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The purpose of this paper is twofold. The first purpose is to find a fully Poincaré invariant solution of the
Bethe-Salpeter equation (BSE) for excited quarkonia; however, the second, in fact, major focus is on the
relevance of the space-time metric choice and its impact on the correct description of the ground and all
excited states. For the first time, we compare the BSE solutions defined independently with the Euclidean
and Minkowski metric. For this purpose, the BSE is conventionally defined and solved in Euclidean space
with two versions of the propagator: the bare propagator and the confined form of the quark propagator
with complex conjugated poles. In both considered cases, there is unexpected doubling of the spectrum
when comparing to the experiments as well as to the solutions of the Schrödinger equation. The quark
propagator with complex conjugated singularities allows us to find the BSE solution directly in Minkowski
momentum space as well. We find the Minkowski space solution for confining theories is not only
numerically accessible but provides a reliable albeit not yet completely satisfactory description of the
ground and excited meson states.
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I. INTRODUCTION

Excited meson spectroscopy is a keystone experimental
output, which is essential for understanding quark-
antiquark interaction. The dynamics of hadrons is domi-
nantly driven by the solely known, strongly interacting
quantum field theory—quantum chromodynamics. The
confining forces are responsible for the absence of colored
hadron constituents, and, simultaneously, they lead to the
spectra of the ground state mesons and the spectra of
excited resonances. Because of the strong interaction at
large distances r≃ 1=ΛQCD, the use of the Schrödinger
equation becomes meaningless for light hadrons. Unlike to
the potential quantum-mechanical description, the excited
states are not described by an orthogonal wave function in
quantum field theory.
More precisely, within the model of logarithmic confine-

ment [1,2], one has hv2i ¼ 0.24 for quark of mass mc ¼
1.5 GeV bounded inside of 1S charmonia. Thus, the
charmonia lie on the borderline of a nonrelativistic descrip-
tion applicability (while this is less urgent for bottomonia,
where one has hv2i ¼ 0.08 for the ground state). In fact,
one requires the use of a quantum field description in order
to maintain Lorentz invariance; however, most of the results
(e.g., spectroscopy) still should be consistent with the usual
quantum-mechanical machinery. In this respect, the physics
charmonia represent an exciting theoretical laboratory
where various methods can coexist.
Recently, in the CLEO [3] and Belle experiments,

progress in the experimental determination of electromag-
netic transitions has provided new data, which should be

confronted with a fully Poincaré invariant description.
Recall that in a naive quantum-mechanical quarkonium
picture, ψðnSÞ → ηðn0SÞγ transitions should vanish in zero
recoil γ for different n, n0 due to the orthogonality of radial
wave functions (see, for instance, Refs. [4,5]). This is not
the case of relativistic treatment in the Bethe-Salpeter
equation (BSE) framework, where these so-called
“hindered” transitions are not expected to be vanishing
even for small photon energy. Also, a lot is known from
heavy quarkonia production in eþe− annihilations, where
vector quarkonia are straightforwardly produced. The
BABAR [6], Belle, and BESS experiments continue
collection of various meson experimental data.
In quantum field theory, the two-body bound state is

described by the Bethe-Salpeter (BS) vertex function or,
equivalently, by the BS amplitudes. Both of them are
solutions of the corresponding covariant four-dimensional
BSE, which has definite structure dictated by the total spin
of the meson. When generalizing recent various quantum-
mechanical models to the quantum field theoretical
approach, one is faced with the solutions that do not exist
in the nonrelativistic limit. Some of these states, the so-
called ghosts, are believed to be an artifact of inconsistent
approximations or even an illness of the theory [7], and we
will not discuss these states in this paper. However, some of
these additional states cannot be a priori excluded, as they
have the same symmetry as the expected physical ones. For
partial simplicity of the related BSE structure, we have
started with pseudoscalar charmonia in this paper, recalling
that the heaviest candidate for the excited pseudoscalar ηc
meson was Xð3940Þ (observed by Belle [8] in double
charmonium production) is very likely ηð3SÞ state.*sauli@ujf.cas.cz
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The experimental data accompanied by quantum-
mechanical hints of the nonrelativistic QCD limit can
guide the systematics of hadronic excited states obtained
in various different frameworks. Actually, we suppose that
the charmonium is an ideal system, which can be used
when discriminating the properties of strong coupling
models defined in different metrics. While it is commonly
assumed that QCD formulated within the Minkowski
metric and in Euclidean space are equivalent, we will
regard Euclidean QCD and Minkowski QCD as indepen-
dent theories. Let us stress that having no comparisons in the
literature, the equivalence of the Minkowski and Euclidean
formulation is very formal. It is believed or assumed that the
solution in the timelike Minkowski space can be uniquely
obtained from the Euclidean by analytical continuation.
While this procedure is well defined in perturbation theory
calculus, it is not straightforward in a confining theory like
QCD. Actually, it has been known for almost a quarter
century that the (light) quark propagator exhibits complex
conjugated branch points [9], and, very similarly, it is
assumed for gluons as well [10,11]. Such presence of
complex conjugated singularities implies inequivalence of
the original Minkowski theory and the theory defined in the
Euclidean space. Recall that the usual Wick rotation does not
provide correct Euclidean-Minkowski continuation in this
case. In order to provide first insights, we start with the
historically more usual Euclidean formulation of BSE for
charmonia, and we perform a realistic nonperturbative
calculation using the Minkowski metric as the defining
one. Assuming the Euclidean theory offers good approxi-
mation, we use the quark propagator with complex con-
jugated singularities for the Minkowski space calculation as
well. As we will see, contrary to popular belief, the obtained
numerical spectrum prefers the Minkowski metric.
In the recent paper [12], vector charmonia have been

considered in the approximation with one dominant com-
ponent. In the present paper, we continue to study pseu-
doscalar cc̄mesons by using the BSE model. In Secs. II and
III, the Euclidean BSE for all components completely
included is discussed, and the results are presented for an
arbitrary excited state for the first time. The states with
masses above 3.9 GeV are the predictions of our presented
BSE model. Section IV is devoted to the novel Minkowski
space-time treatment of the BSE for mesons.

II. BSE FOR PSEUDOSCALAR CHARMONIUM
IN EUCLIDEAN SPACE

The BSE for the pseudoscalar meson in Minkowski
space reads

Γðq; PÞ ¼ −i
Z

d4k
ð2πÞ4 ½Sðq − P=2ÞΓðp; qÞSðqþ P=2Þ�i;j

× Vðk; q; PÞi;k;l;j; ð2:1Þ

where latin letters i; j…. represent Dirac indices. Explicitly
for the pseudoscalar, we have

ΓPðq; PÞ ¼ γ5ðAðq; PÞ þ PCðq; PÞ þ qBðq; PÞ
þ ½q; P�Dðq; PÞÞ. ð2:2Þ

Alternatively, the BSE vertex function can be replaced
by a (more singular) BS wave function χ through its
definition

Γðq; PÞ ¼ S−1ðq − P=2Þχðq; PÞS−1ðqþ P=2Þ; ð2:3Þ

which is usually considered when performing the non-
relativistic limit. The interaction kernel is given by the
infinite sum of the two-particle irreducible quark-antiquark
scattering graphs in a color-anticolor channel.
According to the original idea of Ref. [13], confinement

in the heavy flavor hadron sector is typically associated
with a linearly rising potential between constituents [1,14].
The spin degeneracy observed in the meson spectrum tells
us that the confining part of the interaction should be
largely spin independent—it should be a Lorentz scalar. A
Euclidean approximation of the lattice calculations leads to
various predictions for the potential between heavy quark-
antiquark states. For instance, the Coulomb gauge potential
rises linearly with the slope larger than required by an
approximate Regge trajectory of light mesons, while all
interpolating gauges between the Landau and Coulomb
gauge produce potential which is bounded from above [15].
Also, in Refs. [16–21], it has been found that the meson
spectroscopy is better described by a “confining” potential,
which is bounded from above. Irrespective of the gauge, the
flatness of the linearly rising potential arises from
the string-breaking scenario: including light quarks into
the game then the creation of the quark-antiquark pairs, i.e.,
pions and other light mesons are energetically favorable.
Such screening is in agreement with the observed high
radially excited heavy mesons—without a doubt, the
spectrum deviates from the linear Regge trajectory.
According to nonrelativistic quantum mechanic predic-
tions, the relatively small hyperfine and fine-structure
splitting in quarkonium levels is due to the Lorentz vector
part of the interquark interaction [22–25], which should be
added for a more accurate description. Following the
arguments stated here, the dominant part of V should be
a Lorentz scalar, and further vectorial interaction is natu-
rally assumed in QCD (for a quarkonia mainstream, see
Ref. [26]). The interaction phenomenologically chosen
here, thus, reads
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Vðk; q; PÞiklj ¼ 1ik1ljVs þ γμ;ikγ
μ
ljVv;

Vs ¼
κs

ðq2 − μ2sÞ2
;

Vv ¼
g2

q2 − μ2v
: ð2:4Þ

Note that the scalar part corresponds with the negative
exponential potential in the nonrelativistic limit,
VsðrÞ≃−e−rμs .
The color Coulomb potential is usually taken due to the

exchange of the gluon. It should reflect the freezing of the
effective coupling in the infrared related with the gluon
propagator suppression due to the soft gluon mass gen-
eration [27–29] through the Yang-Mills Schwinger mecha-
nism. Here, we simplify and approximate Vv by a constant
coupling and constant gluon mass of expected size
μv ≃ ΛQCD. Further, from the string models, it is well
known that the string tension changes with the scale as
well. At least, it is considerably larger for the charmonium
than for the bottomonium. Here we found it advantageous
to consider such running already for different charmonia,
and we simply separate the 1S state from the others in the
following way:

κs ¼ κ½θðP2 −M2ð1sÞÞ þ δθð−P2 þM2ð1sÞÞ�; ð2:5Þ
where numerically, δ ¼ 0.9.
We formally start at Minkowski space and transform 16

component BSEs into the coupled set of four integral
equations for four components: A, B, C, D. The Wick
rotation and further details are discussed in the appendixes.

III. NUMERICAL METHOD AND RESULTS

Independent of the details of the model, when solving
BSEs in the Euclidean space, we face a rather intriguing
problem, which we call the doubling of excited states. With
the exception of the ground state (and possibly, the 2s state)
there are 2 times more excitations than in the nonrelativistic
limit (for the nonrelativistic limit, see, for instance,
Refs. [17,19–21]). We have found that the doubling is
numerically stable, and we argue that this is a rigid property
of the BSE numerical solution for heavy quarkonia in the
Euclidean space.
Let us discuss the doubling phenomena in more detail. It

is a matter of fact that instead of one excited state, we
observe an emergence of two with very similar BSE wave
functions. The appropriate numerical procedure is
described in Appendix B with a typical result shown in
Figs. 6 and 7. As it is explained in Appendix B, we
introduce the auxiliary eigenvalue function λ in a way that
whenever λ crosses the unit, we get a bound state. As
mentioned, the doublets are characterized by an almost
identical vertex function; hence, they are physically dis-
tinguishable only by a slightly different M. Numerically,

they have been found as neighborhood energy levels with
the opposite derivative dλ=dM. As we will discuss below,
the appearance of doubling does not depend on whether the
free quark propagators approximation or some confined
form for the quark propagator is used. Actually, for a
reasonable, large value of the imaginary part of the complex
conjugated mass term, the spectrum of the model with
confined quarks is quite similar in both Euclidean models
under consideration. Varying the imaginary part of the pole
position can shrink the energy gap between the doublet
pair; however, it leads to unacceptable changes of the
charmonium spectrum before the doubling is eliminated.
We infer that the phenomenon of energy doubling is not
related solely with the analytical properties of quark
propagators, but it is a consequence of the use of the
Euclidean metric as a definite one.
To get rid of this problem, we solve the BSE with two

approximations of the quark propagator. The free quark
propagator in the first approximation,

SðkÞ ¼ kþmc

k2 −m2
c þ iϵ

; ð3:1Þ

where mc ≃ 1.5 GeV is the real “constituent” charm
quark mass.
A confined type of quark propagator was used in the

second approximation of the BSE in the Euclidean space.
The charmonium quark propagator has been approximated
by the following formula:

SðkÞ ¼ ½kþm� k2 −m2
c

ðk2 −m2
cÞ2 þ δ4

; ð3:2Þ

which is written in Minkowski space and where mc, δ are
real parameters. Such form of the propagator is in accor-
dance with confinement [10,11,30–35], and for a quark
with momentum k≃ δ, the parameter δ can be interpreted
as a minimal wavelength [36]. It does not have a real
pole corresponding to the free particle solution, but,
instead, there are complex conjugated singularities, as
was suggested almost 25 years ago in [9].
The change of the free quark propagator into the form

(3.2) is equivalent to replace the double Euclidean propa-
gator G2 in (A11) in a way such that G2 → Gnew, where

Gnew ¼ Ifree
I2free þ δ8 þ δ4½ðk2E − P2

4
þm2

cÞ2 − k24P
2 þ λinf �

;

ð3:3Þ

and where Ifree corresponds with the inverse of the original
G2, i.e.,
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Ifree ¼
�
k2E − P2

4
þm2

c

�
2

þ k24P
2: ð3:4Þ

Nowadays, up to the first two, the excited pseudoscalars
have not been accessible in the experiments. We remind
here, that the highest mass candidate suggested is ηð3sÞ
observed in the Belle experiment in 2007 and hopefully
will be confirmed in the future experiments in the recently
built FAIR facilities. It is well known that the masses of 0−þ
excited states should be approximately degenerated with
S-states vector charmonia. The five or six s-wave domi-
nated ψ charmonium vectors are recently known with
masses spread in the energy range 3–4.5(5) GeV [37].
No doubling is observed there, and, thus, we do not expect
doubling in the other channels as well. We remind here, the
BSE vertex function depends on two variables: P:q and q2.
Alternatively and conventionally, the vertex function can be
visualized as a two-dimensional manifold above the q4 and
q plane. The BSE solution with free quark propagators for
ηð1SÞ is shown in Fig. 1 for a fixed p4 ¼ 0.25 GeV. The
doublets have been actually searched by comparison of the
vertex functions. Examples of a few neighbor excitations
are shown in Figs. 2, 3, 4, and 5. The order of the energy
levels are used to label the solutions (from low to high), and
the letter represents the components of the BSE vertex
function [according to Eq. (2.2)].
For a rough estimate of the spectra in the case of a BSE

with free propagators, we adjusted the charm quark pole
mass to be mc ¼ 1.5 GeV, and we were searching for the
charmonium spectra for different parameters κðPÞ, μ. The
strength of the effective vectorial interaction αs ¼ g2=ð4πÞ
has been adjusted in order to adjust the intercept to the
experimentally known value ηð2SÞ − ηcð1sÞ ¼ 660 GeV.
According to the nonrelativistic calculations, we were
varying the parameters κ between 2 and 4 GeV2 and
μ ¼ 0.1–0.5 GeV. At the end, the numerical data were

rescaled in order to get the exact and correct value of the
ground state exactly. The resulting search is presented in
Table I, where all pairs belonging to the single non-
relativistic counterpartner are matched. In the case of the
free quark propagator approximation, all states are realized
above the naive quark threshold.
For the purpose of a numerical study of the BSE with

confinement incorporated through Eq. (3.2), we have used
the same parameters as in the case of the BSE with free
propagators, e.g., the real part of the complex poles is
mc ¼ 1.5 GeV. The parameter δ characterizes the splitting
of complex conjugated poles, and we present the results for
two values δ ¼ 0.6 GeV and δ ¼ 1.0 GeV graphically in
Fig. 6. The situation for highly excited states is quite similar
to the case with unconfined quarks. However, there are new
states arising where just only one ηð2Þ should exist; to be
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FIG. 1 (color online). Absolute value of the A, β, C, D
components of the ηð1sÞ state. Note the large value of the
function β.
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FIG. 2 (color online). Dependence of components B, C,D on k
of two excited states shown for two slices with k4 ¼ 2.6 MeV (I)
and k4 ¼ 0.25 GeV (II).
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FIG. 3 (color online). Dependence of the dominant component
A of three neighbor excited states shown for fixed three-
momentum k ¼ 0.2 MeV. Vertex functions become wider for
higher mass of the ηc meson. Quarks are “more off shell” in
higher excited mesons for the model with free propagators.
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more precise, there are two new (four because of doubling)
states for δ ¼ 0.6 GeV and three (six) additional states for
δ ¼ 1 GeV. While the gaps between the partners of the
energy doublet slightly and tentatively shrink, the appear-
ance of a new state makes any value of δ inappropriate for a
realistic Euclidean model.
Another numerical observation is that the vectorial

interaction must be largely suppressed in our model, which
gives a typical value estimate αs ≃ 0.07–0.1. This is several
times smaller then the expected value of the strong coupling
in nonrelativistic models, where, typically, one gets
αsðmcÞ ¼ 0.5. It is difficult to trace the source of such

-10 -5 0 5 10
k

4
 [GeV] (k

 s
 =1MeV)

-3×10−5

-2×10−5

-1×10−5

0

1×10−5

2×10−5 B5
C5 (3756)
B6
C6 (3815)
B7
C7 (4010)

FIG. 4 (color online). Dependence of the B and C components
of three excited states shown for fixed three-momentum
k ¼ 1MeV. Levels labeled by BðCÞ5 (fifth energy excited state)
and BðCÞ6 (sixth excited state) belong to the neighborhood
levels; they have approximately identical vertex functions. They
have the same nodes (odd function B has three nodes, while the C
functions have two nodes and zero minimum at the beginning; the
next two higher levels have only one zero, and only the seventh is
shown for better visuality).

TABLE I. Conventional BSE solutions for ηcðnSÞ for the model
with the free quark propagator. We use conventional quantum -
mechanical assignment nS in order to label states that we expect
in nonrelativistic or “instantaneous” approximations. The first
column represents the actual numerical solution in units where
mc ¼ 1.5 GeV, κ ¼ 2.849 GeV2; in the second column, the
experimental value of ηð1SÞ has been used to scale other levels.
The doubling appears for the states n > 2, and the energy
doublets are identified by comparison of the vertex functions
(e.g., by the number of nodes in the B, C, D functions). After
rescaling, we produce experimentally known ηð2SÞ. For other
states to make levels meaningfully comparable with quantum-
mechanical labeling, the masses of energy levels are averaged for
the given energy doublets. αs ¼ 0.07407. *Belle observed X
(3940) in eþe− → J=ψ þ X, for the interpretation, see [2].

mc ¼ 1500 mc ¼ 1442 hi Exp

3100 2980 2980 2980 (1s)
3785 3638 3638 3638 (2s)
3940 3787
3990 3835 3811 3940* (3s)
4160 4000
4235 4071 4036 −ð4sÞ
4430 4259
4535 4360 4310 −ð5sÞ
4790 4373
4925 4734 4554 −ð6sÞ
5270 5066
5435 5224 5145 −ð7sÞ
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FIG. 5 (color online). Dependence of the dominant component
A of two excited states shown for two fixed values k4 ¼ 2.6 MeV
and k4 ¼ 0.25 GeV. The function A has no nodes for Euclidean
relative momentum k.
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M η*(m_c/1.5GeV)

1

λ (
P)

m=(1.5; 0.6)
m=(1.5; 1.0)
Unconf, m=(1.0,0.0)

FIG. 6 (color online). Comparison of the BSE solution within
various approximations. The solid line represents the free quark
propagator approximation with mc ¼ 1.5 GeV, the dashed line
and dot-dashed line correspond with the confined quark propa-
gator characterized by two complex conjugated poles located
at mc ¼ 1.5 GeV� i0.6 GeV and mc ¼ 1.5 GeV� i1.0 GeV,
respectively. The BSE has a solution whenever a curve crosses
the horizontal solid line. Energy doublets correspond with
crosses, which cut the upper parts of each curve separately.
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large suppression. We have explicitly checked that the
introduction of the running strong coupling does not
explain its suppression in the presented model. A more
complete understanding of this problem remains for a
future study. For ground state mesons, it is well known
that the function A largely dominates. We have found that
this is the case for excited mesons as well. This is apparent
from Fig. 7, where the numerical results are graphically
compared for BSE solutions with free propagators.

IV. BSE MINKOWSKI SPACE SOLUTION
WITH CONFINING PROPAGATORS

It is obvious that the propagator (3.2) is a regular
function for a real Minkowski variable k2. It allows us
to consider and explicitly numerically solve the analogue
problem in the Minkowski space directly. We completely
avoid the use of the Euclidean metric by using the confined
form of the propagator as in the previous case; however, for
now, we stay in the Minkowski space-time. We will use the
following convention, k2 ¼ kμkνgμν ¼ k20 − k21 − k22 − k23,
and we take for the quark propagator,

SðkÞ ¼ f½kþm� k2 −m2
c

ðk2 −m2
cÞ2 þ δ4

; ð4:1Þ

where, in general, f is a complex function of the momenta,
which, in accordance with the perturbation theory, must
become a real valued function for a large spacelike k (recall
here that the Dyson-Schwinger equations for propagators
are not directly numerically soluble in momentum
Minkowski space [38]). Here, in order to approximate
its infrared behavior only, we simplify and take the
following constant phase approximation:

f ¼ expi
π
2: ð4:2Þ

To make a comparison meaningful, we keep the Lorentz
structure of the kernel as in the previous Euclidean study;
however, in order to make the model tractable, we change
the double pole of the scalar kernel to the double pair of
complex conjugated poles while leaving the vectorial
interaction in its original form (without a Feynman epsi-
lon), explicitly written as

Vs ¼
κ

ðq2 − μ2sÞ2 þ λ4s
;

Vv ¼
g2

q2 − μ2v
: ð4:3Þ

It is worth mentioning that the Minkowski space-time
BSE represents a well-defined numerical problem, and the
convergence is further enforced due to the asymptotic
behavior of the vertex function Γ≃ 1=q2 at large q2. In
this way, the BSE turns out to be a two-dimensional integral
equation for two real variables: two scalars k2, k:P for a
given discrete P2 ¼ M2 or, alternatively, for the off-shell
relative energy k0 and spacelike relative momentum k.
According to our Euclidean space finding, we keep only the
component A as a reasonable approximation of the full BSE
amplitude. The BSE in Minkowski space has been solved
numerically in a very similar fashion as in the previous
Euclidean case. Note also that due to our simplifications,
the Minkowski vertex function remains real valued in the
entire Minkowski space.
To specify the rest, we put μs ¼ μv ¼ μ ¼ 0.25 GeV and

take λs ¼ 2μ for the purpose of our numerical search.
Having the double pole of Vs changed to the complex
conjugated poles, the interaction strength is effectively
suppressed. Within a given value of λs, one needs to
increase the scalar coupling strength. Numerically, now
we take κ ¼ 5 GeV2, and for the vector, we take
g2 ¼ 1.8849. Within mc ¼ 1.5 GeV, the spectrum we have
found reads (without any further tuning)Mð1sÞ¼1.97GeV,
Mð2sÞ¼ 3.563GeV, Mð3sÞ ¼ 4.163GeV, Mð4sÞ ¼
5.9 GeV, and Mð5sÞ ¼ 6.68 GeV. The doubling of energy
levels in the numerical solution of the BSE has disappeared.
The intercept is presented, although it is overestimated. We
believe that quantitative disagreement with the experiment
will be further minimized after a further refinement of the
parameters used in the presented model and/or after a further
improvement of the approximation made.

V. CONCLUSION

The homogeneous BSE for excited states of pseudosca-
lar charmonia has been solved independently in Euclidean
and Minkowski space-time. A high number of excited
states has been found by the numerical solution of the BSE
in both spaces, and the numerics has been described in
detail here. For those who are interested, the codes are

3 4 5 6 7
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1×10−8

1×10−6

0.0001

0.01

1

100
λ(

P)
, σ

(P
)

 A approx.
A approx.
 full

FIG. 7 (color online). Numerical search for mc ¼
1.5 GeV, κ ¼ 2.5 GeV2, αs ¼ 0.08, μv ¼ μs ¼ 350 MeV (solid
line). Dashed (dot-dashed) line represents λðσÞ in the approxima-
tion when only the A vertex function has been considered. In
this case, mc ¼ 1.5 GeV, κ ¼ 2.5 GeV2, αs ¼ 0.0815, μv ¼
μs ¼ 350 MeV.
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available by an email request. We have found that the
excited states are overpopulated when they are calculated in
the Euclidean space. The excited states come in pairs with
close masses and almost identical wave functions. This
doubling phenomenon is very likely an artifact of the
Euclidean space approximation. In the Minkowski space-
time model with confining-type quark propagators, the
doubling of the energy levels disappears. At the recent
stage, the Minkowski BSE model suffers by the simplifi-
cations and approximations made, and it does not repro-
duce the experimental data precisely. Nevertheless, it is

reliable enough to exhibit that the Minkowski space metric
can be used as a definite metric for nonperturbative QCD
calculations as a phenomenological, if not a preferable then
certainly an acceptable, choice.

APPENDIX A: PROJECTING EUCLIDEAN BSE
WITH THE FREE FERMION PROPAGATOR

After the projection by 1
4
Trγ5, we get in

Minkowski space:

Aðq; PÞ ¼ i
Z

d4k
ð2πÞ4KAðVS − 4VVÞ

KA ¼ SVð−ÞSVðþÞ
�
−Aðk; PÞ

�
k2 − P2

4

�
þ 2Dðk; PÞðk2P2 þ ðk:PÞ2Þ

�

þ SSð−ÞSSðþÞAðk; PÞ þ SVð−ÞSSðþÞ
�
k:PBðk; PÞ − P2

2
Cðk; PÞ

�
; ðA1Þ

where we have introduced the shorthand notation Sð�Þ ¼ Sðk� P=2Þ. Projecting the BSE by Tr qγ5
4
, one gets

q2Bðq; PÞ þ q:PCðq; PÞ ¼ i
Z

d4k
ð2πÞ4 ðq:PKB1 þ q:kKB2ÞðVS þ 2VVÞ;

KB1 ¼ Svð−ÞSvðþÞ
�
k:P
2

Bðk; PÞ þ
�
k2 þ P2

4

�
Cðk; PÞ

�

þ Ssð−ÞSsðþÞCðk; PÞ − 4k2Svð−ÞSsðþÞDðk; PÞ;

KB2 ¼ − Svð−ÞSvðþÞ
�
2k:PCðk; PÞ þ

�
k2 þ P2

4

�
Bðk; PÞ

�

þ Ssð−ÞSsðþÞBðk; PÞ þ 4k:PSvð−ÞSsðþÞDðk; PÞ: ðA2Þ

Projecting the BSE by Tr Pγ5
4
, one gets in Minkowski space,

q:PBðq; PÞ þ Cðq; PÞP2 ¼ i
Z

d4k
ð2πÞ4KCðVS þ 2VVÞ;

KC ¼ −Svð−ÞSvðþÞBðk; PÞk:Pðk2 − P2=4Þ þ Ssð−ÞSsðþÞBðk; PÞk:P

− Svð−ÞSvðþÞCðk; PÞ
�
2ðk:PÞ2 − k2P2 − P2

4

�
þ Ssð−ÞSsðþÞCðk; PÞP2

− Svð−ÞSsðþÞAðk; PÞP2; ðA3Þ

where we have dropped out the trivial term proportional to D due to the identity SVð−ÞSVðþÞ − SVðþÞSVð−Þ ¼ 0. Finally,
the “equation for D” reads

4½ðq:PÞ2 − q2P2�Dðq; PÞ ¼ i4
Z

d4k
ð2πÞ4KDðP:qP:kVS − P2ðk:qÞVSÞ;

KD ¼ SVð−ÞSVðþÞ
�
Aðk; PÞ

2
þ ðk2 − P2=4ÞDðk; PÞ

�
− SVð−ÞSSðþÞCðk; PÞ þ SSð−ÞSSðþÞDðk; PÞ:

ðA4Þ
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To find the solution numerically, it is convenient to perform a Wick rotation in the relative momenta, while keeping P2

real and positive. In the rest frame of quarkonium P ¼ ðM; 0; 0; 0Þ and after the continuation qo → iq4, we get for the
“Euclidean” Eq. (A1):

Aðq; PÞ ¼
Z

d4kE
ð2πÞ4 UAG2ðVS − 4VVÞ; UA

¼ Aðk; PÞ
�
k2E þ P2

4
þm2

c

�
þ 2Dðk; PÞð−k2EP2 þ ðk4MÞ2Þ þmck4Mβðk; PÞ −mc

P2

2
Cðk; PÞ; ðA5Þ

where Aðq; PÞ; UA;…. are the functions of Euclidean
momentum qE ¼ ðiq0;qÞ ¼ ðq4;qÞ and Minkowski mo-
mentum P. From now on, we restrict to the use of the free
quark propagator

S−1ðlÞ ¼ l −mc ðA6Þ

and introduce a shorthand notation for the product of the
propagators

G2 ¼ Svð−ÞSvðþÞ: ðA7Þ

Thus, we can simply write

Ssð−ÞSsðþÞ ¼ m2
cG2; Svð−ÞSsðþÞ ¼ mcG2; ðA8Þ

whose identities we will use from the next.

It is easy to find that G2 is the product of two complex
scalar propagators, which for the equal mass case becomes
purely real,

G2 ¼
��

k2E − P2

4
þm2

c

�
2

þ k24P
2 þ λinf

�−1
; ðA9Þ

where we have introduced an infrared regulator λinf ≪ mc,
M for a later numerical purpose. Furthermore, we have
introduced a new real function β as

β ¼ iB; ðA10Þ
which reflects the fact that the function B is odd in the
variable k:P ¼ ik4P (valid for a positive C parity eigen-
state). The functions A, β, C, and D are then manifestly
real. For the purpose of completeness, we write the
Euclidean Eqs. (A1)–(A4) here

q2Eβðq; PÞ þ q4MCðq; PÞ ¼
Z

d4kE
ð2πÞ4 ðq4MUB1 þ qE:kEUB2ÞðVS þ 2VVÞG2;

UB1 ¼
k4M
2

βðk; PÞ þ
�
−k2E þM2

4
þm2

c

�
Cðk; PÞ þ 4mck2EDðk; PÞ;

UB2 ¼ ðk2E − P2=4þm2
cÞβðk; PÞ þ 2k4MCðk; PÞ − 4k4MmcDðk; PÞ; ðA11Þ

½q4βðq; PÞ þ Cðq; PÞM� ¼
Z

d4kE
ð2πÞ4UCðVS þ 2VVÞG2;

UC ¼ k4

�
k2E þ P2

4
þm2

c

�
βðk; PÞ þM

�
2k24 − k2E þ P2

4
þm2

c

�
Cðk; PÞ −MmcAðk; PÞ; ðA12Þ

½−ðq4MÞ2 þ q2EM
2�Dðq; PÞ ¼

Z
d4kE
ð2πÞ4UDð−M2q4k4VS þ P2ðkE:qEÞVSÞG2;

UD ¼ 1

2
Aðk; PÞ −mcCðk; PÞ þ ð−k2E − P2=4þm2

cÞDðk; PÞ: ðA13Þ

In order to study excited states, we take the full k:P
dependence into account and do not perform any three-
dimensional reduction which can scrutinize a correct off-
shell behavior of the vertex function. For a given bound

state characterized by the massM, the four functions A…D
depend only on the scalars q:P and q2, respectively, the first
product mix Minkowski and Euclidean metrics and become
complex (q:P − − > iq4M in central mass system).
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Because of this fact, we prefer to leave the q4 integral
variables separated from the spacelike part of the integra-
tion momentum. When reducing the four-dimensional
integral equation, we, therefore, use the following angle
integrals:

I½N�
V ¼

Z
1

−1
dz

ðkE:qEÞN−1
ðkE − qEÞ2 þ μ2

;

I½N�
S ¼

Z
1

−1
dz

ðkE:qEÞN−1
½ðkE − qEÞ2 þ μ2�2 ; ðA14Þ

where z is the cosine of the angle between the space
product of momenta z ¼ k:q

jkjjqj, k:q ¼ k4q4 þ k:q. We need
N ¼ 1, 2 for our purpose, for which cases, the integrals
read

I½1�V ¼ 1

2jksjjqsj
ln
ξþ
ξ−

;

I½2�V ¼ −1þ k2 þ q2 þ μ2

2
I½1�V ;

I½1�S ¼ 2

ξþξ−
;

I½2�S ¼ −
1

2
I½1�V þ k2 þ q2 þ μ2

2
I½1�S ;

where

ξ� ¼ k2 þ q2 þ μ2 − 2k4q4 � 2jkjjqj: ðA15Þ

Substituting Vs;v and integrating over the variable z,
we get

Aðq; PÞ ¼
Z

∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 UAðκI½1�S − 4g2I½1�V ÞG2;

q2Eβðq; PÞ þ q4MCðq; PÞ ¼
Z

∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 ½q4MUB1ðκI½1�S þ 2g2I½1�V Þ þUB2ðκI½2�S þ 2g2I½2�V Þ�G2;

q4Mβðq; PÞ þ Cðq; PÞM2 ¼
Z

∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 MUCðκI½1�S þ 2g2I½1�V ÞG2;

½−ðq4MÞ2 þ q2EM
2�Dðq; PÞ ¼

Z
∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 UDð−M2q4k4κI
½1�
S þ P2κI½2�S ÞG2: ðA16Þ

APPENDIX B NUMERICS

In this appendix, we write down the BSE in the form
which has been actually used in our numerical solution.
Contrary to the quantum-mechanical approach, in the
quantum field theoretical framework, two different excita-
tions are not described by orthogonal BS functions. Also,
the number of nodes in the various components of the BS
wave function is not driven by any obvious rule. Thus, for
instance, the dominant component Aðp; PÞ remains node-
less for the all observed excited states. As different
components of the BS amplitude vary differently on the
P:q variable, we do not explore the more or less conven-
tional expansion into the orthogonal polynomials, which
loses its efficiency when, as one expects, a relatively large
number of polynomials could be necessary to distinguish
correctly between the two excited states. Therefore, instead
of this, we solve the full two-dimensional integral equation
by the method of simple iterations.
For the purpose of numerical solution, we discretize, and

step by step, we scan the P2 region of the total momenta.
Within the step of few a MeV, we are looking for the
solution of the BSE with a given P2. Performing several
hundred iterations for each given value of P2, we identify

the solutions as those for which the difference between two
consecutive iterations vanishes.
The BSE for bound states is a homogeneous integral

equation, and it satisfies the canonical normalization
condition:

1

6
¼ d

dP2
Tri

Z
d4k
ð2πÞ4 Γ̄pðk;QÞSðþÞΓpðk;QÞSð−Þ þ � � � ;

ðB1Þ

where Q2 ¼ M2, and the trace is taken over the Dirac
matrices. The conjugated vertex Γ̄pðk;QÞ ¼
CγTΓð−p;QÞC−1 with the charge conjugation operator
C and three dots represent the terms with derivatives of the
kernel with respect to P. The normalization condition (B1)
must be necessarily considered when bound state transi-
tions are considered. On the other hand, the efficiency of
the numerical procedure is enforced by the use of the
auxiliary normalization, which is called at each step during
the iteration process. For this purpose, we implement the
auxiliary function λðPÞ and solve numerically Eqs. (A16)
with λðPÞ implemented in. The physical normalization
condition can be applied afterwards.
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We found it was suited to rewrite Eqs. (A16) in the following equivalent form:

Aðp;PÞ ¼ λðPÞ
Z

∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 UAðκI½1�S − 4g2I½1�V ÞG2;

Dðq; PÞ ¼ λðPÞ −ðq4MÞ2 þ q2EM
2

½−ðq4MÞ2 þ q2EM
2�2 þ ϵ

Z
∞

−∞
dk4

Z
∞

0

dkk2

ð2πÞ3 UDG2ð−M2q4k4κI
½1�
S þ P2κI½2�S ÞG2;

βðq; PÞ ¼ λðPÞ −ðq4MÞ2 þ q2EM
2

½−ðq4MÞ2 þ q2EM
2�2 þ ϵ

ðlhs of Eq.Þq2 þ ðrhs of 2nd line in Eq.ðA16ÞÞq4M;

Cðq; PÞ ¼ λðPÞ −ðq4MÞ2 þ q2EM
2

½−ðq4MÞ2 þ q2EM
2�2 þ ϵ

ðlhs of Eq.ÞP2 þ ðrhs of 3rd line in Eq.ðA16ÞÞq4M; ðB2Þ

where ϵ is a small numerical regulator and where the last
two equations are equivalent to second line in (A16) and
third line in (A16) in the limit ϵ → 0. The integrals have
been discretized and the system of equations solved by
iterations as usual: The left-hand side of Eq. (B2)
represents the ith iteration step result when the i − 1
iteration has been used to evaluate the lhs of Eqs. system.
Starting with a reasonable zeroth approximation, 300–400
iterations then have been used for each fixed value of P2,
which was enough to get an obviously convergent
solution.
Our main goal is the implementation of the function

λðPÞ, which when properly chosen, can radically increase
the efficiency of the numerical search. Among several
working possibilities that we have checked, we mention
two. First, the choice λ−1ðPÞ ¼ Að0; 0Þ appears to work
well in many cases. Second, we have taken

λ−1ðPÞ ¼ 1

2

Z
dk4

Z
dk

½Aiðk; PÞ þ Aiþ1ðk; PÞ�2
k24 þ k2 þm2

c
; ðB3Þ

which has been actually used for the evaluation of the
results in the presented paper. The solution of the BSE is
identified whenever λ ¼ 1. Nontrivially, when λ ¼ 1, the
difference between consecutive iterations vanishes at the
same time.
The example of the solution of the BSE is shown in

Fig. 7. The function σ is the weighted integral difference
between two consecutive iterations evaluated through the
following formula:

σðPÞ¼ 1

λðPÞ
Z

dk4

Z
dk

½Aiðk;PÞ−Aiþ1ðk;PÞ�2
k24þk2þm2

c
: ðB4Þ

To get a reasonable numerical error, we found that
a relatively large number of integration points is
required. Therefore, to speed up numerics, we identify
roughly the positions of the bound states within a small
-40 � 80- number of mesh points. Consequently, the results
has been improved within -88 � 176- points of discretized
integral variables k, k4.

[1] C. Quigg and J. L. Rosner, Phys. Lett. 71B, 153
(1977).

[2] E. Eichten, H. Mahlke, and J. L. Rosner, Rev. Mod. Phys.
80, 1161 (2008).

[3] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 70,
032001 (2004).

[4] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D.
Lane, and T. M. Yan, Phys. Rev. Lett. 34, 369 (1975); 36,
1276(E) (1976).

[5] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.
Yan, Phys. Rev. D 21, 203 (1980).

[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
101, 071801 (2008); 102, 029901(E) (2009).

[7] R. Alkofer and S. Ahlig, Ann. Phys. (N.Y.) 275, 113
(1999).

[8] K. Abe et al., Phys. Rev. Lett. 98, 082001 (2007).

[9] S. J. Stainsby and R. T. Cahill, Phys. Lett. A 146, 467
(1990).

[10] M. Stingl, Phys. Rev. D 34, 3863 (1986); 36, 651(E) (1987).
[11] M. Stingl, Z. Phys. A 353, 423 (1996).
[12] V. Sauli, Phys. Rev. D 86, 096004 (2012).
[13] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[14] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.

Yan, Phys. Rev. D 17, 3090 (1978); 21, 313(E) (1980).
[15] T. Iritani and H. Suganuma, Phys. Rev. D 83, 054502

(2011).
[16] Y. B. Ding, K. T. Chao, and D. H. Qin, Phys. Rev. D 51,

5064 (1995).
[17] B.-Q. Li and K.-T Chao, Phys. Rev. D 79, 094004

(2009).
[18] Z. Y. Zhang, Y.W. Yu, P. N. Shen, X. Y. Shen, and Y. B.

Dong, Nucl. Phys. A261, 595 (1993).

V. ŠAULI PHYSICAL REVIEW D 90, 016005 (2014)

016005-10

http://dx.doi.org/10.1016/0370-2693(77)90765-1
http://dx.doi.org/10.1016/0370-2693(77)90765-1
http://dx.doi.org/10.1103/RevModPhys.80.1161
http://dx.doi.org/10.1103/RevModPhys.80.1161
http://dx.doi.org/10.1103/PhysRevD.70.032001
http://dx.doi.org/10.1103/PhysRevD.70.032001
http://dx.doi.org/10.1103/PhysRevLett.34.369
http://dx.doi.org/10.1103/PhysRevLett.36.1276
http://dx.doi.org/10.1103/PhysRevLett.36.1276
http://dx.doi.org/10.1103/PhysRevD.21.203
http://dx.doi.org/10.1103/PhysRevLett.101.071801
http://dx.doi.org/10.1103/PhysRevLett.101.071801
http://dx.doi.org/10.1103/PhysRevLett.102.029901
http://dx.doi.org/10.1006/aphy.1999.5922
http://dx.doi.org/10.1006/aphy.1999.5922
http://dx.doi.org/10.1103/PhysRevLett.98.082001
http://dx.doi.org/10.1016/0375-9601(90)90387-4
http://dx.doi.org/10.1016/0375-9601(90)90387-4
http://dx.doi.org/10.1103/PhysRevD.34.3863
http://dx.doi.org/10.1103/PhysRevD.36.651
http://dx.doi.org/10.1007/BF01285154
http://dx.doi.org/10.1103/PhysRevD.86.096004
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.17.3090
http://dx.doi.org/10.1103/PhysRevD.21.313.2
http://dx.doi.org/10.1103/PhysRevD.83.054502
http://dx.doi.org/10.1103/PhysRevD.83.054502
http://dx.doi.org/10.1103/PhysRevD.51.5064
http://dx.doi.org/10.1103/PhysRevD.51.5064
http://dx.doi.org/10.1103/PhysRevD.79.094004
http://dx.doi.org/10.1103/PhysRevD.79.094004


[19] K. T. Chao and J. H. Liu, in Proceedings of the Workshop on
Weak Interactions and CP Violations, Beijing, August
22–26, 1989 (World Scientific, Singapore, 1990).

[20] B.-Q. Li and K.-T. Chao, Commun. Theor. Phys. 52, 653
(2009).

[21] P. Gonzales, V. Mathieu, and V. Vento, Phys. Rev. D 84,
114008 (2011).

[22] T. Appelquist, R. M. Barnett, and K. D. Lane, Annu. Rev.
Nucl. Part. Sci. 28, 387 (1978).

[23] V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein,
M. B. Voloshin, and V. I. Zakharov, Phys. Rep. 41, 1 (1978).

[24] W. Kwong, C. Quigg, and J. L. Rosner, Annu. Rev. Nucl.
Part. Sci. 37, 325 (1987).

[25] N. Brambilla et al. (Quarkonium Working Group), arXiv:
hep-ph/0412158.

[26] N. Brambila et al., Eur. Phys. J. C 71, 1 (2011).
[27] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D

84, 085026 (2011).

[28] D. Binosi and J. Papavassiliou, Phys. Rep. 479, 1 (2009).
[29] A. Cucchieri and T. Mendes, Phys. Rev. D 81, 016005

(2010).
[30] P. Maris, Phys. Rev. D 52, 6087 (1995).
[31] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and

H. Verschelde, Phys. Rev. D 78, 065047 (2008).
[32] D. Dudal, O. Oliveira, and N. Vandersickel, Phys. Rev. D

81, 074505 (2010).
[33] A. Cucchieri and T. Mendes, Phys. Rev. Lett. 100, 241601

(2008).
[34] A. Cucchieri, D. Dudal, T. Mendes, and N. Vandersickel,

Phys. Rev. D 85, 094513 (2012).
[35] I. C. Cloet and C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1

(2014).
[36] S. J. Brodsky and R. Shrock, Phys. Lett. B 666, 95

(2008).
[37] E. van Beveren and G. Rupp, arXiv:1005.3490.
[38] V. Sauli, arXiv:1312.2796.

INTRIGUING SOLUTIONS OF THE BETHE-SALPETER … PHYSICAL REVIEW D 90, 016005 (2014)

016005-11

http://dx.doi.org/10.1088/0253-6102/52/4/20
http://dx.doi.org/10.1088/0253-6102/52/4/20
http://dx.doi.org/10.1103/PhysRevD.84.114008
http://dx.doi.org/10.1103/PhysRevD.84.114008
http://dx.doi.org/10.1146/annurev.ns.28.120178.002131
http://dx.doi.org/10.1146/annurev.ns.28.120178.002131
http://dx.doi.org/10.1016/0370-1573(78)90120-5
http://dx.doi.org/10.1146/annurev.ns.37.120187.001545
http://dx.doi.org/10.1146/annurev.ns.37.120187.001545
http://arXiv.org/abs/hep-ph/0412158
http://arXiv.org/abs/hep-ph/0412158
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1103/PhysRevD.84.085026
http://dx.doi.org/10.1103/PhysRevD.84.085026
http://dx.doi.org/10.1016/j.physrep.2009.05.001
http://dx.doi.org/10.1103/PhysRevD.81.016005
http://dx.doi.org/10.1103/PhysRevD.81.016005
http://dx.doi.org/10.1103/PhysRevD.52.6087
http://dx.doi.org/10.1103/PhysRevD.78.065047
http://dx.doi.org/10.1103/PhysRevD.81.074505
http://dx.doi.org/10.1103/PhysRevD.81.074505
http://dx.doi.org/10.1103/PhysRevLett.100.241601
http://dx.doi.org/10.1103/PhysRevLett.100.241601
http://dx.doi.org/10.1103/PhysRevD.85.094513
http://dx.doi.org/10.1016/j.ppnp.2014.02.001
http://dx.doi.org/10.1016/j.ppnp.2014.02.001
http://dx.doi.org/10.1016/j.physletb.2008.06.054
http://dx.doi.org/10.1016/j.physletb.2008.06.054
http://arXiv.org/abs/1005.3490
http://arXiv.org/abs/1312.2796

