eq. (21) of [3] changes such that
the “double scoop” integral ðRk GπðkÞÞ2 and also a
term proportional to v2

R
k GπðkÞ are induced in the

ΔV0
π piece of the counterterm functional. Second,

there also appears an additional divergence propor-
tional to v2 in the integral (17) [Eq. (20) of [3]]. This
new term modifies the divergence of δV=δv and
induces a new counterterm proportional to v4 in
ΔV0

v. Interestingly, these new terms combine in the
counterterm functional into a term proportional to
ðv2 þ R

k GπðkÞÞ2, which, however, has no renormal-
ized counterpart in the auxiliary field formulation of
the model given in (14).

(ii) The divergence analysis of the derivative δV=δα̂ also
changes because the divergences of the integrals
JðM2Þ and ~JðM2Þ introduced in Eq. (29) of [3] have

to be reanalyzed, as terms proportional to Tð0Þ
a were

previously not included.
Now we go into the details.
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A. The NLO pion propagator equation

This equation reads as

iG−1
π ðkÞ ¼ iD−1

π ðkÞ − i
λ

3N

Z
p
Gð0Þ

αα ðpÞDπðpÞ

− i
λ

3N

Z
p
Gð0Þ

αα ðpÞ½Dπðpþ kÞ −DπðpÞ�

−
2

N
δΔV0

π

δGπ
; ð22Þ

and we have shown in [3] that the second integral is free of
divergences. Exploiting (16a) in the first (local) integral, we
immediately see that this term splits into two divergent
pieces:

−
1

3N

Z
p
λðpÞDπðpÞjdiv≕ −

λ

3N
~TdivðM2Þ; ð23aÞ

i
v2

9N

Z
p
λ2ðpÞD2

πðpÞjdiv ¼ −
λ2v2

9N
Tð0Þ
a : ð23bÞ

In [3] we did not encounter a divergence proportional to v2,

as Tð0Þ
a was considered finite, and furthermore, though the

definition of ~TdivðM2Þ remains the same, its expression
changes. To obtain it, we need the expansions (4) and (8),
as well as the expansion of the difference IFπ ðpÞ − IF0 ðpÞ,
which up to Oð1=p4Þ is given by

IFπ ðpÞ − IF0 ðpÞ≃ i
8π2

�
3ðM2 −M2

0Þ −M2 ln
M2

M2
0

�
G0ðpÞ

þ 2iðM2 −M2
0ÞIF0 ðpÞG0ðpÞ: ð24Þ

This can be derived using the explicit expression for IFπ ðpÞ
and IF0 ðpÞ obtained by sending the cutoff to infinity in their
defining integral. With a bit of algebra we obtain

~TdivðM2Þ ¼ t1ðM2Þ þ λ

3
Tð0Þ
a

Z
p
DπðpÞ; ð25Þ

where we introduced

t1ðM2Þ ¼ Tð2Þ
a −

λ

3
Tð0Þ
a Tð2Þ

d − ðM2 −M2
0Þt2; ð26aÞ

t2 ¼
λ

2
TðIÞ
a þ Tð0Þ

a

�
λ

3

�
Tð0Þ
d þ 1

8π2

�
− 1

�
; ð26bÞ

and expressed M2 lnðM2=M2
0Þ in terms of the tadpole

integral by using in (7a) the explicit expression of the
finite tadpole

TF
π ¼ 1

16π2

�
M2 ln

M2

M2
0

−M2 þM2
0

�
; ð27Þ

again obtained for infinite cutoff.
With the help of (23) and (25) the following expression

for ΔV0
π is determined from (22):

ΔV0
π ¼ −

λ

6

�
t1ðM2Þ þ λ

3
v2Tð0Þ

a

� Z
p
GπðpÞ

−
λ2

36
Tð0Þ
a

�Z
p
GπðpÞ

�
2

: ð28Þ

Note that ΔV0
π depends linearly on α̂ through M2, and that

we got a new term proportional to v2 and, furthermore, a
double scoop integral (last term on the right-hand side).
Terms of these types were not present in [3] in the auxiliary
field formulation of the model, however there is no
symmetry restriction preventing its emergence in the
counterterm functional. At NLO in the 1=N expansion
ΔV0

π gives the following finite pion propagator:

iG−1
π ðkÞ ¼ k2 −M2 −

λ

3N

�
i
Z
p
Gð0Þ

αα ðpÞDπðkþ pÞ

− ~TdivðM2Þ − λv2

3
Tð0Þ
a

�
: ð29Þ

B. The derivative of the effective potential with
respect to v

This derivative is given by

δV
δv

¼ NvM2 − i

ffiffiffi
λ

3

r Z
k
GασðkÞ þ

δΔV0
π

δv
þ δΔV0

v

δv
; ð30Þ

where we have indicated that there is also a contribution
from the ΔV0

π counterterm given in (28). Upon using the
LO expression ofGασ from (16c) together with (16a) for the
LO sigma propagator, one sees that the integral in (30)
splits into the same two divergent contributions given in
(23), both appearing now with opposite sign. There is a
dangerous environment dependent (i.e. temperature
dependent in a finite temperature setting) subdivergence
proportional to the tadpole

R
k DπðkÞ included in ~Tdiv,

but fortunately it exactly cancels with the term coming
from δΔV0

π=δv. The expression of ΔV0
v is determined by

the requirement of the cancellation of all remaining
divergences in (30):

ΔV0
v ¼ −

λ

6
t1ðM2Þv2 − λ2

36
Tð0Þ
a v4: ð31Þ

We see that a four-point counterterm vertex appeared as the
last term on the right-hand side, a type of operator which
was absent in [3] in the auxiliary field formulation of the
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model, but as was the case with the new term emerging in
the pion propagator equation, this is neither forbidden by
any symmetry. We note that by construction Goldstone’s
theorem is respected with the present extended subtraction
as well.

C. The derivative of the effective potential with
respect to α̂

This expression is given by

δV
δα̂

¼ 3N
λ

α̂ − i
N
2

�
v2 þ

Z
k
GπðkÞ

�
þ i

N
2
tdðM2Þ

−
i
2

Z
k
ðGσσðkÞ −GπðkÞÞ

þ δΔV0
π

δα̂
þ δΔV0

v

δα̂
þ δΔV0

α

δα̂
; ð32Þ

where the term containing the expression tdðM2Þ intro-
duced in (6) is the contribution of ΔVN

α and renormalizes
the expression at leading order. Note that, both ΔV0

π and
ΔV0

v contribute to the right-hand side of (32):

δΔV0
π

δα̂
þ δΔV0

v

δα̂
¼ −i

λ

6
t2

�
v2 þ

Z
k
DπðkÞ

�
; ð33Þ

where the term proportional to the tadpole comes from
ΔV0

π, while the one containing v2 arrives from ΔV0
v. The

consistency of the procedure requires that ΔV0
α, the last

piece of the counterterm functional left to be determined,
depends on α̂ only, otherwise it would contribute to the
pion propagator equation and/or to δV=δv, and the pro-
cedure would not close. We also expect ΔV0

α to be a
polynomial in α̂.
There are two integrals in (32) whose divergences have

to be calculated. The first contains the difference of LO
propagators at the needed accuracy in the 1=N expansion,
and it is rather simple. Using (16a) in (18), followed by
expansions (4) and (8), one obtains

Z
k
½Gð0Þ

σσ ðkÞ −DπðkÞ�jdiv ¼
λv2

3
ta: ð34Þ

For the second integral we take the inverse of G−1
π given

in (29) and expand it to Oð1=NÞ. Using the two integrals
JðM2Þ and ~JðM2Þ introduced in Eq. (29) of [3], and given
also here for convenience

~JðM2Þ ¼ 1

λ

Z
k
D2

πðkÞ
Z
p
λðpÞDπðpþ kÞ; ð35aÞ

JðM2Þ ¼ 1

λ2

Z
k
D2

πðkÞ
Z
p
λ2ðpÞDπðpþ kÞGð0Þ

σσ ðpÞ; ð35bÞ

one obtains

Z
k
GπðkÞ ¼

Z
k
DπðkÞ −

λ2v2

9N

�
JðM2Þ − iTð0Þ

a

Z
k
D2

πðkÞ
�

−
iλ
3N

�
~JðM2Þ − ~TdivðM2Þ

Z
k
D2

πðkÞ
�
: ð36Þ

This replaces Eq. (28) of [3], as it contains also the effect of
the new subtraction. In order to isolate the divergences of J
and ~J we change the order of integration, use the exact
equality which holds at infinite cutoff

Z
k
D2

πðkÞDπðpþ kÞ

¼ 1

p2 − 4M2

�
IFπ ðpÞ þ

1

8π2
−

1

16π2
ln
M2

M2
0

�
; ð37Þ

and expand the propagators around G0 as in (4) and
λðpÞ around λ0ðpÞ using (8) and (24). A straightforward
calculation yields

~JdivðM2Þ ¼ −i
�
6

λ
þ Tð0Þ

d þ 1

8π2

�
½ ~TdivðM2Þ þ 3M2ta�

þ i
6

λ
tdð4M2Þ þ 3itaM2Iπðk ¼ 0Þ

þ ~TdivðM2Þ
Z
k
D2

πðkÞ ð38aÞ

JdivðM2Þ ¼ TðIÞ
a þ Tð0Þ

a

�
Tð0Þ
d þ 1

8π2

�
þ iTð0Þ

a

Z
k
D2

πðkÞ;

ð38bÞ

where in both cases we replaced lnðM2=M2
0Þ by the finite

bubble integral at vanishing external momentum obtained
for infinite cutoff using the relation

IFπ ðk ¼ 0Þ ¼ 1

16π2
ln
M2

M2
0

; ð39Þ

and then used (7b) to make appear the full bubble integral
Iπð0Þ at vanishing momentum.
The last term of both (38a) and (38b) is a subdivergence

which cancels immediately in (36). In order to make
explicit another subdivergence of ~J, related to the tadpole,
we use (39), (7), and (27) to write

M2Iπðk ¼ 0Þ ¼ M2

16π2
ln
M2

M2
0

þM2Tð0Þ
d

¼
Z
k
DπðkÞ − tdð0Þ þ

M2 −M2
0

16π2
: ð40Þ

Using the above relation in the second line of (38a) and (25)
in the first line, one obtains the final expression:
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~JdivðM2Þ ¼ −i
�
6

λ
þ Tð0Þ

d þ 1

8π2

�
½t1ðM2Þ þ 3M2ta�

þ i
6

λ
tdð4M2Þ − 3ita

�
tdð0Þ þ

M2
0 −M2

16π2

�

− it2

Z
k
DπðkÞ þ ~TdivðM2Þ

Z
k
D2

πðkÞ: ð41Þ

Among the contributions to (32) there are dangerous
terms proportional to v2 and

R
k DπðkÞ which should

disappear. The latter comes entirely from (41) and
(33), which eventually cancel each other in (32).
Concerning the terms proportional to v2, first we com-
bine (34) with the corresponding term of (36) and realize
that the result is exactly canceled by the remaining term
of (33). This means that there is no environment
dependent subdivergence in (32) and the corresponding
ΔV0

α counterterm depends only on a quadratic polyno-
mial of α̂. Its final expression reads

ΔV0
α ¼ iα̂δκð1Þ1 þ α̂2δκð1Þ2 ; ð42Þ

with

δκð1Þ1 ¼ −ðt1ðm2Þ þ 3m2taÞ
�
1þ λ

6
Tð0Þ
d þ λ

48π2

�

þ tdð4m2Þ − λ

2
ta

�
tdð0Þ þ

M2
0 −m2

16π2

�
; ð43Þ

δκð1Þ2 ¼ t2 − 3ta
2

�
1þ λ

6
Tð0Þ
d þ λ

48π2

�
þ 2Tð0Þ

d þ λta
64π2

;

ð44Þ

providing the two NLO order counterterms, exclusively
related to the auxiliary field.

D. The effective potential

Putting together the different pieces of (19) one
recognizes that the new subtraction can be performed
at NLO for arbitrary values of v and α̂, in agreement with
the general expectations on the structure of the counter-
terms. This completes the renormalization of the model in
the auxiliary field formulation, where the counterterm
functional is

ΔV½α̂; v; Gπ;G� ¼
1

2
ðδm̂2 − iδgα̂Þ

�
v2 þ

Z
k
GπðkÞ

�

þ iδκ1α̂þ δκ2α̂
2 þ 1

2
δκ0

Z
k
GααðkÞ

þ δλ̂

4!

�
v2 þ

Z
k
GπðkÞ

�
2

; ð45Þ

with the following countercouplings:

δg¼ λ

3
t2; δλ̂¼−

2λ2

3
Tð0Þ
a ; δm̂2 ¼−

λ

3
t1ðm2Þ;

δκ0 ¼
λ

6
Tð0Þ
d ; δκ1 ¼Nδκð0Þ1 þ δκð1Þ1 ; δκð0Þ1 ¼ 1

2
tdðm2Þ;

δκ2 ¼Nδκð0Þ2 þ δκð1Þ2 ; δκð0Þ2 ¼ 1

4
Tð0Þ
d : ð46Þ

The last term in (45) is a completely new functional term,
compared to the expression in Eq. (32) of [3], and one also
notes that (45) contains exclusively the sum of v2 andR
k GπðkÞ. This feature is sufficient to preserve the validity
of Goldstone’s theorem also in the renormalized theory at
NLO, since it ensures that the samesubtraction is performed in
both unrenormalized expressions of δV=vδv and 2δV=δGπ ,
which is needed for the theorem to be obeyed.
Combining (14) and (45), we can define with δκ2 the

bare coupling λB through the relation

1

λB
¼ 1

λ
þ 2

3N
δκ2: ð47Þ

Writing λB ¼ λþ δλα and decomposing the counterterm

into LO and NLO parts δλα ¼ δλð0Þα þ δλð1Þα =N, the LO part

of the coupling, λð0ÞB is determined by δκð0Þ2 and reads

λð0ÞB ¼ λ

1þ λTð0Þ
d =6

; ð48Þ

and also

δλð0Þα ¼ −
λ2

6

λ

1þ λTð0Þ
d =6

; δλð1Þα ¼ −
2

3
ðλð0ÞB Þ2δκð1Þ2 :

ð49Þ
As we shall see in a moment, the LO part of the bare

coupling remains unchanged even after the elimination of
the auxiliary field, which we do in order obtain the OðN0Þ
accurate effective potential of the model as a functional of
the original variables. Following Sec. VI of [3], we need to

substitute into (14) and (45) the LO expressions Gð0Þ
αα and

Gð0Þ
ασ expressed in terms of Gð0Þ

σσ ≡Gσ and Gπ , and to make
use of the saddle point equation for α̂. We do not present
this procedure, as it was done in [3] in quite some details.
We only have to add the last term of (45) to the expression
on the right-hand side of Eq. (45) of [3]. Defining the bare
parameters of the model without the auxiliary field as

λb ¼ λBĉ2 þ
δλ̂

N
; m2

b ¼ m2 þ δm̂2

N
−
λBĉδκ1
3N

; ð50Þ

ðĉ ¼ 1þ δg=NÞ and using that to Oð1=NÞ
�
λBĉ2 þ

δλ̂

N − 1

�
v2

12

Z
k
GπðkÞ ≈

λbv2

12

Z
k
GπðkÞ; ð51Þ
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one obtains

V½v;Gπ; Gσ� ¼
N
2
m2

bv
2 þ N

24
λbv4 −

i
2

Z
k
ðN − 1ÞðlnG−1

π ðkÞ þD−1
π ðkÞGπðkÞÞ −

i
2

Z
k
ðlnG−1

σ þD−1
σ ðkÞGσðkÞÞ

þ N
24

λb

�Z
k
GπðkÞ

�
2

þ λð0ÞB

12

Z
k
GπðkÞ

Z
p
GσðpÞ −

λð0ÞB

12

�Z
k
GπðkÞ

�
2

−
i
2

Z
k
ln

�
1 −

λð0ÞB

6
ΠðkÞ

�

−
λð0ÞB

6
v2

Z
k
GσðkÞ þ

λð0ÞB

6
v2

Z
k

GσðkÞ
1 − λð0ÞB ΠðkÞ=6

; ð52Þ

where we have introduced the notation ΠðkÞ ¼
−i

R
p Gπðpþ kÞGπðpÞ and the tree-level propagators

iD−1
π ðkÞ ¼ k2 −m2

b −
λb
6
v2; ð53aÞ

iD−1
σ ðkÞ ¼ k2 −m2

b
ð0Þ −

λð0ÞB

2
v2: ð53bÞ

The interpretation of the last four terms in (52) in terms of
Feynman diagrams was given in Eqs. (50) and (51) and
Fig. 2 of [3]. Note that inD−1

σ we replacedm2
b by its leading

order part m2
b
ð0Þ because we are interested only in the

OðN0Þ accurate effective potential. As it might be expected,
one has just a single bare squared massm2

b and a single bare
coupling λb, but in some terms only the LO part of them,

m2
b
ð0Þ and λð0ÞB is needed.
Using λb ¼ λþ δλ and m2

b ¼ m2 þ δm2, as well as the
decompositions δλ ¼ δλð0Þ þ δλð1Þ=N and δm2 ¼ δm2ð0Þþ
δm2ð1Þ=N, one obtains the following LO and NLO
countercouplings:

δm2ð0Þ ¼ −
1

3
λð0ÞB δκð0Þ1 ;

δm2ð1Þ ¼ δm̂2 −
1

3
½δλð1Þα δκð0Þ1 þ λð0ÞB ðδκð1Þ1 þ δκð0Þ1 δgÞ�;

δλð0Þ ¼ δλð0Þα ; δλð1Þ ¼ δλð1Þα þ 2λð0ÞB δgþ δλ̂; ð54Þ
where the correction represented by the last term in (45)
shows up in the NLO coupling counterterm δλð1Þ.

E. Renormalization without the auxiliary field

The countercouplings given in (54) renormalize by their
very construction the propagator equations for the pion and
sigma fields derived from V½v;Gπ; Gσ�, as well as the
derivative δV=δv. We mention that there is no need to use
the auxiliary field method to obtain the expression of the
countercouplings in the theory written in the original
variables because we presented in [3] a method to deter-
mine them starting from (52). When applied to the
renormalization of the pion propagator, this method
requires first to remove the divergence of the momen-
tum-dependent part of the self-energy and then of the

momentum-independent piece of it. The explicit expres-
sions in the inverse of the pion propagator iG−1

π ðkÞ ¼
k2 −M2 − λΣF

π ðkÞ=ð3NÞ are

ΣF
π ðkÞ ¼

Z
p

�
1

1 − λΠFðpÞ=6
−
λv2

3

iGσðpÞ
ð1 − λΠFðpÞ=6Þ2

�

×Gπðkþ pÞ − ~TdivðM2Þ; ð55Þ

M2 ¼ m2
b þ

λb
6

�
v2 þ

Z
k
GπðkÞ

�
þ λb
6N

Z
k
½GσðkÞ −GπðkÞ�

þ λ

3N
~TdivðM2Þ; ð56Þ

where the first line in the momentum-independent part M2

is obtained from (52) by differentiating with respect to Gπ

and the last term is added there to compensate for its
subtraction from the momentum-dependent part, done to
render it finite. Writing M2 ¼ M2ð0Þ þM2ð1Þ=N and
expanding Gπ to Oð1=NÞ, we obtain the same integrals
which appear in the auxiliary field formulation of the
model, but DπðpÞ originally defined below (3) has nowM2

replaced by M2ð0Þ. Referring to Eq. (55) of [3] for some
details, below we only give the corrected equation from
which the NLO countercouplings can be determined:

−
3i

λð0ÞB

�
δm2ð1Þ þ λ

3
~TdivðM2ð0ÞÞ

�

¼ iδλð1Þ

2λð0ÞB

�
v2 þ

Z
k
DπðkÞ

�
þ i
2

Z
k
½GσðkÞ −DπðkÞ�jdiv

þ λ

6

�
~JdivðM2ð0ÞÞ − ~TdivðM2ð0ÞÞ

Z
k
D2

πðkÞ
�

− i
λ2

18
v2
�
JdivðM2ð0ÞÞ − iTð0Þ

a

Z
k
D2

πðkÞ
�
: ð57Þ

In order to obtain a relation which involves the counter-
couplings andM2ð0Þ we have to use the integrals (7a), (34),
(38b), and (41). Then, we substitute in it the LO finite gap
equation M2ð0Þ ¼ m2 þ λðv2 þ TF

π Þ=6 and determine δλð1Þ

by requiring the vanishing of the coefficient of v2 þ TF
π .

The vanishing of the remainder in that relation determines
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δm2ð1Þ. With this procedure we arrive at the expressions
given in (54).

V. DISCUSSION AND CONCLUSIONS

The present study shows that the subtraction of the new
divergent integral omitted from the renormalization pro-
cedure discussed in Ref. [3] does not change one of its main
conclusions, namely that the renormalization of the model
in the auxiliary field formulation can be performed at
arbitrary value of the auxiliary field.
However, we could separate analytically the divergences

of the encountered integrals only if in some finite integrals,
e.g. the finite bubble IFπ defined below (3) and the integral
in (37), the cutoff is sent to infinity. Since strictly speaking
the presence of the Landau pole imposes a restriction on
the maximal value of the momentum scale present in the
effective theory, we should investigate how the divergence
analysis goes in the case when this restriction is imposed on
every subdiagram too. It turns out that in the auxiliary field
formulation of the model, after the renormalization of the
pion propagator and of the field equation, the cancellation
of subdivergences from the saddle point equation imposes a
constraint among the above mentioned two integrals which
has to be satisfied by a consistent cutoff regularization
scheme.
The emergence of the constraint is easily seen as follows.

If IFπ and IF0 are calculated in Euclidean space with a yet
unspecified cutoff regularization then on the right-hand
side of the expression in (24) an additional term
ΔIΛðkE;M2;M2

0Þ will appear due to the explicit depend-
ence of the finite bubbles on the cutoff Λ. This term
emerges from an expansion for small M2 and M2

0

without assuming jkEj ≪ Λ and vanishes when Λ → ∞.
Then t1ðM2Þ in (25) gets a correction of the form
1
6λ

R
Λ
kE
λ20;EðkEÞΔIΛðkE;M2;M2

0ÞG0ðkEÞ, where
R
Λ
kE

¼R d4kE
ð2π2Þ θðΛ − jkEjÞ, G0ðkEÞ ¼ 1=ðk2E þM2

0Þ and λ0;EðkEÞ
is the Euclidean continuation of λ0ðkÞ. Due to (28) and
(31) the derivative of this integral with respect to α̂
(or equivalently iM2) will appear on the right-hand side
of (33) as a Λ-dependent correction of the form
− i

36

R
Λ
kE
λ20;EðkEÞG0ðkEÞ d

dα̂ΔI
ΛðkE;M2;M2

0Þ. Now, if the
same regularization is applied to calculate the divergent
part of JEðM2Þ then the integral in (37) (written as an
Euclidean integral with Euclidean propagators) acquires
on the right-hand side a Λ-dependent correction
ΔIΛ2 ðkE;M2;M2

0Þ, so that the correction in JEðM2Þ will
be of the form − 1

λ2

R
Λ
kE
λ20;EðkEÞΔIΛ2 ðkE;M2;M2

0ÞG0ðkEÞ.
Then, as we can readily check, the cancellation of the
v2-dependent divergences in the saddle point equation (32)
occurs only if the relation,

ΔIΛ2 ðkE;M2;M2
0Þ ¼ −

1

2

d
dM2

ΔIΛðkE;M2;M2
0Þ; ð58Þ

is satisfied. The same relation is the precondition for the
cancellation of the divergences proportional to

R
kE
DðkEÞ.

It is very plausible that the relation (58) holds for small
M2 andM2

0, because a similar one exists between IFπ and the
integral in (37) at infinite cutoff and also when one chooses
at the level of the effective potential a regularization for
which to every propagator a regulator function is attached
(in case of a sharp cutoff the regulator isΘðΛ − jqEjÞwhere
qE stands for kE; pE or kE þ pE). Such a regularization of
the 2PI effective action, which preserves the invariance
of the unregularized, formal integral against shifts of the
loop momenta which permute the arguments of the propa-
gators, was discussed in [12]. In case of four-dimensional
rotational invariant functions this regularization leads in
the equation of Gαα and Gπ to integrals of the form
[see Eq. (A1) of [16]]

Z
Λ

kE

fðjkEjÞgðjkE þ pEjÞθðΛ − pÞθðΛ − jkE þ pEjÞ

¼ θðΛ − pÞ
8π3p2

�Z
Λ−p

0

dkkfðkÞ
Z

kþp

jp−kj
dqqgðqÞJðqÞ

þ
Z

Λ

Λ−p
dkkfðkÞ

Z
Λ

jp−kj
dqqgðqÞJðqÞ

�
; ð59Þ

where JðqÞ ¼ ½4k2q2 − ðq2 þ k2 − p2Þ�1=2 with k ¼ jkEj
and p ¼ jpEj. In case of fðkÞ ¼ 1=ðk2 þM2Þn with
n ¼ 1 or n ¼ 2 and gðkÞ ¼ 1=ðk2 þM2Þ the second
double integral cannot be calculated analytically, making
difficult to obtain explicitly the corrections
ΔIΛðkE;M2;M2

0Þ and ΔIΛ2 ðkE;M2;M2
0Þ.

If instead of attaching a regulator to each propagator, one
cuts only the loop momenta in the setting-sun diagram of
(14) one finds in the equation for Gαα a bubble integral
similar to (59) but without the second theta function
θðΛ − jkE þ pEjÞ. In this case the second double integral
is missing from (59) and the upper limit of the outer integral
in the first double integral is Λ instead of Λ − p. In
this regularization ΔIΛðkE;M2;M2

0Þ can be calculated
explicitly by a direct calculation. The expression of
ΔIΛ2 ðkE;M2;M2

0Þ, obtained indirectly from the consistency
relation (58) determines JdivE ðM2Þ. However, as one can
check numerically, this does not render finite the integral
JEðM2Þ, which, in the regularization when only the loop
momenta in the setting-sun diagram are cut, turns out
to be written in terms of the average of the integral
in (37), calculated with the one-theta and the two-theta
regularizations discussed above. This shows that cutting
only the loop momenta is not a consistent regularization.
After all, this should not come as a surprise because even
the starting expression of the regularized setting-sun dia-
gram in the effective potential changes if we cut the loop
momenta after shifting them (permuting the arguments of
the propagators). Furthermore, if we remind ourselves that
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the two-loop setting-sun diagram is originally obtained by
integrating over all momenta of its three propagators in the
presence of a delta function ensuring momentum conser-
vation, for consistency reasons actually all three integrals in
question should be cut. Performing one of them with the
help of the delta function however leads to exactly the same
regularization discussed above and in [12].
There is no such consistency problem in the formulation

of the model not using the auxiliary field. In this case one
can regularize the integrals of the pion propagator equation
appearing in (55) and (56) by cutting the loop integrals
only. In this case the finite bubble integrals IFπ ðpÞ and
IF0 ðpÞ, and the integral in (37) can be evaluated with a finite
cutoff and corrections to counterterms, arising from keep-
ing the cutoff in the expression of these integrals, can be
calculated. For example, with an explicit calculation one
obtains that the correction ΔIΛðkE;M2;M2

0Þ is proportional
to M2 −M2

0 such that t2 changes to

tΛ2 ¼ t2 þ
λ

96π2

�
dð2Þ

Λ2
þ Lð0Þ

a

�
; ð60Þ

with dð2Þ¼ð1=λ2ÞRΛ
pE
G0ðkEÞλ20;EðpEÞ and Lð2Þ

a ¼ð1=λ2Þ×R
Λ
pE
G2

0ðkEÞλ20;EðpEÞlnð1−p2
E=Λ

2Þ. Note that we have kept
those integrals from which constant contributions would
arise in tΛ2 for Λ → ∞ in the absence of λ20;EðpEÞ from their
integrand. Using the above relation in the expression of
~TdivðM2Þ one can compare the cutoff dependence of the
finite integral I1;1F ¼ I1;1 − ~TdivðM2Þ when the finite bubbles
are calculated with infinite or finite cutoff. This is presented
in Fig. 2 for two different values of the coupling. For the
smaller coupling a plateau-like behavior can be seen in both
cases. This behavior is even more pronounced for smaller
values of the cutoff, in which case the two curves are closer
to each other in the region where one could speak about an
apparent convergence of the integral with the increasing of
Λ. TheΛ dependence of I1;1F is different at large values of the
cutoff: it has an inflection when the finite bubbles are
calculated with an infinite cutoff and a maximum when they
are calculated with the actual value of the cutoff.
All n-point functions derived from (52) with the appro-

priately chosen countercouplings are consistently freed
from all divergent (i.e. strongly cutoff dependent) contri-
butions. Still, all “convergent” NLO contributions to these
observables of the theory are sensitive to the Landau pole
through the presence of λðpÞ in the integrands of the
contributing integrals Ij;k; j > 2. One might contemplate to
apply further subtractions with the aim to decrease the
range of influence of the Landau pole in specific n-point
functions around its actual location. As an example, one
can use in the renormalized equations of Gπ and v the
iterated version of (16a) in (16b) and keep more terms in
the expansion of DπðpÞ and λðpÞ around G0ðpÞ and λ0ðpÞ,
respectively. (One has to synchronize this oversubtraction

between the two equations in order to maintain Goldstone’s
theorem.) For instance, one might define the finite part of
the integral appearing on the left-hand side of (23b) by
subtracting also the first convergent terms in the expansion
of its integrand around λ20ðpÞG2

0ðpÞ. Using (24) and
neglecting for simplicity TF

π obtained by rewriting
M2 lnðM2=M2

0Þ with the help of (27), we obtain

~I2;2F ≔ I2;2 − iλ2 ~Tð0Þ
a ; ð61Þ

where ~Tð0Þ
a ¼ Tð0Þ

a þ ðM2 −M2
0ÞFðM0Þ=λ2, with FðM0Þ ¼

½6I3;20 − 4ðλ−1 þ 1=ð48π2ÞÞI3;30 � given in terms of Ij;k0 , the
integral defined in (3), but with M2 replaced by M2

0. Then,
compared to (23a), we can choose to define a modified

finite part of I1;1 using the replacement Tð0Þ
a → ~Tð0Þ

a in (25),
namely:

~I1;1F ≔ I1;1 − λ

�
t1ðM2Þ þ λ

3
~Tð0Þ
a

Z
k
DπðkÞ

�
: ð62Þ

With this choice of oversubtraction the algebraic structure of
the divergence cancellation does not change neither in the
NLOpionpropagator nor in δV=δv.Weonlyhave to perform

the change Tð0Þ
a → ~Tð0Þ

a in (28) which in turn induces the
same change in (31) and these two together lead in place
of (33) to

δΔV0
π

δα̂
þ δΔV0

v

δα̂
¼ −i

λ

6
t2

�
v2 þ

Z
k
DπðkÞ

�

− i
λ

36
FðM0Þ

�
v2 þ

Z
k
DπðkÞ

�
2

: ð63Þ
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FIG. 2 (color online). The cutoff dependence of the subtracted
integral I1;1F for two ways of computing the finite bubble integrals
IFπ ðpÞ and IF0 ðpÞ: with the actual value of the cutoff or by taking
Λ → ∞. The mass parameters are those of Fig. 1 and for the
sake of presentation the two curves with λ ¼ 80 were shifted
downwards by 0.385.
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One should investigate if the second term on the right-
hand side is canceled by the integrals defining the saddle
point equation of α̂. It might not be possible to fulfill this
ad hoc requirement for general values of α̂, but even then
one easily constructs an appropriately defined term for
ΔVα which would cancel it at the specific α̂ value
satisfying the LO saddle point equation. Even without
this compensation this term represents just a finite(!)
contribution to the saddle point equation. An appropriate
choice of FðM0Þ might diminish the effect of the Landau
pole in the field and pion propagator equations, while
other n-point functions might receive extra Landau-pole
sensitive contributions due to the extra counterterms
produced by the oversubtraction.
In conclusions, we revisited the problem of renormaliz-

ing the OðNÞ model at NLO in the 1=N expansion. This
was necessary, because, although we were aware of the
presence of the Landau pole, the renormalization per-
formed in [3] was based on the behavior of the integrands
at asymptotically large momenta. Now we focused
our discussion on defining a cutoff insensitive effective
potential with a cutoff below the scale of the Landau

singularity. It turned out that more care is needed in the
study of the divergences because in some cases the
behavior of the integrand is different below and above
the singularity. As a result of the subtraction of the integral
Tð0Þ
a defined in (12) a rather important improvement of the

cutoff insensitivity was experienced already below the
Landau pole.
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