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Higgs boson decay into two photons in an electromagnetic background field
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The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent
magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be
singular at large field values. The singularity is caused by the component of the charged vector boson field
that is tachyonic in a strong magnetic field. Also, tools for the computation of the amplitude in a more

general electromagnetic background are developed.

DOI: 10.1103/PhysRevD.90.016010

I. INTRODUCTION

Soon after the discovery of the 126 GeV Higgs boson
[1,2], it was pointed out by Olesen [3] (cf. also [4]) that a
large magnetic field is generated by the quarks producing
the Higgs boson and that this magnetic field might
influence the decay processes of the Higgs boson and,
in particular, the decay H — yy (a Higgs boson decaying to
two photons).

In the present paper it is proven that this indeed
is the case. The amplitude for this decay process is
considered for the unrealistic case of a stationary
homogeneous magnetic field B by the method of
Schwinger [5], further developed by Adler [6] and by
Tsai and Erber [7]. It is demonstrated that the amplitude
contains a term proportional to

eB
M}y /My — eB - 105,

(1)

(with eB > 0) for emission of photons along the field
lines, with e the fundamental electric charge unit, My, the
W-boson mass and My the Higgs boson mass. The
amplitude is thus singular at B =1 (M3, — 1 M3,) < Bes.

where B = MT;V is the critical field strength where a
component of the W field becomes tachyonic [8,9]. The
singularity is caused by this would-be tachyonic field
component (in agreement with Olesen’s prediction [3])
and also by the fact that charged particles only propagate
along the field lines, such that their loop Feynman integrals
are effectively two dimensional. The amplitude is expo-
nentially damped for emission of photons not aligned with
the magnetic field, and the denominator is modified in
this case.

The amplitude of Higgs boson decay to two photons
was first computed many years ago by Ellis, Gaillard,
and Nanopoulos [10] (see also [11-14]). The influence
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of a background field on the amplitude has not been
considered before, but the pioneering paper by
Vanyashin and Terentev [15] dealing with the
Heisenberg-Euler effective action caused by a charged
vector field makes it possible to find the behavior of the
amplitude in the limit where the photon energies are close
to zero, which is only possible with a Higgs boson mass
also close to zero. The result described above deals with
a more general situation, and the factor M% makes a
direct comparison difficult. It turns out that the”singularity
of (1) cannot be found from the Heisenberg-Euler effective
action.

An issue relevant for the calculation is that of gauge
parameter independence, where it recently was shown that
the H — yy amplitude is the same in all R: gauges [14].
This statement can be extended to a general electromag-
netic background field, using methods developed in a
recent publication [16], but the proof is omitted here
because of its excessive length.1 It is plausible that a
background field does not upset the proof of gauge
parameter independence since the leading singularities of
propagators at short distances are independent of the
background field. In general, one expects gauge parameter
independence of the amplitude in a regularization scheme
respecting BRST invariance (this can be seen from [17],
Sec. 4, and also from [18]). With this justification, a
particular gauge (the Feynman gauge) is used throughout
this paper.

The layout of the paper is as follows: In Sec. II the
standard electroweak theory is recapitulated and used to
formulate an effective action at one-loop order describing
Higgs boson decay to two photons in a background
electromagnetic field. Formal developments in this con-
struction are dealt with at length in Appendix A. We also
demonstrate in Sec. II how the decay amplitude obtained by
dimensional regularization is found from the effective
action by the proper-time method, and a heuristic argument
is given for (1).

"It was included in an earlier version of this paper.
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Sections III and IV constitute the central part of the
paper. Section III contains a derivation of the decay
amplitude in a general homogeneous field by the methods
of [5-7], while the singular terms in a homogeneous
magnetic field are extracted from the amplitude in
Sec. IV. Appendix B contains material on propagators
and the associated kernels relevant for the following
sections in the context of proper-time regularization. In
Appendix C we prove that the amplitude and its singular
terms are invariant under gauge transformations of the
radiation field. Appendix D gives details on the connection
to the Heisenberg-Euler effective action [15].

Finally, quark contributions to the amplitude are con-
sidered in Sec. V and found not to give rise to singularities
induced by the magnetic field, while the Higgs boson
self-energy is shown in Sec. VI to possess a singularity
similar to (1).

II. ELECTROWEAK THEORY AND H — yy
DECAY EFFECTIVE ACTION

A. Electroweak theory

The metric is 1, = (+ ———).

In the standard electroweak theory the scalar Lagrangian
is, keeping only terms relevant for Higgs boson decay to
photons, with the Higgs boson field denoted by H, the
charged Goldstone boson fields y* and charged vector
boson fields Wi,

g
2

+ (;ﬁf)” -2 W+ﬂH> <DM— -2 W;H)

1 )
- 5/42(2)(7‘ + H?) - 1+ H?)? (2)

1
Lo=50H+TWix" + Wix))?

with the coupling constants g. By the Higgs mechanism one

makes the replacement H — v+ H, v = \/_T’r, and W*
get the mass My =%,

My = v/24v. The covariant derivatives are

while the Higgs boson mass is

D, =98, —ieA,, D,=0,+icA, (3)

with e = gsin @y, the elementary charge unit, where 0y is
the Weinberg angle, and with A, the electromagnetic field.

In order to describe radiation processes, one splits the
electromagnetic field A,

A, = A+ A, (4)

with A, a background field and A, the radiation field,
which fulfills the wave equation and has two independent
transverse polarizations. The interaction between radiation
and W bosons is described by the action
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- / dxWH,, W
with ‘H given by

M,y = —2ieF,, + 2ien,, A'D,; + ie(D, A, — A,D,)
- 62 (A;tAu - ’7;41/"4/1“4/1)
=Hy) +H2 (5)

where the superscript denotes the order in e and where we
introduced the radiation field strength

f;w = ayAzz - 8D'A/4‘ (6)

The following relations follow from (5) and the on-shell
properties of the radiation field A,:

DDHI(,L) = —ie_Ay(i’]Uﬂ
HW D' = ie(n,,D* + D,D, —2D,D,) A", (7)

D*+D,D,-2D,D,),

which should be understood as relations between differ-
ential operators.
The gauge of W* is fixed by

- gy v
£gf:—(W+’ﬂD”+7)(+> <D,,W’ +7}{ ) (8)

(the R; Feynman gauge). From (8) a Goldstone boson mass
squared M%, is generated. The Faddeev-Popov ghost
Lagrangian is

2
Lgp = —¢" <C+D2 +ie(A*ct)D, + %Hc*)
—-c <D2 T —ieD,(A'cT) + %Hc‘) (9)

so the ghost mass is equal to the Goldstone boson mass.

B. Proper-time representation of the scalar and vector
propagators in a general background

The scalar propagator G (x,x’) corresponding to the
mass M%, is given by

G, 1) = A " deh(x, x5 ) (10)

with D? = n"D,D, and with 7 the proper-time variable
[5,19], and

(D2 + M3)Goo(x.X') = G (x,x') (D™ + M3)
= —id(x —x') (11)
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where a primed derivative refers to x’ and where the scalar
kernel hg.(x,x’;7) is defined by

<i§ - (D* + M@))hsc(x,x’;r) =0,

he(x,y;0) =6(x —x).  (12)

The vector propagator Gy, (x.x") is similarly
defined by

(D2 + M%V>Gvec,;w(x’ x/) - ZieFu/I(x)Gvec Ay(x’ )C/)
= Gvec,/w(x’ xl)(b_/z + M3 ) vecu ()C X )21€F/11,( )
(s, %) (13)

where F,, = 0,A, — 0,A, is the background field strength.
The solution of (13) is

Greep(5.) = / " dthy (i) (14)
0

with

0
(l E - (Dz + M5 )) hVCC.ﬂI/('x’ X/; T)
+ 2ieF Myec 1 (x,X'57) = 0,
hvec,/w(x’ x'; 0) = _l/lﬂllé(‘x - x/) (15)
defining the vector kernel corresponding to the scalar
kernel defined by (12). The integration path in (10) and

(14) can be deformed such that it runs below the real axis or
|
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along the negative imaginary axis in the complex 7 plane,
provided no field components are tachyonic.
The following Ward identities hold for the kernels:

Dﬂhvec,;w(x’ x/;T) = hsc(x’ xl;T)Bw
e (X, x’;r)ﬁ” = D, hy(x,x';7) (16)

since both sides of the two equations obey the same first-
order differential equations in = with the same boundary
conditions; here was also used

D'D? — D*D* = —2ieF"D,, (17)
following from the definition of the covariant derivative
and the fact that the background field is a solution of the

Maxwell equations. From (16) we obtain the Ward iden-
tities of propagators:

D”Gvec,;tu(x7x/) = Gsc(x’ x/)Euv
Greoyu(x.X)D, = D, Gye(x.¥). (18)

C. H — yy decay effective action

A background Higgs boson field H(x) is used here,
which is on shell, i.e.,

(0% +220*)H(x) = 0. (19)

The effective action terms determining the H decay
amplitude at one-loop order in terms of the propagators
described previously are determined from (2). One term of
the effective action is

S; = —2iAe*v / d*x / d*yH(x) G (x, ) A (9) A, (y) Gee (v, x)

—8&6%/(14)(/d4y/d4zH()c)GS

which is a seagull term and a derivative coupling term in the
way familiar from scalar quantum electrodynamics, with a
Higgs boson insertion in one propagator. The remaining
effective action terms are (A1)—(A7), listed in Appendix A.
Remarkably, they can be reduced to a structure similar to

|

o (%, ) A (y)D, G (y. 2) A (2) D;G (2. x) (20)

|
(20), with both scalar and vector internal propagators and,
in the latter case, also with magnetic moment couplings.
The reduction takes place by means of (7) and (18).

In (A1) one isolates the following three expressions by
insertion of (5):

Sly = —ic’gMy / Y (x) e (2, ) A (7) Ay () G (3. %)

+ 4e gMW/d4 /d4 /d4zH Gee, (%, )

XAD( )D Gvecp (y’ )A

)Dleeco‘ (Z X) (21)
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which obviously is similar to (20),

S},,:4engW/d4x/d4y/d4zH(x)

X Gyec ji (X, ) F?(9)Gec po (¥, 2) F 7 (2) Grec o (2, X),

(22)
with magnetic moment couplings, and
Sy = —4e*gMy / d4x/ d*y / d*zH(x)
X (Grecup (X, ) FP7(3) Grec o (¥, 2) A% (2)
X DﬂGveC,mﬂ (Z’ )C) + Gvec.ﬂ/)(-x’ y)'AD (X)Du
X Gee! ) (¥, D) F(2) Gree e (2 X)) (23)
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/,{\/\/\A x* A
P /’\\
H--= Xt H--
N
~ \ /
N --
A~ 4 A

(a) Sy and S,

A W A A
H-- wE=  H - - {}{ H-- W
A A A

(b) S}, (c) Sp;p and Sjy,

FIG. 1. Feynman diagram representation of the effective action
in its final form.

with a derivative coupling at one vertex and a magnetic
moment coupling at the other vertex. Adding the rest of
(A1) to (A2)—(A7), one obtains, as shown in Appendix A,

Sy = ie*gMy / dx / d*yH(x)Gy(x,y) A" A, (y) G (v, x)

L 4egMy / i / iy / B 2H ()G (x. ¥) A (9)D, Goo(y. 2) A (2) DG (2. ).

with the same structure as (20) or (21).
A Feynman diagram representation of S; and S, — S/, is
given in Fig. 1.

(24)

in the paper, the photon momenta and polarization vectors
are denoted k, g,(k) and ¢, €,(q), with k-e(k) =
q-€(g) = 0. The evaluation is carried out by means of

(10), (12), (14) and (15).

In the limit where the background field vanishes, the
contribution from (21) to the amplitude is in the proper-
time representation:

D. H — yy decay amplitude in a vanishing external field

From (20) and (21)—(24) the amplitude of the decay of a
Higgs boson to two photons is found. Here and elsewhere
|

o 1
—8iengWs”(k)8ﬂ(q)/ rdr/ do
0 0

4
d'r 1=y ta(p—rP—12)
(22)*¢

T

0 . 1
+ 16e2gM e (k)e*(q) / 2 dre~ ™y / dadpdys(1 —a—p—vy)
0 0

4
X /L(rﬂ(r_Fk)Deir(arz+/}(k+r)2+7(k+q+r)2) + rp(r_Fq)ﬂeif(arz+ﬁ(q+r)z+y(k+q+r)2)) (25)

(27)*

where the integrations of the proper time 7 are carried out after the integrations of the momentum variable r; the momentum
integrations are convergent at nonvanishing values of the proper time. Here a factor (27)*5(p — k — q) is suppressed, with p
the Higgs boson momentum. After some manipulations one gets from (25), using the mass-shell conditions as well as
symmetric integration in four dimensions,

o 1 d4 .
—8iengWe”(k)8ﬂ(q)/ rdr/ da/ r4 it +a(l-a)M—M3,)
0 0 (271')

o ' 1 1-a d*r . 1
+ l6engW8"(k)8ﬂ(q)/ Tzdre_”M%V/ da/ dy/ ;4 et rarMy) (E r?— ayM%,)
0 0 0 Vs

(2
© , 1 I-a d*r .
+32ngMW5”(k)€”(q)(q-kr/”,,—qﬂky)/ Tsze_lTM%‘// da/ dyay/ﬁe”“z*"ymﬁ. (26)
0 0 0 n

In (26) one uses
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d4r .2 l
itrt _ _ 27
/(27:)46 167%7? @7)
and also
l-a d*r vl
/ Zdre‘”M / da/ d]// (P +ayM?) <2 _ (Z}’M%)
0
1 dr M 2
—it d ia(l—a)t ™ 28
2 1671' A T 7° A @e (28)

Evaluating (26) using (27) and (28), one finds that the first two terms cancel out, and (26) reduces to

26 gM l-a ay
LR e b = gk [ [y T
engW v 4M%}v . MH
= JL'QM%{ gﬂ(k)g (Q)(q'k'//ﬂy_%tkv) (1 - M%{ arcsin? <m>) (29)

The total contribution to the amplitude from (20), (21) and (24) is found from (29) by the substitution
4e’gMy — 2Ae*v + 3e*gMy,. (30)
Equation (22) in a vanishing external field contributes to the decay amplitude:
—4e’gMy (k'e* (k) — ke (k) (q,£.(q) = 4.€,(q))

0 . 1
x / 2dre= ™ / dadpdys(1 —a—p —7y)
0 0

4
/ d'r (eir(ar2+/)’(k+r)2+y(k+q+r)2) + eir(ar2+ﬂ(q+r)2+y(k+q+r)2))

(27)*
2e2gM ] M
= 2 00 @) o= g s (). o)

Equation (23) is zero in a vanishing external field.
The decay amplitude with a vanishing external field is the sum of (29) [with the substitution (30)] and (31):

2
e
= e (k)e"(q)(q - ki — q,k,)

6M7, 4M3, M 16M3, M
) ((1+=22) (1= —Faresin? () ) + ——Parcsin® | - (32)
M, M, M, M, M,y

which is the standard decay amplitude [10-14]. It is perhaps an interesting point that this result has been obtained by proper-
time regularization instead of dimensional regularization; symmetrical integration in momentum space has been carried out
in four dimensions, and this is possible because momentum integrals are finite at nonvanishing values of the proper time .

Carrying, for the sake of argument, the integral in (29) out in two space-time dimensions, one gets, disregarding the
dimensional mismatch, the result

8e?gMy, (1 l-a ay
- da dy —————
V3 0 0 (MW - a}/MH)

8e?gM M M M
-9 — a arcsin (—H) — 2arcsin? (—H> ) (33)
My, M%V—%M%{ 2My 2My,
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This is smgular at %” = 2; the singularity arises from

a=y=; where the denominator of the integrand is very
small at thlS value of the mass ratio. This argument gives a
heuristic indication of the way in which the square-root
singularity of (1) arises, since the quasitachyonic field
component decreases the vector boson mass according to

M3, — M3, — ¢B. (34)

The complete determination of the singularity takes place
in Sec. IV.

—dije*vet (k)e

= —4ile®ve' (k)e,(q)

PHYSICAL REVIEW D 90, 016010 (2014)

III. H - yy DECAY AMPLITUDE IN A
NONVANISHING HOMOGENEOUS FIELD

The H — yy amplitude in a nonvanishing homogeneous
electromagnetic field is found from (20)-(24) by the
method of Schwinger [5-7]. Details on formal tools are
relegated to Appendix B.

The contribution from the first term of (20) to the decay
amplitude is, by (B11),

q)/d4xeipx /°° TdTe_iTM%’V/ da<x| i(1 a)rl'lz —i(k+q)X taTH2|x>
0
/d‘*xe”’" /oo Tdre"'TMgv/ da(x, t|e”k+0)X(@)|x 0). (35)
0

Here one uses (B15) as well as the eigenvalue equation (B3) to get the following value of (35) with a factor (27)*5(p —

k — g) suppressed (cf. [7]):

[ 1
—4i/lezv£”(k)sﬂ(q)/ Td're_iTM%V<x,r|x,O>/ daed(@k+a), (36)
0

0

Next the contribution of the second term of (20) to the decay amplitude is evaluated. It has the proper-time representation

81e2 ver (k

= 8le?ve! (k)e”

x ({7l (1 - @)e)ekX((-

qu(/T

/d4xe’Px/ 2 dre= ™ / dadpdys(1 —a—f—vy)

X (<x|el(nﬂ —lkXH el/}‘rl—l2 —quH ez;/‘rH |X>

(4o v ke q))

/d“xe’l’x/ 2 dre ™y / dadpdy5(1 —a—p—7v)

I, (y7)[x, 0) + (1 < v,k <> q)) (37)

by (B8), and using (B17) and (B21) as well as the procedure used above to obtain (36), one finds

oo 1
8Ae?ve (k)e* (q) / d4xei”"/ Tzd'ce—"’M%V/ dadpfdys(1 —a—p —y)
0 0

x (e%ka) (x, 7T, ((1 - a)7)e ' X(0) g=ilktq-0)X(0)

I, (y7)[x, 0) + (4 < v, k < q))

= 8le*vet (k)& (q)(2x)*s(p — k — q) /oo 2dre~ ™My /1 dadfdys(1 —a—p—7y)
0

0
2 F Q) (N(y7) + (e7"F(k + g - Q)),x,0)

X ((352 k.q) (x, 7| (TI((1 = a)7) —
+ (Hov, k<q)),

and in the last step (B8) was used again.

(38)

The evaluation of (38) is carried out by (B8) and (B10). Only terms with two or zero IT operators give a nonvanishing
contribution. With zero IT operators one gets the following contribution from (38):

o0 . 1
— 81e*vet (k)e*(q) / 2dre™ ™ (x, 7|x,0) / dadpdys(1 —a—p—vy)
0 0

% (eéz(k.q)(eQaTeFQ)M(e—Zy‘reF(k +q- Q))y +

The term of (38) with two II operators contributes

(v, k< q)). (39)
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oo 1
Sideve (k)e*(q) / 2dre™ "™y (x, 7|x,0) / dadpdys(1 —a—p—y)
0 0

x (26 (e2PFDL (D)) 4 (u> v,k < q)). (40)

In both (39) and (40) a factor (27)*5(p — k — q) was left out. The sum of (36), (39) and (40) is invariant under gauge
transformations of the polarization vectors. This follows from the general proof in (C1) (Appendix C) but can be proven
directly also.

Equations (36) and (40) are both ultraviolet divergent and can be rearranged in two convergent expressions:

) L, 1
Sideve (k)e*(q) / 2dre™"™w (x, 7|x, 0) / dadpdys(1 —a—p—v)
0 0

1
% <e5z(ks'1) (e—zﬂreFD—l(T) _21> + (v, k<—>q)> (41)
T

i
and
o X 1
4ire*vet (k)e,(q) / tdre™ ™M (x, z|x, 0) / dadpfdys(1 —a—p—y)
0 0
x (€20 — 2 WA ) + (k<> q)). (42)

The contribution of (21) to the amplitude is

—2ie*gMye* (k)e,(q) / d*xe'P* Aw tdre~™itr(e~2F)
% /1 da<x|ei(1—a)rl'[2ei(k-ﬁ-q)XeiarHZ |x>
0
+ 4 gMy et (k)e* () / & xeirs A ” Pdreiy A ' dadpdys(1 —a—p—7)
X tr(e‘QT@F)(<)c|e""”“zflﬂei"'xei/ﬁnzli,,ei}’TrI2 [x) + (u < v, k< q)) (43)
and is thus determined from (39), (41) and (42) by the substitution 811 — 4e?gMy, and the insertion of a factor tr(e27F)
in the integral. Also, from (24) one gets three terms similar to (39), (41) and (42) by the substitution 8le?v — —4e’>gM .

For the considerations on a pure magnetic field in the following section, it is convenient to isolate, in the contribution to
the amplitude from (43), the following three terms:

— 42 gM e (K)e(q) / " 2dre= ™ (tr(e=2F) — 4) (x, 7lx, 0)5(1 — a — f — 7)

0
x (e2kd)(e2F Q) (72 F(k 4 g — Q)), + (u < v. k< q)) (44)
and also
o0 s 1
die’ gMy e (k)e*(q) / 2 dre™ ™ (tr(e=>F) — 4)(x, 7|x,0) / dadpdys(1 —a—p—y)
0 0
1
x (eﬁz(k,q) (e—ZﬂwF])—l (7) — = 1) +uov ke q)) (45)
T )
and

o0 . 1
2ie’gM e (k)e,(q) / tdre™ "™ (tr(e=2F) — 4)(x, 7|x, 0) / dadpdys(1 —a—p—7)
0 0

X (00 = B0, + (k<)) (46)
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and to further isolate in (44) and (46),

- 4eZgMW£"(k)s”(q)/ 2dre~ ™My (tr(e=2F) — 4)(x, 7]x, 0) /1 dadfdyays(1 —a—p—y)
0 0

X (¢6) 1 B89 (g, b, — - K). 0
Here we used
1
/ dadpdys(1 —a = —y)(e>*) — 2 *D| )
0

1 1 0 0
=— | dadpdys(1 —a—p—y)=|a=+y—= |e®ka 48
[ dwaparsii-a-p-n (agrrg)e (48)
and also (B20). The remaining amplitude terms from (21) and (24) are obtained from (39), (41) and (42) by the
substitution 21e*v — 3e?gMy,.

From (22) one gets

1
4e?gMy e (k) /d4xe”’x/ 2dre= ™ / dadpdys(1 —a—p—vy)
X (( —2(a+y)feF) 5;) ke — 50 kP (e—ZﬁreF)Gw(b‘(uyq —5€qu)
X <x|eim’l'[ e—lkXelﬂTn e—lq-XezyTH |x> (,Lt <, k < q))’ (49)

which, after similar manipulations as were used to obtain (36), gives the amplitude term

) s 1
4e?gMy " (k)e*(q) / 2dre™™vw (x, 7|x, 0) / dadpfdys(1 —a—p—vy)
0 0

X (B0 (AHIE) (50 kT — 57 ) (e PF),, (87 g — 5 ,”) + (4 > 1.k <> q)). (50)
Equation (23) yields

. 0 . 1
—4e’gMy e (k)e*(q) / d4xe’1”‘/ 2 dre= ™y / dadpdys(l —a—f—7y)
0 0
X (((e—QreF)Gp (5pﬂktf _ 5aﬂkp) <x|eia‘rﬂ2 e—ikXeiﬁTHz e—iq-XHyeiy‘rH2 |)C>
+ (e—ZreF)ew(éque _ 5€qu> <x|eim’H2 eik-XIIMei[J’THZeiq'XeiJ/‘L'H2 |x>)
+uevkeq)) (51)

which is evaluated in a similar way, contributing to the amplitude

o0 s 1
—de*gM et (k)e*(q) / 2 dre=™Mw (x, 7|x, 0) / dadpfdys(1 —a—p—7y)
0 0
(652(k’q)((6_276F>op(50ﬂk6 - 5Gﬂkp)(e_2yTeF(k +4q9-0)),
_ (e—2TeF)€w(5(uyqe _ éequ)(eZ(lreFQ)M) 4 (,Lt < v, k < q)) (52)

IV. H —» yy DECAY AMPLITUDE IN A PURE MAGNETIC FIELD

The H — yy decay amplitude is considered in a pure homogeneous magnetic field B directed along the positive 1-axis,
with k> = ¢> =0, 2k - ¢ = M2,

In this case (47) is, in the special case where the photons are emitted along the magnetic field lines, using also (B18)
combined with (B26) as well as (B24) and (B25),
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2i

—5¢€ gMWE”( )ED(Q)(qltkv —Nw

0
2

#(k)e" (q)(q,k

My

1
/My - eB -5,

1
- arcsin(
\/M%V +eB—1M% 2

Equation (53) is divergent at eB = M3, —1M3. This
divergence can be attributed to the quasi-unstable mode
of the W* field that decreases the effective mass of a W+
field component, combined with the fact that the magnetic
field, in a sense, makes the theory two dimensional since
charged field modes only propagate along the field
lines. This can also be seen from (33), which shows that
one finds results similar to (53) by redoing the calculation
|

2 M%V —eB
arcsin(
2

M3, + eB

PHYSICAL REVIEW D 90, 016010 (2014)

q-k)

© . 1 )
X / dre= ™ zeB sin(zeB) / dadpdyays(1 —a —f — },)ezaerf,

v~ Mwd k)

) — arcsin? <L>)
2\/Mj, + eB

)

My
M3, — eB

)

of the integrals determining the amplitude in a vanishing
external field in Sec. II.D in two instead of four
dimensions.

In the limit where the photon momenta vanish, one may
also obtain the amplitude from the Heisenberg-Euler
effective action. Having vanishing photon momenta, one
must let the Higgs boson mass go to zero as well.
Equation (53) then becomes

M (53)

- 121 2 engWSM(k)SD(Q)(qﬂku — Mg - k) /oo dre= "™y reB sin(zeB)
4 0
L My B () (@) gk = 1 B) (g = (54)
2472 gy q)\quky — Nwq (M%V—EB)z (M%V+eB)2 s

and the square-root singularity is not visible in this limit.

The divergence arises at o = y = %

in which case the phase factor involving 7 is constant in part of (53) and the z

integration diverges. That (53) is singular in this limit can also be seen directly by restricting both the Feynman parameters «
and y in (53) to a narrow interval around 1, in which case it is evaluated by the following calculation, with 0 < §, e <

1 (cf. [20]):
e3gMy B o /2+e / —a 1
k k) d

—2 0@ gk — g af Y O, = eB = aphy)?
3gMy B My

- S & (K)e* (9)(g,k, — g - k) arctan | ¢

nZM;\/Mgv —eB-1M2 \/M2 —eB -

e3gM B

= i gﬂ(k)gy(Q) (quv ~Nwq - k)’ (55)

27M3y\ M}, — eB = 4 M5,

where in the last step the arctan has been replaced
by %, which is valid with e€#0 kept fixed for
M3, — eB — M7 — 0, and (55) agrees with (53) in this
limit. Here the contribution from the lower limit of the y
integration was disregarded; it is finite at M%V—eB—
IM3 =0 for 8,¢ #0.

[

In (55) one can interchange the Feynman parameter
integrations, observing that l —e<a<s + e,l—a-6<
y<l-—a is equlvalent to %—e—6<y< +e,
l—-y—-d6<a<l-y.

The singularity of (47) is next determined also with
momentum ki, 4.

nonvanishing components

016010-9
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perpendicular to the magnetic field lines. The singularity arises for z — —ioco, @ =y = % In this limit the quantity 6, (k, g) is

given by (B35), which is nonlinear in the Feynman parameters a and y, and the calculation is therefore more complicated
than (55). Approximating &, (k, g) by the following expression,

, .- 1 —_— 1 - .
8 app (k. q) = it <a7/(M?1 + (gL +ky)?) + S(l-a- 7) (K3 + qi)) ~ 505 KL+ q.)*

e—iH

e LV A} (56)

with 0 the angle between k 1 and ¢, as defined in (B36), one gets, instead of (55),

B (k)65 (4) gy, ~ g )

e
/ TdT/ da/ —it(M —63)(e5z.app<k"1) + (k= q))
1

e w k q 2
gM 'u(k) ( )(Qﬂkl/ —Nwdq - k) exXp (_ %)
bte i 21 e gy [k
/ aa [ dy<exp< 3. g) > (‘—229 )
x B L0 —9)>. (57)
(M3, — eB —ay(M% + (G, +k.)%) — (1 —a—p)(L (KT +32) - 2neB))?

The power ser ies expansion has been carried out in order to make the 7 integration possible. Next the Feynman parameter
integrations are also carried out as in (55):

e!]MW,,

PRI
S0 )k, =g Ry~ 5T

te eB
X da = 7

/ M3, — eB =L (M3 + (ky +G1)?) + (@ — D (M3 + (ky + 1))
x (F(0,0) + F(0,-0))

22 w 7 > N2

= SO 0 ) gy, = R exp( -2

« _ B _ (F(0,0) + F(0,—0)), (58)
VO + (R +§0) (M3, - eB=L (M3 + (kL +.)%)

with the definition

B =1 e_i9|7h||h| " 1
F(j,0) = exp( ) E —(— — . (59)
n_On! 2¢eB

M2 +2q, -k, +4(n+j)eB

Equation (58) is singular at M3, — eB — (M7 + (ki +3,)?) =0, with

+ (ki +41)* = p§— ri. (60)

where p, is the energy and p; the momentum along the magnetic field of the Higgs boson. One also notices the presence of
an exponential damping factor exp(—(kizti’gﬁ).
Substituting in (47) the whole expression 8, (k, g) as given by (B35), one gets, in addition to (57),

016010-10
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eQMW,,

@L + fh)2>

()& () gk, = 19 - ©) exp <— 2¢B

[ fmneeen((e e (-e)

N O1g 1k [\
(exp( mnu) —(7
nz;n' 2eB

eB

PHYSICAL REVIEW D 90, 016010 (2014)

d = =
(/) t(M%V —eB—ay(M% + (4, +k)*)+ (1 —a—y)(2neB —t((a — %)ki +(y - %)Z]i)))

Equation (61) is finite at M3, — B — 1 (M2, + (ky +¢.)?)
=0, as seen by changing to polar coordinates in the
Feynman parameter space with the origin at @ =y = 1.
Consequently, the singularity of (58) is not modified
by (61).

It has been demonstrated that the singular behavior
found in (53) or (55) persists when the two photons
produced in the decay also have momentum components
orthogonal to the magnetic field, with the square-root

20MyeB
S el i gg Vzve &' (k)e*(q) eXP<—
JT

(ki +4.) /°° rdre—iT(M}y—eB) /%

2eB 0 %_
1= - : - : 1=

x <e52-app<k»4> <q - i(O, 0,5 B x k> — (1 = e2ill=a=1)7eB) (0,0, g ) — ie~2/(1-a=7)reB (0, 0,58 x q>>

1- - . . . 1- -
x (k + i(O, 0. B x q> — (1 = ¢ 2illma=n)eeBY () 0, k) + ie~2i(1~a=7)reB (0, 0. B x k>)

(0~ _9)>. (61)

|
denominator modified as seen from (58) and with
an exponential damping factor. For the sake of complete-
ness, we now show that the singularity, as well as the
exponential damping factor, found in (58), occur in the
complete expressions (44), (45) and (46), as well as in (50)
and (52).

The singular part of (44) in its totality, in a homogeneous
magnetic field, is in this approximation by (56), and also
(B32), (B33) and (B38), found from

[{15

u

+(k<—>q,,u<—>1/)>, (62)

14

which produces the following singular terms in addition to those already contained in (58):

cgMy (ky +31)°

eB

4 o e Uexl’( 2¢B

) \/(M%] + (k. +30)?) (M3, -

eB—L (M} + (ky +3,)%)

> 1= N N 1= >
X <F(0,9) <—qﬂ<(0,0,kL)—i<0,0,EB><q>> - <(O,O,ql)+i<O,O,EBxk>> k,
v H
- - - 2 I
+ ((O7O7qL)+l(O7O7EBXk)> <(0,0,kl)—l<o,O,Equ>) )

W) — =

+F(1,6) <q— (0,0,4,) — i<0 0,

w(00a-i(oagzixi)) (+-

/Z)) ((oo@w(o,o,%éx%»y
0.0.%.) +z(00 BXq>>y)

+F(2,9)((o,0,7m —i<0 0, ;é (})) <(o,o,h) +i<0,0,E§ x%))y+ (k(—)q,y(—n/)). (63)
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Also, Eq. (45) is in the same approximation by (56) combined with (B38), (B39) and (B40):

e*B?

My (ky +3.)°
P e () xp (-2

(rua s ,°,), +bonion)

> \/(M%[ + (k. + L)) (M3, — eB — 1 (M3 +

(k. +41)%)

(64)

Finally, the singular terms of (46) that are not included in (58) are found by (48) and (56) combined with (B38) and (B39):

2aM % 2 )2 B
_ e Z Wgﬂ(k)gﬂ(q) exp <_( l2+gL) > e
v e > S = =
VO + (R 302 (M3, — eB =L (M + (ke +5.)2)
X (G -k F(0.0) =g, |k |e"F(1,0) + (k<>q)). (65)
|
In summary, we have isolated from (44), (45) and (46) square-root factor is eB , cf. the last

the terms (58), (63), (64) and (65) of the H — yy amplitude
in a homogeneous background magnetic field with the
singular factor B and the damping
\/M2 —eB-Y(M%+(k 1 +4,)%)
factor exp(— (kd, LJ”{;) ). The sum is invariant under gauge
transformations of the polarization vectors; this is demon-
strated explicitly in Appendix C.

Using the second term of the factor sin(zeB) which
occurs in the integrands of (44), (45) and (46) in a
homogeneous background magnetic field, one obtains
amplitude terms with the opposite sign and where the
|

629M w
A

eB
X

(ke (k) — ke (k) (g€ (q) — q“¢<(g)) exp (—

M3 +eB=SM2+(k, +3,)%)
term of (53). From (39), (41) and (42), from the remaining
parts of (21) and from (24), one also obtains similar
amplitude terms with this square-root factor.
Defining
n = (1,-1,0,0) (66)
one finds (50) in a pure magnetic field, approximated

in the same way as (57) and (58) and using (B38)
and (B39):

(ky + Zu)2>

2¢B

VO + R+ G2 (M, - eB=3 (M + (ke + 1))

F(0,0 0 0 0 0 2F(1,60 0 0 k 67
X (( ( ’ )<0 1+62>0w<0 1+62)€p+ ( ’ )77||,o'm<0 1+62>€p> +( <—>C])> ( )
Also, Eq. (52) is approximately by means of (B32), (B33), (B38), and (B39):
gy g exp (- L) <k

o 2¢B )0+ (K +3,)°) (M3 - eB— LM+ (k1 +31)%))
X ((0 0 > (6° k=67 ,k") (F(O,H) (k (0,0, kL)+l<0 0, BXq))

0 6) ap
> . 1- - 00 1- -
+F(1,9)((0,0,kﬁ#—z(0,0,—Bxk)) >—< ) (6”,9°—5,q ( ( OOqL)—z<OO Bxk))
B v 0 02/ .0 B u
F(1,6) ((0,0,7&)—1’(0,0,%@)(21)) >+(,u<—>1/,k<—>q)>. (68)
"
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The expressions (67) and (68) again have the same
singular factor as (58); Eq. (67) is manifestly invariant
under gauge transformations of the polarization vectors,
and in Appendix C it is shown that (68) shares this property.

V. QUARK CONTRIBUTIONS

Quarks are coupled to the Higgs boson and photon fields
through the interaction Lagrangian:

— Qe A yy"y — yHypry (69)

with Q = % — % y the Yukawa coupling constant and y the
quark field, leading to the Higgs boson decay effective
action

—yQ% 2/d4 /d4 /d4xH )A* () AY(z)

x tr((Ty ()@ (¥) 7, (Tw ()@ (2))r, Ty (2)w(x))).  (70)

i i

PHYSICAL REVIEW D 90, 016010 (2014)

In an external field the quark propagator is

(Ty () () = (x| ————Ix)

iy-D—yv
= (x|(=y T+ yv) A drel TR 1Y)
(71)
with y, the Dirac matrices and
(y-D)* = D* - eF*c,, = D* — ¢F - 5,
L.
Ouy = Z lb’w J/y]' (72)

Equation (70) is, in the presence of an external field,
conveniently reformulated by means of the identity

i

tr(x|H A A
rix] —y-H—yv—Fiey —}/~H—yv+i€y —y'H—yv+ie|x>
i i
= —iyvtr(x|H 2
fyvtr(x| (y-T)? =y20?® +ie” (y-M)? —y*? +ie )
i i
+ yotr(x|H ILy-A ILy-A
yotr(x| (y.n)z_yzﬁﬂé{y v }(y_H)z_yzvz_l_ie{V y- A}
i
X 73
(r-1)? = y*0? + ie i 7
where
{r Wy - A} =241, — F*o,,. (74)
Equation (70) is, in this symbolic notation (including a color factor 3),
i i i
- 3yQ*e*tr(x|H A -A . 75
YO s A Ty A s (75)
and after using (73), one gets the quark contribution to the amplitude as the sum of four terms, two of which are
6iy>Q?e*vet (k)e,(q) / d*xe'r* /oo tdre™ ™ tr(17eF0)
0
/1 da(xle (1 az)rl'l2 —i(k+q)X 1arl'[2|x>
0
, 0 , ‘ 1
— 12y?Q%e*vet (k)e*(q) / d4xe’1”‘/o Tzdre_”yz”ztr(e”ep")/o dadpdys(1 —a—p—vy)
x (x| etV e~k XL oI o=iaXTT eV |x) + (pesv, k<>q)), (76)
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which are found from (36) and (38) by the replacements 21e’>v — —3y>Q%e?v and e

PHYSICAL REVIEW D 90, 016010 (2014)

~itM§, 5 ¢=i’v" and by insertion of a

factor tr(e™¥°) in the 7 integral. The final two terms of the quark contribution to the amplitude are

12y Q%e?ve! (k)&

X (tr(ei(a+y)reF c

and

/d4xe’px/ 2 dre™™" ”'/ dadpdys(1 —a—f—7y)

Gﬂpkpelﬁ‘reF 6%061 )<x|elarl'l e—lk Xezﬁ‘rl'lze—lq Xelyrﬂ |)C>

(uov.kerq)) (77)

[ , 1
12iy2Q?e*ve (k)e*(q) / d4xe’1”‘/ T2d,z_e—zry2v2/ dadpdys(1 —a—p—vy)
0

0

% (tr( giteFo i k/l) < xleiarl'lz e—ikX eiﬂrl’lz I, e—iaX ei}'rl'lz | x)

+ tr(eiTeF»(raypq/)) <x|ei(nH2 e—ik-Xl'IMei/}ﬂ:l_lze—iq-XeinI_[2 |x>) + (,M(—)I/, k(—)q)) (78)

which are similar to (49) and (51) and can be evaluated in
the same way.

If the background field is a magnetic field B in the
positive 1-direction, one estimates the singular behavior of
(76), (77) and (78) in the same way as for (44), (45), (46),
(50) and (52). In this case one finds

e'™¥° = cos(zeB)1 — sin(zeB)y,y3 (79)

which should be compared with (B25). Having in (79) only
cos(zeB) and sin(zeB) compared to cos(2zeB) and
sin(2zeB) in (B25) means that, taking over the estimates
(58), (63), (64), (65), (67) and (68), one finds no singularity
of the type found in Sec IV, the square-root factor being, in
this case, \/ g

Vi

(ki 43, ) )' I

[
VI. HIGGS BOSON SELF-ENERGY

The Higgs boson self-energy is given by the effective

action
L[ 4
) d*x | d*yH(x)Z(x —

The function X(x — y) has, by (2) and (9), several terms; we
concentrate on

Y)H(y). (80)

Z(X - y) = _igzM%VGvecW<xv y)Gvec,w(yvx> (81)
where the Feynman gauge is used. It turns out that (81) has
a similar singularity as the H — yy amplitude, where the
singular term is gauge parameter independent.

From (81) one gets, by Fourier transformation and use of
(B11) and (B15),

Z(p) — —lgzM%V/ rdre~ I‘L'thr( —2‘reF>/ daetpx<x| i(1—q)IT? —1pX iarIT? |X>
0 0

0 1
= —igzM%VA tdre” ™M tr(e2F) (x, 7|x, 0>/ dae(@p), (82)

The Higgs boson should be on shell, i.e., p?> = M%,. The
self-energy is evaluated in a constant homogeneous mag-
netic field along the positive 1-axis and with the Higgs
boson having the momentum component p; orthogonal to
the magnetic field. In this particular case, Eq. (82) is, by
(B24) and (B25),

M3, [ B
9 ZW/ dr—2 (1 = sin’(zeB))
4z )y sin(zeB)

1
xe‘iTM%V/ daed(@r)., (83)
0

I(p) =

0

[

With the Higgs boson momentum parallel to the magnetic
field, one isolates in (83)

[ ) 1
_ égzM%VeB/ dre~it(My—eB) / daei*(1-a)tM,
n 0 0
1 ¢*M3%,eB 1 ) My
=—— arcsin ——————
/My - eB -1 2/Mj, - eB
(84)

which is singular at eB = M3, — 1 M3,.
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One can obtain the singularity of (84) also at nonvanishing p; by means of (B37), proceeding as in (57) and (58), with

%—€<a<%+€,0<€<<1:

2

. =2 00 e
X(p) = _ngzM%yeBe_:”_LB / dre~ ey =eB) / 7 deia1-a)e 0 )
T

0

1
3—€

1

1 »”

2172 —L

= ——g°My,eBe %5
Sz g -Myy

, (85)

where in the last step the limiting case M3, — eB — (M7, +
p3)=0 with ¢ kept fixed has been considered.
Equation (85) reduces to (84) in this limit for vanishing
P, and it has thus been established that the Higgs boson
self-energy is singular here. No other contributions to the
one-loop Higgs self-energy shows this behavior, and
neither does the one-loop correction to the Higgs boson
field vacuum expectation value.

VII. CONCLUSION AND COMMENTS

The H — yy decay amplitude has been found to have a
singularity where it diverges [see (58), (63), (64), (65), (67)
and (68)] in a strong stationary and homogeneous magnetic
field, and this phenomenon was shown to be invariant
under gauge transformations of the photon polarization
vectors. The singularity was also observed for the Higgs
boson self-energy [Eq. (85)], and in both cases it was found
to be caused by the unstable mode discussed in [8,9].

It would clearly be of interest to investigate whether this
behavior of the amplitude also holds in a more realistic
situation, where the magnetic field is time dependent and

|

SII = _igMW/d4x/d4yH(x)Gvec’w(x’y)H

My / dx / iy / B2 H () Gred (5, yYHY (9) Grec (3 2V H (2) Grae (2.).

V(M3 + PR (M — eB — L (M3, + 72))

|

inhomogeneous with cylindrical symmetry. For such an
investigation a gauge-independent regularization method
should be formulated, which is possible by the tools
developed in the present paper.
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APPENDIX A: REDUCTION OF THE H — yy
DECAY EFFECTIVE ACTION

The effective action terms describing Higgs boson decay
to two photons are, apart from (20),

,(j) <Y)Gvec.ﬂﬂ (y, )C)

1. <
Sin = —ieahty [ dx [ &y [ #2650 )6 (0.2) A2l 3) By = B, ()

1 -
+§iegMW/d4x/d4y/d4zH(x)(Dﬂ—aﬂ
Siv —ZngMW/d4x/d4y/d4zH(x)(Dﬂ—

Sy = —egMi / ' / d'y / B2 ()G oo (3. ) Ay (7)Gie (9. 2) AH(2) e (2.2).

Syr = iengW/d4x/d4yH(x)

(A1)

)Gie (2, 3) A, (3)Grec (3. Y HY (2) G (z.%),  (A2)
0,)Gee(%,Y)AD,G o (7, 2) Ay(2) e (2, X), (A3)
(A4)

A, (X) G (x,9) A (9)Gse (v, x). (AS5)
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There is also a term of the effective action arising from the Faddev-Popov ghost term (9):

Sy = e2gMy / dx / dy / A ZH (x) G (. ) A ()D, Gio (v, 2) A (9) DG oo (2. ). (A6)

where the ghost propagator was replaced by the Goldstone boson propagator since the masses are equal. The following term
of the effective action involves the scalar coupling 4:

Sy = 206Miy / dx / dy / 2 H ()G (X, ¥) A (1) G (3 2) AH(2) G (2. 1), (A7)

S;1 — Sy have the Feynman diagram representation shown in Fig. 2.
The second term of (A1) contains, apart from (21), (22) and (23), two terms that are reformulated by the Ward identities
(18); they are

~iegMy / dx / dy / A 2H(X) A ()G (5. 7) (=3, D7 + 57,D°) G (3 2) (HI)(2) Gy (2. )

~iegMy, / dx / d'y / 2 H (2) A(2) Greo1p (52 7) () (3)Greerp (. 2) (=87, D + 8,D7) G (%) (AS)

and
_ My / dx / iy / 2 H (1) A (3) A (2)G e s (509) (= D7 457,17t (.2) (=57, DF -8, 0”) e (2.0).

(A9)
Equation (A8) contains, by (7),
=My [ i [y [ @) AL ) Greoin(3)Guel3: 2D = 2ieFra(2) = DDy G (2.5)
+ Gvec,/lp (x, y)(ﬁzﬂpﬂ - 2ier/4 (y) - BPBM)GSC (y’ Z)Gvec.uﬂ(z’ x)) (AIO)

The rest of (A8) is added to (A2), and the sum is, by (7) and (18),
1 .
3EoMy [ i [ iy [ dzHE)G ) A1) (D = 2ieFu(3) = D,Di) G (. A(2) Gl

1 - P
wy@ay [ dx [y [ EHOGC A NG 020D = 2ieFu(2) = DDA @Gz ). (ATD)

Equation (A10) is, by (13) and (18), the sum of

ictgMy, / dx / d*yH (x) A (1) Gy o (3. )

X A (y)Gie (v, x) (A12)
and also
229}, [ [ty [ #aH@G ()
x A (y)Gsc (y9 Z)~’4L/(Z)Gvec,y/1(z7 x) (A13) © S @Sy @ Svi
and oA A - A
H - — %: | FP ghost H — — {: w*
gy [ dx [ &y [ ezt o) S s
< () Svir (g) Svinr
X (Gvec,ﬂu (x’ y)Gsc (y1 Z)DDGSC(Z’ X)D
~ ] FIG. 2. Feynman diagram representation of the effective action
+ DﬂGsc(x7 y)DﬂGSC (y’ Z)Gvec,v (Z’ x)) (A14) obtained from (2).
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Also, Eq. (A11) contains the first term of (24), as well as

—eng?,V/d“x/d4y/d4zH(x)GSC(x,y)

X A, (9)Gyec (9, 2) Ay (2) G (2, X) (A15)

and also

engW/d4x/d4y/d4zH(x)G

x A (y)D, Gy (y, 2) A (2) D, Gy (2, ).

SC(x7 y)

(A16)

From (A9) one gets, again by (18),

engW/d4x/d4y/d4zH(x)A”(y)A”(z)

X (Gvec,/w (X, y)Gsc (y, x)DuGsc (Z’ x)ﬁl

+ DGy (%, 9)D, G (9, 2) Green (2, X)) (A17)

which is identical to (A14), and

engW/d4x/d4y/d4zH(x)

X D/lec(x’ y)AM(y)Gvec,;w(y’ Z)AU(Z>GSC (Z’ x)bﬂ
(A18)

and also

engW/d4x/d4y/d4zH(x)

X Gvec,/w (X, y)'Aﬂ (y)Dstc (yv Z)AU<Z)Gvec.y/1<Z’ x)‘
(A19)
Equations (A14), (A16) and (A17) are added to (A3) and
(A6); again using (18) one obtains the second term of (24).

Also, Eq. (A18) is, by the background Higgs boson field
on-shell condition and (11), the sum of

—ZAeQM%Vv/d“x/d4y/d4zH(x)Gsc(x,y)

X A(¥)Gee (v, 2) A (2) e (2, ) (A20)
which cancels with (A7), as well as
iengW/d“x/d“yH(x
X A () Gyee (%, ) A () Goe (3, X) (A21)

and
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ergM3, /d4 /d4 /d4zH Gy (x,)
A (Y)Gree (¥, 2) A (2) G (2, X)

which cancels with (A15). Finally, Eq. (A19) is, by (11),
the sum of

(A22)

_ic%gM,y, / dx / B YH(x)Gree (% )

X A () A (3)Gree, ' (9. X) (A23)

which cancels the remainder of the first term of (A1), and

VS / i / iy / B 2H (3G (x. )

X AM (y)Gsc (y7 Z)“LUJ(Z)GWCJ//1 (Z’ x)'

Equations (A12) and (A21) cancel with (AS), and (A13)
and (A24) cancel with (A4).

In summary, Egs. (A1), (A2), (A3), (A4), (AS), (A7) and
(A6) have been reduced to (21), (22), (23) and (24), which
are invariant under gauge transformations of the radiation
field A, as shown in Appendix C.

Using proper-time regularization one finds additional
terms from (A10) and (A19) by the methods developed
in [16]:

o 0
—ie gMWA d18< /dadﬁdyé(l—a B—7)

\/d4 /d4 /d4ZH vecﬁu(x y’aT)

s A () (3. 2 ) Ay (2o (. m)

(A24)

T 32422 engW/d4xH(x)A”(x)Au(x)’ (A25)

while the corresponding additional terms from (A11) and
(A18) cancel out. Equation (A25) is not invariant under a
gauge transformation of the radiation field A,(x) and
should be discarded. It seems to be a general deficiency
of the proper-time regularization method that such expres-
sions occur and should be eliminated either by hand or by
use of dimensional regularization [16].

APPENDIX B: PROPAGATORS AND KERNELS
IN A HOMOGENEOUS BACKGROUND
ELECTROMAGNETIC FIELD

1. The scalar kernel in a homogeneous
electromagnetic field

The starting point for finding propagators in a homo-
geneous background field is the scalar kernel determined
by Schwinger [5]:
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(x,7|x",0) = (x|le”"|x");  (x,7| = (x|e”", (B1)
with the quasi-Hamiltonian
H = —I1 = —p*T1,11,, (B2)
where I1, = —iD, = —i(0, — ieA,). A position operator
X, is introduced, with
X, lx) = x,|x) (B3)

such that
[H”,XD] = =i, [X#,X,,] =0, [H”,HU] =ieF,,. (B4)

The field strength F,, is assumed to be homogeneous.

X, and I1,, can be considered to be operators in a quasi-
Heisenberg picture [5]. Thus their proper-time development
is governed by

179.4 )
d—T” = —i[X,.H] = -211, (BS)
and
dIl )
— = ~illl, H] = =2¢F,'T1, (B6)
or, in a matrix notation,
170.4 dIl
— = =2I1 — = —2¢FII B7
dr ’ dr ert (B7)

with solutions

[(r) =¥ 11(0).  X(r) = X(0)~D()T1(0), (BY)
where
D(r) = 1 ‘::wF (B9)
From (B4) and (BS), we get
(x, 7|11, x,0) = 0,
(0,2l TL [x.0) = i(D-(2)),, (x.2lx.0).  (B10)

The scalar and vector propagators in the Feynman gauge
are, cf. (10) and (14),

Gsc(x,x’)—/ dre_iTM€V<x,f|x’,0>,
0

Gvec.;w()@ xl) = - /°° dre= ™My (eXp(—2reF))W <x’ 7|, 0>’
0

(B11)

PHYSICAL REVIEW D 90, 016010 (2014)

using a matrix notation for the background field strength.
The kernel determined by Schwinger is, at coinciding
points,

i 1 sinh(zeF)
(x,7]x,0) = 622 P (— trlog————=

2 zeF ) (B12)

Also, one finds from (B8)

X(az) = (1 =D(ar)D7'(7))X(0) + D(az)D~ ()X (7).
(B13)

The Baker-Campbell-Hausdorff identity

b ,—1a,b]

ettt = etebemlabl (B14)

which is valid when [a,b] commutes with a and b,
combined with (B13), implies [6], [7]

exp(ik - X(ar)) = exp(ik - D(ar)D~! ()X (7))

exp(ik - (1 = D(az)D7'(7))X(0))e’ (*h), (B15)
where
5, (a, k) = %ik D(@)D((1 —a)r)D-' (k.  (B16)

Using again (B14) and (B15) one gets

exp(ik - X((1 — a)7) exp(iq - X(y7))
= exp(iQ - X(7)) exp(i(k + g — Q) - X(0))e®(ka),

(B17)
with
1
5, (k, q) = Eik -D((1 —a)r)D(ar)D~!(2)k
L. -
+31ig-D((1 = y)7)D(y7)D ™! (z)q
+iq - D(ar)D(yr)D7! (2)k, (B18)
where
52<k7 6I)|y=1—0: =0y (C{, k+ q) (Blg)
For a vanishing background field one gets
82(k. q) = irayM}, (B20)

with k2 = ¢> = 0,2kq = M?%. Also, we have defined
0=(D((1-a)7)D7'())"k+ (D(yr)D™'(7))"q. (B21)

where the superscript 7 denotes the transposed matrix, and
with
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27FQ = k — (D(ar)D(z)") Tk
+ ((D((a +y)r) = D(az))D(z)")Tq (B22)

and

e (k+q— Q) = g—D(y7)D(r) g
+ (D((a +7)7) = D(y7))D(z)"'k.
(B23)

2. A pure magnetic field

In a pure homogeneous magnetic field B, which for
simplicity is taken along the positive 1-axis, one gets
F,?> = —=F3> = —B,F = —iBo,, with o, the second Pauli
matrix, and here (B12) is [5]

PHYSICAL REVIEW D 90, 016010 (2014)

The apparent singularity at 7 = 2%, neZ is spurious since 7
is an integration variable and the integration path can be
deformed to run below the real axis or along the negative
imaginary axis.

Here one also gets

e—2‘reF — <1 0

. > (B25)
0 cos(2reB)1 + isin(2zeB)o,

From (B25) we get

D(e) - <2T1 0 >
=\ o = (sin(2zeB)1 — i(cos(2reB) — 1)6,) )

(B26)
i TeB
(x,7|x,0) = ———5———. (B24)
167°7” sin(zeB) One also finds
|
e—2(1—a—y)reFD—1(T) _ %1 0 .. (B27)
0 2Sin€(§e3) (cos((1 =2(a+y)reB)1 +isin((1 —2(a+y))reB))s,)
and
o [l i 0
D(az)D™(r) = ( 0 bsl'?n(zT:BB)) (cos((1 — a)reB)1 — i sin((1 — a)reB)o, (B28)
and thus
2ay71 0
D(y7)D(az)D7!(7) = (B29)
0 X
where
2 si B) si B
X = Sm(j‘;‘;m)(ilerg’e ) (cos(1 = a = p)zeB)1 = isin((1 — @ y)eB)o,). (B30)
From (B28) it follows that, at 7 — —ico,a =y =1
1 0 0
D(ar)D' (1) =~ (1 - ,
ore=3(1-(y )
D((a+7)r)D7 N (r) =1 - ! (1 — e 2illma=p)re) (0 0 > (B31)
2 0 1 + 62

and (B22) and (B23) are in this limit for a pure magnetic field:

1 1 - A . . 1o .
e FQ =~ 5 (k +q- i<o, 0,2 B x k) — (1 — e721-a1)B)(0,0, g, ) — ie~2i(1-a=y)reB (o, 0,2 B x q>) (B32)

and

e—ZyTeF(k + q- Q) ~

| =

- . ‘ - : 1- -
(kb0 1(0.0.5307) -1 - om0 Ey e twen (0,01 3cE) ).

(B33)
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Here the exponentials are kept in their present form; they
vanish at a+y # 1,7 > —ico, but are equal to 1
ata+y=1.
In the same limit one gets, from (B30),
i : .
X = _ﬁ((l 4 e—21(l—a—y)TeB)1 4 (6—21(1—(1—}’)7@3 — 1)52)’

(B34)
and thus from (B18),

iaye(M} + (41 +k1)?)

. 72 N
+i(l —a—y)r(ak] +747)
1

5y (k, q) =

—ﬁ(m Ky )
6—19 - ~ o
e )G Ry, (B35)
with k2 = ¢*> = 0,2q - k = M?% and with
g, ki =1q.llky|cos,
—B-(Gx k) =1g.]|k.|sin0, (B36)

where k . and g, denote the spatial parts of k and ¢
orthogonal to the magnetic field. With the applications in
Sec. IV in mind, one can, in (B32) and (B33), take a =
y :% in the nonexponential terms in contrast to (B35).
Also, Eq. (B16) is, in this limit,

PHYSICAL REVIEW D 90, 016010 (2014)

22
- k
8 (a.k) = ia(1 — a)r(K 4 k1) — ~—=. B37
(@ k) = ia(l —a)e(@ + ) -2 5. (B37)
At 7 - —ioo one gets, from (B24),
(x,7]x,0) = ———eBe™™5, (B38)
8r°t
and (B25) is, for 7 - —ico, approximately
10 0 0
—27eF 2iteB
e (0 0>+ e (0 1+62>. (B39)

From (B27) one finally gets, in this approximation,

1 0
e—2(1—a—y)reFD—1(T> ~ ( T . ) .
0 %ieBe—Zz(l—a—y)reB(1_62>

(B40)

APPENDIX C: INVARIANCE OF THE H — yy
DECAY AMPLITUDE UNDER GAUGE
TRANSFORMATIONS OF THE RADIATION
FIELD

1. A general background field

After gauge fixing the radiation field A,(x) has a
residual gauge freedom under the gauge transformation
A, (x) = A, (x) + 9,A(x), 9*A(x) = 0. Doing this gauge
transformation on (20), one gets, at first order in A,

— 4ije’y / d*x / d*yH(x)G(x,y)0, (A (y)A(y)) G (v, x)

—81e% / d*x / d*y / d*zH(x)Gy(x,y)(0"A) (y)D, Gy (v, 2) A* (2) D, G (2. x)

~8ae% / dx / dy / d'2H(X) G (3. y) AY(5)D, G (3. 2) (8 A) (2)D, G (2. ).

(C1)

which cancel by partial integration and use of (11). Equations (21) and (24) are invariant under gauge transformations of the
radiation field by the same argument. Equation (22) is manifestly invariant. From (23) one gets, by a gauge transformation,

2iengW/d4x/d4y/d4z/d4pH(p)e

& k) Gyec 0 (9, 2) (D> = D*)G e

X Gvec /Ip(x y 5/7 ke —

iPx/d“kA”(k)eik)’/d4qA(q)eiqz

“*(z, x)

+ 2ie gMW/d4 /d4 /d4 /d4pH ’PX/dA'kA ’kV/d“qA’“(q)eiqZ

XGvec,/lp(xvyu) _D )Gvec, w(y’ )(5qu _56

=0

“)Grec (2. %))
(€2)

by (13). Using a proper-time representation in the last two terms of (C1), by (10) one finds that the additional term
corresponding to (A25) vanishes in this case. The additional term from (C2) also vanishes.
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2. Singular terms in a homogeneous magnetic field

It is not obvious that the sum of the singular terms of the amplitude (63), (64) and (65) and also the singular term (68) are
invariant under gauge transformations of the photon polarization vectors, and the approximation procedure used to obtain
these expressions means that the result of the preceding subsection does not apply automatically. It is verified below that the
approximation procedure indeed respects gauge invariance.

From (63) one first gets, through & (k) — ik*A(k),

igMw o, (kL +3,)
- e (g exp (- 1)

eB
VO3 + (ko +30)%) (M3, — eB =3 (M3, + (k1 +3,)%)

- ST - 1- .
x ((0, 0.k1), + e, ||k, |F(1,0) ((O,O,kL) - i(O, 0. B x q))

X

I - . 1- 2
—I—e’9|qJ_||kJ_|F(l,—9)((O,O,kj_)+l<O,O,EBXq>> ) (C3)

by the following identity, which is a consequence of the definition (59):

N B R
(q-k+q.-ki)F(j,0) = Fte 91|k |F(j +1.6) —2jeBF(j.6) (C4)

and also

ie’gM . - k +q.)?

TWA(k)kﬁ”(Q)qL -k, exp (‘ %)

eB
X N -
VO + Ry + 307 (M3 — eB =3 (M3, + (k1 +3,)%)
x (F(0,6) + F(0,-6)). (C5)

Using, again, (59) one also gets, from (63),

ie’gMyeB

Adx A(k)e"(g) exp <_ M)

2¢eB
1
VO + (ke + 002 (M3 — eB =1 (M + (ky + 1))

- S - 1- -
x <(0,0, ki), +e g ||k |F(2,0)((0,0,k,) + i<0, 0. B x k>>

X

v

NN - - 1= N
o3, [FL|F(2.~6)((0.0.%,) - i(O,O,EB y k))
> 1- -
—2eBF(1,6) <(0,0, ki) +i<0,0,EBxk>>

—2eBF(1,-0) ((0, 0.k)— i(O, o,éfe x %))) (C6)
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and the final terms obtained from (63) are

(ki +q.)*
2eB

ie’gMy eB

T L A ) exp -

1

Oy + (R +G02) (M3, — eB =L (M + (ke +5.)2)

x (e—mF(l,a) (k —(0,0.k,) + i(O, o,%iz x 21))) + eF(1,-0) <k —(0,0.k,) - i<0,0%1§ x 21>>>> (C7)

and also

X

ie’gM yeB

(k40>
4z

MBI )l s exp( 52

1
VO 4 R+ §0D) (M - eB= 3 (M + (ke +.)2)

x <e—i9F(2, 0) <<o, 0.k1) + i<0, 0%73 x 12)) + eOF(2,-0) ((o, 0.k )— i(0,0%fB x %))) (C8)

Also, one gets, from (64),

X

14

ie’gM y e’ B?

(ky +4.)?
2r

A exp -4

1

VO + (ki + 3002 (M) — eB—L (M + (k. +30)%)
x (F(I,G) ((0, 0.k1) + i(0,0,;E x h)) + F(1,-6) ((0, 0.k,)— i<0,0,;l§ x /ﬁ))) (C9)

and from (65),

X

v

ie’gM eB

4

(kL +4d.)?
2¢eB

A(R)k,e(g) exp (—
1
VO3 + (ke + 302 (M3, — eB =4 (M3, + (k1 +3,)%)
X (G, -k F(0.0) =g |1k.e™®F(1,0) + G - ki F(0.-0) — |G| |k, |eF(1,-0)). (C10)

X

The sum of (C3) and (C5)-(C10) vanishes.
From (68) one gets, through (k) — ik*A(k) by (C4),

ie’gMy, 0 0 (ki +3.)°
— A v W € _ SE L0 AL VLT
Py ) @ -saen(-E)

eB
VO3 + (ki +30)7) (M3, — eB =4 (M3, + (k1 +3,)%)
X ((q-k+ Gy -k )F(0,0) — e g |Iky [F(1,0) = (q -k + G, - ki )F(0,-6) + e|g, ||k, |F(1,-6))
=0. (C11)

X
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APPENDIX D: HEISENBERG-EULER
AMPLITUDE

The decay amplitude obtained from the Heisenberg-
Euler effective action [15] and involving a W* loop can
also be found from (2), (B11) and (B12):

_ igMy, /Wﬂ —”thr( —2eFr)

1672 72
sinh(zeF)
zeF ’

gMy (W (x)W,; (x))

1
X exp <— 3 trlog
(D1)

where the field strength F, which is assumed to be
homogeneous, is split according to (4), with the momentum
of the radiation field A going to zero, and only terms of
second order in A are kept. Introducing [5]

1
F = ZFWF/“’, G= geﬂylpFﬂbF‘p, (D2)

with €,,,, the standard antisymmetric symbol, and the

eigenvalues of the matrix F

(F, F@)) :Lf (VF+iG+\/F - (D3)

one finds

sinh(reF)) _ teF reF(?)
reF ~ sinh(zeF() sinh(ze F@)
(D4)

1
exp <— 3 trlog

and

tr(e=2¢F7) = 2 cosh(2ze F(1)) 4 2 cosh(2zeF?).  (D5)

With the background field being a homogeneous mag-
netic field and with the photons emitted along the field
|

e gMWB
n?
<eB cos((1 —2p)reB) 1)
x _Z
sin(zeB) T

which, at lowest nontrivial order in M%,, is

e gMWB2

Myt () ,,<q>[’°r
1

11 1
<24 B sin(zeB) + 8 (ceB)’ (zeBcos(teB) — sin(reB))),
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lines, the quantity G also vanishes after the splitting (4), and
JF will not contain terms where the radiation field multi-
plies the background field (this will not be the case for
general directions of emission). Inserting (D4) and (D5)
into (D1) one gets

— = (1—sin?(zeV2F)).

(D6)

lng/ dTe ”Mz Te 2f
4z Jo 7 sin(zev/2F)

This expression gets, through the splitting F — F + 6.F,
the additional terms at first order in 6.F:

igy 5F = ds

_itM2 Te 2f
e ™My ———
sin(zrev/2.F)

x (1 = zeV/2F cot(zeV/2F))) (D7)
and also
lgMW 5]:/ de e~ ™zer/2F sin(zeV/2F)
X (1 — 1eV/2F cot(zeV/2F))) (D8)
and
_igMy oF it
12 F 12 v (teV/2F )2 cos(teV/2F). (D9)

Only (D8) and (D9) are affected by the quasitachyonic
field component. They are compared with the relevant part
of the decay amplitude determined previously in the limit
where the photon momenta and thus the Higgs boson mass
go to zero, with the photons emitted along the field lines.
The polarization vectors are orthogonal to the field lines in
this case. Then it follows from (B22) and (B23) combined
with (B26) that (44) vanishes, while (45) is, by (B18) with
(B26) as well as (B24), (B25) and (B27),

o 1
e'(k)e,(q )A rdre~ ™y sln(reB)A dadpdys(1 —a_ﬂ_y)eimmg

(D10)

)
Zdre‘”MW

(D11)

which when added to (54) is precisely (D8) for this particular case.
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From (50) one gets in the same limit, by (B24) and (B25),

jo2 Y] 1
ie gMW/ dre-itMy TeB )/ dp(1 - p)
0 0

4n? sin(zeB

1 0 Feolk
x ((0 cos(2(1 — p)reB)1 + isin(2(1 —ﬁ)reB)Gz)eP W

1 0
(4 g ) 7
cos(2(preB)1 + isin(2pzeB)o, / ,,

1 0
* (0 cos(2(1 — p)reB)1 + isin(2(1 —ﬂ)reB)(fz)gpfp @)

1 0
* (0 cos(2(freB)1 + isin(ZﬁreB)o—z)w]: (k)) (D12)

using the Fourier transform of the radiation field strength (6). With the photons emitted along the field lines and their
polarization vectors thus orthogonal to the field lines, Eq. (D12) reduces to

2

ie-gM oo .

# / dre™ "™y cos(zeB)
i¥is 0

(ol o) 70l 1) 70l o) 700 1))

which is a special case of (D9).

(D13)

The square-root singularity of (1) is not obtained from (DS8) or (D9).
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