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The standard perturbative effective potential suffers from two related problems of principle involving the
field-dependent Goldstone boson squared mass, G. First, in general G can be negative, and it actually is
negative in the Standard Model; this leads to imaginary contributions to the effective potential that are not
associated with a physical instability, and therefore spurious. Second, in the limit that G approaches zero,
the effective potential minimization condition is logarithmically divergent already at two-loop order, and
has increasingly severe power-law singularities at higher loop orders. I resolve both issues by resumming
the Goldstone boson contributions to the effective potential. For the resulting resummed effective potential,
the minimum value and the minimization condition that gives the vacuum expectation value are obtained in
forms that do not involve G at all.

DOI: 10.1103/PhysRevD.90.016013 PACS numbers: 12.38.Cy, 14.80.Bn

I. INTRODUCTION

A resonance with mass about 126 GeV and properties
expected of a minimal Standard Model Higgs scalar boson
has been discovered [1–4] at the Large Hadron Collider.
One of the theoretical tools useful for understanding the
electroweak symmetry breaking dynamics of the minimal
Standard Model and its extensions is the effective potential
[5–7], which can be used to relate the Higgs field vacuum
expectation value (VEV) to the fundamental Lagrangian
parameters, and to observable quantities such as the masses
of the Higgs bosons, the top quark, and the masses and
interactions of the W and Z bosons. On general grounds,
the Standard Model Lagrangian parameter should be
obtained as accurately as possible. It may be possible to
discern the difference between the minimal Higgs Standard
Model and more complicated theories, and to gain hints
about the mass scale of new physics, and the stability of the
Standard Model vacuum state. An interesting feature of the
Higgs mass is that the potential is close to a metastable
region associated with a very small Higgs self-interaction
coupling at very large energy scales. Some studies of the
stability condition that were made before the Higgs dis-
covery are Refs. [7–18], and some of the analyses follow-
ing the Higgs discovery are Refs. [19–23].
To fix notation, write the complex doublet Higgs field as

ΦðxÞ ¼
� 1ffiffi

2
p ½ϕþHðxÞ þ iG0ðxÞ�

GþðxÞ

�
: ð1:1Þ

Here ϕ is the real background field, about which are
expanded the real Higgs quantum field H, and the real
neutral and complex charged Goldstone boson fields G0

and Gþ ¼ G−�. The Lagrangian for the Higgs kinetic term
and its self-interactions are given by

L ¼ −∂μΦ†∂μΦ − Λ −m2Φ†Φ − λðΦ†ΦÞ2; ð1:2Þ

wherem2 is the Higgs squared-mass parameter, and λ is the
Higgs self-coupling in the normalization to be used in this
paper, and the metric signature is (−þþþ). The field-
independent vacuum energy density Λ is necessary for
renormalization scale invariance of the effective potential
and a proper treatment of renormalization group improve-
ment [10,24–28]. The Lagrangian also includes a top-quark
Yukawa coupling yt, and SUð3Þc × SUð2ÞL ×Uð1ÞY gauge
couplings g3, g, and g0. The other Yukawa couplings are
very small, and can make only a very minor difference even
at 1-loop order, and so are neglected. All of the Lagrangian
parameters as well as the background field ϕ depend on the
MS renormalization scale Q, and logarithms of dimen-
sional quantities are written below in terms of

lnðxÞ≡ lnðx=Q2Þ: ð1:3Þ

The effective potential can be evaluated in perturbation
theory and written as

VeffðϕÞ ¼
X∞
l¼0

1

ð16π2Þl Vl: ð1:4Þ

In this paper, the power of 1=16π2 is used as a signifier for
the loop order l. The tree-level potential is given by

V0 ¼ Λþm2

2
ϕ2 þ λ

4
ϕ4: ð1:5Þ

The radiative corrections for l ≥ 1 are obtained from the
sum of 1-particle-irreducible vacuum graphs. The Landau
gauge is most often used for effective potential calculations,
because of the simplifications that the gauge-fixing
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parameter is not renormalized and there is no mixing
between the longitudinal vector modes and the
Goldstone modes. In Landau gauge and the MS renorm-
alization scheme based on dimensional regularization, the
1-loop order contribution to the Standard Model effective
potential is

V1 ¼ 3fðGÞ þ fðHÞ − 12fðtÞ þ 6fðWÞ þW2

þ 3fðZÞ þ 1

2
Z2; ð1:6Þ

where

fðxÞ≡ x2

4
½lnðxÞ − 3=2�; ð1:7Þ

and the field-dependent running squared masses are

G ¼ m2
G0 ¼ m2

G� ¼ m2 þ λϕ2; ð1:8Þ

H ¼ m2
H ¼ m2 þ 3λϕ2; ð1:9Þ

t ¼ m2
t ¼ y2tϕ2=2; ð1:10Þ

W ¼ m2
W ¼ g2ϕ2=4; ð1:11Þ

Z ¼ m2
Z ¼ ðg2 þ g02Þϕ2=4: ð1:12Þ

The contributionsW2 þ 1
2
Z2 in Eq. (1.6) are due to the fact

that in dimensional regularization the vector fields have
4 − 2ϵ components rather than 4.
The full two-loop order contribution V2 in Landau gauge

was worked out by Ford, Jack and Jones in [29] for the
Standard Model, and for more general theories (including
softly broken supersymmetric models, where regularization
by dimensional reduction is used instead of dimensional
regularization) in [30]. The 3-loop contribution V3 for the
Standard Model was obtained in [31] in the approximation
that the strong and top Yukawa couplings are much larger
than the electroweak couplings and other Yukawa cou-
plings. For completeness, these results are compiled in an
Appendix of the present paper in a notation compatible
with the discussion below.
Results for more general gauge-fixing conditions are

apparently only available at 1-loop order at present. The
effective potential itself is gauge-fixing dependent, but
physical observables derived from it are not. For discus-
sions of the gauge-fixing dependence of the effective
potential from various points of view see Refs. [32–50].
References [39–41] concern a similar resummation of the
effective potential in the context of the Abelian model of
Coleman and Weinberg, and may be useful for generalizing
the results of the present paper to other gauges than the
Landau gauge.

The purpose of this paper is to resolve two issues of
principle regarding contributions to the effective potential
involving the Goldstone bosons. Note that the condition
G ¼ 0 marks the minimum of the tree-level potential V0 in
Eq. (1.5). However, in general G will be nonzero at the
minimum of the full effective potential.
The first problem of principle is that there is no reason

why G cannot be negative at the minimum of Veff ,
depending on the choice of renormalization scale Q.
Indeed, in the case of the Standard Model, G is negative
for the perfectly reasonable range Q≳ 100 GeV. This is
illustrated in Fig. 1 for a typical numerical choice of the
parameters (in this case taken from Ref. [23]):

λðMtÞ ¼ 0.12710; ð1:13Þ

ytðMtÞ ¼ 0.93697; ð1:14Þ

g3ðMtÞ ¼ 1.1666; ð1:15Þ

m2ðMtÞ ¼ −ð93.36 GeVÞ2; ð1:16Þ

gðMtÞ ¼ 0.6483; ð1:17Þ

g0ðMtÞ ¼ 0.3587; ð1:18Þ

where Q ¼ Mt ¼ 173.35 GeV is the input scale. The
problem is that the lnðGÞ terms give rise to an imaginary
part of Veff . In general, a complex value of Veff at its
minimum reflects an instability [51], but there is no
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FIG. 1 (color online). The running of the Landau gauge
Standard Model Goldstone boson squared mass G, evaluated
at the minimum of the effective potential, as a function of the
renormalization scale Q, for the choice of input parameters
specified in the text.
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physical instability here. In practice, this unphysical imagi-
nary part of Veff has simply been ignored, and the real part
is minimized. In principle, this imaginary part is spurious,
and a way of making this plain is desirable.
The second problem of principle is that when calculated

to fixed loop order l, the effective potential diverges for
G → 0. For l ¼ 1; 2; 3, one finds [31] that Vl ∼G3−llnG,
while for l ≥ 4 one has Vl ∼ G3−l. (The precise results for
the leading behavior as G → 0 will be obtained in the next
section.) Thus the effective potential itself has a logarithmic
singularity at 3-loop order, with increasingly severe power-
law singularities for higher loop orders. The first derivative
of the effective potential, which is used in the minimization
condition that governs the vacuum expectation value of
the Higgs field, therefore has a logarithmic singularity at
2-loop order, and power-law singularities for higher loop
orders. As we will see below, the numerical impact of these
singularities at the known loop order, l ¼ 3, is quite small
unless one carefully tunes G ≈ 0 by the choice of renorm-
alization scale. However, this is still disturbing as a matter
of principle. Indeed, one might have expected that a choice
of Q that makes G very small would be a particularly good
choice, because the pole mass of the Landau gauge
Goldstone bosons is 0, and so G ¼ 0 corresponds to
choosing a renormalization scale such that the radiative
corrections to it vanish. However, if one uses the usual
perturbative effective potential truncated at any loop order
beyond 1-loop order, this is the one renormalization scale
choice that one must not make.
The purpose of this paper is to show how the above two

problems of principle are eliminated by doing a resumma-
tion to all loop orders of the Goldstone contributions that
are leading as G → 0.

II. EFFECTIVE POTENTIAL CONTRIBUTIONS
FOR SMALL G

For the known contributions to the effective potential, the
leading behavior asG → 0 can be isolated as follows. First,
at one-loop order, we have immediately from Eq. (1.6) that
the Goldstone boson contributions are

V1 ¼ 3fðGÞ þ… ¼ 3

4
G2½lnðGÞ − 3=2� þ…: ð2:1Þ

In Eq. (2.1), the ellipses represent terms with no G
dependence. At 2-loop order, using the expansions of

the 2-loop integral function Iðx; y; zÞ for small G
given in Eqs. (A26)–(A29) of the Appendix [from
Eqs. (2.29)–(2.31) of Ref. [30]], one finds that

V2 ¼
3

2
Δ1GlnðGÞ þ…; ð2:2Þ

where

Δ1 ¼ −6y2t AðtÞ þ 3λAðHÞ þ g2

2
½3AðWÞ þ 2W�

þ g2 þ g02

4
½3AðZÞ þ 2Z�; ð2:3Þ

and the 1-loop integral function is defined by

AðxÞ≡ xðlnx − 1Þ: ð2:4Þ

[In Ref. [30], AðxÞ was called JðxÞ.] In Eq. (2.2), the
ellipses represent terms independent of G, terms of order
G2, as well as those proportional to G with no lnðGÞ.
Reading directly from Eq. (4.38) of Ref. [31], one obtains
the leading behavior as G → 0 at 3-loop order:

V3 ¼ 27y4t AðtÞ2lnðGÞ þ…: ð2:5Þ

As noted in Ref. [31], the contributions above (that involve
yt, in the 2-loop case) come from the diagrams shown in
Fig. 2. At higher loop orders, the leading contribution as
G → 0 and at leading order in yt comes from l-loop order
vacuum diagrams consisting of a ring of l − 1 Goldstone
boson propagators, interspersed with l − 1 top (for G0) or
top/bottom (forG�) 1-loop subdiagrams, as shown in Fig. 3.
More generally still, the 1-loop subdiagrams can be any

1-particle-irreducible subdiagrams that involve a squared-
mass scale that can be treated as parametrically large
compared to G. In the Standard Model, these includes
1-loop subdiagrams containing Z, W, and H bosons, as
well as multiloop subdiagrams.
To obtain the leading behavior as G → 0, one considers

the contributions from these diagrams from integrating
momenta pμ flowing around the large rings with p2 small
compared to the squared-mass scale set by the 1-particle-
irreducible subdiagrams. Then the 1-particle-irreducible
subdiagram contributions can be treated as just constant
squared-mass insertions in the Goldstone boson propagators,

FIG. 2. These Feynman diagrams give the leading nonzero contribution to Veff as G → 0, at the leading order in yt, for 1-loop, 2-loop,
and 3-loop orders.
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reducing the calculation to a 1-loop integration. The sum of
the resulting leading G → 0 contributions to Veff at each
loop order, including the MS counterterms, is

Veff ¼
3

16π2
X∞
n¼0

Δn

n!

�
d
dG

�
n
fðGÞ þ…; ð2:6Þ

where n ¼ l − 1 where l is the loop order, and

Δ ¼ 1

16π2
Δ1 þ

1

ð16π2Þ2 Δ2 þ
1

ð16π2Þ3Δ3 þ…: ð2:7Þ

Equation (2.6) generalizes Eqs. (2.1), (2.2), and (2.5). For the
purposes of making this particular comparison, Δ2 can be
dropped, because Ref. [31] retained only the leading order in
yt at 3 loops. For the same reason, all but the y2t term in Δ1

can be dropped in comparing the 3-loop order contributions.
However, in the future, if more terms are calculated in Veff
at 3-loop order and beyond, then those contributions would
become pertinent, as would contributions from other
diagrams.
The origin of the prefactor 3 in Eq. (2.6) is a factor of 2

for the G� rings, and a factor 1 for the G0 ring. Despite the
fact that the 1-particle-irreducible subdiagrams are different
for these two classes of diagrams (e.g. involving top/bottom
loops for G�, and top loops for G0), the quantity Δ is the
same in both cases.
Note that f0ðGÞ ¼ 1

2
AðGÞ ¼ 1

2
G½lnðGÞ − 1�, and

f00ðGÞ ¼ 1
2
lnðGÞ, and the nth derivative is fðnÞðGÞ ¼

1
2
ð−1Þn−1ðn − 3Þ!G2−n for n ≥ 3. Therefore, the leading

singular behavior as G → 0 is

V3 ¼
3

4
ðΔ1Þ2lnðGÞ; ð2:8Þ

Vl ¼ −
3ð−Δ1Þl−1

2ðl − 1Þðl − 2Þðl − 3ÞGl−3 ðfor l > 3Þ: ð2:9Þ

III. RESUMMATION OF LEADING GOLDSTONE
CONTRIBUTIONS

The contributions to Veff in Eq. (2.6) from all loop orders
l ¼ nþ 1 resum to

Veff ¼
3

16π2
fðGþ ΔÞ þ…: ð3:1Þ

Thus, the result of summing all orders in perturbation
theory yields a result which is well behaved for all G,
unlike the result obtained if it is truncated at any finite order
in perturbation theory. In fact, at the minimum of the full
effective potential, Gþ Δ ¼ 0, and the result of the
resummation of this class of terms vanishes. Therefore,
if Veff has been evaluated at some finite l-loop order in
perturbation theory, a sensible result can be obtained by
simply subtracting off the first l terms in the series
Eq. (2.6), and then adding back in the resummed version
of the same series, Eq. (3.1). If the effective potential Veff
has been calculated to loop order l, then the resummed
effective potential is

V̂eff ¼ Veff þ
3

16π2

�
fðGþ ΔÞ −

Xl−1
n¼0

Δn

n!

�
d
dG

�
n
fðGÞ

�
:

ð3:2Þ

The result is free of the offending leading singular con-
tributions as G → 0.
Further resummation may be necessary to account for

other terms that are singular as G → 0 but subleading at a
given loop order, but these do not arise in the effective
potential approximation that has been calculated so far.
If we use Veff to refer to the usual full 2-loop and leading
3-loop Standard Model effective potential as computed in
Refs. [29] and [31], then the appropriate resummed version
from Eq. (3.2) is

V̂eff ¼ Veff þ
3

16π2
½fðGþΔÞ− fðGÞ�− 1

ð16π2Þ2
3Δ1

2
AðGÞ

−
1

ð16π2Þ3 27y
4
t AðtÞ2lnðGÞ: ð3:3Þ

Here I have taken ðΔ1Þ2 ¼ 36y4t AðtÞ2 in the 3-loop part,
because only the leading order in yt for Veff was included in
Ref. [31]. For the same reason, the 3-loop order term
involving Δ2 is dropped here. The effect of the 1-loop
correction in Eq. (3.3) is to replace the tree-level field-
dependent Goldstone boson squared mass by its pole
squared mass, which vanishes at the minimum of the full
effective potential in Landau gauge. The 3-loop order term
simply cancels the corresponding lnðGÞ contribution found
in Ref. [31]. I propose that the resummed version of the

FIG. 3. Chains of Goldstone boson propagators interspersed with top and top/bottom loops. Rings of these (and similar diagrams
involving loops with Z, W, and H) give rise to the most singular contributions as G → 0, at any given loop order.

STEPHEN P. MARTIN PHYSICAL REVIEW D 90, 016013 (2014)

016013-4



effective potential, V̂eff , should be used instead of the
usual Veff .

IV. MINIMIZATION CONDITION FOR THE
EFFECTIVE POTENTIAL

For the usual effective potential Veff , the minimization
condition that relates the vacuum expectation value v ¼
ϕmin to the Lagrangian parameters is

G ¼ m2 þ λv2

¼ −
1

16π2
δ1 −

1

ð16π2Þ2 δ2

−
1

ð16π2Þ3 δ3 −…; ð4:1Þ

where the correction at l-loop order is

δl ¼ 1

ϕ

∂
∂ϕVljϕ¼v: ð4:2Þ

(In the remainder of this section, I will use ϕ ¼ v, because
all equations hold only at the minimum of the potential.)
Explicitly, at 1-loop order, one has from Eq. (1.6):

δ1 ¼ 3λAðGÞ − 6y2t AðtÞ þ 3λAðHÞ þ g2

2
½3AðWÞ þ 2W�

þ g2 þ g02

4
½3AðZÞ þ 2Z�; ð4:3Þ

and the higher loop order contributions can be obtained
by taking derivatives of the results of Ref. [29] at 2-loop
order, and from Ref. [31] at 3-loop order for terms that
are leading order in g3 and yt. Note that δ1 differs from the
quantity Δ1, given in Eq. (2.3) above, only by the inclusion
of the first term, 3λAðGÞ. At higher loop orders l ≥ 2,
it is useful to note the leading dependence on G as
G → 0:

δ2 ¼ 3λΔ1lnðGÞ − 9y4t lnðtÞAðGÞ þ…; ð4:4Þ

δ3 ¼ 54y4t

�
λAðtÞ2
G

þ y2t AðtÞlnðtÞlnðGÞ
�
þ…: ð4:5Þ

Equation (4.4) can be obtained using Eqs. (A1)–(A21) and
(A26)–(A29) in the Appendix, and Eq. (4.5) can be
obtained from Eq. (A30). In δ2, the ellipses includes terms
that do not depend on G, terms with a linear factor of G but
suppressed by g; g0; λ or not containing lnðGÞ, and terms
quadratic or higher order in G. In δ3, the ellipses represents
terms that are finite as G → 0 or suppressed by g; g0; λ.
The condition for minimization of V̂eff defined in

Eq. (3.3) is

G ¼ m2 þ λv2

¼ −
1

16π2
Δ1 −

1

ð16π2Þ2 Δ2

−
1

ð16π2Þ3Δ3 −…; ð4:6Þ

where

Δl ¼ 1

v
∂
∂v V̂l; ð4:7Þ

with V̂eff ¼
P

l
1

ð16π2Þl V̂l. Consider the difference between

the minimization conditions for Veff and V̂eff . First, note
that the term proportional to fðGþ ΔÞ gives no contribu-
tion, because f0ðGþ ΔÞ ¼ 1

2
ðGþ ΔÞðlnðGþ ΔÞ − 1Þ van-

ishes at the minimum of the potential, where Gþ Δ ¼ 0.
One therefore finds from Eq. (3.3):

1

v
∂
∂v ðV̂eff − VeffÞ

¼ −
1

16π2
3λAðGÞ

−
1

ð16π2Þ2
�
3λΔ1lnðGÞ þ

3

2
AðGÞ 1

v
∂Δ1

∂v
�

−
1

ð16π2Þ3 54y
4
t

�
λAðtÞ2
G

þ y2t AðtÞlnðtÞlnðGÞ
�
: ð4:8Þ

Note that the apparently 2-loop term containing AðGÞ is
actually of 3-loop order, because AðGÞ contains a factor of
G, which at the minimum of the potential is equal to
− 1

16π2
Δ1 þ…. Therefore, in Eq. (4.8), to be consistent we

should keep only the part of 1
v
∂Δ1∂v that involves the top

Yukawa coupling:

1

v
∂Δ1

∂v ¼ −6y4t lnðtÞ þ…: ð4:9Þ

So, one obtains from Eq. (4.8):

Δ1 ¼ δ1 − 3λAðGÞ; ð4:10Þ

Δ2 ¼ δ2 − 3λΔ1lnðGÞ þ 9y4t lnðtÞAðGÞ; ð4:11Þ

Δ3 ¼ δ3 − 54y4t

�
λAðtÞ2
G

þ y2t AðtÞlnðtÞlnðGÞ
�
: ð4:12Þ

This shows that the G-dependent terms of Eqs. (4.3)–(4.5)
neatly cancel, up to the order that has been calculated.
The resulting Δ1 does not explicitly depend on G, but

depends on m2 through H. A further refinement of the
minimization condition can be made by writing
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H ¼ hþG; ð4:13Þ

where, from Eq. (1.9),

h ¼ 2λv2 ð4:14Þ

at the minimum of the potential, and then iteratively
replacing the G dependence using

GnlnpðGÞ ¼
�
−

1

16π2
Δ1 −

1

ð16π2Þ2 Δ2 −…

�
n
lnpðGÞ

ð4:15Þ

in Δ1, Δ2, and Δ3. (Note that logarithms of G are left
alone, to cancel amongst themselves.) In doing so, one
consistently drops terms of 4-loop order as well as terms
of 3-loop order that are suppressed by g, g0 or λ. Thus, for
example, the 1-loop contribution involving H is rewritten
using

AðHÞ ¼ AðhÞ þGA0ðhÞ þ G2

2
A00ðhÞ þ… ð4:16Þ

¼ AðhÞ − 1

16π2
Δ1lnðhÞ

þ 1

ð16π2Þ2
�ðΔ1Þ2

2h
− Δ2lnðhÞ

�
þ…: ð4:17Þ

Because this is multiplied by 3λ=16π2 in the minimization
condition, the Δ2 term should now be dropped, but the
ðΔ1Þ2=2h term is partially kept, because 3λðΔ1Þ2=2h ¼
27y4t AðtÞ2=v2 þ…. The self-consistent elimination of G
from the right side of the minimization condition
shifts contributions that were originally proportional to
Gn up in loop order by n, where they can often therefore
be dismissed. [Note that this iterative elimination of G
from the right-hand side of the minimization condition
would not have been possible without first eliminating by
resummation the terms that behave like lnðGÞ and 1=G
as G → 0.]
Following the procedure described above, I find as the

condition for minimization of V̂eff :

G ¼ m2 þ λv2 ¼ −
1

16π2
Δ̂1 −

1

ð16π2Þ2 Δ̂2

−
1

ð16π2Þ3 Δ̂3 −…; ð4:18Þ

where the Δ̂l depend on the VEV v and the couplings
λ; yt; g3; g; g0, or on h; t;W; Z, but do not depend at all on G
or m2. The results are

Δ̂1 ¼ −6y2t AðtÞ þ 3λAðhÞ þ g2

2
½3AðWÞ þ 2W�

þ g2 þ g02

4
½3AðZÞ þ 2Z�; ð4:19Þ

Δ̂2 ¼
ð3g2 − g02Þð33g4 þ 22g2g02 þ g04Þ

8ðg2 þ g02Þ IðW;W; ZÞ

þ
�ð9g4 þ 66g2g02 − 7g04Þy2t

6ðg2 þ g02Þ −
3

4
g4 þ 1

2
g2g02 −

17

12
g04

�
Iðt; t; ZÞ

þ
�

3ðg2 þ g02Þ3
32ðg2 þ g02 − 2λÞ −

15

16
ðg2 þ g02Þ2 þ 11

4
λðg2 þ g02Þ − 7λ2

�
Iðh; Z; ZÞ

þ
�

3g6

16ðg2 − 2λÞ −
15

8
g4 þ 11

2
λg2 − 14λ2

�
Iðh;W;WÞ

þ y2t

�
27

2
y2t − 18λ

�
Iðh; t; tÞ − 12λy2t Ið0; 0; tÞ − 15λ2Iðh; h; hÞ

− 6λ2Ið0; 0; hÞ þ 3

4
λðg2 þ g02 þ 8λÞIð0; h; ZÞ þ 3

2
λðg2 þ 8λÞIð0; h;WÞ

þ 3λð2g2 þ g02Þ3
2ðg2 þ g02Þ2 Ið0;W; ZÞ þ ð6y4t þ 3g2y2t − 3g4ÞIð0; t;WÞ

þ
�
15

2
λg2 − 9g4 −

3λg4ð3g2 þ 2g02Þ
2ðg2 þ g02Þ2

�
Ið0; 0;WÞ

þ
�

9λg4

2ðg2 þ g02Þ − 3g2λ −
21

4
g4 −

g2g02

2
−
103

12
g04

�
Ið0; 0; ZÞ

þ
�
7

2
λ −

g2 þ g02

2
þ 3ðg2 þ g02Þ2
8ð2λ − g2 − g02Þ

�
AðZÞ2=v2
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þ
�
7λ −

35

2
g2 þ g02

2
þ 24g4

g2 þ g02
þ 3g4

4ð2λ − g2Þ
�
AðWÞ2=v2

þ
�
6λð8g4 þ 8g2g02 þ g04Þ

ðg2 þ g02Þ2 þ 15g4 − 10g2g02 − g04

g2 þ g02

�
AðWÞAðZÞ=v2

−
2ð9g4 − 6g2g02 þ 17g04Þ

3ðg2 þ g02Þ AðtÞAðZÞ=v2 þ 12ðy2t − g2ÞAðtÞAðWÞ=v2

þ
�
96g23 þ 15y2t þ 6λþ 9g4 þ 90g2g02 þ 17g04

3ðg2 þ g02Þ
�
AðtÞ2=v2

þ
�
3

4
ðg2 þ g02Þ − 4λþ 3ðg2 þ g02Þ2

8ðg2 þ g02 − 2λÞ
�
AðhÞAðZÞ=v2

þ
�
3

2
g2 − 8λþ 3g4

4ðg2 − 2λÞ
�
AðhÞAðWÞ=v2 − 9y2t AðhÞAðtÞ=v2

þ
�

3ðg2 þ g02Þ3
16ð2λ − g2 − g02Þ þ

λðg02 − 23g2Þ
2

−
y2t ð63g4 þ 30g2g02 þ 95g04Þ

12ðg2 þ g02Þ

þ 6g6

g2 þ g02
þ 29

48
g4 þ 4g2g02 þ 455

48
g04

�
AðZÞ

þ g2
�

3g4

8ð2λ − g2Þ −
21

2
y2t −

3g2ðλþ 4g2Þ
g2 þ g02

þ 605

24
g2 þ 13

8
g02 − 8λ

�
AðWÞ

þ y2t

�
16g23 − 12y2t þ 24λ −

91

3
g2 þ 11

3
g02 þ 64g4

3ðg2 þ g02Þ
�
AðtÞ

þ
�

3ðg2 þ g02Þ3
32ð2λ − g2 − g02Þ þ

3g6

16ð2λ − g2Þ −
21

2
y4t þ 9λy2t þ 24λ2

−
7

4
λð3g2 þ g02Þ þ 9

2
g4 þ 3g2g02 þ 3

2
g04

�
AðhÞ

þ
�
24g23y

4
t þ 9y6t þ 6y4t λþ

y4t ð18g4 þ 87g2g02 þ 5g04Þ
6ðg2 þ g02Þ þ 9g8

32ðg2 − 2λÞ

þ 9ðg2 þ g02Þ4
64ðg2 þ g02 − 2λÞ þ

3g6ð8g2 þ λÞ
8ðg2 þ g02Þ − 60λ3 þ λ2ð6g2 þ 2g02 − 18y2t Þ

−
91

48
y2t g04 þ

23

8
y2t g2g02 −

27

16
y2t g4 þ

93

16
λg4 þ 7

8
λg2g02 þ λg04

16

þ 199

64
g6 −

551

192
g4g02 −

773

192
g2g04 −

497

192
g06

�
v2; ð4:20Þ

Δ̂3 ¼ g43y
4
t v2½1036.23 − 974.20lnðtÞ þ 592ln2ðtÞ − 184ln3ðtÞ�

þ g23y
6
t v2½−169.84þ 860.93lnðtÞ − 270ln2ðtÞ þ 60ln3ðtÞ�

þ y8t v2½−82.91 − 753.02lnðtÞ þ 36lnðhÞlnðtÞ þ 657

8
ln2ðtÞ

þ 54lnðhÞln2ðtÞ − 225

4
ln3ðtÞ� þ…: ð4:21Þ

Here, the ellipses represent terms suppressed by g, g0, or λ. The analytical versions of the decimal coefficients in
Eq. (4.21) are

1036.23 ≈
8170

9
þ 48ζð3Þ þ 176

135
π4 þ 64

9
ln2ð2Þ½π2 − ln2ð2Þ� − 512

3
Li4ð1=2Þ; ð4:22Þ
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− 974.20 ≈ 32ζð3Þ − 3038=3; ð4:23Þ

− 169.84 ≈ −
1172

3
−
40

3
π2 − 96ζð3Þ þ 124

15
π4 þ 128

3
ln2ð2Þ½π2 − ln2ð2Þ� − 1024Li4ð1=2Þ; ð4:24Þ

860.93 ≈ 454þ 12π2 þ 240ζð3Þ; ð4:25Þ

−82.91 ≈
3979

8
þ 37

8
π2 −

909

2
ζð3Þ − 22

15
π4 − 8ln2ð2Þ½π2 − ln2ð2Þ� þ 192Li4ð1=2Þ; ð4:26Þ

− 753.02 ≈ −
5145

8
−
27

4
π2 − 36ζð3Þ: ð4:27Þ

Having found the minimization condition in a form that does not depend on G, one can now write the value of V̂eff at its
minimum, again eliminating all G and m2 dependence by the same procedure. The result is

V̂eff;min ¼
X∞
l¼0

1

ð16π2Þl V̂l;min; ð4:28Þ

where

V̂0;min ¼ Λ − λv4=4; ð4:29Þ

V̂1;min ¼ 3t2½lnðtÞ − 1=2� − 1

2
h2½lnðhÞ − 3=4� − 3

2
W2½lnðWÞ þ 1=6� − 3

4
Z2½lnðZÞ þ 1=6�; ð4:30Þ

V̂2;min ¼ −3λ2v2½Iðh; h; hÞ þ Iðh; 0; 0Þ� − 3

4
λAðhÞ2

þ 3y2t ½ð2t − h=2ÞIðh; t; tÞ þ tIð0; 0; tÞ þ AðtÞ2�

þ g2 þ g02

8
fSSVð0; h; ZÞ þ

ðg2 − g02Þ2
8ðg2 þ g02Þ fSSVð0; 0; ZÞ þ

g2

4
fSSVð0; h;WÞ

þ g2

4
fSSVð0; 0;WÞ þ g2g02v2

4ðg2 þ g02Þ ½g
02fVVSðW;Z; 0Þ þ g2fVVSð0;W; 0Þ�

þ g4v2

8
fVVSðW;W; hÞ þ ðg2 þ g02Þ2v2

16
fVVSðZ; Z; hÞ

þ VFFV þ Vgauge −
v2

2
Δ̂2; ð4:31Þ

V̂3;min ¼ g43t
2

�
184ln3ðtÞ − 316ln2ðtÞ þ

�
434

3
− 32ζð3Þ

�
lnðtÞ þ 293

9

− 64ζð3Þ − 176

135
π4 −

64

9
ln2ð2Þ½π2 − ln2ð2Þ� þ 512

3
Li4ð1=2Þ

�

þ g23y
2
t t2

�
−60ln3ðtÞ þ 180ln2ðtÞ þ ½−94 − 12π2 − 240ζð3Þ�lnðtÞ − 49

3

þ 22

3
π2 − 24ζð3Þ − 124

15
π4 −

128

3
ln2ð2Þ½π2 − ln2ð2Þ� þ 1024Li4ð1=2Þ

�

þ y4t t2
�
333

4
ln3ðtÞ þ

�
−
405

4
− 72lnðhÞ

�
ln2ðtÞ

þ
�
5361

8
þ 39

4
π2 þ 36ζð3Þ − 72lnðhÞ

�
lnðtÞ − 3029

16
−
11

4
π2

þ 22

15
π4 þ 945

2
ζð3Þ þ 8ln2ð2Þ½π2 − ln2ð2Þ� − 192Li4ð1=2Þ

�
: ð4:32Þ
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Here v; h; t;W; Z are understood to be evaluated at the
solution of the minimization condition, given by
Eqs. (4.18)–(4.21). Although Eqs. (4.28)–(4.32) have only
been computed in Landau gauge here, the value of the
effective potential at its minimum is in principle a physical
observable and does not depend on the choice of gauge
fixing, unlike the VEV itself.
Renormalization group scale invariance provides an

important and nontrivial check on the results above. If
one acts on each side of Eq. (4.18) with

Q
d
dQ

¼ Q
∂
∂Q − γϕv

∂
∂vþ

X
X

βX
∂
∂X ; ð4:33Þ

where X ¼ fλ; yt; g3; g; g0; m2g, then the results must
match, up to terms of 3-loop order suppressed by λ; g; g0
and terms of 4-loop order. I have checked this, using the
beta functions and scalar field anomalous dimension γϕ
given at the pertinent orders in Eqs. (A32)–(A45) in the
Appendix. Equations (A23)–(A25) are also useful in
conducting this check. Similarly, I have checked that acting
with Eq. (4.33) on Eq. (4.28) gives 0, up to terms of 3-loop
order suppressed by λ; g; g0 and terms of 4-loop order, as
required. In that check, one has instead X ¼ fλ; yt; g3; g;
g0;Λg, with the beta function for the field-independent
vacuum energy density given by Eqs. (A46)–(A47).
To conclude this section, I remark on a different

expansion procedure that eliminates the Goldstone boson
dependence of the minimization condition for the effective
potential, proposed in Ref. [48] to avoid spurious gauge
dependence in physical quantities in the context of a more
general gauge-fixing and finite temperature field theory
with applications to baryogenesis. The idea, called the
“ℏ expansion” in Ref. [48], is to first write an expansion of
the VEV in the same way as the effective potential:

v ¼ ϕmin ¼ ϕ0 þ
1

16π2
ϕ1 þ

1

ð16π2Þ2 ϕ2 þ
1

ð16π2Þ3 ϕ3 þ…

ð4:34Þ
and then to demand that, after expanding in the loop-
counting parameter (here 1=16π2), the contributions to the
derivative of Veff vanish separately at each loop order. Then
ϕ0 minimizes the tree-level potential V0, so that m2 þ
λϕ2

0 ¼ 0 and V 00
0ðϕ0Þ ¼ 2λϕ2

0, with the subsequent terms in
the expansion of the VEV given by

ϕ1 ¼ −V 0
1=V

00
0; ð4:35Þ

ϕ2 ¼ −½V2
0 þ ϕ1V 00

1 þ
1

2
ϕ2
1V

000
0 �=V 00

0; ð4:36Þ

ϕ3 ¼ −½V 0
3 þ ϕ1V 00

2 þ ϕ2V 00
1 þ

1

2
ϕ2
1V

000
1 þ ϕ1ϕ2V 000

0

þ 1

6
ϕ3
1V

0000
0 �=V 00

0; ð4:37Þ

etc., with all of the derivatives of Vl on the right-hand sides
evaluated at the tree-level minimum, ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
. Each

of the individual terms V 00
1 , V

000
1 , V2

0, V 00
2 , and V3

0 diverges as
ϕ → ϕ0, but one can check that the combination ϕ2 is
well behaved in this limit, and that ϕ3 is well behaved up to
the approximation corresponding to the known calculation
of V3 in Ref. [31]. The result is therefore indeed free of
spurious imaginary parts and the G → 0 problems, by
construction. However, the result is organized quite differ-
ently from that of the present paper, Eqs. (4.18)–(4.21); it
corresponds to a perturbative solution of the minimization
conditions, expanded around the tree-level minimum. It is
interesting to look at the explicit results for the expansion
method of Ref. [48], for simplicity in the limit that yt is
much larger than λ, and g; g0 ¼ 0:

ϕ1 ¼
3y4t
2λ

½lnðt0Þ − 1�ϕ0 þ…; ð4:38Þ

ϕ2 ¼
9y8t
8λ2

½lnðt0Þ − 1�½1þ 3lnðt0Þ�ϕ0 þ…; ð4:39Þ

ϕ3 ¼
27y12t
16λ3

½lnðt0Þ − 1�½−3þ 6lnðt0Þ þ 5ln2ðt0Þ�ϕ0 þ…;

ð4:40Þ
with t0 ¼ y2tϕ2

0=2. The presence of powers of λ in the
denominators is due to V 00

0 ¼ 2λϕ2
0. This shows that, due to

expanding around the tree-level VEV, the expansion

parameter is effectively y4t
16π2λ

, rather than the usual pertur-

bative expansion parameters y2t
16π2

and λ
16π2

. Correspondingly,
in this approach some of the information present in the
known V0, V1, V2, and V3 evaluated at the minimum of the
full effective potential is postponed to the contributions ϕl
with l ≥ 4. With the presently known approximation to V3

found in Ref. [31], the finiteness of ϕ3 [as the limit ϕ → ϕ0

is taken in the derivatives of Vl in Eq. (4.37)] only works
up to the order y8tϕ0=λ (in an expansion of ϕ3 in small
λ=y2t ). A further calculation of subleading corrections to V3

in the expansion in λ would be necessary to make well-
defined the ϕ3 contributions of order y6tϕ0 and g23y

4
tϕ0.

Despite these formal issues, I have checked that in
practice the numerical result of applying the expansion
procedure of Ref. [48] as in Eqs. (4.34)–(4.37) above, with
all known effective potential contributions included,
agrees very well with the expansion found in the present
paper, Eqs. (4.18)–(4.21). For the input parameters of
Eqs. (1.13)–(1.18), the two methods agree on the predicted
VEV to within 20 MeV.

V. NUMERICAL IMPACT

The numerical effect of the resummation is very small
for almost all choices of the renormalization scale. This is
illustrated in Fig. 4. In the left panel, the input parameters
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are specified by Eqs. (1.13)–(1.18) at the input scale
Q ¼ 173.35 GeV. These are then run using the full 3-loop
renormalization group equations [52–58] to the scale Q,
where the minimization of the effective potential gives the
VEV v. Three different approximations are shown: the full
2-loop order Veff of Ref. [29], the same result including
partial 3-loop order contributions from [31], and the result
after resummation, using Eqs. (4.18)–(4.21). (For the first
two approximations, the effective potential is complex for
all Q≳ 100.4 GeV, so it is the real part that is minimized.)
The 3-loop order result without resummation has a severe
numerical instability, marked by a failure to converge of the
iterative solution for v, near the renormalization scale at
which G crosses through 0 (compare Fig. 1). This is
represented by a vertical line in the figure, for a range
of several hundred MeV in Q near Q ¼ 100.4 GeV. (The
height of this line in the figure is arbitrary, as no iterative
solution to the minimization condition is obtained.) For
other values of Q, the 3-loop result for v is lower than the
2-loop result by up to a few hundred MeV, depending onQ.
The resummed 3-loop result does not differ much from the
nonresummed result, except for the numerical instability
region just mentioned. There, the resummed result of
course remains perfectly smooth, as it does not depend
on G at all.
The right panel of Fig. 4 shows the result of running

the same parameters but v instead of m2, starting again
from the input scale at 173.35 GeV, and then solving form2

at the scale Q using Eqs. (4.18)–(4.21). Again the differ-
ence between the usual 3-loop and resummed 3-loop

calculations is very small except near the scale Q ¼
100.4 GeV where G goes through 0, where the iterative
process of solution again fails for the nonresummed case.

VI. OUTLOOK

In this paper, I have shown how issues of principle
associated with the Goldstone boson contributions to the
effective potential can be resolved through resummation.
The minimization condition of Eqs. (4.18)–(4.21), and
the value of the effective potential at its minimum
Eqs. (4.28)–(4.32), do not involve G at all, and so are
manifestly free of spurious imaginary parts associated
with lnðGÞ when G is negative, and of divergences
as G → 0.
Given the tiny numerical impact found in the previous

section for almost all renormalization scales, one might ask
whether in practice one could not just use the usual
prescription of minimizing the real part of the effective
potential, taking care to choose a Q to ensure that G is not
too close to 0. Here, I note that the minimization conditions
Eqs. (4.18)–(4.21) are actually easier to implement in
practice, because there are fewer and less complicated
terms and no need to deal with imaginary parts. The
resummation method described above is also a useful
ingredient in the analytical 2-loop calculation of the
Standard Model Higgs mass. Both the resummed version
of the minimization conditions Eqs. (4.18)–(4.21) and the
2-loop Higgs mass in the Standard Model will be imple-
mented in a forthcoming public computer code [59].
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uu
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g = 0.3587

FIG. 4 (color online). Dependence of the VEV v (left panel) and the Higgs Lagrangian mass parameter
ffiffiffiffiffiffiffiffiffi
−m2

p
(right panel), as a

function of the renormalization scale, as computed from the effective potential minimization condition at 2-loop order from Ref. [29], at
partial 3-loop order including also [31], and 3-loop order after resummation using Eqs. (4.18)–(4.21). The input parameters are specified
in Eqs. (1.13)–(1.18) at the input scaleQ ¼ 173.35 GeV. In the left panel, the parameters includingm2 are run from the input scale toQ,
and v is solved for. In the right panel, the parameters (including v ¼ 246.954 GeV at Q ¼ 173.35 GeV) are run to Q, and m2 is solved
for. The 3-loop case without resummation has a numerical instability associated with a failure of the iterative solution process to
converge, represented by the vertical line of arbitrary height, for a narrow range near Q ¼ 100.4 GeV, due to the 1=G term in the
minimization condition.
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A similar resummation of Goldstone contributions can
clearly be applied to other cases of symmetry breaking
beyond the Standard Model. For supersymmetry, the
second derivatives of Veff have been used in one of the
methods for approximating the lightest Higgs boson mass.
The effective potential in minimal supersymmetry has the
same behavior [60,61] with respect to the tree-level squared
masses of the Goldstone bosons at 2-loop order (except that
m2

G� and m2
G0 are slightly different from each other when

not at the minimum of the tree-level potential). The use of
second derivatives, rather than first derivatives as in the
minimization condition, means that the numerical insta-
bilities associated with choices of renormalization scale
where m2

G� ≈ 0 and m2
G0 ≈ 0 can be much more significant;

see Fig. 1 in Ref. [61] and the surrounding discussion.
Resummation of the leading Goldstone contributions may
also be useful in that case, although the ultimate resolution
will come from calculating the full self-energy functions at
non-zero external momentum invariant.
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APPENDIX: EFFECTIVE POTENTIAL RESULTS
IN THE STANDARD MODEL

The 2-loop contribution to the Landau gauge Standard
Model effective potential was found in Ref. [29]. The result
is

V2 ¼ VSSS þ VSS þ VFFS þ VSSV þ VVVS þ VVS

þ VFFV þ Vgauge; ðA1Þ

where

VSSS ¼ −3λ2v2½IðH;H;HÞ þ IðH;G;GÞ�; ðA2Þ

VSS ¼
3

4
λ½AðHÞ2 þ 2AðHÞAðGÞ þ 5AðGÞ2�; ðA3Þ

VFFS ¼ 3y2t ½ð2t −H=2ÞIðH; t; tÞ −G
2
IðG; t; tÞ þ ðt −GÞIð0; G; tÞ

þ AðtÞ2 − AðHÞAðtÞ − 2AðGÞAðtÞ�; ðA4Þ

VSSV ¼ g2 þ g02

8
fSSVðG;H; ZÞ þ ðg2 − g02Þ2

8ðg2 þ g02Þ fSSVðG;G; ZÞ

þ g2g02

2ðg2 þ g02Þ fSSVðG;G; 0Þ þ
g2

4
½fSSVðG;H;WÞ þ fSSVðG;G;WÞ�; ðA5Þ

VVVS ¼
g2g02v2

4ðg2 þ g02Þ ½g
02fVVSðW;Z;GÞ þ g2fVVSð0;W;GÞ�

þ g4v2

8
fVVSðW;W;HÞ þ ðg2 þ g02Þ2v2

16
fVVSðZ; Z;HÞ; ðA6Þ

VVS ¼
ðg2 − g02Þ2
4ðg2 þ g02Þ fVSðZ;GÞ þ

g2 þ g02

8
½fVSðZ;HÞ þ fVSðZ;GÞ�

þ g2

4
½fVSðW;HÞ þ 3fVSðW;GÞ�; ðA7Þ

VFFV ¼ −
�
4g23 þ

4g2g02

3ðg2 þ g02Þ
�
tfF̄ F̄ Vðt; t; 0Þ þ

3g2

2
½fFFVð0; t;WÞ þ 3fFFVð0; 0;WÞ�

þ 1

24ðg2 þ g02Þ ½ð9g
4 − 6g2g02 þ 17g04ÞfFFVðt; t; ZÞ

þ 8g02ð3g2 − g02ÞtfF̄ F̄ Vðt; t; ZÞ þ ð63g4 þ 6g2g02 þ 103g04ÞfFFVð0; 0; ZÞ�; ðA8Þ

Vgauge ¼
g2g02

2ðg2 þ g02Þ fgaugeðW;W; 0Þ þ g4

2ðg2 þ g02Þ fgaugeðW;W; ZÞ: ðA9Þ
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Here the loop functions are written in terms of the
1-loop function AðxÞ defined in Eq. (2.4) and a 2-loop
function Iðx; y; zÞ, which is invariant under interchange
of any pair of x; y; z. It is equal to the ϵ-independent
part of the function ð16π2Þ2Îðx; y; zÞ defined in
Ref. [29], and it is also given in terms of dilogarithms

in Eq. (2.19) of [30], and defined in Sec. 2 of [63],
which also provides a public computer code that
evaluates it efficiently. The special cases of the func-
tions fSSV , fVVS, fVS, fFFV , fF̄ F̄ V , and fgauge defined in
Ref. [30] that are pertinent for the Standard Model
are

fSSVðx; y; zÞ ¼ ½−ðx2 þ y2 þ z2 − 2xy − 2xz − 2yzÞIðx; y; zÞ þ ðx − yÞ2Ið0; x; yÞ
þ ðx − y − zÞAðyÞAðzÞ þ ðy − x − zÞAðxÞAðzÞ�=z
þ AðxÞAðyÞ þ 2ðxþ y − z=3ÞAðzÞ; ðA10Þ

fSSVðx; x; 0Þ ¼ −3AðxÞ2 þ 8xAðxÞ − 8x2; ðA11Þ

fVVSðx; y; zÞ ¼ ½−ðx2 þ y2 þ z2 þ 10xy − 2xz − 2yzÞIðx; y; zÞ
þ ðx − zÞ2Ið0; x; zÞ þ ðy − zÞ2Ið0; y; zÞ − z2Ið0; 0; zÞ
þ yAðxÞAðzÞ þ xAðyÞAðzÞ þ ðz − x − yÞAðxÞAðyÞ�=4xy
þ AðxÞ=2þ AðyÞ=2þ 2AðzÞ − x − y − z; ðA12Þ

fVVSð0; x; yÞ ¼ ½ð3y − 9xÞIð0; x; yÞ − 3yIð0; 0; yÞ þ 3AðxÞAðyÞ�=4x
þ 2AðyÞ − 3x=4 − y=2; ðA13Þ

fVSðx; yÞ ¼ 3AðxÞAðyÞ þ 2xAðyÞ; ðA14Þ

fFFVðx; x; 0Þ ¼ 0; ðA15Þ

fF̄ F̄ Vðx; x; 0Þ ¼ 4AðxÞ − 8x − 6AðxÞ2=x; ðA16Þ

fFFVð0; x; yÞ ¼ ½ðx − yÞðxþ 2yÞIð0; x; yÞ − x2Ið0; 0; xÞ þ ðx − 2yÞAðxÞAðyÞ�=y
þ ð2y=3 − 2xÞAðyÞ − 2xAðxÞ þ x2 − y2; ðA17Þ

fFFVðx; x; yÞ ¼ 2ðx − yÞIðx; x; yÞ þ 2AðxÞ2 − 4AðxÞAðyÞ − 4xAðxÞ
þ ð2y=3 − 4xÞAðyÞ þ 4x2 − y2; ðA18Þ

fF̄ F̄ Vðx; x; yÞ ¼ 6Iðx; x; yÞ − 8AðxÞ þ 4xþ 2y; ðA19Þ

fgaugeðx; x; yÞ ¼ ð4x − yÞð12x2 þ 20xyþ y2ÞIðx; x; yÞ=4x2
þ ðx − yÞ2ðx2 þ 10xyþ y2ÞIð0; x; yÞ=2x2y
þ yð2x2 − y2ÞIð0; 0; yÞ=4x2 þ xð2y − xÞIð0; 0; xÞ=2y
þ ½y2 þ 18xy − 4x2�AðxÞ2=4x2 þ ½x2 þ 23xy − 9y2�AðxÞAðyÞ=2xy
þ ½11yþ 25x=3�AðxÞ þ ½11x − 4y=3�AðyÞ þ 14x2 þ 24xyþ y2; ðA20Þ

fgaugeðx; x; 0Þ ¼
9x
2
Ið0; 0; xÞ − 13AðxÞ2 þ 100x

3
AðxÞ − 21

2
x2: ðA21Þ

In this paper, the explicit form of Iðx; y; zÞ is not needed; instead, the calculations rely on several identities that it
satisfies. First, we have

Ið0; x; xÞ ¼ 2AðxÞ − 2x − AðxÞ2=x; ðA22Þ
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which has been used in writing the equations above. Derivatives with respect to squared-mass arguments are

∂
∂x Iðx; y; zÞ ¼ ½ðx − y − zÞIðx; y; zÞ − 2AðyÞAðzÞ þ ðx − yþ zÞAðxÞAðyÞ=x

þ ðxþ y − zÞAðxÞAðzÞ=xþ ðyþ z − xÞ½AðxÞ þ AðyÞ þ AðzÞ�
þ x2 − ðyþ zÞ2�=ðx2 þ y2 þ z2 − 2xy − 2xz − 2yzÞ; ðA23Þ

∂
∂x Ið0; x; xÞ ¼ −AðxÞ2=x2: ðA24Þ

The derivative with respect to the renormalization scale Q is

Q
∂
∂QIðx; y; zÞ ¼ 2AðxÞ þ 2AðyÞ þ 2AðzÞ − 2x − 2y − 2z: ðA25Þ

For making expansions in small G, the following results from Eqs. (2.29)–(2.31) of Ref. [30] are useful:

Ið0; 0; GÞ ¼ G

�
−
1

2
ln2ðGÞ þ 2lnðGÞ − 5

2
−
π2

6

�
; ðA26Þ

IðG;G; xÞ ¼ Ið0; 0; xÞ þ 2G½−x − Ið0; 0; xÞ þ 3AðxÞ − AðxÞlnðGÞ�=xþOðG2Þ; ðA27Þ

IðG; x; yÞ ¼ Ið0; x; yÞ þ G½−ðxþ yÞIð0; x; yÞ − 2AðxÞAðyÞ
þ 3xAðxÞ þ 3yAðyÞ − yAðxÞ − xAðyÞ − ðxþ yÞ2
þ ðx − yÞ½AðyÞ − AðxÞ�lnðGÞ�=ðx − yÞ2 þOðG2Þ; ðA28Þ

IðG; x; xÞ ¼ 2AðxÞ − 2x − AðxÞ2=xþG½4þ AðxÞ2=ð2x2Þ þ 3AðxÞ=x
− ½1þ AðxÞ=x�lnðGÞ� þOðG2Þ: ðA29Þ

The 3-loop contribution to the Standard Model effective potential, in the approximation g3; yt ≫ λ; g; g0, was found in
Ref. [31] (where it was written slightly differently):

V3 ¼ g43t
2

�
−184ln3ðtÞ þ 868ln2ðtÞ þ

�
32ζð3Þ − 5642

3

�
lnðtÞ þ 16633

9

þ 32ζð3Þ þ 176

135
π4 þ 64

9
ln2ð2Þ½π2 − ln2ð2Þ� − 512

3
Li4ð1=2Þ

�

þ g23y
2
t t2

�
60ln3ðtÞ − 360ln2ðtÞ þ ½814þ 12π2 þ 240ζð3Þ�lnðtÞ − 2393

3

−
58

3
π2 − 216ζð3Þ þ 124

15
π4 þ 128

3
ln2ð2Þ½π2 − ln2ð2Þ� − 1024Li4ð1=2Þ

�

þ y4t t2
�
−
333

4
ln3ðtÞ þ ½189þ 81lnðHÞ þ 27lnðGÞ�ln2ðtÞ

þ
�
−
6945

8
−
39

4
π2 − 36ζð3Þ − 54lnðHÞ − 54lnðGÞ

�
lnðtÞ

þ 15767

16
þ 25

2
π2 −

22

15
π4 −

873

2
ζð3Þ − 8ln2ð2Þ½π2 − ln2ð2Þ�

þ 192Li4ð1=2Þ þ 9lnðHÞ þ 27lnðGÞ
�
; ðA30Þ
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or, numerically,

V3 ≈ g43t
2f−184ln3ðtÞ þ 868ln2ðtÞ − 1842.20lnðtÞ þ 1957.33g

þ g23y
2
t t2f60ln3ðtÞ − 360ln2ðtÞ þ 1220.93lnðtÞ − 780.30g

þ y4t t2f−83.25ln3ðtÞ þ ½189þ 81lnðHÞ þ 27lnðGÞ�ln2ðtÞ
þ ½−1007.63 − 54lnðHÞ − 54lnðGÞ�lnðtÞ þ 504.51þ 9lnðHÞ þ 27lnðGÞg: ðA31Þ

For the check of renormalization group invariance mentioned at the end of Sec. IV, the scalar field anomalous dimension
and beta functions are

γϕ ¼ −Q
d lnϕ
dQ

¼
X∞
l¼1

1

ð16π2Þl γ
ðlÞ
ϕ ; ðA32Þ

βX ¼ Q
dX
dQ

¼
X∞
l¼1

1

ð16π2Þl β
ðlÞ
X ; ðA33Þ

with the 1-loop contributions:

γð1Þϕ ¼ 3y2t − 9g2=4 − 3g02=4; ðA34Þ

βð1Þλ ¼ −6y4t þ 12λy2t þ 24λ2 − 9λg2 − 3λg02 þ 9g4=8þ 3g2g02=4þ 3g04=8; ðA35Þ

βð1Þ
m2 ¼ m2½6y2t þ 12λ − 9g2=2 − 3g02=2�; ðA36Þ

βð1Þyt ¼ yt½9y2t =2 − 8g23 − 9g2=4 − 17g02=12�; ðA37Þ

βð1Þg3 ¼ −7g33; ðA38Þ

βð1Þg ¼ −19g3=6; ðA39Þ

βð1Þg0 ¼ 41g03=6: ðA40Þ

The necessary 2-loop contributions are [52–55], [29]

γð2Þϕ ¼ 20g23y
2
t − 27y4t =4þ 45y2t g2=8þ 85y2t g02=24þ 6λ2 − 271g4=32þ 9g2g02=16þ 431g04=96; ðA41Þ

βð2Þλ ¼ −32g23y4t þ 30y6t − 8y4t g02=3 − 3λy4t þ 80g23y
2
t λ − 144y2t λ2 þ 45y2t λg2=2

þ 85y2t λg02=6 − 9y2t g4=4þ 21y2t g2g02=2 − 19y2t g04=4 − 312λ3 þ 108λ2g2

þ 36λ2g02 − 73λg4=8þ 39λg2g02=4þ 629λg04=24þ 305g6=16

− 289g4g02=48 − 559g2g04=48 − 379g06=48; ðA42Þ

βð2Þ
m2 ¼ m2½40g23y2t − 27y4t =2 − 72λy2t þ 45y2t g2=4þ 85y2t g02=12 − 60λ2

þ 72λg2 þ 24λg02 − 145g4=16þ 15g2g02=8þ 557g04=48�; ðA43Þ

βð2Þyt ¼ yt½−108g43 þ 36g23y
2
t − 12y4t þ…�: ðA44Þ

Partial 3-loop contributions are needed here only for the beta function for λ [56–58]:
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βð3Þλ ¼ g43y
4
t ½64ζð3Þ − 532=3� þ g23y

6
t ½480ζð3Þ − 76� þ y8t ½−72ζð3Þ − 1599=4� þ…: ðA45Þ

Finally, the beta function contributions for the field-independent vacuum energy density are

βð1ÞΛ ¼ 2ðm2Þ2; ðA46Þ

βð2ÞΛ ¼ ð12g2 þ 4g02 − 12y2t Þðm2Þ2: ðA47Þ
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