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We study here the interaction of DD̄� in the isospin I ¼ 1 channel in light of recent theoretical advances
that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We
find that the exchange of light qq̄ is Okubo-Zweig-Iizuka (OZI) suppressed and thus we concentrate on the
exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the
exchange of heavy vectors, which then determines the strength of the interaction. A barelyDD̄� bound state
decaying into ηcρ and πJ=ψ is found. At the same time we reanalyze the data of the BESIII experiment on
eþe− → π�ðDD̄�Þ∓, from where a Zcð3885Þ state was claimed, associated to a peak in the ðDD̄�Þ∓
invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass
around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Zcð3900Þ state
found at BESIII, reconfirmed at 3894 MeVat Belle, or 3885 MeVat CLEO, could all be the same state and
correspond to the one that we find theoretically.

DOI: 10.1103/PhysRevD.90.016003 PACS numbers: 11.80.Gw, 12.38.Gc, 12.39.Fe, 13.75.Lb

I. INTRODUCTION

The interaction of mesons with opposite charm to give
hidden charm heavy mesons is capturing much attention
recently. Indeed, the large number of X, Y, Z states being
reported experimentally [1–4] are finding difficulties in
being fitted in the ordinary order of standard charmonium
states [5] and call for more complex structures. The
molecular picture of states coming from the interaction
ofD or D̄� has been one of the sources to interpreting some
of these states, and different combinations of such mesons
giving hidden charm mesons have been considered. In this
sense, a bound state of DD̄ was theoretically found in [6]
and tentatively called Xð3700Þ. Other works have also
reported on this possibility [7–12]. Subsequently, exper-
imental support for such a state was found in [13] from a
bump close to the threshold of the DD̄ invariant mass
distribution in the eþe− → J=ψDD̄ reaction [14].
The D�D̄� interaction has also been studied [7,15]. In

[15] an extension of the interaction from the local hidden
gauge approach [16–19] was used and several states in
different spin-isospin channels were found, some of which
could be associated to known X,Y,Z states. The isospin
I ¼ 1 states are more difficult to obtain within this
approach since the interaction is weaker in this channel.
Even then, a state with I ¼ 1 and J ¼ 2 was found in [15],
prior to the reports of the I ¼ 1 Zcð4020Þ [20] found in the
eþe− → πþπ−hc reaction looking at the invariant mass of
π�hc, or the claimed Zcð4025Þ from a peak in the ðD�D̄�Þ�
spectrum close to threshold [21]. The interpretation of this

peak as a JP ¼ 1þ new state with mass 4025 MeV has been
scrutinized in [22] where it was found that the peak seen
was compatible with a JP ¼ 2þ state with mass around
3990 MeVand a width around 160 MeV. Subsequently, the
analysis of [15] has been revised in [23] in light of the
heavy quark spin symmetry (HQSS) and it was found that
the binding is smaller than that found in [15], compatible
with the mass suggested in [22] and with a similar width.
TheDD̄� systems have been the most studied, stimulated

by the large impact that the X(3872) state [24] has had in
this field [25–35]. Much at the origin, this state was
assumed to be a D0D̄�0 [36,37], however, subsequent
works have stressed the relevance of considering the
charged component DþD̄�− forming a quite good isospin
I ¼ 0 state [28,38,39]. More recently, the radiative decay of
the X(3872) into γJ=ψ has shown that the charged com-
ponents are essential to obtain the right rates [40–42]. Once
again, it was surprising to find I ¼ 1 states, since the
interaction in this channel is weaker than for I ¼ 0. Yet,
experimental work has been conducted recently and the
BESIII Collaboration has reported a state Zcð3900Þ from
the invariant mass of πJ=ψ in the eþe− → πþπ−J=ψ
reaction [43], with a width of 46� 10� 20 MeV. The
Belle Collaboration has reconfirmed the finding and, using
different energies for the electron beam, a peak is also seen
in πJ=ψ around 3894 MeV and a width of about 63�
24� 26 MeV [44]. CLEO has followed with more pre-
cision and reported a peak at 3886 MeV and a width of
37� 4� 8 MeV [45]. The state observed has I ¼ 1
and JP ¼ 1þ.
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Theoretical work has followed: in [46] a discussion is
made on possible structures of this state and suggestions of
new experiments are made to get further insight on its
nature. A DD̄� molecular structure is suggested in [47–50].
Work has also been done using QCD sum rules, suggesting
a tetraquark structure. In particular, in [51] a tetraquark
interpolating current was used in order to estimate the
decay width of the Zcð3900Þ, while in [52] the same
tetraquark current is used to estimate the mass.
In the present work we use an extrapolation of the

chiral symmetry approach for the pseudoscalar-vector
interaction used in [53,54]. This approach was extrapo-
lated to the charm sector in [26], where several axial
vector states were obtained from the interaction, among
them the X(3872). Yet, in [26] no states in I ¼ 1 for
DD̄� were found, the interaction being weaker in this
channel than in I ¼ 0. Meanwhile, several works have
shown the relevance of heavy quark spin symmetry
(HQSS) in dealing with the interaction of heavy mesons
and how the dynamics of the local hidden gauge
approach provides a natural extension of chiral symmetry
to the heavy sector, since it respects the rules of HQSS
for the dominant terms that come from the exchange of
light vectors [55–57]. Further clarifying is the work of
[58], where the impulse approximation is used at the
quark level to provide an easy interpretation of the
HQSS, showing then how to extrapolate the local hidden
gauge approach to the heavy quark sector. All these ideas
have been put together in [23] to study the D�D̄�
interaction in I ¼ 1. In that work it is shown how the
exchange of a light qq̄ is OZI forbidden in I ¼ 1, which
makes the combined exchange of the SU(3) nonet of
pseudoscalar cancel in the limit of equal masses, and the
exchange of ρ;ω also cancel. As a consequence, only
the J=ψ exchange is allowed in the case of I ¼ 1, plus
the simultaneous two pion exchange, which was evalu-
ated in [23] but found weaker than the exchange of the
vector meson. In spite of the large mass of the J=ψ ,
which suppresses the propagator in the J=ψ exchange, it
was found in [23] that the interaction could bind the
D�D̄� system weakly and at the same time provide an
explanation for the experimental peak in the D�D̄� mass
distribution from where the Zcð4025Þ was claimed [21].
One reason why a weak state not seen before is now
obtained has to be found in the improvements on the
interaction in the light of HQSS and on the extended
range of the momenta allowed in the intermediate states,
since the small mass of the light vectors restricts the
momenta in the loops to a much larger extent than the
exchange of heavy vectors.
Another aspect that one should take into consideration is

the fact that, similarly to the case of the claimed Zcð4025Þ
from the peak in the invariant mass of the ðD�D̄�Þ� close to
threshold, in this case there is also another reaction, eþe− →
π�ðDD̄�Þ∓ measured at BESIII [59], where the peak in the

ðDD̄�Þ∓ invariant mass is interpreted in terms of a new JP ¼
1þ resonance with mass around 3885 MeV and width
25� 3� 11 MeV. It is unclearwhether this state is the same
as theoneclaimed inBESIII [43],orBelle [44]orCLEO[45].
In view of the present situation we combine in this paper the
two lines of work in [22] and [23] and perform a theoretical
study of theDD̄� interactionwith the extended hidden gauge
approach.After this, we perform an empirical analysis of the
data fromtheeþe− → π�ðDD̄�Þ∓ reactionandsee if theycan
be interpreted in terms of the theoretically found resonance.
The answer to the question is yes andwe propose to interpret
the data in terms of a resonance Zc with a mass around
3875MeVand awidth around 30MeV, coming from the ηcρ
and πJ=ψ decay channels.
In this work we study the DD̄� system taking into

account the possible sources of interaction in order to
compare them and identify the most relevant process. We
start analyzing the contribution coming from the exchange
of heavy vectors, proceeding then to the evaluation of the
exchange of one light pseudoscalar (π, η, η0), followed by
the exchange of two correlated and also uncorrelated pions.
We find the last three processes very small compared to the
heavy vector exchange, which, as in the case of Ref. [23], is
found to be the leading source of interaction and, even if
small, it is enough to bind the system.

II. FORMALISM

Wewant to study states of I ¼ 1 eventually generated by
the DD̄� interaction. To do this, we follow the approach of
Ref. [23], starting from the observation that, as shown in
Fig. 1, the exchange of a light meson is OZI forbidden,
since a dd̄ state exchange is forced to be converted into a uū
state. This means that the contributions coming from ρ and
ω exchange cancel when taking equal masses and the same
happens in the case of π, η, η0 mesons if equal masses are
taken, or for large momenta bigger than the mass of the
mesons.
Thus, we evaluate the heavy vector exchange, where the

OZI restriction no longer holds.

FIG. 1. Feynman diagram depicting the exchange of a light qq̄
pair. A dd̄ from the upper vertex is forced to convert into a uū pair
in the lower one, evidencing an OZI forbidden mechanism.
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A. Vector exchange

We want to study the interaction between pseudoscalar
mesons and vectors in the charm sector. In particular, we
are interested in possible states with quantum numbers
C ¼ 0, S ¼ 0, and I ¼ 1.
In this sector, it is possible to distinguish between positive

and negative G-parity combinations. In the case of positive
G-parity [IGðJPCÞ ¼ 1þð1þ−Þ], six possible channels can
contribute: πω ηρ, ðK̄K� þ c.c.Þ= ffiffiffi

2
p

, ðD̄D� þ c.c.Þ= ffiffiffi
2

p
,

ηcρ, and πJ=Ψ [26]1. However, we will only take into
account the last three: since we are investigating the energy
region around 3900 MeV, the πω and ηρ channels, whose
thresholds are at much smaller energies, will only slightly
affect the results. For negative G-parity [IGðJPCÞ ¼
1−ð1þþÞ], we will only account for the ðD̄D� − c.c.Þ= ffiffiffi

2
p

channel, since the ðK̄K� − c.c.Þ= ffiffiffi
2

p
and πρ are too far from

the energy values we are interested in.
In order to study the PV → PV interaction, we use the

hidden gauge symmetry [16–19] extended to SU(4) [60],
which is a very useful tool when dealing with vector
mesons. We need the Lagrangian describing the VPP
vertex, given by

LVPP ¼ −ighVμ½P; ∂μP�i; ð1Þ
where the symbol hi stands for the trace of SU(4). The
matrix P contains the 15-plet of the pseudoscalar mesons
written in the physical basis in which η, η0 mixing is
considered [61],

P ¼

0
BBBBBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ D̄0

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0 D−

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
;

ð2Þ

while Vμ is given by

Vμ ¼

0
BBBBB@

ωffiffi
2

p þ ρ0ffiffi
2

p ρþ K�þ D̄�0

ρ− ωffiffi
2

p − ρ0ffiffi
2

p K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA

μ

: ð3Þ

The coupling constant is g ¼ MV=2fπ , with fπ ¼ 93 MeV
the pion decay constant and MV ≃ 800 MeV.
For the three vector vertex, we use the Lagrangian

LVVV ¼ ighðVμ∂νVμ − ∂νVμVμÞVνi; ð4Þ

where Vμν is defined as

Vμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�: ð5Þ

The Lagrangians in Eqs. (1) and (4) produce the
PV → PV interaction by means of the exchange of one
vector meson. The resulting amplitudes are identical to
those obtained with the chiral Lagrangian of [62]. In
Refs. [26,63] these amplitudes are explicitly evaluated
and projected in s-wave, with the result

VijðsÞ ¼ −
~ϵ~ϵ0

8f2
Cij

h
3s − ðM2 þm2 þM02 þm02Þ

−
1

s
ðM2 −m2ÞðM02 −m02Þ

i
: ð6Þ

The massesM ðM0Þ andm ðm0Þ in Eq. (6) correspond to the
initial (final) vector meson and pseudoscalar meson,
respectively, while the indices i and j represent the initial
and final VP channels.
In the case of positive G-parity, we will have a 3 × 3

matrix for the coefficients Cij,

Cij ¼

0
BBBBB@

−ψ 2
ffiffi
2
3

q
γ 2

ffiffi
2
3

q
γ

2
ffiffi
2
3

q
γ 0 0

2
ffiffi
2
3

q
γ 0 0

1
CCCCCA
; ð7Þ

with γ ¼ ðmL
mH
Þ2 and ψ ¼ − 1

3
þ 4

3
ðmL
mH

0Þ2. The parametersmL,
mH, andmH

0 are chosen of the order of magnitude of a light
vector meson mass, of a charmed vector mass and of the
J=ψ mass. We take mL ¼ 800, mH ¼ 2050 MeV, and
mH

0¼3000MeV as done in Ref. [26]. The factors γ and
ψ take into account the suppression due to the exchange of
a heavy vector meson. In the case of negativeG-parity, only
one channel is present, whose corresponding coefficient in
Eq. (6) is C ¼ −ψ . In the language of vector meson
exchange this means that a J=ψ is exchanged. The potential
of Eq. (6) comes from the expression ðp1þp0

1Þðp2þp0
2Þ,

which is approximately ðp0
1 þ p00

1Þðp0
2 þ p00

2Þ. In [58] it
was shown that this Weinberg-Tomozawa interaction
should implement the factor ðp0

1=mK� Þðp0
2=mK� Þ multiply-

ing the SUð3Þ value, that stems from the implementation of
the heavy quark spin symmetry. The interaction used
automatically incorporates this factor, so no changes are
needed with respect to what was done in [26].
Equation (6) provides the potential V that must be used

to solve the Bethe-Salpeter equation in coupled channels

T ¼ ð1 − VGÞ−1V; ð8Þ

removing the ~ϵ~ϵ0 factor that factorizes also in T. The
transition potentials Vij are shown in Fig. 2.1Note we have Cρ0 ¼ −ρ0, Cρþ ¼ −ρ−, Cρ− ¼ −ρþ.
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The matrix G is the diagonal loop function matrix whose
elements are given by

Gl ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2 þ iϵ
1

ðq − PÞ2 −M2
2 þ iϵ

; ð9Þ

with m and M the masses of the pseudoscalar and vector
mesons, respectively, involved in the loop in the channel l
and P the total four-momentum of the mesons.
After the integration in dq0, Eq. (9) becomes

Gl ¼
Z

d3q
ð2πÞ3

ω1 þ ω2

2ω1ω2

1

ðP0Þ2 − ðω1 þ ω2Þ2 þ iϵ
; ð10Þ

withω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ~q2

p
, which is regularized

by means of a cutoff in the three-momentum qmax.
The function Gl can be also written in dimensional

regularization as

Gl ¼
1

16π2

�
αl þ log

m2

μ2
þM2 −m2 þ s

2s
log

M2

m2

þ pffiffiffi
s

p
�
log

s −M2 þm2 þ 2p
ffiffiffi
s

p
−sþM2 −m2 þ 2p

ffiffiffi
s

p

þ log
sþM2 −m2 þ 2p

ffiffiffi
s

p
−s −M2 þm2 þ 2p

ffiffiffi
s

p
��

; ð11Þ

where p is the three-momentum of the mesons in the center
of mass

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmþMÞ2Þðs − ðm −MÞ2Þ

p
2

ffiffiffi
s

p : ð12Þ

B. One pseudoscalar exchange

In this section we proceed with the evaluation of the
amplitude for the exchange of a single pseudoscalar
(π, η, η0). The process is depicted in Fig. 3 and the
Lagrangian we need to evaluate its amplitude is given by

LPPV ¼ −ighVμ½P; ∂μP�i; ð13Þ

where the matrices P and V are given by Eqs. (2) and
(3). The constant g is the strong coupling of the D�
meson to Dπ, which in SUð3Þ is equal to 4.16. However
this is in contradiction with the empirical value of g≃ 9
needed to get the D� → Dπ width. This apparent contra-
diction is settled in [23] by looking at the D� → Dπ
decay using the impulse approximation at the quark level,
assuming the heavy quarks as spectators. The standard
normalization used for the meson fields at the macro-
scopic level (mesons, not quarks) demands that the g~ϵ · ~q
operator that one has for the D�0 decay at rest is
normalized by an extra mD�=mK� factor. This gives an
effective g constant for D, D� mesons of 9.40. With this
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s MeV

250

200

150

100

50

0
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0
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0
V13

FIG. 2 (color online). Potentials VDD̄�→DD̄� (a), VDD̄�→ηCρ (b) and VDD̄�→πJ=ψ (c) as functions of the center of mass energy
ffiffiffi
s

p
.
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coupling we get a width of 71 KeV for the D�þ → D0πþ
decay, which is in agreement with the more recent result
of ð65� 15Þ KeV of [64].
The state that we have is

ψ1 ¼
1ffiffiffi
2

p ðDþD̄�0 þ D̄0D�þÞ: ð14Þ

We can see that the pseudoscalar meson exchange with the
interaction of Eq. (13) mixes the first component of
Eq. (14) for the initial state with the second component
of the same equation for the final state and vice versa.
Altogether, using the P matrix of [61], Eq. (2), that mixes

η and η0, we find

tψ1→ψ1
¼ tD̄�0Dþ→D̄0D�þ ¼ −4g2

�
−
1

2

1

q2 −m2
π þ iϵ

þ 1

6

1

q2 −m2
η þ iϵ

þ 1

3

1

q2 −m2
η0 þ iϵ

�

× ðϵ1 · p3Þðϵ4 · p2ÞF2ð~qÞ; ð15Þ

wheremπ is the mass of the pion, ϵ1 and ϵ4 are the polarization vectors for the D̄�0 andD�þ vector mesons, respectively, and
Fð~qÞ is a form factor of the type Fð~qÞ ¼ Λ2

Λ2þ~q2, with Λ ¼ 1 GeV, which is also used later in the two pion exchange.

Considering that the masses are heavier than the external momenta, this implies the following approximations: ϵ1 · p3 ¼
− ~ϵ1 · ~p3 and ϵ4 · p2 ¼ − ~ϵ4 · ~p2. We use the Breit frame where

p1 ≡ ðp0
1; ~q=2Þ;

p2 ≡ ðp0
2;−~q=2Þ;

p3 ≡ ðp0
3;−~q=2Þ;

p4 ≡ ðp0
4; ~q=2Þ: ð16Þ

Since we are doing an estimate, we have chosen q0 ≡ 0. We are dealing with s-waves, and this allows us to use
qiqj →

1
3
~q2δij and then to rewrite the amplitude of Eq. (15) due to the exchange of a pseudoscalar meson (π, η, and η0) as

tD̄�0Dþ→D̄0D�þ ¼ g2

3
~q2
�
−
1

2

1

~q2 þm2
π þ iϵ

þ 1

6

1

~q2 þm2
η þ iϵ

þ 1

3

1

~q2 þm2
η0 þ iϵ

�
F2ð~qÞ: ð17Þ

In Fig. 4 we show the contributions coming from
Eq. (17) for the exchange of one pion (dashed line), π
plus η (thin line), and π plus η plus η0 (thick line) as
functions of the transferred momentum q. We can see a
partial cancellation between the three contributions, which
becomes very effective at large momenta.

It is interesting to compare the contribution of Fig. 4 with
the one due to vector exchange which we plot in Fig. 5.
Recall that the use of the vector exchange potential in V of
Eq. (8), together with aG function regularized with a cutoff
qmax, is equivalent to using a potential Vð~q; ~p0Þ ¼
Vθðqmax − ~pÞθðqmax − ~p0Þ [39]. Assuming ~p≃ 0, then

FIG. 3. Diagrammatic representation of theDD̄� interaction via
light pseudoscalar exchange.

500 1000 1500 2000
q MeV

10

8

6

4

2

0
t

FIG. 4 (color online). One pseudoscalar exchange potential for
the exchange of one pion (dashed line), π plus η (thin line), and π
plus η plus η0 (thick line) as functions of the transferred
momentum q.
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~p0 takes the place of ~q, and this allows a proper comparison,
recalling that qmax, to be used later, is of the order of
770 MeV. We can safely conclude that the exchange of
pseudoscalar mesons is very small compared to the vector
exchange.

C. The DD̄� interaction by means of σ exchange

In Ref. [65], the exchange of two correlated (interacting)
pions in the NN interaction was studied. In Ref. [23], the
same idea was extended to the case of D�D̄�. We apply the
same formalism here to study the DD̄� interaction.
The diagrams contributing to this process are shown in

Fig. 6. Each one of them contains four PPV vertices easily
evaluated by means of the local hidden gauge. The crossing
of the pion lines indicates that we have there the ππ
scattering amplitude that contains the σ pole [f0ð500Þ]. In
addition to the PPV vertex we could also consider the PVV
one, allowing then two D� intermediate states, but the
anomalous character of the PVV vertex renders these terms
smaller than those considered here. The Lagrangian we
need to evaluate the amplitudes is given by Eq. (13).

As found in Ref. [23], the amplitude for the diagrams in
Fig. 6 can be written as

−itσ ¼ −iVAVB
3

2
tI¼0
ππ→ππ; ð18Þ

where

tI¼0
ππ→ππ ¼ −

1

f2
s − m2

π
2

1þ 1
f2 ðs − m2

π
2
ÞGðsÞ

ð19Þ

is the on-shell part of the isoscalar amplitude for the ππ
interaction summed up to all orders in the unitary approach
[66]. The function GðsÞ in Eq. (18) is the two pion loop
function, conveniently regularized [65],

GðsÞ ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
π þ iϵ

1

ðP− qÞ2 −m2
π þ iϵ

; ð20Þ

with P the total momentum of the two pion system, P2 ¼ s.
The two factors VA and VB in Eq. (18) represent the

contributions coming from the two triangular loops in the
diagrams, which are shown in Fig. 7. The detailed
derivation for VA can be found in Ref. [23]. We use again
the Breit reference frame in which

p1 ≡ ðp0
1; ~q=2Þ;

p0
1 ≡ ðp00

1;−~q=2Þ;
p≡ ðp0; ~pÞ; ð21Þ

where ~q is the three-momentum transferred in the process.
Since there is no energy exchange, s ¼ −~q2 in Eq. (19).
We can write

VA ¼ ig2
Z

d4p
ð2πÞ4 ϵμð2p− p1Þμϵ0νð2p− p1

0Þν 1

p2 −m2
D þ iϵ

×
1

ðp− p1Þ2 −m2
π þ iϵ

F
ðp− p1

0Þ2 −m2
π þ iϵ

ð22Þ

FIG. 6. Lowest order ππ interaction in the I ¼ 1 channel for DD̄� → DD̄�.

0 500 1000 1500 2000
q MeV115

110

105

100

95
V ij

FIG. 5 (color online). Vector exchange potentials V11 (thick
line), V12 (dashed line), and V13 (dotted line) as functions of the
transferred momentum q.
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and

VB ¼ ig2
Z

d4p
ð2πÞ4 ϵμðp − 2p1Þμϵνðp − 2p1

0Þν

×
1

p2 −m2
D� þ iϵ

×
1

ðp − p1Þ2 −m2
π þ iϵ

F
ðp − p1

0Þ2 −m2
π þ iϵ

; ð23Þ

with mD and mD� the masses of the D and D� mesons,
respectively. The factor F in both equations is the product
of two static form factors

F ¼ F1

�
~pþ ~q

2

�
F2

�
~p −

~q
2

�

¼ Λ2

Λ2 þ ð~pþ ~q
2
Þ2

Λ2

Λ2 þ ð~p − ~q
2
Þ2
; ð24Þ

with Λ ¼ 1 GeV, and, together with a cutoff in the space of
intermediate states (pmax ¼ 2 GeV), it is needed to regu-
larize the integrals in Eqs. (22) and (23) which are
logarithmically divergent. This was the cutoff needed in
Ref. [65] to obtain the result of the empirical σ exchange at
large distances.

In Ref. [23] it was found that, using the Lorentz
conditions ϵμp

μ
1 ¼ 0 and ϵ0νp1

0ν ¼ 0, the final expression
for VA has the form

VA ¼ ϵμϵ
0
νðagμν þ cp1

0μpν
1Þ; ð25Þ

where

a ¼ −Ym2
D� þ Zðp1p1

0Þ þ Xðm4
D� − ðp1p1

0Þ2Þ
2ðm4

D� − ðp1p1
0Þ2Þ ;

c ¼ −3Ym2
D� ðp1p1

0Þ þ Xðp1p1
0Þðm4

D� − ðp1p1
0Þ2Þ þ Zðm4

D� þ 2ðp1p1
0Þ2Þ

2ðm4
D� − ðp1p1

0Þ2Þ2 ; ð26Þ

and

X ¼ 4g2I1 þ 4g2m2
DI2;

Y ¼ 8g2p02
1 I1 þ 8g2I3;

Z ¼ 8g2p02
1 I1 þ 8g2I4: ð27Þ

For low three momenta of the external vector mesons compared to their masses, which is assumed here, where ϵ0 ≡ 0,
and also low momenta of the external D, Eq. (25) gives VA ¼ −a~ϵ~ϵ0, and the factor ~ϵ~ϵ0 factorizes in the amplitude tσ.
The four integrals in the equations above, I1, I2, I3, and I4, after performing the integration in dp0, which can be done

analytically using Cauchy’s theorem, have the following expressions:

I1 ¼
Z

d3p
ð2πÞ3

ω1 þ ω2

2ω1ω2

1

−~q2 − ðω1 þ ω2Þ2
F;

I2 ¼
Z

d3p
ð2πÞ3

1

2ED

1

2ω1

1

ω2

1

ω1 þ ω2

ω1 þ ω2 þ ED −mD�

ED þ ω1 −mD� − iϵ
1

ED þ ω2 −mD� − iϵ
F;

I3 ¼
Z

d3p
ð2πÞ3

1

2ED

1

2ω1

1

ω2

1

ω1 þ ω2

ω1 þ ω2 þ ED −mD�

ED þ ω1 −mD� − iϵ

ð~p2 þm2
DÞp02

1 þ ð~p ~q
2
Þ2

ED þ ω2 −mD� − iϵ
F;

I4 ¼
Z

d3p
ð2πÞ3

1

2ED

1

2ω1

1

ω2

1

ω1 þ ω2

ω1 þ ω2 þ ED −mD�

ED þ ω1 −mD� − iϵ

ð~p2 þm2
DÞp02

1 − ð~p ~q
2
Þ2

ED þ ω2 −mD� − iϵ
F; ð28Þ

FIG. 7. Two pion exchange triangle vertices, VA in Fig. a and
VB in Fig. b.
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where ω1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~pþ~q=2Þ2þm2

π

p
, ω2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~p−~q=2Þ2þm2

π

p
,

and ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

D

p
are the energies of the two pions

and of the D meson involved in the loop, respectively, and
mD� is the mass of the D̄� meson. The former equations are
obtained taking only the positive energy part of the D
propagator ½ðp0 − EDÞ2ED�−1, which is a very good
approximation given the large mass of the D.
In the case of VB, after some simple algebra, we obtain

VB ¼ g2I1 þ g2
�
2ðm2

D −m2
πÞ − 4p1p1

0

−
ðm2

D −m2
πÞ2

m2
D�

þm2
D�

�
I5

− 2g2
�
1þm2

D −m2
π

m2
D�

�
I6 þ g2

1

m2
D�

I7; ð29Þ

where

I5 ¼
Z

d3p
ð2πÞ3

1

2EV

1

2ω1

1

ω2

1

ω1 þ ω2

ω1 þ ω2 þ EV −mD

EV þ ω1 −mD

×
F

EV þ ω2 −mD
;

I6 ¼
Z

d3p
ð2πÞ3

1

2EV

F
ω1

ω1 þ EV

p02
1 − ðω1 þ EVÞ2

;

I7 ¼
Z

d3p
ð2πÞ3

F
2EV

; ð30Þ

where EV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

D�
p

. Once again the nonrelativistic
propagator for the intermediateD� has been taken to get the
former equations.

The potential tσ of Eq. (18) as a function of the
transferred momentum ~q is plotted in Fig. 8. One can
observe, from the comparison with Fig. 5, that this
contribution is reasonably smaller than that of vector
exchange, but the faster fall as a function of ~q makes its
contribution less relevant, as we shall discuss later.

D. Uncorrelated crossed two pion exchange

Now we study the case of the exchange of two non
interacting pions. Only the two crossed diagrams (a) and
(d) of Fig. 6 contribute to the process.
The evaluation of the amplitude is completely analogous

to the case of the D�D̄� interaction evaluated in Ref. [23],
but recalling that now we have one propagator forDmeson
and one for the D�. We obtain, with the momenta assign-
ment of Fig. 9,

t ¼ 5

4
ig4

Z
d4p
ð2πÞ4 ϵμð2p1 − pÞμϵνð2p1

0 − pÞνϵα0ð2p − 2p1
0 þ p2Þαϵβ 00ð2p − p1

0 − p1 þ p2Þβ

×
F2

p2 −m2
D� þ iϵ

1

ðp − p1
0 þ p2Þ2 −m2

D þ iϵ
1

ðp − p1Þ2 −m2
π þ iϵ

1

ðp − p1
0Þ2 −m2

π þ iϵ
; ð31Þ

where ϵ is the polarization four-vector corresponding to the vector meson in the triangular loop, while ϵ0 and ϵ00 correspond
to the vector mesons in the external legs of the diagram.
Once again, we take the positive energy part of the D and D� propagators and for the external vectors we assume small

three-momenta, hence ϵ0 ≡ 0. We also assume that 4~p2 ≫ ~q2=4. Thus, applying the completeness condition for the
polarization vector, we can rewrite Eq. (31) as

t ¼ 5

4
ig4

1

2
~ϵ0~ϵ00

Z
d4p
ð2πÞ4 ð~p

2 − ~q2Þ
��

4~p2 −
~q2

4

�
−

1

q2

�
ð2~p ~qÞ2 − ~q4

4

��
F2

×
1

p2 −m2
D� þ iϵ

1

ðp − p1
0 þ p2Þ2 −m2

D þ iϵ
1

ðp − p1Þ2 −m2
π þ iϵ

×
1

ðp − p1
0Þ2 −m2

π þ iϵ
: ð32Þ

Performing the analytical integration in dp0, we obtain

500 1000 1500 2000
q MeV

25

20

15

10

5

t

FIG. 8 (color online). Potential tσ as a function of the
momentum transferred in the process.
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t ¼ −
5

4
g4

1

2
~ϵ0~ϵ00

Z
d3p
ð2πÞ3 ð~p

2 − ~q2Þ
��

4~p2 −
~q2

4

�
−

1

q2

�
ð2~p ~qÞ2 − ~q4

4

��
F2

ω1 þ ω2

1

2ω1ω2

×
1

2ED

1

2EV
½ω2

1 þ ω2
2 þ ω1ω2 − ðω1 þ ω2Þð2p0

1 − EV − EDÞ þ ðp0
1 − EVÞðp0

1 − EDÞ�

×
1

p0
1 − ω1 − EV þ iϵ

1

p0
1 − ω1 − ED þ iϵ

1

p0
1 − ω2 − EV þ iϵ

1

p0
1 − ω2 − ED þ iϵ

: ð33Þ

The potential t is plotted in Fig. 10 as a function of the
exchanged momentum.
Once again, the vector exchange potential in Fig. 5 is

dominant in comparison with the contribution of the
uncorrelated pion exchange term in Fig. 10.

III. DETERMINATION OF THE DD̄�
INVARIANT MASS DISTRIBUTION FOR

THE PROCESS EþE− → Π�ðDD̄�Þ∓
In Ref. [59] the eþe− → π�ðDD̄�Þ∓ reaction is studied

for a center of mass energy
ffiffiffi
s

p ¼ 4.26 GeV and the DD̄�
invariant mass associated with this reaction is obtained,
showing a signal around 3885 MeV with a width close to
30 MeV and which is interpreted as a JP ¼ 1þ resonant
state. Following Ref. [22], we can calculate the DD̄�
invariant mass spectrum for the reaction studied in
Ref. [59] as

dσ
dMD�D̄�

∝
p ~q
s

ffiffiffi
s

p jTj2FL; ð34Þ

where
ffiffiffi
s

p
is fixed to the value 4.26 GeV, p is the pion

momentum in the eþe− center of mass frame, and ~q is the
center of mass momentum in the DD̄� system:

p ¼ λ1=2ðs;m2
π;M2

DD̄� Þ
2

ffiffiffi
s

p ; ð35Þ

~q ¼ λ1=2ðM2
DD̄� ; m2

D;m
2
D̄� Þ

2MDD̄�
: ð36Þ

The factor FL ¼ p2L in Eq. (34) is needed to account for
the relative partial wave between the pion and the DD̄�
system produced in the reaction. In this case, we are going
to consider the formation of a JP ¼ 1þ state near threshold,
thus the DD̄� system is preferably produced in S-wave
(L ¼ 0). If a state with massMR and width ΓR is formed in
the DD̄� system, the amplitude T of Eq. (34) can be
parametrized as

T ¼ A
M2

DD̄� −M2
R þ iMRΓR

; A≡ constant. ð37Þ

In general, the DD̄� invariant mass distribution can have
contributions from a nonresonant background. Following
Ref. [59] we consider a background of the form

B ¼ αðMDD̄� −Mmin
DD̄� ÞβðMmax

DD̄� −MDD̄� Þη; ð38Þ

where Mmin
DD̄� and Mmax

DD̄� represent the minimum and
maximum values of the DD̄� invariant mass and α, β,
and η are unknown constants.
In this way, the DD̄� invariant mass spectrum can be

obtained as

500 1000 1500 2000
q MeV

4

3

2

1

0

1

2
t

FIG. 10 (color online). Potential t for noninteracting pion
exchange as a function of the momentum transferred in the
process.FIG. 9. Momenta assignment in the two pion exchange in

DD̄� → DD̄�.
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dσ
dMDD̄�

¼ 1

s
ffiffiffi
s

p p ~qðjTj2FL þ BÞ: ð39Þ

As can be seen from Eqs. (37) and (38), we have 6
unknown parameters to determine theDD̄� spectrum (same
number as in Ref. [59]): the magnitude of the resonant
amplitude A, the mass and width of the state (MR and ΓR,
respectively), the magnitude of the background amplitude,
α, and the exponents β and η. To constrain these parameters
we perform a fit to the data minimizing the χ2 and consider
a value of the χ2 per degrees of freedom (d.o.f) around 1 as
the criteria to establish the goodness of the fit. This is the
same criteria as the one adopted by the authors in Ref. [59],
in which a value of χ2=d:o:f of 1 is found for the D0D̄�−
mass spectrum and of 1.1 for the DþD̄�0 case.

IV. RESULTS

A. Resonance generation in the DD̄� system

Following the scheme of Ref. [23], we roughly compare
the strength of the potential in the three cases evaluatingR
VðqÞd3q. Summing the contributions given by one

meson exchange and two pion exchange, with and without
interaction, we obtain

R
VðqÞd3q≃−112GeV3. In the case

of vector exchange, the strength is
R
VðqÞd3q≃−433GeV3.

We thus neglect the pseudoscalar exchange contributions
but keep them in mind when evaluating uncertainties.
We studied the T matrix coming from vector exchange

for values of
ffiffiffi
s

p
around 3900 MeV, in particular the shape

of jTj2.
Although no bound state showed up in the 1−ð1þþÞ case

in the region of interest, we found interesting results in the
case with positive G-parity. In Fig. 11, jT11j2 (where the
subscript 11 means that we are considering the DD̄� →
DD̄� transition), for the case 1þð1þ−Þ, is shown as a
function of the center of mass energy. We used the
dimensional regularization expression of Eq. (11) for the
G function, using for the subtraction constants α1 ¼ −1.28,
α2 ¼ −1.57 and α3 ¼ −1.86 and choosing μ ¼ 1500 MeV,
as suggested in [26]. This choice of the parameters is
equivalent to using a cutoff qmax ¼ 770 MeV. A clear peak
is visible in Fig. 11 for

ffiffiffi
s

p ¼ 3872 MeV, with a width of
approximately Γ≃ 40 MeV.
In Fig. 12 we show the dependence of the position of the

peak on the cutoff. The quantity jT11j2 is plotted as a
function of

ffiffiffi
s

p
for values of the αi subtraction constants

corresponding to a cutoff equal to 700, 750, 770, 800, and
850 MeV. The corresponding values of the peak are shown
in Table I: going to higher values of the cutoff, the binding
energy of the state increases. The width varies within
40 − 50 MeV. These changes can serve to quantify our
uncertainties from the neglected pseudoscalar exchanges or
other possible sources. We have also changed the parameter

3600 3700 3800 3900 4000
s MeV

T11
2

0

50 000

100 000

150 000

200 000

FIG. 11 (color online). jTj2 as a function of
ffiffiffi
s

p
.

3600 3700 3800 3900 4000 s MeV

100 000

200 000

T11
2

FIG. 12 (color online). jTj2 as a function of ffiffiffi
s

p
for values of the

cutoff qmax equal to 850, 800, 770, 750, and 700 MeV. The peak
moves to the left as the cutoff increases.

TABLE I. Position of the peak of jTj2 corresponding to
different values of qmax.

qmax ½MeV� ffiffiffi
s

p ½MeV�
700 3875
750 3873
770 3872
800 3869
850 3867

FIG. 13 (color online). jTj2 in the second Riemann sheet for the
transition DD̄� → DD̄� for the IGðJPCÞ ¼ 1þð1þ−Þ sector.

F. ACETI et al. PHYSICAL REVIEW D 90, 016003 (2014)

016003-10



Λ in the form factor of Eq. (24) in the range
700 − 1200 MeV. We have checked that multiplying our
potential by a factor within the range of 0.6 − 1.4 gives us
similar results as with this change of the cutoff and Λ. The
calculations are done using average values of the masses
the D and D̄�. If we use the actual masses in the experi-
ments quoted, the changes in the binding energy are of the
order of 1 MeV.
It is interesting to note that the energies obtained all stick

around threshold (3076 MeV). Next we discuss if there are
poles associated to the peaks observed in Fig. 12.
We move to the complex plane, extrapolating the

amplitude to complex values of the energy. To do this,
for the channels which are open, we need the expression of
the loop function in the second Riemann sheet, which can
be written as [54]

GII
i ð

ffiffiffi
s

p Þ ¼ GI
ið

ffiffiffi
s

p Þ þ i
p

4π
ffiffiffi
s

p ImðpÞ > 0; ð40Þ

where GI
ið

ffiffiffi
s

p Þ is given by Eq. (11). In Fig. 13 jT11j2 is
plotted in the second Riemann sheet for the value of
qmax ¼ 770 MeV. A pole, corresponding to a state with
ð ffiffiffi

s
p þ iΓ=2Þ ¼ ð3878þ i23Þ MeV is perfectly visible.
If we lower the cutoff, for a while one still has poles in

the complex plane, but for values of qmax < 700 MeV, the
poles in

ffiffiffi
s

p
fade away although one still has a pronounced

cusp effect of the amplitude, with experimental conse-
quences in cross sections. This situation is usually referred
as having a virtual pole.
Note that in all cases our states produce peaks around the

DD̄� threshold of 3876 MeV.

B. The DD̄� invariant mass distribution

As we have seen in the previous section, the dynamics
involved in theDD̄� system gives rise to the generation of a
state with isospin 1, quantum numbers JP ¼ 1þ, mass
3867 − 3875 MeV, and width around 40 MeV. The ques-
tion which arises now is if a state below the DD̄� threshold

can be responsible for the signal reported in the DD̄�
spectrum when studying the reaction eþe− →
π�ðDD̄�Þ∓ [59].
Using Eq. (39) and the procedure explained in Sec. III,

we show in Fig. 14 the results found for the D0D�− (left
panel) and DþD̄�0 spectra (right panel), respectively,
determined considering the formation of a state as the
one obtained in our study of the DD̄� system. As can be
seen, the data can be perfectly explained with a state with a
mass close to 3870 MeV and around 30 MeV of width.
We have studied the range of masses that the fit can

accommodate. We can have higher masses than 3870 MeV
with still good values of the χ2, but they gradually increase
as the mass increases. We put the limit at 3884 MeV where
the χ2 values are no longer good. This gives a range
3862 − 3884 MeV, by means of which we can give an
acceptable fit to the data. The theory band of 3867 −
3875 MeV given in the other section is within the band
allowed by the fit to the data.

V. CONCLUSIONS

We have done a combined study of a Zc state of I ¼ 1
around 3900 MeV, which has been claimed in several
experiments. On the one hand, we have used an extension
of local hidden gauge approach to the heavy quark sector to
study the interaction of DD̄� and D̄D�, together with
coupled channels with a pseudoscalar and a vector meson.
The constraints of heavy quark spin symmetry show that
the terms which are dominant in other processes, like in
I ¼ 0, due to the exchange of light mesons, are now
forbidden. Hence, one resorts to sub-dominant terms that
come from the exchange of heavy vectors, or the exchange
of two pions. We find that the exchange of two pions is
quite small in comparison with the exchange of heavy
vectors and its effect is included in the uncertainties of the
results. We find a state with a mass of 3869 − 3875 MeV
and a width around 40 MeV with I ¼ 1 and positive G−
parity. This state, in our formalism, is an isospin partner of
the Xð3872Þ.

FIG. 14. Invariant mass distribution for the D0D�− (left panel) and DþD̄�0 (right panel) systems. The abscissa axis represents the
corresponding DD̄� invariant mass in units of GeVand the ordinate axis the spectrum in arbitrary units. The dashed line represents the
bound state contribution:MR ¼ 3874.15 MeV, width ΓR ¼ 27 MeV (left panel) andMR ¼ 3875.62 MeV, width ΓR ¼ 30 MeV (right
panel). The dotted line corresponds to the background and the solid line is the final result from the fit: χ2=d:o:f ¼ 1.3 (left panel) and
χ2=d:o:f ¼ 1.1 (right panel).
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The second part of the work consists in a reanalysis of
the experiment of [59] in the eþe− → π�ðDD̄�Þ∓ reaction.
The experimentalists extracted a mass of about 3885 MeV
and width 25� 3� 11 MeV from the enhancement of the
DD̄� distribution around threshold. We performed a rean-
alysis of the data and found a solution close by, withMR ≃
3875 MeV and Γ≃ 30 MeV preferably. Hence, the present
study shows that the data of [59] are compatible with a
slightly lower mass, as obtained theoretically in the
present paper.
Thus, the results reported here offer a natural explanation

of the state claimed in [59], in terms of aDD̄�ðD̄D�Þweakly
bound state that decays into the ηcρ and πJ=ψ channels.
The question remains whether that state reconfirmed in

this paper would be the same as the Zcð3900Þ claimed by
BESIII in [43], or the Zcð3894Þ reported by Belle [44], or
the Zcð3886Þ reported by CLEO in [45]. Given the
uncertainties in the masses and widths in all these experi-
ments, it is quite likely that these experiments are seeing the
same state, although other options cannot be ruled out at the
present time. In any case, we can say that, given the fact that
a single channelDD̄� with an energy independent potential

cannot produce a resonance above the threshold at
3875.87 MeV [67], a state with 3900 MeV could not be
easily interpreted as a DD̄�ðD̄D�Þ molecular state, while
the one at lower energy stands naturally for a molecular
interpretation, as we have reported here. Further precise
measurements and investigations of other decay channels
will help shed light on this issue in the future, and they
should be encouraged.
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