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The existence of R-parity in supersymmetric models can be naturally explained as being a discrete
subgroup of gauged baryon minus lepton number (B − L). The most minimal supersymmetric B − Lmodel
triggers spontaneous R-parity violation, while remaining consistent with proton stability. This model is
well motivated by string theory and makes several interesting, testable predictions. Furthermore, R-parity
violation contributes to neutrino masses, thereby connecting the neutrino sector to the decay of the lightest
supersymmetric particle (LSP). This paper analyzes the decays of third generation squark LSPs into a quark
and a lepton. In certain cases, the branching ratios into charged leptons reveal information about the
neutrino mass hierarchy, a current goal of experimental neutrino physics, as well as the θ23 neutrino mixing
angle. Furthermore, optimization of leptoquark searches for this scenario is discussed. Using currently
available data, the lower bounds on the third generation squarks are computed.
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I. INTRODUCTION

The upgrade to the Large Hadron Collider (LHC) will
soon be completed, providing us with an exciting oppor-
tunity to probe the next energy frontier. Among the many
candidates for new physics in that frontier, supersymmetry
(SUSY) stands out as a rich and compelling framework.
SUSY not only addresses the gauge hierarchy problem, a
puzzle that has driven many model building efforts over
several decades, but can also speak to other outstanding
issues in the standard model (SM). This includes dark
matter and a mechanism for radiative electroweak sym-
metry breaking. As we wait for the next LHC run to begin,
the interim is a good period to reconsider the phenom-
enology of low energy supersymmetric models. Among
other things, it is of interest to investigate if such SUSY
scenarios can yield any signals that have not yet been
seriously considered, especially in well-motivated alterna-
tives to the R-parity conserving minimal supersymmetric
standard model (MSSM).
Despite their theoretically pleasing aspects, generic SUSY

particle physics models potentially have a serious problem
regarding proton decay. This follows from the fact that the
most general MSSM superpotential allows for baryon and
lepton number violating terms at tree level and, therefore,
rapid proton decay. The typical, yet ad hoc, solution is to
impose R-parity, RP ¼ ð−1Þ3ðB−LÞþ2s where s is the spin
of the particle. This discrete symmetry forbids violation of
baryon number (B) minus lepton number (L) by one unit.
Accepting R-parity conservation, however, severely narrows

one’s view of the SUSY phenomenological landscape. This
is because the lightest supersymmetric particle (LSP) in
R-parity conserving theories is stable and, therefore, must be
neutral due to cosmological considerations.
Perhaps the most appealing candidates for a deeper

origin for R-parity, models with gauged Uð1ÞB−L, are
based on the observation that R-parity is a discrete
subgroup of Uð1ÞB−L. In such models, R-parity is a good
symmetry as long asUð1ÞB−L is. However, onceUð1ÞB−L is
broken, the B − L number of the field that breaks Uð1ÞB−L
determines the fate of R-parity: an even B − L field leads to
automatic R-parity conservation (RPC) [1–4] (for more
recent studies see [5–9]), while an odd B − L field triggers
spontaneous R-parity violation (RPV) [10–13].1 Typically,
spontaneous R-parity violation is safe in the sense that only
lepton number violation is generated at tree level, leaving
the proton as stable as it would be with RPC.
As one might expect, the approach in these early B − L

studies was to introduce a new “Higgs” sector (that is,
superfieldswith aB − L charge)withwhich to spontaneously
break the B − L symmetry. However, the B − L anomaly
cancellation conditions provide a subtle, and more minimal,
alternative to this approach. Note that the three generations of
right-handed neutrino superfields required to cancel these
anomalies contain right-handed sneutrinos. Remarkably, the
right-handed sneutrinos have the correct quantumnumbers to
spontaneously break B − L in a phenomenologically accept-
ableway. Specifically, they are neutral under the SM, carry no
baryon number and, of course, have a B − L charge of one.
Therefore, anomaly cancellation defines the most minimal
B − L extension of the MSSM. This model has exactly the
MSSMparticle content plus threegenerations of right-handed*zlmarshall@lbl.gov
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1See also recent studies of explicit R-parity violation assuming
minimal flavor violation [14,15].
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neutrino supermultiplets, and it does not require a new Higgs
sector. This minimal B − L theory was proposed in [16–19],
arguing for its appeal from a “bottom up” point of view.2 The
same theory was found from a “top down” approach within
the context of a class of vacua of heteroticM-theory [20–25].
Due to the odd B − L charge of the sneutrino, the minimal
B − L model must always spontaneously break R-parity.
However, because the right-handed sneutrino has no baryon
number, its vacuum expectation value (VEV) does not
introduce proton decay at tree level. In addition, this model
has several potentially testable and interesting predictions:

(i) R-parity violation is manifest though lepton number
violating operators, which could lead to lepton
number violating signatures at the LHC; see
e.g. [26,27].

(ii) The existence of two neutral light fermions (sterile
neutrinos), in addition to the usual three neutrinos
[12,28,29]. These may play a role in cosmology
[27,28,30].

(iii) A B − L neutral gauge boson, Z0, whose mass is
proportional to the soft mass of the right-handed
sneutrino. This gauge boson must be at the TeV
scale and, therefore, detectable at the LHC.

(iv) The right-handed sneutrino VEV directly links the
neutrino sector to lepton number violation by one
unit. This generates tree-level Majorana contribu-
tions to the neutrino masses.

This last statement is significant, since it specifies the
size of the RPV. It follows from the upper bound placed on
this contribution by the neutrino masses that the RPV is
only relevant for the decay of the LSP, which would
otherwise be stable under RPC. All other SUSY processes
will effectively be R-parity conserving. The last item is also
crucial because it relates neutrino masses to collider
physics through R-parity violation, an exciting synergy.
It suggests that one may be able to infer information about
the neutrino sector from LSP decays. Finally, it is worth-
while to note that despite RPV, a gravitino LSP, while
unstable, may live long enough to be the dark matter of the
Universe [31–33].
This model of spontaneous RPV is, therefore, a well-

motivated alternative to RPC. As with all SUSY models, its
phenomenologywill be highly dependent on the choice of the
LSP.3 R-parity violation plays an important role from this
perspective because it allows the LSP to decay. This liberates
the LSP to be any superpartner, including those that have
color and charge. One example, of this type, is a charged
slepton LSP. However, this will decay like a charged Higgs,
an element that already exists in theMSSM. Squark LSPs, on

the other hand, offer an opportunity for a whole new set of
signals since they act as leptoquarks; that is, scalar particles
that are pair produced and decay into a quark and a lepton.
Among the squarks, the third generation is perhaps the most
interesting LSP candidate since these are generally expected
to have the lowest masses due to renormalization group
effects; see e.g. [34]. Furthermore, since the lowergenerations
must be fairly degenerate due to the SUSY flavor problem,
they would be produced more readily and, therefore, have
stronger bounds. Finally, stops are the most engaging of all
the squarks because of their substantial radiative contribu-
tion to the Higgs mass and the role they play as a measure of
fine-tuning in SUSY; that is, the little hierarchy problem.
Motivated by this discussion, this paper extends the

study of our earlier paper [35], by analyzing the prompt
decays of third generation squark LSPs within the context
of a minimal B − L extension of the MSSM. One of the
aims of this paper is to highlight the relationship between
stop and sbottom LSP decays and the neutrino sector.
Especially striking is the fact that one may infer informa-
tion about the neutrino mass hierarchy from the R-parity
violating LSP decays. Just as important are the leptoquark
signals, which are typically not associated with SUSY.
Experimentally, they have not yet been analyzed with data
from the latest LHC run. As we will show in this paper, the
leptoquark searches that have previously been conducted
allow stop LSP masses as low as 420 GeVand sbottom LSP
masses as low as 500 GeV.
The rest of this paper is organized as follows. Section II

introduces the details of the model as well as specifying the
R-parity violating sector. The consequences in terms of
R-parity violation are discussed in Sec. III and their
influence on neutrino masses are illustrated in Sec. IV.
Section V contains the results for both the stops and
sbottoms, including lower bounds and the connection
between squark decays and the neutrino sector. This
connection is explored through a numerical scan, but the
results can be understood analytically, an is done in Sec. VI.
Section VI also attempts to frame the results in terms of a
bigger picture, investigating how this scenario can be
distinguished from scenarios with similar signatures.
Finally, Sec. VII summarizes our results. Throughout this
work, many references will be made to technical calcu-
lations discussed in Appendix A, making this a potentially
important section for the reader. The remaining three
Appendixes, B, C and D, briefly discuss the chargino
sector, the third generation squark sector, and the Feynman
rules used in the calculations of the squark decays.

II. THE MINIMAL SUSY B − L AND
SPONTANEOUS R-PARITY VIOLATION

There are several possible minimal B − L extensions of
the MSSM of the form SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1Þ ⊗
Uð1Þ0, characterized by different choices of the two
Uð1Þ factors. If these are remnants of a GUT theory, such

2Such a minimal model was outlined as a possible low energy
manifestation of E6 grand unified theory (GUT) models in [12].

3While the complete model would include a gravitino LSP as
the dark matter of the Universe, throughout this paper we shall
use LSP to refer to the lightest supersymmetric particle relevant
for collider physics.
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as SO(10), then these possibilities are all physically
equivalent, but will be characterized by different kinetic
mixing between the two Uð1Þ factors. Among these
possibilities, as shown in [36], there is a unique choice
that will have vanishing kinetic mixing—not only at the
GUT scale, but at any lower scale. This choice of Uð1Þ
factors is Uð1Þ3R ×Uð1ÞB−L, where Uð1Þ3R is the third
component of right-handed isospin. The fact that this basis
has no kinetic mixing greatly simplifies the present
analysis. Therefore, in this paper, we proceed using the
specific minimal extension gauge group

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1Þ3R ⊗ Uð1ÞB−L: ð1Þ

We will comment later in the paper on how our results
apply to the other similar extensions. The gauge structure in
this case is such that the hypercharge, Y, is related to
the B − L and third component of right-handed isospin
charges by

Y ¼ I3R þ B − L
2

; ð2Þ

analogous to the relationship between the electric charge,
hypercharge, and third component of left-handed isospin in
the SM.
The matter content and its SUð3ÞC ⊗ SUð2ÞL ⊗

Uð1Þ3R ⊗ Uð1ÞB−L charges are given by three copies of

Q ∼ ð3; 2; 0; 1=3Þ; uc ∼ ð3̄; 1;−1=2;−1=3Þ;
dc ∼ ð3̄; 1; 1=2;−1=3Þ;

ð3Þ

L ∼ ð1; 2; 0;−1Þ; ec ∼ ð1; 1; 1=2; 1Þ;
νc ∼ ð1; 1;−1=2; 1Þ;

ð4Þ

while the MSSM Higgs sector is

Hu ∼ ð1; 2; 1=2; 0Þ; Hd ∼ ð1; 2;−1=2; 0Þ:

The superpotential is similar to that of the MSSM but
contains an additional Yukawa coupling to the right-handed
neutrino superfield

W ¼ YuQHuuc − YdQHddc − YeLHdec

þ YνLHuν
c þ μHuHd; ð5Þ

where the Yukawa couplings are three-by-three matrices in
family space and are in general complex. The soft SUSY
breaking Lagrangian is

−Lsoft ¼ m2
~νc j~νcj2 þm2

~L
j ~Lj2 þm2

Hu
jHuj2 þm2

Hd
jHdj2

þ ðMR
~W2
R þM2

~W2 þMBL
~B02 þM3 ~g2

þ aν ~LHu ~ν
c þ bHuHd þ H:c:Þ þ � � � ; ð6Þ

where the ellipses refer to terms which also exist in the
MSSM and are not crucial here. The fields ~WR; ~W; ~B0, and ~g
are the fermion superpartners of the third component of
right-handed isospin, left-handed isospin, B − L, and color
gauge bosons respectively. Theaν is the soft trilinear analogue
of Yν and is, therefore, also a three-by-three matrix in family
space. The superpotential and Lagrangian are valid in the
energy regime between the GUT scale and the TeV scale.
Here we continue by analyzing physics at the TeV scale.
The notation for the VEVs of the fields phenomeno-

logically allowed to acquire sizable VEVs is

h~νc3i≡ 1ffiffiffi
2

p vR; h~νii≡ 1ffiffiffi
2

p vLi; hH0
ui≡ 1ffiffiffi

2
p vu;

hH0
di≡ 1ffiffiffi

2
p vd; ð7Þ

where i ¼ 1; 2; 3 is the generational index and tan β≡
vu=vd. The generation of a right-handed sneutrino superfield
is not identifiable through its interactions, unlike a left-
handed electron neutrino which couples to the electron
through the SUð2ÞL gauge interactions. As a result, there
is freedom to rotate the right-handed neutrino fields into any
basis and specifically to a basis in which only one generation
of right-handed sneutrino acquires a VEV. Here this will be
chosen, without loss of generality, to be the third generation.
Electroweak symmetry breaking will induce VEVs in the
remaining two right-handed sneutrino generations. However,
these will be on the order of the neutrino masses and,
therefore, are neglibible. Note that vLi is in general complex.
Substituting the VEVs from Eq. (7) into the F-term,

D-term and soft potentials yields

hVFi ¼
1

2
jμj2v2 þ 1

4
jYνi3vLij2v2R þ 1

4
jYνi3j2v2uv2R

þ 1

4
jYνijvLij2v2u

−
1

2
ffiffiffi
2

p ðμYνi3vdvLivR þ H:c:Þ; ð8Þ

hVDi ¼
g22
32

ðv2u − v2d − jvLij2Þ2 þ
g2BL
32

ðv2R − jvLij2Þ2

þ g2R
32

ðv2u − v2d − v2RÞ2; ð9Þ

hVsofti ¼
1

2
m2

~Li
jvLij2 þ

1

2
m2

~νc
3
v2R þ 1

2
m2

Hu
v2u

þ 1

2
m2

Hd
v2d þ bvdvu

þ 1

2
ffiffiffi
2

p ðaνi3vuvLivR þ H:c:Þ; ð10Þ

where repeated generational indices are summed and gR, g2.
and gBL are the third component of right-handed isospin,
left-handed isospin, and B − L gauge couplings respectively.
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Equations (8)–(10) can be simplified by considering
some general phenomenological features of this model.
For example, neutrino masses are roughly proportional
to the Yνij and vLi parameters and, hence, Yνij ≪ 1 and
vLi ≪ vu;d; vR. With this in mind, the complete potential
energy has the following minimization conditions:

v2R ¼
−8m2

~νc
3
þ g2Rðv2u − v2dÞ
g2R þ g2BL

; ð11Þ

1

8
ðg22 þ g2RÞv2 ¼ − jμj2 þM2

Hu
tan2β −M2

Hd

1 − tan2β
; ð12Þ

2b
sin 2β

¼ 2jμj2 þm2
Hu

þm2
Hd
; ð13Þ

vLi ¼
vRffiffi
2

p ðY�
νi3μvd − a�νi3vuÞ

m2
~Li
− g2

2

8
ðv2u − v2dÞ − g2BL

8
v2R

; ð14Þ

where v2 ¼ v2d þ v2u and

M2
Hu

≡m2
Hu

−
1

8
g2Rv

2
R; ð15Þ

M2
Hd

≡m2
Hd

þ 1

8
g2Rv

2
R: ð16Þ

These conditions necessarily mean that the soft mass
of the sneutrino that acquires a VEV, the third generation
here, must have a tachyonic soft mass. Radiative mecha-
nisms for achieving such a mass have been discussed in
references [25,37,38].
Prior to electroweak symmetry breaking, B − L breaking

leaves one linear combination of the third component of
right-handed isospin and B − L gauge bosons massless—
the hypercharge gauge boson. The other linear combination,
ZR, becomes massive. Including electroweak symmetry
breaking effects, the mass of ZR is

M2
ZR

≃ 1

4
ðg2R þ g2BLÞv2R

�
1þ g4R

ðg2R þ g2BLÞ2
v2

v2R

�
: ð17Þ

See Ref. [19] for more details. Current bounds onMZR
are at

around 2.5 TeV [39,40].

III. R-PARITY VIOLATION

R-parity violation in this model is best parametrized by
the two flavorful parameters—vLi and

ϵi ≡ 1ffiffiffi
2

p Yνi3vR: ð18Þ

The superpotential expanded around the vacuum now
contains the R-parity violating terms

W ⊃ ϵiLiHu −
1ffiffiffi
2

p YeivLiH−
d e

c
i ; ð19Þ

which is similar to the so-called bilinear RPV scenario [41].
In addition, the Lagrangian contains various other bilinear
terms, generated by vLi and vR, from the supercovariant
derivative:

L ⊃ −
1

2
vL�

i
½g2ð

ffiffiffi
2

p
ei ~W

þ þ νi ~W
0Þ − gBLνi ~B

0�

−
1

2
vR½−gRνc3 ~WR þ gBLνc3 ~B

0� þ H:c: ð20Þ

The results and analysis in the paper will be carried out
using the Lagrangian based on Eqs. (19) and (20). However,
it is worthwhile to note that it is sometimes useful to rotate
away the ϵi term in favor of the so-called trilinear R-parity
violating terms. This is true when comparing to given
bounds on various low-energy constraints on RPV, such
as lepton number violating processes, and it makes approxi-
mating decays widths more straightforward. An example of
each of these will be given in this section. Rotating ϵi away
generates the following terms in the superpotential:

WTRPV ¼ λijkLiLjeck þ λ0ijkQiLjdck; ð21Þ

where λijk is antisymmetric under the interchange of i and j.4

This is accomplished by considering Hd as a fourth
generation lepton. In this case, the μ and ϵi terms can be
combined to read μmL̂

0
mHu, where m ¼ 0;…; 3, L̂0

0 ¼ Hd,
L̂0
1;2;3 ¼ Li, μ0 ¼ −μ, and μ1;2;3 ¼ ϵi. The μm term can be

perturbatively rotated so that only μ0 is nonzero. This
requires the rotation L̂0 → L̂ ¼ RμL̂

0 with

Rμ ¼

0
BBBBBB@

1 − ϵ1
μ − ϵ2

μ − ϵ3
μ

ϵ1
μ 1 0 0

ϵ2
μ 0 1 0

ϵ3
μ 0 0 1

1
CCCCCCA
: ð22Þ

Implicit in this is that ϵi ≪ μ, which follows from the fact
that ϵi contributes to neutrino masses, as we shall see later.
The rotation leaves only one bilinear between Hu and a
linear combination of L0

m, which is, of course, mostly
composed of Hd. This rotation must also be applied to
Hd in the down-type quark Yukawa term, Yd, and the
charged lepton Yukawa coupling term, Ye; see Eq. (5). The
parametrization of λijk and λ0ijk can be read off from this
rotation:

λijk ¼
1

2
Yeik

ϵj
μ
−
1

2
Yejk

ϵi
μ
; ð23Þ

λ0ijk ¼ Ydik
ϵj
μ
: ð24Þ

4Note that each Li is an SUð2ÞL doublet. Hence, LiLj ¼
ϵABLA

i L
B
j is antisymmetric in ij.
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Because the charged lepton and down quark Yukawa
matrices are dominated by the three-three component which
gives mass to the tau lepton and bottom quark respectively,
those matrices can be calculated to be Ye ∼ diagð0; 0; YτÞ
and Yd ∼ diagð0; 0; YbÞ. This means that the largest ele-
ments in the trilinear RPV Yukawas are λ3i3 ¼ −λi33 ¼
Yτϵi=μ and λ03i3 ¼ Ybϵi=μ.
As an application of this rotation, consider the lepton

number violating decay μ → eγ. This places the following
approximate bound on the trilinear R-parity violating
couplings [42]:

jλ23kλ13kj ≲ 2 × 10−4
�

m~ν3

100 GeV

�
−2
: ð25Þ

Using Eq. (23) yields

���� ϵ1ϵ2μ2

����≲ 2.5 × 10−3
�

m~ν3

100 GeV

�
−2

ð26Þ

as the most stringent constraint. This corresponds to
tan β ¼ 55, approximately the upper bound on tan β that
keeps Yτ perturbative up to the GUT scale. The dependence
on tan β is due to the fact that the SUSY Yukawa
coupling Yτ ¼

ffiffiffi
2

p
mτ=vd, where mτ is the tau mass. This

is negligible due to the suppression of the lepton Yukawa
coupling and the μ term. One would expect ϵi values much
lower than this bound due to constraints from neutrino
masses, as we shall see later. It is worth noting that
contributions to μ → eγ also arise from the ei ~W

þ term
in Eq. (20). However, this is further suppressed due to the
~Wþ-charged lepton mixing, which is proportional to lepton
masses. See the approximate value in Eq. (B14).
Using Eq. (24), the decay width of the stop LSP into a

bottom quark and a charged lepton (henceforth, referred to
as a bottom-charged lepton) is given by

Γ~t1→blþi
∼

1

16π
Y2
b

���� ϵiμ
����2m~t1 ; ð27Þ

where ~t1 indicates the lightest of the two physical stop
states (SUSYmass eigenstates are typically numbered from
lightest to heaviest). While this neglects order one factors
and the contributions from vLi, it is useful for getting an
impression of how the stop lifetime depends on the strength
of R-parity violation. At any rate, it will be shown later that
ϵi is typically larger than vLi. An order of magnitude
approximation for the lifetime can be simply attained from
the largest ϵi value, denoted ϵmax, by

τ~t1 ∼ 1× 10−14
�
ϵmax=μ
10−5

�
−2
�

100

1þ tan2β

��
500 GeV

m~t1

�
sec :

ð28Þ

Taking representative values of μ; m~t1 ¼ 500 GeV and
tan β ¼ 10, the lifetimes can be divided up into the
following interesting regimes:

(i) Cosmologically significant (ϵmax ≲ 10−10 GeV):
The decays of squarks with lifetimes greater than
about 100 seconds would disrupt the predictions of
big bang nucleosynthesis, see Ref. [43] for example,
and would therefore be ruled out.

(ii) Collider stability (10−10 GeV≲ ϵmax ≲ 10−7 GeV):
In this regime, the decay length of the squark is
longer than the radius of the LHC detectors, about
ten meters in size. Such squarks would hadronize
and are referred to as R-hadrons. These states would
be detectable through their activity in the hadronic
calorimeter of the detectors and have been studied in
Refs. [44–49], for example.

(iii) Displaced vertices (10−7 GeV≲ ϵmax ≲ 10−4 GeV):
Squark decays inside an LHC detector with a
decay length greater than a millimeter have a large
enough displaced vertex from the squark origin to be
measured. Such vertices, in a phenomenologically
similar scenario, were discussed in [50]. Experi-
mentally, some searches for displaced vertices have
been performed in Refs. [51–53].

(iv) Prompt decays (ϵmax ≳ 10−4 GeV): Decays in this
case occur at an indistinguishable distance from the
collision point at an LHC detector.

The physics associated with nonprompt decays is mostly
dependent on the mass of the squark (through its produc-
tion) and its decay length (displaced vertices or collider
stable squarks). Such probes would not be the ideal way of
studying the specific branching ratios of the squarks
predicted in the model under consideration. In addition
such signals have already been analyzed in the references
above. We therefore continue this paper considering
prompt squark LSP decays only. As we shall see, this will
intimately relate the neutrino sector to R-parity violation.
The existence of this relationship is already suggested by

Eqs. (19) and (20). These RPV bilinear terms mix fields
with different R-parity number but the same spin and
SM quantum numbers. Specifically, the neutrinos now mix
with the neutralinos, Eq. (A1), the charged leptons mix
with the charginos, Eq. (B1), and the Higgs fields mix
with the sleptons. The neutrino/neutralino mixings are
crucial because they generate tree-level Majorana neutrino
masses through a seesawmechanism. As a result of this, the
bilinear R-parity violating terms cannot be too large. All
R-parity violating effects will therefore be negligible
compared to the R-parity conserving effects, except for
the LSP, which now decays via RPV.
Since R-parity violation simultaneously determines both

the neutrino sector and the decays of the LSP, it is possible
that some of the information from the neutrino sector will
be revealed in the LSP decay. This is an exciting and rare
opportunity to relate these two fields.
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IV. NEUTRINO MASSES AND R-PARITY
VIOLATION

Any model with right-handed neutrinos allows for Dirac
neutrino masses through the Yukawa coupling between
left- and right-handed neutrinos. In this model, Majorana
masses are also possible due to the VEVof the right-handed
sneutrino. As mentioned above, only one generation of
right-handed sneutrino can attain a significant VEV
[12,28,29]. This means that lepton number is only signifi-
cantly violated (TeV-scale violation) in one generation of
the right-handed neutrinos. It is only that generation of
right-handed neutrinos that will attain a TeV-scale mass.
This gives rise to a system of neutrinos with three layers: a
TeV scale right-handed Majorana neutrino, the three active
neutrinos, and two light sterile neutrinos.5

Majorana masses for the active neutrinos are generated
through an effective type I seesaw mechanism [54–57]
where the seesaw fields include the one heavy right-handed
neutrino and the neutralinos. Once the heavy seesaw fields
are integrated out, the Majorana contribution to the neutrino
mass matrix is

mνij ¼ AvL�
i
vL�

j
þ BðvL�

i
ϵj þ ϵivL�

j
Þ þ Cϵiϵj: ð29Þ

The nonflavored parameters, A, B, and C, are the results of
integrating out the heavy fields. They, and more details, are
given in Appendix A. The Dirac neutrino mass contribu-
tions are simply given by the product of the up-type Higgs
VEVand the neutrino Yukawa couplings that do not couple
to the third generation right-handed neutrino: 1ffiffi

2
p Yνi;j≠3vu.

One of the main tools at our disposal for probing the
neutrino sector is the observation of neutrino oscillations.
Such oscillations between two neutrinos are determined by
the amount of mixing between the two neutrinos and their
mass difference. In a purely Dirac neutrino case, the active-
sterile mixing is maximal but the mass difference is zero
and, therefore, no active-sterile oscillations result. Here, in
the pure Majorana case, the mass difference is significant
but the mixing is negligible. A situation in which both
Dirac and Majorana mass contributions are comparable
would lead to large active-sterile oscillations which have
not been observed and are therefore ruled out; see
e.g. [58,59].
The question then remains, should this analysis assume

that neutrinos receive their masses dominantly from Dirac
or Majorana mass terms? Here, already, the connection to
R-parity becomes important. Prompt LSP decays, which

were argued to be of interest in the last section, will allow
significant Majorana masses. Since these cannot coexist
with significant Dirac masses, neutrinos must receive their
masses dominantly from Majorana mass terms. This makes
further study of the Majorana mass matrix, Eq. (29),
fruitful.
As a first step, it is important to notice that the

determinant of the neutrino mass matrix in Eq. (29) is
zero. This is a consequence of the flavor structure and is
independent of the A, B, and C parameters. Closer
observation reveals that only one eigenstate is massless.
This constrains the neutrino masses to be either in the
normal hierarchy (NH)

m1 ¼ 0 < m2 ∼ 8.7 meV < m3 ∼ 50 meV; ð30Þ

or in the inverted hierarchy (IH)

m1 ∼m2 ∼ 50 meV > m3 ¼ 0; ð31Þ

where only the squared mass differences are measured in
neutrino oscillation experiments.
The relevant seesaw contributions from A, B, and C are

also informative. For example, the term proportional to A in
Eq. (29) is a contribution associated with the VEVs of the
left-handed sneutrinos. It arises from neutrino-gaugino
mixing such as in Eq. (20). The gauginos are naturally
Majorana due to their soft masses and, therefore, integrat-
ing them out directly leads to Majorana mass terms for the
neutrinos. One can therefore conclude that

A ∼
1

msoft
; ð32Þ

where msoft is some combination of gaugino and Higgsino
masses. This conclusion can be verified with the full
analytic expression for A in Appendix A. The parameter
C, on the other hand, arises through neutrino-Higgsino
mixing because of the ϵi term. Higgsinos are not Majorana
particles before electroweak symmetry breaking and only
their electroweak mixings with the gauginos gives them
a Majorana nature. Therefore, C must include at least two
factors of Higgsino-gaugino mixing terms, each of which
is proportional to the ratio of an electroweak VEV
to msoft:

C ∼
v2

m3
soft

: ð33Þ

A similar argument yields that B ∼ v=m2
soft at lowest order.

All of these conclusions can be verified with the full
expressions in Appendix A.
The neutrino mass matrix is diagonalized by the so-called

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

5Sterile neutrinos are typically sub-MeV fermions without SM
quantum numbers. In this model, their masses must be at or below
those of the left-handed, or active, neutrinos since their masses
arise from Dirac Yukawa couplings to the left-handed neutrinos.
Models with two sterile neutrinos are sometimes called 3þ 2
models in the literature, where the 3 represents the active
neutrinos.
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VPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ c13s23
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c13c23

1
CA × diagð1; eiα=2; 1Þ; ð34Þ

where cabðsabÞ ¼ cos θabðsin θabÞ. There are N − 1 Major-
ana phases associated with N Majorana neutrinos. This
translates into only one Majorana phase, α, in this case
because one of the neutrinos is massless and, therefore,
does not have a Majorana mass. The CP phase δ
corresponds to the freedom in the three-by-three Yν matrix.
In models that predict a massless neutrino, such as the one
discussed here, the neutrino masses in terms of the mass
squared differences in the normal hierarchy are

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
; ð35Þ

while in the inverted hierarchy one has

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31 þ Δm2
21

q
; m3 ¼ 0:

ð36Þ

The current values for the parameters in (34) and (35), (36)
are given in [60–62]. We use the most recent values [63]
from the collaboration of Ref. [61], which at one sigma are
given by

sin2θ12 ¼ 0.306þ0.012
−0.012 ; sin2θ23 ¼ 0.446þ0.007

−0.007 or 0.587þ0.032
−0.037 ; sin2θ13 ¼ 0.0229þ0.0020

−0.0019 ;

Δm2
21ð10−5 eV2Þ ¼ 7.45þ0.19

−0.16 ; Δm2
31ð10−3 eV2Þ ¼ 2.417þ0.013

−0.013 ; δð∘Þ ¼ 265þ56
−61 : ð37Þ

Note that at three sigma, δ spans its full range of
0∘ − 360∘ and that α has not been measured. The two values
of θ23 represent a degeneracy in the best fit to the data.
One can solve for the flavorful parameters ϵi and vLi by

requiring that the diagonalization of the neutrino mass
matrix, Eq. (29), yields the correct neutrino data specified
in Eq. (37). A procedure for this is outlined in Appendix A
in terms of a new set of variables Ei and Vi, where

vLi ¼ VPMNSilV�
l ; ð38Þ

ϵi ¼ V�
PMNSilEl: ð39Þ

These imply that ϵi and vLi should be on the order of
magnitude of Emax and Vmax respectively—where Emax and
Vmax are the largest of Ei and Vi—since the elements of
VPMNS are mostly of order one. In the normal hierarchy
E1; V1 ¼ 0 and Eqs. (A33), (A34), and (A35) are used to
calculate E2 and V2;3 in terms of E3. Together, they imply

that Vmax ∼ ðOð1Þ BA þOð1Þ
ffiffiffi
C
A

q
ÞEmax, where the coeffi-

cients are of order one as long as there are not finely
tuned numerical cancellations between terms. The same
conclusion holds in the inverted hierarchy. This in turn

means that vLi
∼ ðOð1Þ BA þOð1Þ

ffiffiffi
C
A

q
Þϵi. Based on the

approximations made above for A, B, and C in Eqs. (32)
and (33), it follows that

jϵij ∼
msoft

v
jvLij: ð40Þ

Quantitatively ϵi > vLi is verified through the scan speci-
fied in Table I, which is used to generate the numerical

results in the next section. Indeed, we find that for 80% of
the points ϵi > vLi for all i and that the largest ϵi value is
larger than the largest vLi value (ϵmax > vLmax) in 97% of
the points. Points that do not satisfy these conditions
correspond to finely tuned cancellations between terms
which, although unlikely, nevertheless arise randomly in
the scan. This indicates that ϵmax typically approximates the
amount of R-parity violation and that jϵij2 ≫ jvLij2 is a
good approximation. This will be useful to obtain an
analytic understanding of the numerical results.

V. THIRD GENERATION SQUARK LSP’S

The previous two sections have reviewed various aspects
of the minimal SUSY B − L model, RPV, and the neutrino
sector. It was shown that there is an interesting region of
parameter space where the (1) strength of RPV corresponds
to prompt LSP decays and (2) where the LSP decays might
reveal information about the neutrino sector. This paper
plans to study these properties under the assumption that
the LSP is a third generation squark; that is, for both a stop
and sbottom LSP. In addition, we will place lower bounds
on the masses of these sparticles using current publicly
available LHC results.
Squark LSPs are interesting in RPV for various reasons.

First, they are not possible in RPC, so this provides an
opportunity to look beyond the typical SUSY LSP candi-
dates and beyond the typical SUSY signatures. Specifically,
squark LSPs behave like leptoquarks, meaning they are
scalar particles that are pair produced and decay into a
quark and a lepton. The stops and sbottoms have the
following possible decays:
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~t1 → tνi; or ~t1 → blþ
i ; ð41Þ

~b1 → bνi; or ~b1 → tl−
i ; ð42Þ

where ~t1 and ~b1 are the lightest physical stop and sbottom
respectively.
Colored particles are, furthermore, more abundantly

produced at the LHC, so more aggressive bounds can be
placed on them. Generally, one expects a third generation
squark to be lighter than the first two generations on the
basis of the renormalization group equations. However, this
only holds true if one starts with fairly degenerate squarks
in all three generations at some high scale associated with
soft SUSY breaking. From a phenomenological point of
view, the first two generations of squarks should be
relatively degenerate to avoid large disallowed contribu-
tions to flavor physics processes. This is known as the
SUSY flavor problem. Light degenerate first and second
generation squarks effectively double the expected number
of events for a given process and will consequently have
stronger bounds. Furthermore, the first two generations
have additional contributions to their production cross
section due to the presence of light quarks in the proton.
This can, once again, increase the number of events. For
these reasons, we continue our analysis focusing on the
third generation squarks. Some general comments about the
branching ratios of the first two generations will be made in
the discussion.
Stop LSPs are especially compelling because of the

central role they play in SUSY. Before discussing this
further, we briefly review some basic stop phenomenology.
More details can be found in Appendix C. In the gauge
eigenstate basis, the stop sector contains the ~t field, which is
the superpartner of the left-handed top and part of the
squark SUð2ÞL doublet ~Q. Since it is a scalar, the stop has
no actual chiral properties. The stop sector also contains the
superpartner of the right-handed top, ~tc, which is an
SUð2ÞL singlet. Both have unrelated soft squared masses
and are mixed through mass mixing terms. Diagonalization
yields the physical stops ~t1 and ~t2, which are traditionally
labeled so that m~t1 < m~t2 . The mass mixing term leads to
what is usually referred to as the left-right mixing angle in
the stop sector, θt, with the convention used here that
θt ¼ 0∘ (θt ¼ 90∘) corresponds to a purely left-handed
(right-handed) lightest stop, ~t1. A purely left-handed ~t1
cannot be the LSP because its SUð2ÞL partner, the left-
handed sbottom, will always be lighter. This is because they
share the same SUSY-breaking soft mass squared term and
both get F-term contributions from their SM partner mass
squared. That is, the sbottom mass gets a bottom mass
squared contribution and the stop gets a top mass squared
contribution. Since the top is much heavier than the
bottom, the left-handed stop will always be heavier than
the left-handed sbottom.
The stops in SUSY are important because they couple

most strongly to the Higgs. This means they contribute

most to the little hierarchy problem and provide a measure
of the fine-tuning required in SUSY models. In RPC, stop
decays can involve complicated decay chains with multi-
particle final states making determination of the stop mass
from the observation of such a decay difficult. As an LSP
with R-parity violation, stop decays are very clean in the
sense that each stop decays to only two particles. Therefore,
such decays can be used to deduce the stop mass in a
relatively straightforward way. This is especially true for
the bottom-charged lepton channel, whose final states are
both detectable. Neutrinos, on the other hand, escape the
detector as missing energy. As we shall see, typically the
bottom-charged lepton channel dominates the stop decays.
The issue of the little hierarchy problem is also strongly

linked to the Higgs mass. In SUSY, the Higgs tree-level
mass must be less than the Z mass. This can be increased at
the loop level by radiative corrections to the Higgs mass
which grow as the logarithms of the stop masses and also
increase with stop mixing angle. This leads to a conflict
between the heavy stops masses needed to make SUSY
compatible with the recent Higgs discovery and the desire
to keep the stops light so as to minimize fine-tuning in
SUSY. The former seems to be an argument against a stop
LSP. However, it is possible that only one stop is quite
heavy while the second remains light—which will indeed
be the case when the stop mixing angle is relatively large.
This translates into an LSP stop that is composed of
significant left- and right-handed components. Since the
Higgs mass is not altered in this model, one can consult the
MSSM literature to explore the possibilities; see e.g. [64].
The stop partial widths into top neutrino and bottom-

charged lepton are

Γð~t1 → tνiÞ ¼
1

16π
ðjGL

~t1tχ06þi
j2 þ jGR

~t1tχ06þi
j2Þm~t1

×

�
1 −

m2
t

m2
~t1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

m2
t

m2
~t1

þ m4
t

m4
~t1

s
; ð43Þ

Γð~t1 → blþ
i Þ ¼

1

16π
ðjGL

~t1bχ�2þi
j2 þ jGR

~t1bχ�2þi
j2Þm~t1 ; ð44Þ

where the G parameters are the coefficients of the relevant
vertices, χ06þi ¼ νi and χ�2þi ¼ l�

i . They, as well as more
details, can be found in Appendix D. Parametrically, the
GL;R

~t1tχ06þi
parameters contain the elements of the matrix that

diagonalize the neutrino-neutralino sector and the GL;R
~t1bχ�2þi

parameters contain the elements of the matrix that diago-
nalize the lepton-chargino sector and are, therefore, propor-
tional to some combination of ϵi and vLi. Also encoded in
the G parameters is information about the stop left-right
mixing angle, θt.
Before tackling a numerical study of stop LSP phenom-

enology, it is instructive to approximate the relative sizes of
the different branching ratios. This can be done by
perturbatively diagonalizing the neutrino-neutralino and
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charged lepton-chargino mass matrices, as is done in
Appendixes A and B and applied in Appendix D. For
ease of comparison, the leading squared amplitudes for the
different final states are given in the approximation that
M2

ZR
≫ m2

soft ≫ v2. This is a phenomenologically relevant
approximation because bounds on ZR are much higher than
electroweak gaugino and Higgsino bounds and both are
above the electroweak scale itself. We also employ the
results of the last section, ϵ2i ≫ vL2i . The leading contri-
butions to the square of the vertex amplitude,
jAj2 ¼ jGLj2 þ jGRj2, are then

jAð~t1 → blþ
i Þj2 ∼ c2t Y2

b

���� ϵiμ
����2; ð45Þ

jAð~t1 → tνiÞj2 ∼
�
1

8
c2t

�
g22
M2

−
g2BLg

2
R

3M ~Y

�
2

þ 1

18
s2t
g4BLg

4
R

M2
~Y

�

×

����VPMSNij

�
vdϵj
μ

þ vL�
j

�����2; ð46Þ

where st (ct) is sin θt (cos θt), M ~Y ≡ g2RMBL þ g2BLMR and
there is an implicit sum over j. The top-neutrino channel is
suppressed compared to the bottom-charged lepton channel
both by helicity suppression to the term proportional to ϵi
and suppression by vLi when the lightest stop is not purely
right-handed. When the lightest stop is purely right handed,
the leading order bottom-charged lepton amplitude van-
ishes and the next order term becomes important:

jAð~t1 → blþ
i Þj2jθt∼90∘ ∼ Y2

t

����mlivLi
μvd

����2: ð47Þ

This term is suppressed by both vLi and the mass of the
charged lepton in the final state,mli, indicating that, for the
mostly right-handed stop, only the top-neutrino and bot-
tom-tau channels are significant. The stop branching ratios,
where branching ratio is defined as the partial width
normalized to the total width, falls into two regimes of
interest depending on the composition of the stop:

(i) Admixture stop LSP: Stop decays into bottom-
charged leptons dominate,

P
iΓð~t1 → blþ

i Þ ≫P
iΓð~t1 → tνiÞ. We therefore approximated the total

width as coming completely from the charged
leptons, and the decays of the stop can be described
by three branching ratios, which must satisfy

Brð~t1→beþÞþBrð~t1→bμþÞþBrð~t1→bτþÞ¼1:

ð48Þ

(ii) Right-handed stop LSP: Only the top-neutrino and
bottom-tau channel are significant. We therefore
approximate the width as coming completely from
these two channels and the decays can be described
by two branching ratios, which must satisfy

Brð~t1 → bτþÞ þ Brð~t1 → tνÞ ¼ 1: ð49Þ
Let us qualitatively understand these results, which may

be a bit counterintuitive. Since ϵi mixes ~Hu with Li, one
would expect the leading contributions to be proportional
to the Yt, since it couples the stops to ~Hu and through it to
the ϵi parameter. However, such decays are helicity sup-
pressed by a factor of v2=m2

soft [in Eq. (46)] and are,
therefore, subdominant. The dominant channel to RPV then
usually goes through ~Hd and, therefore, includes a factor of
Ybϵi. This explains Eq. (45). The top-neutrino channel
cannot, however, be accessed through ~Hd and must,
therefore, suffer the helicity suppression or be suppressed
by vLi, as are the two terms in Eq. (46). The right-handed
stop also cannot access ~Hd. Its decay into bottom-charged
lepton must go through ~Hu − ~Hd mixing and finally
through YeivLi ~H

−
d e

c
i , which is the reason that Eq. (47)

depends on the lepton mass.
With these guidelines in mind, we proceed to our

numerical study.

A. Stop LSP decays and the neutrino spectrum

The numerical procedure starts with the process in
Appendix A, which takes as input the unmeasured CP
violating phases of the neutrino sector, the neutralino
spectrum, the B − L parameters, any one of the ϵi param-
eters, and two signs. It yields values for vLi and the other
two ϵi that are consistent with neutrino physics. These
values are then used to numerically diagonalize the
neutrino/neutralino and charged lepton/chargino mass
matrices. These rotation matrices are then inputted into
the Feynman rules in Appendix D, which can be used in
Eqs. (43) and (44) to calculate the partial widths. Because
of the dependence on a variety of parameters, full analytic
relationships between the input parameters and the stop
decay branching ratios are complicated and not very
illuminating. However, random scans in the space of the
input parameters yield fairly simple behavior.
The parameters of our scan and their ranges are specified

in Table I. As mentioned above, the neutrino sector
specifies all but one R-parity violating parameter, which
we choose to be ϵi and we randomly choose the generation,
i, of ϵi to avoid any bias in the scan. The sign factors, ζ0 and
ζ3 are further discussed in Appendix A. While only the
gluino mass range is shown, we use the GUT inspired
gaugino mass relation MR ∶MBL ∶M2 ∶M3 ∼ 1 ∶ 1 ∶ 2 ∶ 5
for the gaugino masses [36]. This is based on the ratio of the
gauge couplings at the TeV scale. The lower ranges on
M3;MZR

; μ and m~t1 roughly correspond to the lower
bounds on those particles, while μ roughly corresponds
to the mass of one of the physical chargino states. The
lower and upper bounds on tan β are based on keeping all
Yukawa couplings perturbative to the GUT scale.
Meanwhile, the bounds on ϵi follow from requiring no
fine-tuning in the neutrino sector, the conditions for which
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are described in Appendix A. This fine-tuning depends on
the actual parameter point and we find that non-fine-tuned
points lie in the range 10−4 GeV < jϵij < 1 GeV, which is
used in the scan.
In addition, the uncertainties on the neutrino parameters

themselves can quantitatively alter the results. We, there-
fore, also scan over the three sigma range of the neutrino
parameters based on their values and uncertainties given in
Eq. (37). To do this, we need a probability distribution to
describe the uncertainty in these parameters. A simple
Gaussian will not do, because the uncertainties in some of
the neutrino parameters are asymmetric. Instead we ran-
domly select, with probability one half, which side of the
central value a parameter will be on. Then a value for that
parameter is randomly generated based on a Gaussian
distribution whose standard deviation is equal to the 1σ
uncertainty on the chosen side of that parameter’s central
value. The Gaussian distribution is curtailed a distance of 3
standard deviations away from the central value. No
correlations between neutrino parameter ranges are taken
into account here. Furthermore, the CP-violating phases, δ
and α, are scanned over their full range and the central value
of θ23 used is randomly chosen between the two ambiguous
experimental values.
Since we are studying a stop LSP, points in the scan at

which one of the neutralinos or charginos end up being
lighter than the stop are rejected. It is also possible that
some points in the scan may have a nearly purely left-
handed lightest stop, which may be unable to be the LSP
(see Appendix C). A criterion for excluding such points
from the scan would depend on parameters that do not
effect the physics of this paper, so we do not impose it
here. Such a criterion would have no impact on the overall
trends displayed by our scan, so it would not effect the
conclusions of this paper.

We note that due to the extra suppression in the decays of
the right-handed stop, Eq. (47), the LSP stop lifetime
increases by a significant amount when it approaches a
purely right-handed stop composition. Using the scan from
Table I, we plot the decay length of the stop LSP versus
stop mixing angle in Fig. 1. The figure shows that for a pure
right-handed stop LSP, a significant number of points in the
scan yield lifetimes long enough for displaced vertices
(decay length greater than a millimeter). We continue our
analysis focusing on prompt decays.
Figure 2 shows how Brð~t1 → tνÞ=Brð~t1 → blþÞ, where

Brð~t1 → blþÞ≡P
3
i¼1 Brð~t1 → blþ

i Þ, depends on the stop
mixing angle. This verifies the relationship between
the stop mixing angle and branching ratios into
bottom-charged lepton and top neutrino derived from
Eqs. (45)–(47). Figures 1 and 2 both show that the

FIG. 1 (color online). Stop LSP decay length in millimeters
versus stop mixing angle. The decay length increases sharply past
80°, where the stop is dominantly right handed, due to the
suppressed right-handed stop decays, Eq. (47).

TABLE I. Ranges for the parameter scan. The neutrino sector
leaves only one unspecified R-parity violating parameter, which
is chosen to be ϵi where the generational index, i, is also scanned
to avoid any biases. The scanned gluino mass is shown here,
while the other gaugino masses are extrapolated from the GUT
relation MR ∶MBL ∶M2 ∶M3 ¼ 1 ∶ 1 ∶ 2 ∶ 5.

Parameter Range

M3 ðTeVÞ 1.5–10
MZR

ðTeVÞ 2.5–10
tan β 2–55
μ ðGeVÞ 150–1000
m~t1 ðGeVÞ 400–1000
θtð°Þ 0–90
jϵij ðGeVÞ 10−4–100
argðϵiÞ 0–360
i 1–3
ζ0; ζ3 −1, 1
δ; αð°Þ 0–360
Neutrino hierarchy NH, IH

FIG. 2 (color online). Brð~t1→tνÞ
Brð~t1→blþÞ versus stop mixing angle,

where Brð~t1 → blþÞ≡P
3
i¼1 Brð~t1 → blþ

i Þ. For the admixture
stop, the branching ratio to blþ is dominant and the branching
ratio to tν is insignificant for LHC purposes. For a mixing angle
greater than about 80°, corresponding to a mostly right-handed
stop, the branching ratio to tν can be significant.
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right-handed stoplike behavior, significant top-neutrino
channel and longer lifetimes, turns on around θt ¼ 80∘.
Perhaps the most striking result from this scan is the

connection between the stop decays and the neutrino
hierarchy. This connection is evident in Fig. 3 where the
possible branching ratios are displayed in the
Brð~t1 → bτþÞ—Brð~t1 → beþÞ plane and where, for sim-
plicity, we start with only the central values of the measured
neutrino parameters, Eq. (37). The figure includes only
points with Brð~t1 → tνÞ < 0.01. Such points correspond to
admixture stop LSP, according to Fig. 2. Using the top-
neutrino branching ratio, instead of the stop mixing angle,
to distinguish between the admixture and right-handed stop
LSP is preferable because the top-neutrino branching is
easier to measure. This means that Brð~t1 → beþÞ þ
Brð~t1 → bμþÞ þ Brð~t1 → bτþÞ ¼ 1 [Eq. (48)], so that
the (0,0) point on this plot corresponds to
Brð~t1 → bμþÞ ¼ 1. The reader may observe that Fig. 3
includes a small number of points that do not follow the
trend displayed by the bulk of the points, and are instead
skewed in the direction of larger bottom-tau branching
ratio. These rare points correspond to a transitional region

between admixture stop and purely right-handed stop
where Eq. (47) is starting to become valid, favoring a
larger bottom-tau ratio due to the tau being the heaviest of
the lepton. Points that do not satisfy the fine-tuning
criteria of the neutrino sector, Eqs. (A41) and (A42), are
excluded.
Figure 3 is divided into three quadrangles each corre-

sponding to an area where one of the branching ratios is
larger than the other two. In the top left quadrangle, the
bottom-tau branching ratio is the largest; in the bottom left
quadrangle the bottom-muon branching ratio is the largest;
and in the bottom right quadrangle the bottom-electron
branching ratio is the largest. Recall that the fit to the
neutrino data allows two values of θ23. One is shown in
blue and and the other in green in the inverted hierarchy
(where the impact on stop decays is most notable) and in
red and magenta in the normal hierarchy.
Figure 3 shows the strong connection between the stop

branching ratios and the neutrino sector. The most inter-
esting connection is to the neutrino mass hierarchy. If these
decays were observed at the LHC and their branching ratios
measured, then it might be possible to determine the
neutrino hierarchy, an open question being actively pursued
in neutrino physics today [65].
The full results including the three sigma scan over

neutrino parameters are displayed in Fig. 4. The features of
this figure are very similar to those of Fig. 3. While taking
the three sigma range of the neutrino parameters into
account has obscured things somewhat compared to
Fig. 3, the connection to neutrino physics is still strong
and very visual and the conclusions still of interest.6

Therefore, assuming one is lucky enough to discover a
particle decaying in this way at the LHC, one can
then use the measured branching ratios to conclude the
following.

(i) If the branching ratio to bottom electron is the largest
branching ratio, the neutrino mass hierarchy is likely
to be the inverted hierarchy.

(ii) If the branching ratio to bottom muon is found to be
highly dominant, then neutrino masses are likely to
be in the normal hierarchy. If this branching ratio is
only slightly dominant, the hierarchy cannot be
determined from this measurement alone, because
it is compatible with both normal and inverted
hierarchy. However, if the hierarchy were deter-
mined to be inverted from some other experiment,
this measurement would favor the central value of
sin2θ23 ∼ 0.446 over sin2 θ23 ∼ 0.587.

(iii) The case where the branching ratio to bottom tau is
highly dominant, the normal hierarchy is favored. If
it is only slightly dominant, neither hierarchy is

FIG. 3 (color online). The results of the scan specified in
Table I, but with central values for the measured neutrino
parameters in the Brð~t1 → bτþÞ—Brð~t1 → beþÞ plane. Due to
the relationship between the branching ratios, the (0,0) point on
this plot corresponds to Brð~t1 → bμþÞ ¼ 1. The plot is divided
into three quadrangles, each corresponding to an area where one
of the branching ratios is larger than the other two. In the top left
quadrangle, the bottom-tau branching ratio is the largest; in the
bottom left quadrangle the bottom-muon branching ratio is the
largest; and in the bottom right quadrangle the bottom-electron
branching ratio is the largest. The two different possible values of
θ23 are shown in blue and green in the IH (where the difference is
most notable) and red and magenta in the NH.

6Note that the limited capability of the LHC detectors to
precisely measure such branching ratios may also smear out this
picture.
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favored, but the central value of sin2θ23 ¼ 0.587
would be slightly favored over sin2 θ23 ¼ 0.446 if
the hierarchy were determined to be inverted from
some other experiment.

(iv) A really lucky scenario would land the observer in
the electron dominated quadrangle at the top of the
blue points or the bottom of the green points. From
this, one would be able to argue that the central value
of sin2 θ23 is closer to 0.587 for the former scenario
and 0.446 for the latter in addition to an inverted
hierarchy.

(v) Nature placing us in the white spaces would strongly
suggest that this model is not the correct interpre-
tation of the data. One caveat to this is the transition
range between an admixture stop LSP and a purely
right-handed stop LSP. This might allow some
points in the upper white regions but we found
them to be rare in our scan.

The above conclusions are interesting because they relate
decays that could be observable at the LHC to the neutrino
mass hierarchy, which is currently at the forefront of
neutrino physics with many experiments planned to inves-
tigate this issue [65]. Furthermore the hierarchy has
important consequences for experiments seeking to mea-
sure neutrinoless double beta decay,7 which is more
prominent in the inverted hierarchy. Measurement of stop
LSP decays could allow a prediction of what hierarchy

should be found by such experiments. Conversely, if
neutrino experiments are able to determine the neutrino
mass hierarchy, this could be used to further constrain the
types of decays predicted for the LHC.
Much past the θt ¼ 80∘ mark, as seen in Figs. 1 and 2,

the lightest stop is dominantly right-handed and the
connection to neutrino physics is lost. This is because
the branching ratios into the lighter generations of leptons
are suppressed, Eq. (47), and because the neutrino gen-
eration cannot, of course, be measured at the LHC. Still, in
this case, there is an interesting connection between the two
decay channels and tan β as can be seen from Eq. (47).
From this, one would expect the bottom-tau channel to
dominate at large tan β while the top neutrino channel
dominates for low tan β. Utilizing the same scan as in
Table I but with θ~t ¼ 90∘ produces Fig. 5, which displays
Brð~t1 → tνÞ=Brð~t1 → bτþÞ versus tan β. The results con-
firm the relationship between the branching ratios
and tan β.

B. Stop LSP lower bounds

LHC searches that place limits on one of the final states
discussed previously can be reinterpreted to place lower
bounds on the stop mass. Naively, bounds on the stop mass
can be placed based on the number of expected events, for a
given mass, as compared to the number of observed events.
Of course, realistically, one must also take the background
for the process into account as well various detector level
details. Putting these aside for the moment, the number of
expected events depends only on the mass of the stop, its
branching ratios, and the center of mass energy. Squarks are
always pair produced in this model and, in the admixture
case, result in the final state bb̄l−

i l
þ
j . The number of such

events is given by

FIG. 5 (color online). The ratio of the branching ratio of right-
handed stops into top neutrino to the branching ratio of right-
handed stops to bottom tau versus tan β. Branching ratios to the
lighter charged leptons are suppressed by their masses and
therefore negligible in this case. The plot shows a dependence
on tan β with small (large) tan β values corresponding to
dominant top neutrino (bottom-tau) branching ratio.

FIG. 4 (color online). Same as Fig. 3 except with a Gaussian
distributed scan over the neutrino parameters as described in
Eq. (37).

7A positive measurement of neutrinoless double beta decay is a
clear measurement of lepton number violation and the Majorana
nature of neutrinos.
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L × ð2 − δijÞ × σpp→~t1~̄t1
× Brð~t1 → blþ

i Þ × Brð~t1 → blþ
j Þ;

ð50Þ

where L is the luminosity (the most recent LHC run has
20−1 fb of luminosity) and σpp→~t1~̄t1

is the hadron level cross
section, which results from summing partonic contribu-
tions. These partonic contributions are a product of the
parton level cross section and the appropriate parton
distribution function (PDF) integrated over the parton’s
momentum fraction of the hadron’s momentum. For LHC
stop production, the leading order parton contributions
come from gluon fusion and quark-quark fusion. The
parton-level cross section formulas can be found in [66].
Here we plot the production cross section at next-to-leading
order in αS, including resummation at next-to-leading log,
as calculated by the ATLAS, CMS, and LPCC SUSY
working group [67,68], as a function of stop mass at both a
7 and 8 TeV LHC, in Fig. 6.
Leptoquarks exist in various extensions of the standard

model, such as unification and partial unification models,
and have been searched for in this context [69]. Since stop
LSPs in our scenario decay like leptoquarks, one can set
bounds on them based on previous leptoquark searches.
However, many analyses have not yet been updated to
include 8 TeV data [70–75].8 Searches in the top-neutrino
channel, which has the same signal as a stop decaying into a
top and a massless neutralino in the R-parity conserving
MSSMwith a neutralino LSP, have been updated to include
the full 8 TeV data set with preliminary results [77–79], as
has the jet-muon leptoquark search at CMS [80].
The current ATLAS and CMS leptoquark analyses

search for final states with opposite signed, same flavor
leptons. This yields upper limits on the ~t1-~̄t1 production
cross section for each of the three possible flavors. The
cross section upper limits from the ATLAS and CMS
searches are used directly; no additional detector simulation
is performed. The upper limit on the cross section is easily
translated into a lower bound on the stop LSP mass, since
the cross section depends only on the mass and center of
mass energy and falls off steeply as the mass increases.
Although the ATLAS and CMS analyses assume branch-

ing ratios of unity to a given family, we can generalize their
results to arbitrary branching ratios. This is accomplished
by rescaling the expected cross section limit9 from each
search by dividing it by the appropriate branching ratio
squared. It is then compared to the calculated production
cross section as a function of stop LSP mass, which yields
the lower bound on the stop LSP mass from that search. For

a given choice of branching ratios, the search with the
strongest expected mass bound is selected. Then the
observed cross section limit from that search is rescaled
in the same way and, finally, compared to the calculated
production cross section as a function of stop LSP mass.
This yields the lower bound on the stop LSP mass. No
combination of the ATLAS or CMS results is attempted.
For the case of two channels with comparable limits, such a
combination might be expected to extend the stop mass
limit by around 50 GeV. No special treatment of signal
contamination in control regions is taken into account here,
but such effects should be small for these searches. Given
experimental and background uncertainties, the approxi-
mate uncertainty on a given stop lower mass bound
is �50 GeV.
For the admixture stop LSP, the three relevant channels

are the bottom-charged lepton channels. The exclusion
results can, again, be plotted on a two-dimensional plot
since the sum of all three branching ratios is unity. This is
done in the form of lines of constant stop mass lower bound
in Fig. 7 in the Brð~t1 → bτþÞ—Brð~t1 → beþÞ plane, the
same plane as in Fig. 3. The absolute lowest bound,
424 GeV, occurs at Brð~t1 → beþÞ ¼ 0.23, Brð~t1 →
bμþÞ ¼ 0.15, Brð~t1 → bτþÞ ¼ 0.62. It is marked by a
dot. The bounds are stronger in the three corners of the
plot where one of the branching ratios is unity. The
strongest of these three bounds corresponds to decays of
the stop purely to bottom muon. This reflects the fact that
this is the easiest of the three channels to detect and the
search has been performed with the most data (20 fb−1) and
at the highest energy (8 TeV). The weakest of these bounds
corresponds to decays purely to bottom tau because this
channel is the hardest to detect. The contours are each

7 TeV

8 TeV

200 300 400 500 600 700 800
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FIG. 6 (color online). Stop pair production cross section at the 7
and 8 TeV LHC as calculated by the ATLAS, CMS,and LPCC
SUSY working group.

8For interpretation of these results for stop decays in explicit
trilinear R-parity violation see [76].

9For a small number of searches, the expected upper limit is
not publicly available. As these searches do not observe an
excess, the observed limit is used as an approximation of the
expected limit.
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composed of several connected straight line segments. The
straightness of the segments is due to the fact that the bound
is always coming from a single channel (the one with the
strongest expected bound) and so only depends on one of
the three significant branching ratios. Cross referencing
Fig. 7 with Fig. 4 shows that the lowest stop mass bounds
overlap the part of the normal hierarchy with a large
branching ratio to bottom tau and an inverted hierarchy
with a large θ23 and a large branching ratio to bottom tau.
For the right-handed stop, the production cross section

limit is determined only by the stop mass and one of its
branching ratios. In Fig. 8 the stop mass lower bound is
plotted versus the branching ratio, with bottom-tau branch-
ing ratio on the top axis and top neutrino branching ratio on
the bottom axis. Values below the plotted line are ruled
out—with the exception of two pockets of allowed
masses where the blue line is double valued, for example,
between 0.70≲ Brð~t1 → tνÞ ≲ 0.75. The lowest allowed
mass is at about 380 GeV for Brð~t1 → tνÞ ≈ 0.5. There is
also a small allowed window, around 30 GeV wide, for the
stop to have a mass similar to the top, when the branching
ratio to top neutrino dominates. This is not displayed
in Fig. 8.
The lower bounds discussed here have the potential to be

significantly improved by further analysis by the exper-
imental groups. Some of these were mentioned above, but
are listed explicitly below. With these improvements alone
and only minor reoptimization, several hundred GeV
improvement in stop mass lower bound might be obtained.

(i) Current analyses are conducted under the
assumption that a leptoquark decays dominantly
into a jet and a single generation of lepton. The
branching ratios in this model tend to have signifi-
cant values in two or more generations (see for
example Fig. 4). Therefore, an analysis that takes
this into account can improve the bounds by
combining the bounds from different channels. This
also opens the possibility of a different-flavor (e.g.
electron-muon) final state, which should have strong
constraints as well.10

(ii) For stop LSPs, the jet accompanying the charged
lepton must be a bottom quark. Therefore, an
analysis with b-tagging can also help improve the
bounds in the bottom-electron and bottom-muon
channels by significantly reducing the jets plusW or
Z boson background.

(iii) The bottom-charged lepton channels offer an oppor-
tunity to discover the stop near the top mass.
Currently, the top-neutrino exclusion limits have an
∼30 GeV wide hole around the top mass. The
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FIG. 8. The lower mass bound on a mostly right-handed stop—
which decays predominantly into a bottom-charged lepton and a
top neutrino. It is plotted as a function of the branching ratio into
top neutrino (bottom axis) and bottom tau (top axis). The lowest
allowed mass is at about 380 GeV for Brð~t1 → tνÞ ≈ 0.5.

FIG. 7. Lines of constant stop lower bound in GeV in the
Brð~t1 → bτþÞ—Brð~t1 → beþÞ plane for an admixture stop LSP.
The strongest bounds arise when the bottom-muon branching
ratio is largest, while the weakest arise when the bottom-tau
branching ratio is largest.

10The cross-channel case when top-neutrino and bottom-tau
decays dominate should not add as much, since the composition
of the final state is identical to a semileptonic top decay. The
kinematic features may still be significantly different, e.g. with a
high-transverse-momentum tau and, therefore, this channel might
still be explored.
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leptoquark limits have not been extended down to that
range at the LHC, but they could be to demonstrate
that the stop LSP does exist in that hole.

(iv) Of course, the most straightforward improvement
would come from analyzing the most up-to-date run
data, that is, the 8 TeV run at 20 fb−1.

C. Sbottom LSP

In this section, an analysis similar to that of the stop is
conducted for a sbottom LSP, namely investigating its
branching ratios and mass lower bound. Because many of
the key points parallel the stop analysis, the discussion of
both the sbottom decays and lower bound are combined
here into a single short subsection.
The allowed decay channels for a sbottom LSP were

given in Eq. (42). The associated partial widths are found
to be

Γð ~b1 → bνiÞ ¼
1

16π

����GL
~b1bχ06þi

���2þ���GR
~b1bχ06þi

���2�m ~b1
; ð51Þ

Γð ~b1 → tl−
i Þ ¼

1

16π

����GL
~b1tχ�2þi

���2þ���GR
~b1tχ�2þi

���2�m ~b1

×

�
1 −

m2
t

m2
~b1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

m2
t

m2
~b1

þ m4
t

m4
~b1

s
; ð52Þ

where theG parameters are given in Appendix D, χ06þi ¼ νi
and χ�2þi ¼ li. Both the left- and right-handed sbottom
couple directly to ~Hd, which leads to the largest RPV
widths. However, one can still separate the phenomenology
based on the composition of the LSP sbottom. Unlike the
stop LSP, a sbottom LSP can have any left-right compo-
sition while remaining the LSP. That is, the sbottom mixing
angle can span the entire range θb ¼ 0∘ − 90∘. Also, unlike
the stop, the sbottom is expected to be mostly left or right
handed (that is, θb ≈ 0∘ or θb ≈ 90∘) because the off-
diagonal element of the sbottom mass mass matrix is
suppressed by the mass of the bottom quark [this can be
seen from Eq. (C5)]. An exception to this is when the soft
masses for the third generation squark doublet, mQ3

, and
the right-handed sbottom, mbc , are very close [order
100 GeV for TeV scale masses and a small soft trilinear
term, ab; see Eq. (C5)]. Regardless, in the interest of being
completely general, all values of the sbottom mixing angle
will be considered.
The leading order amplitudes squared for the admixture

sbottom LSP, as well as the purely right-handed sbottom
LSP, are approximately

jAð ~b1 → bνiÞj2 ∼ Y2
b

����VPMSNji
ϵj
μ

����2; ð53Þ

jAð ~b1 → tl−
i Þj2 ∼ s2bY

2
b

���� ϵiμ
����2; ð54Þ

where sb is sin θb and there is an implicit sum over j.
Note that θb ¼ 0∘ (θb ¼ 90∘) corresponds to a left-handed
(right-handed) lightest sbottom. The term in Eq. (53) is
independent of mixing angle since there is a contribution
from both the left- and right-handed sbottoms of relatively
the same size. At this order, the mostly left-handed sbottom
LSP (θb ≈ 0∘) amplitude to top-charged lepton is sup-
pressed and one must go to the next order term

jAð ~b1 → tl−
i Þj2jθb∼0∘ ∼ Y2

t

����mlivLi
μvd

����2: ð55Þ

From this one can conclude the following:
(i) Admixture and purely right-handed sbottom LSP:

here the branching ratios to bottom-neutrino and
top-charged lepton should be of the same order of
magnitude. Generically, the bottom neutrino should
be somewhat larger. However, in the purely right-
handed sbottom case the two branching ratios will
be fairly similar.

(ii) Mostly left-handed sbottom LSP: in this case, the
top-charged lepton channel is suppressed by both
vLi and the charged lepton masses. However the
decay to bottom neutrino is not suppressed and,
hence, will dominate this case.

The approximate analytic results are verified by the
numerical results. These are calculated implementing the
same scanning ranges as in Table I, but with θt replaced by
θb and m~t1 replaced by m ~b1

. The ratio Brð ~b1→bνÞ=
Brð ~b1→ tl−Þ, where Brð ~b1 → tl−Þ≡P

3
i¼1Brð ~b1 → tl−

i Þ,
versus the sbottom mixing angle is displayed in Fig. 9. The
results closely match the approximate analytic conclusions.
Sbottom lifetimes are relatively independent of the sbottom
mixing angle and are typically far below the displaced

FIG. 9 (color online). The ratio of the branching ratio of sbottom
to bottom neutrino to the branching ratio of sbottom to top-charged
leptonversus the left-rightmixing angle in the sbottom sector. A 0°
(90°) angle corresponds to a left-handed (right-handed) sbottom.
Typically, one expects to be at one of the extremes of this plot as
sbottom mixing is suppressed by the bottom mass.
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vertex threshold of 1 millimeter, similar to the left-hand
side of Fig. 1.
We now want to produce an analogue of Fig. 4. That

figure was possible due to the suppressed top-neutrino
channel. To produce such a figure here, where the bottom-
neutrino channel is significant or even dominant, we define
a new variable, the lepton branching ratio (LBr), given by

LBrð ~b1 → tl−
i Þ≡ Γð ~b1 → tl−

i ÞP
3
i¼1 Γð ~b1 → tl−

i Þ
: ð56Þ

This can be understood as the width of the sbottom into a
single lepton generation normalized by the total width to all
charged lepton generations. Note that, by definition, the
three lepton branching ratios sum to unity. This allows a
plot similar to Fig. 4 to be produced, so that one can
compare the results. The sbottom situation, however, is
more difficult experimentally than for the stop LSP. This is
because the bottom-neutrino branching ratio can over-
whelm the top-charged lepton branching ratios to the point
where they are too small to be measured at the LHC. This
will be the case for the mostly left-handed sbottom, as can
be seen from Fig. 9. Furthermore, here one must measure
three of the four branching ratios and infer the fourth, while
in the case of the admixture stop one need only measure
two branching ratios to infer the third.
We display the lepton branching ratios in the

LBrsð ~b1 → tτÞ—LBrsð ~b1 → teÞ plane in Fig. 10, in

analogy to Fig. 4. The two figures have the same features
and, therefore, one can make the same conclusions as in the
stop case once three of the branching ratios are measured.
We will comment on this connection in the next section. In
Fig. 10 we include only points for which Brð ~b1 → bνÞ <
0.99. This excludes points where the bottom-neutrino
branching ratio dwarfs the top-charged lepton branching
ratio, thus making the latter unobservable. It follows from
Fig. 9 that the plot excludes mostly left-handed sbottom
LSPs. In analogy with the stop LSP case, it is preferable
to base our exclusion criteria on the bottom-neutrino
branching ratio instead of the mixing angle, since the
former is easier to observe. Points that do not satisfy the
fine-tuning criteria, Eqs. (A41) and (A42), are excluded
from Fig. 10.
In analogy to searches for theR-parity conserving decays

of a stop into a top and a neutralino, searches have been
conducted for the R-parity conserving decays of a sbottom
into a bottom and a neutralino at both ATLAS [81] and
CMS [82] with the full 2012 data set. For massless
neutralinos, these searches can be directly reinterpreted
to place lower bounds on the sbottom decay to bottom-
neutrino in our model, as we did for the stops in Sec. V B.
These bounds are displayed in Fig. 11 versus Brð ~b1 → bνÞ,
which ranges in our model from 0.5 (when the sbottom is
mostly right-handed) to 1 (where the sbottom is mostly left-
handed), as can be seen from Fig. 9. Values below the
plotted line are ruled out. The stop pair production cross
sections from Fig. 6 are used for the sbottom pair

FIG. 10 (color online). Results of a scan over the parameters
described in Table I, with θt replaced by θb and m~t1 replaced by

m ~b1
, are displayed in the LBrð ~b1 → tτÞ—LBrð ~b1 → teÞ plane

where LBr is defined in Eq. (56). The details and findings of this
plot are very similar to those of Fig. 4.

0.5 0.6 0.7 0.8 0.9 1.0
400

450

500

550

650

700
0.4 0.3 0.2 0.1 0.0

FIG. 11 (color online). Lower bound on the sbottom mass
versus Brð ~b1 → bνÞ on the bottom axis and Brð ~b1 → tl−Þ on the
top axis. This bound is derived from LHC searches for the RPC
decays of an sbottom to a bottom and a neutralino, reinterpreted
to be our bottom-neutrino decays.
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production as well. This is possible since both the stop and
sbottom pair production cross sections are dominantly
through color interactions, and both stop and sbottom have
the same color quantum number.
Currently, there is no search which can be directly

translated into lower bounds for the top-charged lepton
decay channel of our sbottom, specifically searches for
tt̄l−lþ final states. However, it is possible to reinterpret
current same sign lepton searches [83,84]. Such a reinter-
pretation will be more involved then the previous ones
made in this paper and is applicable when one of the tops in
our final state, tt̄l−lþ, decays leptonically as t → bνlþ.
The branching ratio for this top decay is about 0.1 per
lepton flavor. This would produce a final state with three
charged leptons,11 two of which will have the same sign,
and would therefore fall under the domain of the same sign
lepton searches. However, the current bounds from the
bottom-neutrino channel are relatively strong, even when
that branching ratio to bottom-neutrino is only 0.5, and it is
not clear whether a reinterpretation of the same sign
analysis will significantly improve our present bound.
We are currently investigating this issue.

VI. DISCUSSION

One of the interesting results in this paper is the
connection between the LSP decays and the neutrino
hierarchy. As was shown in Figs. 4 and 10, this connection
is very similar in the stop and sbottom LSP scenarios. This
relationship, and the similarity, are fairly straightforward to
explain and can be understood by examining the relation-
ships in Appendix A used to analyze the neutrino sector and
recalling some of the analytical conclusions of the last
sections. The latter of these is that the ϵi parameters are the
dominant source of RPV and, therefore, when the decay
into charged leptons is large, the amplitude to l�

i is
proportional to ϵi=μ; see Eqs. (45) and (54). This yields
the following approximate branching ratios and lepton
branching ratios:

Brð~t1 → blþ
i Þ ∼

jϵij2P
3
j¼1 jϵjj2

; ð57Þ

LBrð ~b1 → tl−
i Þ ∼

jϵij2P
3
j¼1 jϵjj2

: ð58Þ

The similarity between these two equations already
explains why Figs. 4 and 10 are similar.
The connection between the neutrino parameters and the

relative sizes of ϵi can be qualitatively understood without
appeal to random scans. Appendix A relates the ϵi

parameters to linear combinations of El parameters
weighted by the elements of the PMNS matrix,

ϵi ¼ V�
PMNSilEl: ð59Þ

Two of the El parameters can be solved for based on the
neutrino masses and mixings, but their actual values are not
so important here. Let us first consider the case of a stopLSP.
In theNH,E1 ¼ 0. Varying the relative size ofE2 andE3 and
calculating the branching ratios according to Eq. (57) traces
out ellipses in the Brð~t1 → bτþÞ—Brð~t1 → beþÞ plane.
This can be done for both values of θ23. In the IH,
E3 ¼ 0. Varying the relative size of E1 and E2 and
calculating the branching ratios according to Eq. (57) again
traces out ellipses in the Brð~t1 → bτþÞ—Brð~t1 → beþÞ
plane. This can be done for both values of θ23. The results,
using central values for the neutrino parameters and no CP
violation in the neutrino sector, are shown in Fig. 12
superimposed over the numerical results in Fig. 3. In the
case of a sbottom LSP, we find, now calculating the
branching ratios using Eq. (58), similar results with identical
conclusions.
Varying the CP violating phases in the neutrino sector

will move the ellipses in such a way that they fill out the
same regions that were filled by the scan, thereby demon-
strating the agreement between the analytic approximation
and the numerical results. The same analysis would also
apply to the vLi parameters in cases where they dominate
the decays (an example of which will be discussed shortly).
The crucial features of this theory that lead to these
predictions are that the R-parity violation is controlled
by the flavorful parameters ϵi and vLi, which also give rise

FIG. 12 (color online). Analytic results for the branching ratios
using Eqs. (57) and (59) superimposed on the results from Fig. 3.

11The limits from three lepton and four lepton searches also
apply, but because of the large number of disjoint signal regions,
reinterpretation using these limits is better left to the LHC
collaborations themselves.
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to neutrino masses and mixing, and that one of the
neutrinos is massless.
This analytical understanding is quite powerful since it

indicates that the results displayed in Fig. 4, the itemized
list associated with this figure and Fig. 10, are fairly
independent of many of the assumptions that have been
made in this paper—which could, therefore, be relaxed or
altered. These assumptions are briefly summarized here.

(i) GUT gaugino relations: The SOð10Þ GUT relation-
ships for the gaugino masses have been assumed:
MR ∶MBL ∶M2 ∶M3 ∼ 1 ∶ 1 ∶ 2 ∶ 5. However, ac-
cording to the analytical analysis conducted here,
this would have very little impact on the relationship
between the neutrino hierarchy and the branching
ratios. Therefore, a bottom-up approach that does not
assume this relationship would yield similar results.

(ii) Gauge group: The analysis conducted in this paper
was in the context of the minimal SUSY SUð3ÞC ×
SUð2ÞL × Uð1Þ3R × Uð1ÞB−L model. There are
other gauge groups, which include a B − L factor
and a minimal particle content, that reduce to the SM
gauge group once the B − L factor is broken. They
share some key features with the model studied here.
These features are as follows: all anomalies are
canceled by the introduction of three right-handed
neutrinos and the minimal particle content does not
require a new B − L Higgs sector since the right-
handed sneturinos can play that role. Two examples
are SUð3ÞC × SUð2ÞL ×Uð1ÞY × Uð1ÞB−L [17,25]
and SUð3ÞC × SUð2ÞL ×Uð1ÞY × Uð1ÞX [18],
where X is a linear combination of hypercharge
and B − L. These common features lead to the
prediction that the lightest neutrino is massless
and consequently links the squark LSP decays to
the neutrino hierarchy, in a similar fashion to Fig. 4.

(iii) Squark LSPs: Third generation squark LSPs were
studied here. However, the same connection be-
tween the neutrino hierarchy and the LSP branching
ratios would hold true for the first two generations as
well. One difference is that the first two generations
do not couple to the Higgs fields very strongly.
Therefore, their dominant decay channels will be
due to gauginos mixing with the neutrinos and
charged leptons. This also means their lifetimes will
be, on average, longer and there might be more
points in parameter space with displaced vertices.
Another difference is that left-right mixing angles in
these generations are expected to be negligible,
suppressed by the corresponding fermion mass.
Therefore, one will only have the purely right- or
left-handed LSPs.

(iv) The parameter scan, Table I: While we only scanned
a finite parameter space, the analytical arguments
given in this section indicate that extending the
parameter space of the scan will result in similar
behavior.

(v) Radiative corrections to neutrino masses: Our analy-
sis of the neutrino sector has been carried out at tree
level. However, significant radiative corrections
could be present, especially when the ϵi parameters
are relatively large. Using the results of [85], we
have found that the dominant contributions carry the
same flavor pattern as the tree-level neutrino masses.
This leaves the crucial elements discussed in this
section unchanged and therefore the results. Fur-
thermore, while the subdominant contributions do
introduce a new flavor pattern, they are only
significant at very large ϵi values. We have excluded
these points from our analysis due to the resulting
fine-tuning in the neutrino sector. Therefore, such
radiative corrections do not effect our conclusions.
See Appendix A for further discussion of this
matter.

Of course, the interpretation of any leptoquarklike
experimental signals in the context of Figs. 4 and 10
would need further evidence in order to conclude that the
model discussed in this paper corresponds to reality.
Specifically, the discovery of ZR and the presence of
supersymmetry should be confirmed. This latter point
would probably be satisfied by the discovery of a SUSY
particle beyond the LSP, which would subsequently decay
into the LSP.
There exist other models with leptoquarklike signatures

similar to the signatures discussed in this paper, but which
do not have the same connection to neutrino physics. Such
models are perhaps less well motivated. Nevertheless, we
now turn to a brief discussion of three such models. We
focus, in particular, on how the theory discussed in this
paper can be experimentally distinguished from these
potential mimics. The most obvious example of such a
model is explicit bilinear R-parity violation. In this case,
one simply extends the R-parity conserving MSSM super-
potential by adding the term ϵiLiHu, without an under-
standing of the origin of this term or the suppression of
baryon number violation and, hence, proton decay. At tree
level, this model contains only one massive neutrino. It
relies on radiative corrections to neutrino masses to make it
consistent with experimental results [41,85], which dictate
that there are at least two massive neutrinos. The hierarchy
between the tree-level and loop-level neutrino masses is
consistent with the normal hierarchy, so an independent
discovery of an inverted hierarchy would probably rule this
model out. Also, the discovery of a heavy neutral gauge
boson at the LHC would suggest our minimal SUSY B − L
model. Stop LSPs in this bilinear R-parity violating model
were discussed in [86].
Another example is explicit lepton number violating

trilinear RPV, where the superpotential includes the
terms

W ⊃ λijkLiLjeck þ λ0ijkQiLjdck: ð60Þ
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Note that these terms are the same as the ones appearing in
our theory after rotating away the ϵi terms; see Eq. (21).
The two models differ, however, since in our theory the left-
handed sneutrino attains a VEV, which effects the neutrino
sector. Again, in the explicit trilinear RPVmodel there is no
mechanism for understanding the suppression of baryon
number. The λ0 terms allow the stops and sbottoms to decay
like leptoquarks. These trilinear terms also contribute to
neutrino masses [87], but through loops diagrams that are
more involved and have more freedom than in our model.
This loosens the connection between neutrino masses and
LSP decays. Furthermore, while λ0 allows all of the sbottom
decays discussed in this paper and the decay of the stop into
bottom-charged lepton, it does not allow the stop to top-
neutrino channel. The top-neutrino channel, if observed,
would therefore rule out R-parity violation dominated
by trilinear terms. In addition, such terms would not,
generically, be associated with a new massive neutral
gauge boson.
Leaving SUSY behind, we briefly consider the phenom-

enology of a leptoquark addition to the SM. There are
several possible types of leptoquarks, that is, with differing
quantum numbers. Limiting the discussion to those that
couple to matter, only leptoquarks which are doublets of
SUð2ÞL do not lead to tree-level proton decay [88] and are,
therefore, safe. These have the SM charges ð3; 2; 7=6Þ and
ð3; 2; 1=6Þ. We label the two component fields of each of
these SUð2ÞL doublets as ψQ

Y , where Y is the hypercharge
and Q is the electric charge. The mass splitting between
these two component fields will be on the electroweak level
and, therefore, if one is observable, there is a good chance
the other should be as well. The decays of these leptoquarks
are much less constrained, since the couplings that control
them are relatively free. Therefore, assuming that lepto-
quarks couple only to the third generation, the leptoquarks
have the following decays:

Ψ5=3
7=6 → tτþ and Ψ2=3

7=6 → bτþ; ð61Þ

Ψ5=3
7=6 → tτþ and Ψ2=3

7=6 → tν̄τ; ð62Þ

Ψ2=3
1=6 → bτþ and Ψ−1=3

1=6 → bν̄τ; ð63Þ

where the decays that have equal couplings due to SUð2ÞL
symmetry are grouped together. Since both components of
the leptoquark should be discoverable, and therefore both
decays in each of the above equations, it should be possible
to distinguish these from a stop or sbottom LSP.
Furthermore, leptoquarks are not connected to neutrino
masses and, therefore, it is not possible to predict the
relative sizes of the decay channels.12 A leptoquark would

also not necessarily be associated with a new neutral gauge
boson and, of course, since they are scalar fields, there is a
gauge hierarchy problem associated with having TeV scale
leptoquarks.

VII. SUMMARY

The most minimal B − L extension of the MSSM must
always spontaneously break R-parity and, in addition,
predict the existence of a TeV scale neutral gauge boson,
ZR, two light sterile neutrinos, and a Majorana contribution
to neutrino masses coming from R-parity violation. Such a
model is well motivated by string theory.
This paper examined the phenomenology of third gen-

eration squark LSPs within the context of the minimal
SUð3ÞC × SUð2ÞL ×Uð1Þ3R ×Uð1ÞB−L theory, which
falls under this general class of models. Because of
R-parity violation, these LSPs can now decay. Due to
the connection between R-parity violation and neutrino
masses, one can potentially make statements about the
neutrino mass hierarchy based on the LSP branching ratios.
The relevant results for the stop and sbottom LSPs are
shown in Figs. 4 and 10 respectively. If these quantities are
measured at the LHC, their location on the plots potentially
can extract information about the neutrino hierarchy.
A quick summary of the conclusions made in Sec. VA
are as follows:

(i) If the branching ratio to bottom electron dominates,
then the neutrino masses are most likely to be in the
inverted hierarchy.

(ii) If the branching ratio to bottom tau dominates, then
the neutrino masses are most likely in the normal
hierarchy, or the inverted hierarchy with sin2 θ23∼
0.587.

(iii) A dominant branching ratio into bottom muon
would suggest either the normal hierarchy, or the
inverted hierarchy with sin2 θ23 ∼ 0.446.

It was furthermore shown that these correlations are a result
of the fact that the flavorful parameters, vLi

and ϵi,
simultaneously govern R-parity violation and the mixing
in the neutrino sector.
Of course, the above conclusions depend strongly on

experimental reality. Even if one discovers a particle
decaying like a third generation squark LSP in this theory,
to have some confidence in these conclusions, the heavy ZR
gauge boson associated with this model should also be
discovered. In addition, the presence of R-parity violating
supersymmetry must also be confirmed. Since they require
RPV, leptoquarklike decays of the stop and sbottom LSPs
are not typically associated with SUSY models. Hence,
they have not been as vigorously searched for as other
SUSY signatures. Therefore, at this point, the bounds on
these decay channels are not as strong as one might expect.
In particular, a stop with the decays discussed in this paper
could be as light as ∼424 GeV and remain undetected;
see Figs. 7 and 8. To highlight this, we outlined some

12An exception exists when the leptoquark is embedded in a
multiplet which does contribute to neutrino masses; see e.g.
[89,90].
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improvements that can be made to further strengthen
existing bounds in Sec. V C.
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APPENDIX A: NEUTRALINOS AND NEUTRINOS

R-parity violation allows all fermions with the same
quantum numbers to mix and form physical states which
are linear combinations of the original fields. In the basis
ð ~WR; ~W

0; ~H0
d; ~H

0
u; ~B

0; νc3; νiÞ with i ¼ 1;…; 3, the neutra-
lino mass matrix is given by

Mχ0 ¼

0
BBBBBBBBBBBBBB@

MR 0 − 1
2
gRvd

1
2
gRvu 0 − 1

2
gRvR 01×3

0 M2
1
2
g2vd − 1

2
g2vu 0 0 1

2
g2vL�

i

− 1
2
gRvd

1
2
g2vd 0 −μ 0 0 01×3

1
2
gRvu − 1

2
g2vu −μ 0 0 0 ϵi

0 0 0 0 MBL
1
2
gBLvR − 1

2
gBLvL�

i

− 1
2
gRvR 0 0 0 1

2
gBLvR 0 1ffiffi

2
p Yνi3vu

03×1
1
2
g2vL�

j
03×1 ϵj − 1

2
gBLvL�

j

1ffiffi
2

p Yνj3vu 03×3

1
CCCCCCCCCCCCCCA

; ðA1Þ

where

ϵi ≡ 1ffiffiffi
2

p Yνi3vR ðA2Þ

are the parameters of the induced bilinear R-parity violating
terms. We have suppressed terms that are quadratic in the
neutrino mass parameter; see e.g. vLiYνij.
The neutralino mass matrix, Eq. (A1), has the schematic

form

Mχ0 ¼
�
Mχ0 mD

mT
D 03×3

�
; ðA3Þ

where Mχ0 is a six-by-six matrix of order a TeV and mD is
six-by-three matrix of order an MeV. This allows the mass
matrix to be diagonalized perturbatively. The diagonal
neutralino mass matrix is

MD
χ0
¼ N �Mχ0N

† ðA4Þ
with

N ¼
�

N 03×3

03×3 V†
PMNS

��
16×6 −ξ0
ξ†0 13×3

�
; ðA5Þ

where the second matrix on the right-hand side rotates
away the neutrino/neutralino mixing. This quantity is of
interest since it is ultimately used in the Feynman rules
given in Appendix D to calculate the third generation
squark decay widths. The first matrix diagonalizes the
neutralino states and the neutrino states. Equation (A4)
specifies the relationship between the gauge eigenstates,
ψ0, and the mass eigenstates χ0:

χ0 ¼ Nψ0; ðA6Þ

where the first six states in χ0 are the TeV scale neutralino
states labeled from lightest to heaviest and the last three are
the physical neutrino states.
Equation (A4) can be used to solve for the six-by-three

matrix ξ0:

ξ0 ¼ M−1
χ0
mD: ðA7Þ

The rows of ξ0 are the gaugino gauge eigenstates and the
columns correspond to the neutrino gauge eigenstates.
These are explicitly labeled and presented below:

ξ0 ~WRνi
¼ gRμ

8dχ0
½2MBLvuðg22vdvu − 2M2μÞϵi − g2BLM2v2Rðvdϵi þ μvL�

i
Þ�; ðA8Þ

ξ0 ~W2νi
¼ g2μ

8dχ0
½2g2RMBLvdv2uϵi þM ~Yv

2
Rðvdϵi þ μvL�

i
Þ�; ðA9Þ
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ξ0 ~H0
dνi

¼ 1

16dχ0
½M ~γv2Rvuðvdϵi − μvL�

i
Þ − 4M2μðM ~Yv

2
R þ g2RMBLv2uÞϵi�; ðA10Þ

ξ0 ~H0
uνi

¼ 1

16dχ0
½M ~γv2Rvdðvdϵi þ μvL�

i
Þ þ 4g2RμM2MBLvdvuϵi�; ðA11Þ

ξ0 ~B0νi ¼ −
1

8dχ0
½gBLg2RM2μv2Rðvdϵi þ μvL�

i
Þ þ 2gBLμvuððg2RM2 þ g22MRÞvdvu − 2MRM2μÞϵi�; ðA12Þ

ξ0νc
3
νi ¼

μ

8vRdχ0
½ðM ~γv2Rvdvu − 2g2BLMRM2μv2RÞvL�

i
þ 2MBLðM2ðg2Rv2Rvd − 4MRμvuÞ þ 2ðg2RM2 þ g22MRÞvdv2uÞϵi�; ðA13Þ

where

dχ0 ≡ 1

4
M2M ~Yμ

2v2R −
1

8
M ~γμv2Rvdvu; ðA14Þ

M ~γ ≡ g2Rg
2
BLM2 þ g22g

2
RMBL þ g22g

2
BLMR; ðA15Þ

M ~Y ≡ g2RMBL þ g2BLMR: ðA16Þ

Using Eqs. (A4) and (A7), or simply integrating out the
heavy states, yields the neutrino mass matrix

mνij ¼ AvL�
i
vL�

j
þ BðvL�

i
ϵj þ ϵivL�

j
Þ þ Cϵiϵj; ðA17Þ

with

A ¼ μM ~γ

2M ~γvuvd − 4M2M ~Yμ
; ðA18Þ

B ¼ M ~γvdð2M2
ZR

þ g2ZR
v2uÞ − 2g2ZR

g2BLM2MRμvu
4M2

ZR
ðM ~γvuvd − 2M ~YM2μÞ

; ðA19Þ

C ¼ 2g4ZR
M2MBLMRμ

2v2u − g2ZR
MBLμðg22g2ZR

MRv2u þ g2RM2ð4M2
ZR

þ g2ZR
v2uÞÞvdvu

4M4
ZR
μð2M ~YM2μ −M ~γvdvuÞ

− M ~γv2d
2μð2M ~YM2μ −M ~γvdvuÞ

; ðA20Þ

and where

g2ZR
≡ g2BL þ g2R: ðA21Þ

The diagonal neutrino mass matrix is then given by

mD
ν ij ¼ ðVT

PMNSmνVPMNSÞij ¼ AViVj þ BðViEj þ EiVjÞ þ CEiEj; ðA22Þ

where

vLi ¼ V�
l VPMNSil; ðA23Þ

ϵi ¼ ElV�
PMNSil; ðA24Þ

and

VPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ c13s23
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c13c23

1
CA × diagð1; eiα=2; 1Þ; ðA25Þ

with cabðsabÞ ¼ cos θabðsin θabÞ.
We note that there are a couple of complications which can make the picture given so far more involved. However these

matters are not significant in the model discussed here. We addressed them one by one at this point.
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In general, the PMNS matrix is a product of the matrix
which diagonalizes the neutrino mass matrix and the
corresponding matrix for the charged leptons, in analogy
with the CKM matrix; see Ref. [91] for example. In the
MSSM, the charged leptons can be taken to be diagonal
without loss of generality. Here, the Yukawa coupling
contributions to the charged lepton masses can still be taken
to be diagonal, but R-parity violation induces chargino-
charged lepton mixing, Eq. (B2), which leads to charged
lepton-charged lepton mixing. We will show in the next
section that this mixing is negligible, thereby justifying the
approximation that the sole contribution to the PMNS
matrix comes from the neutrino sector.
The analysis of the neutrino sector in this paper has been

conducted at tree level. Radiative corrections to neutrino
masses in explicit bilinear R-parity violation have been
worked out in detail in [41] and analyzed in [85]. See also
[92] in more general cases of R-parity violation. While our
model is different from the bilinear R-parity violation
scenario investigated in these papers, their results on
radiative corrections should be approximately applicable
here. Reference [85] found that the dominant such contri-
butions to the neutrino masses come from bottom-sbottom
loops. These loops do not introduce new lepton flavor
parameters. Therefore, they cannot change the flavor formof
the neutrino mass matrix, Eq. (A17), nor the resulting
masslessness of the lightest neutrino. A massless neutrino,
as well as the fact that LSP decays and neutrino masses are
determined by the same flavorful parameters, ϵi and vLi,
were the crucial components of our results, such as Figs. 3
and 10, as shown in Sec. VI. Therefore our results remained
unchanged with the inclusion of bottom-sbottom loops.
The next-to-leading order radiative contributions to the

neutrino masses arise from various loops involving charged
fermions and scalars such as tau-stau loops.Unlike the bottom-
sbottom loops, these do introduce new lepton flavor param-
eters to the neutrino mass matrix (but not the LSP decays of
course), such as the charged lepton Yukawa couplings.
Investigating these contributions, however, indicates that
they are only significant in the regime of large ϵi values,
ϵi ≳ 10−1 GeV. This is a region of fine-tuning in the neutrino
sector; see Eqs. (A41) and (A42) at the end of this section.
Since such fine-tuned points were not included in our results,
the tau-stau loops will not significantly alter our results.
Equations (A22)–(A24) can be used to solve for five of the

six vLi and ϵi parameters in terms of the neutrino parameters,
modulo two signs. The determinant of Eq. (A17) is zero, so
at tree level there is one massless neutrino. In this case, the
solutions to Eqs. (A22)–(A24) depend on whether the
neutrino mass hierarchy is normal or inverted:

1. Normal hierarchy

In a theory with one massless neutrino, such as the one
analyzed in this paper, the neutrino masses in the normal
hierarchy are

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
: ðA26Þ

Loop effects will contribute mass to the massless neutrino,
but we continue in the limit where these contributions are
negligible. For the normal hierarchy, Eq. (A22) then breaks
down into the following six equations:

AV2
1 þ 2BV1E1 þ CE2

1 ¼ 0; ðA27Þ

AV1V2 þ BðV1E2 þ V2E1Þ þ CE1E2 ¼ 0; ðA28Þ

AV1V3 þ BðV1E3 þ V3E1Þ þ CE1E3 ¼ 0; ðA29Þ

AV2V3 þ BðV2E3 þ V3E2Þ þ CE2E3 ¼ 0; ðA30Þ

AV2
2 þ 2BV2E2 þ CE2

2 ¼ m2; ðA31Þ

AV2
3 þ 2BV3E3 þ CE2

3 ¼m3: ðA32Þ

Equations (A27)–(A29) force V1; E1 ¼ 0. The remaining
system of equations, (A30)–(A32), can be solved for with
respect to E3:

E2 ¼ ζ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
m2

m3

�
E2
3 þ

Am3

R

�s
; ðA33Þ

V2 ¼
1

A

�
−BE2 þ ζ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

�
E2
2 þ

Am2

R

�s �
; ðA34Þ

V3 ¼
1

A

�
−BE3 þ ζ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

�
E2
3 þ

Am3

R

�s �
; ðA35Þ

where

R≡ B2 − AC ðA36Þ

and ζ1, ζ2, and ζ3 are the usual sign factors (�1) associated
with solving a quadratic equation. These sign factors,
however, are not all independent. They are related by

ζ2 ¼ ζ1ζ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− m2

m3
RE2

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðE3 þ Am3

R Þ
q

RE3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− m2

m3
ðE2

3 þ Am3

R Þ
q : ðA37Þ

Inverting Eqs. (A23) and (A24) translates these solutions in
Ei and Vi to ϵi and vLi.
Using Eqs. (A24) and (A33), E3 can be expressed in

terms of any one of the ϵi. This is advantageous because the
ϵi are more transparently related to stop decay branching
ratios and are the more fundamental parameters in the
Lagrangian. This allows one to specify one of the ϵi as the
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input parameters. Substituting Eq. (A33) and E1 ¼ 0 into Eq. (A24) and squaring it yields a quadratic equation for E3. It is
solved by

E3 ¼
ϵiV�

PMNSi3
þ ζ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− m2

m3
ðV�

PMNSi2
Þ2ϵ2i − Am2

R ðV�
PMNSi2

Þ2ððV�
PMNSi3

Þ2 þ m2

m3
ðV�

PMNSi2
Þ2Þ

q
ðV�

PMNSi3
Þ2 þ m2

m3
ðV�

PMNSi2
Þ2 : ðA38Þ

This introduces a new sign ζ0 ¼ �1 into the procedure, as
well as a new constraint on the sign variables. Substituting
Eq. (A33) into Eq. (A24) yields

ζ1 ¼
ðϵi − V�

PMNSi3
E3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− m2

m3
ðE2

3 þ Am3

R Þ
q

V�
PMNSi2

: ðA39Þ

The result is that specifying the SUSY and B − L param-
eters, as well as any one of the ϵi and the two signs ζ0 and
ζ2, specifies the vLi

and the other two ϵi.

2. Inverted hierarchy

The neutrino masses in the inverted hierarchy are

m1¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
; m2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31þΔm2
21

q
; m3¼0: ðA40Þ

In this case, the procedure above is modified in the
following ways: m1↔m3, E1↔E3, V1↔V3. Thus, solving
for Vi and Ei one obtains V3; E3 ¼ 0 and the solutions
above with the appropriate substitutions.
In both the normal and inverted neutrino hierarchies,

since the dimensionful parameters ϵi are responsible for
neutrino masses, there is a relationship between their
overall scales. We understand this in terms of two fine-
tuning criteria, and use it to inform our choice of the range
of ϵi in our scans defined in Table I. We then use these fine-
tuning criteria to exclude finely tuned points from Figs. 3,
4, and 10. Relaxing these criteria does not significantly
change the trends displayed in those figures. In the normal
hierarchy, the first criterion is that the last terms on the left-
hand sides of Eqs. (A31) and (A32) should not be much
bigger than the right-hand sides. If they were, this would
require a delicate cancellation between the terms on the
left-hand sides to produce the correct neutrino masses.
Specifically, the criterion is

jCE2
i j < 10 ·mi; ðA41Þ

where i ¼ 2; 3. The second criterion is that none of the ϵi
should be much smaller than the Ei, since the former are
just linear combinations of the latter. That is, take

10 · jϵij > jEjj ðA42Þ

for all i ¼ 1; 2; 3 and j ¼ 2; 3. In the invented hierarchy,
these conditions are the same except with the appropriate
replacements: m1↔m3, E1↔E3, V1↔V3.

APPENDIX B: CHARGINOS AND
CHARGED LEPTONS

The charginos mix with the charged leptons due to
R-parity violation. The chargino mass matrix, in the basis
ð ~Wþ; ~Hþ

u ; eci ; ~W
−; ~H−

d ; eiÞ, is given by

M~χ� ¼
�
05×5 XT

X 05×5

�
; ðB1Þ

with

X ¼

0
BBBBBBBBBB@

M2
1ffiffi
2

p g2vu 0 0 0

1ffiffi
2

p g2vd μ − vL1
vd
me − vL2

vd
mμ − vL3

vd
mτ

1ffiffi
2

p g2vL�
1

−ϵ1 me 0 0

1ffiffi
2

p g2vL�
2

−ϵ2 0 mμ 0

1ffiffi
2

p g2vL�
3

−ϵ3 0 0 mτ

1
CCCCCCCCCCA
:

ðB2Þ

This has the schematic form

X ¼
�

X Γ
GT mli

�
; ðB3Þ

where X is on the order of the SUSY soft mass scale and Γ,
G are proportional to RPV and, therefore, much smaller.
The chargino mass matrix is diagonalized as

XD ¼ U�XV†; ðB4Þ
where V diagonalizes the positively charged charginos and
U the negatively charged charginos. The relationships
between the gauge eigenstates, ψ�, and the mass eigen-
states, χ�, are

χ− ¼ Uψ−; ðB5Þ

χþ ¼ Vψþ: ðB6Þ
The first two components of the mass eigenstates are the
physical chargino TeV scale states and the last three are the
physical charged lepton states.
As with the neutralinos, the chargino/charged lepton

mixing can be perturbatively rotated away. The mixing
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matrix that does this is used in the Feynman rules in
Appendix D to calculate the decay widths for the third
generation squarks. Following a similar procedure as for
the neutralinos, the negative chargino mixing matrix is

U ¼
�

U 02×3

03×2 Ul

��
12×2 −ξ−
ξ†− 13×3

�
; ðB7Þ

where Ul is the matrix which diagonalizes the charged
lepton mass matrix. As mentioned in the previous
Appendix, we will show that this matrix is approximately
unity below.
Successful, perturbative diagonalization requires

ξ− ¼ −ðXTÞ−1G: ðB8Þ

Technically, the rows of ξ− are the negative chargino
gauge eigenstates and the columns are the charged
lepton gauge eigenstates. However, the latter are very close
to the mass eigenstates and will, therefore, be labeled
accordingly:

ðξ−Þ ~W−li
¼ −

g2ffiffiffi
2

p
dX

ðvdϵi þ μvL�
i
Þ; ðB9Þ

ðξ−Þ ~H−
dli

¼ 1

2dX
ð2M2ϵi þ g2vuvL�

i
Þ; ðB10Þ

where

dX ¼ M2μ −
1

2
g22vdvu ðB11Þ

is the determinant of X.
The positive chargino mixing matrix is

V ¼
�

V 02×3

03×2 13×3

��
12×2 −ξþ
ξ†þ 13×3

�
: ðB12Þ

Solving from diagonalization yields

ξþ ¼ −ðXÞ−1Γ; ðB13Þ

where the components of ξþ are

ðξþÞ ~Wþli ¼ −
1ffiffiffi
2

p
dX

g2 tan βmlivLi
; ðB14Þ

ðξþÞ ~Hþ
u li

¼ 1

dX

M2mlivLi

vd
: ðB15Þ

In Appendix A, it was stated that the charged lepton
mixing is negligible in this model. This will be shown
here at the first order of the perturbative expansion. To
begin, let us examine the mass matrix squared for the
negative charginos, χ−:

Mχ− ¼ XX† ¼
� XX† þ ΓΓ† XG� þ Γmli

GTX† þmliΓ
† m2

li
þ GTG�

�
; ðB16Þ

wherewe have used the symbolic Eq. (B3). Furthermore, the
mli terms in the one-two and two-one elements are negli-
gible compared to the SUSY scale X. The matrix Mχ− is
diagonalized as

MD
χ− ¼ U�Mχ−UT: ðB17Þ

Using Eq. (B7), the two-two element of MD
χ− is

ðMD
χ−Þ22 ¼ U�

lðξT−XX†ξ�− þGTX†ξ�− þ ξT−XG�

þm2
li
þGTG�ÞUT

l : ðB18Þ

Interestingly, using the solution for ξ−, Eq. (B8), leads to a
cancellation in Eq. (B18) so that it simplifies to

U�
lðm2

li
ÞUT

l : ðB19Þ

Sincem2
li
is already diagonal,Ul is simply the identity at the

level of this approximation. One can do a similar analysis
with the χþ mass matrix and we have checked that this
approximation is numerically valid thereby justifying the
sole contribution to the PMNS matrix from the neutrino
sector.

APPENDIX C: SQUARKS

In a general SUSY scenario, all six up-type squarks mix
with each other and all six down-type squarks mix with
each other as well. However, flavor physics dictates that
there should be little mixing between the first and second
generations. Furthermore, left-right mixing in a given
generation is suppressed by the corresponding fermion
mass. Therefore, it is generally assumed that significant
mixing only exists in the third generation, an assumption
adopted in this paper as well. The sfermion masses have
different D-term contributions in this model than in the
MSSM and are therefore presented here. The mass matrices
M2

~t and M2
~b
, in the basis ð~t; ~tc�Þ and ð ~b; ~bc�Þ, are
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M2
~t ¼

0
BB@m2

~Q3

þm2
t þ 1

2
c2Wc2βM

2
Z þ 1

6
s2RM

2
ZR

mt

�
At −

μ
tan β

�
mt

�
At −

μ
tan β

�
m2

~tc þm2
t þ

�
1
2
− 2

3
s2R
�
M2

ZR

1
CCA; ðC1Þ

M2
~b
¼

0
B@m2

~Q3

þm2
b −

1
2
c2Wc2βM

2
Z þ 1

6
s2RM

2
ZR

mbðAb − tan βμÞ

mbðAb − tan βμÞ m2
~bc
þm2

b þ
�
− 1

2
þ 1

3
s2R
�
M2

ZR

1
CA; ðC2Þ

where c2β ≡ cos 2β, cW ≡ cos θW , θW is the weak mixing

angle, and sR ≡ sin θR ¼ gBL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BL þ g2R

p
. This latter

quantity is technically a free parameter from a low energy
perspective. However, in the UV physics discussed in
Ref. [36], it takes the value s2R ∼ 0.6. In this paper, the
numerical work was carried out by scanning over the
physical masses of the squarks and, therefore, this param-
eter is not used. Here,mt;mb are the top and bottom masses
and YtAt, YbAb are the trilinear a terms.The physical states
are related to the gauge states by

� ~f1
~f2

�
¼

�
cos θf sin θf
− sin θf cos θf

�� ~f
~fc�

�
; ðC3Þ

where ~f represent either ~t or ~b and m ~f1
< m ~f2

. The lightest
sfermion is purely left handed (right handed) when its
mixing angle is 0° (90°). The mixing angles are given by

tan 2θt ¼
2mtðAt −

μ
tan βÞ

m2
~Q3

þ 1
2
c2Wc2βM

2
Z −m2

~tc þ ð− 1
2
þ 5

6
s2RÞM2

ZR

;

ðC4Þ

tan 2θb ¼
2mbðAb − μ tan βÞ

m2
~Q3

− 1
2
c2Wc2βM

2
Z −m2

~bc
þ ð1

2
− 1

6
s2RÞM2

ZR

; ðC5Þ

when M2
~t 11 > M2

~t 22 and M2
~b11

> M2
~b22

. When M2
~t 11 <

M2
~t 22, θt is shifted by −π=2 and when M2

~b11
< M2

~b22
, θb

is shifted by −π=2.
It is worthwhile to note that a purely left-handed lightest

stop (θt ¼ 0) cannot be the LSP. This is because both the
left-handed stop and the left-handed sbottom get some of
their mass from the m2

~Q3

soft mass parameter [as shown in

Eqs. (C1) and (C2)] and their respective fermion masses,mt

andmb, sincem2
t > m2

b,m
2
~t1
> m2

~b1
for a purely left-handed

lightest stop. It is possible that mixing in the sbottom sector
could change this, but those effects are expected to be small
since they are proportional to mb [see the off-diagonal
elements of Eq. (C2)]. For a mostly left-handed stop
(θt ≈ 0), the lightest stop can be the LSP for certain values
of some parameters that do not effect the physics studied in
this paper.

APPENDIX D: FEYNMAN RULES

In this appendix, the Feynman rules for the interactions
between third generation squarks, quarks, and neutralinos,
and charginos are listed in the physical basis. The physical
neutralinos and charginos are labeled by the subscript n.
For the neutralinos, χ0n ¼ ðχ1;…; χ6; νiÞ where the first six
states are the TeV scale neutralinos and the last three states
are the physical neutrinos labeled by i. For the charginos
χ�n ¼ ðχ�1 ; χ�2 ;liÞ where the first two states are the TeV
scale charginos and the lass three states are the charged
leptons labeled by i. In this case, the physical ith neutrino is
given by χ06þi and the physical ith charged lepton is χ�2þi.
The Feynman rule for each process will be followed by

an approximation of that Feynman rule relevant for the
R-parity violating decays discussed in the paper, namely,
leptoquarklike decays. This approximation will be given in
the limit M2

ZR
≫ m2

soft ≫ v2d;u using the perturbative diag-
onalizations presented in Appendixes A and B. We also
employ the fact that ϵ2i ≫ vL2i in general. This is useful for
an analytic understanding of the strengths of the different
decay channels.

1. Stops

For the lightest stop vertex ~t1t~χ0n:

g~t1tχ0n ¼ GL
~t1tχ0n

PL þ GR
~t1tχ0n

PR; ðD1Þ

where

GL
~t1tχ0n

¼ 1ffiffiffi
2

p gRsθtN
�
n1 þ

1

3
ffiffiffi
2

p gBLsθtN
�
n5 − YtcθtN

�
n4;

ðD2Þ

GR
~t1tχ0n

¼ −
1ffiffiffi
2

p g2cθtN n2 −
1

3
ffiffiffi
2

p gBLcθtN n5 − YtsθtN n4;

ðD3Þ

and PL
R
¼ 1

2
ð1� γ5Þ. For the neutrino components of the

physical neutralinos, χ6þi ¼ νi, these G parameters are
approximated by
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GL
~t1tνi

≈ ðVPMNSÞji
�
1ffiffiffi
2

p gRsθt

�
−gR

4MBLμvu þ g2BLv
2
Rvd

2M ~Yμv
2
R

ϵj −
gRg2BL
2M ~Y

vL�
j

�

−
1

3
ffiffiffi
2

p gBLsθt

�
gBL

g2Rv
2
Rvd − 4MRμvu
2M ~Yμv

2
R

ϵj þ
gBLg2R
2M ~Y

vL�
j

�
−Ytcθt

�
M ~γv2Rv

2
d þ 4g2RM2MBLμvdvu
4M ~YM2v2Rμ

2
ϵj þ

vdM ~γ

4M ~YM2μ
vL�

j

��
;

ðD4Þ

GR
~t1tνi

≈ ðVPMNSÞ�ji
�
−

1ffiffiffi
2

p g2cθt

�
g2vd
2M2μ

ϵ�j þ
g2
2M2

vLj

�
þ 1

3
ffiffiffi
2

p gBLcθt

�
gBL

g2Rv
2
Rvd − 4MRμvu
2M ~Yμv

2
R

ϵ�j þ
gBLg2R
2M ~Y

vLj

�

−Ytsθt

�
M ~γv2Rv

2
d þ 4g2RM2MBLμvdvu
4M ~YM2v2Rμ

2
ϵ�j þ

vdM ~γ

4M ~YM2μ
vLj

��
: ðD5Þ

For the lightest stop vertex ~t1b~χ−n :

g~t1bχ�n ¼ GL
~t1bχ�n

PL þGR
~t1bχ�n

PR; ðD6Þ

with

GL
~t1bχ�n

¼ YbcθtU
�
n2; ðD7Þ

GR
~t1bχ�n

¼ −
1ffiffiffi
2

p g2cθtVn1 þ YtsθtVn2: ðD8Þ

For the charged lepton components of the physical chargi-
nos, χ�2þi ¼ li, these G parameters are approximated as

GL
~t1bli

≈ Ybcθt
1

μ
ϵi; ðD9Þ

GR
~t1bli

≈ Ytsθt
mliffiffiffi
2

p
vdμ

vL�i : ðD10Þ

The approximations show that the top-neutrino channel
is suppressed either by factors of vd;u=msoft or by vLi
compared to the bottom-charged lepton channel. Therefore,
the bottom-charged lepton channel dominates except for
the case were the stop is mostly right handed.

2. Sbottoms

For the lightest sbottom vertex ~b1b~χ0n,

g ~b1bχ0n ¼ GL
~b1bχ0n

PL þ GR
~b1bχ0n

PR; ðD11Þ

where n labels the combined neutralinos (charginos) and
neutrinos (charged leptons), and

GL
~b1bχ0n

¼ −
1ffiffiffi
2

p gRsθbN
�
n1 þ

1

3
ffiffiffi
2

p gBLsθbN
�
n5 − YbcθbN

�
n3;

ðD12Þ

GR
~b1bχ0n

¼ 1ffiffiffi
2

p g2cθbN n2 −
1

3
ffiffiffi
2

p gBLcθbN n5 − YbsθbN n3:

ðD13Þ

For the neutrino components of the physical neutralinos,
χ6þi ¼ νi, these G parameters are approximated by

GL
~b1bνi

≈ VPMNSjiYbcθb
ϵ�j
μ
; ðD14Þ

GR
~b1bνi

≈ VPMNS
�
jiYbsθb

ϵi
μ
: ðD15Þ

For the lightest sbottom vertex ~b1t~χ−n ,

g ~b1t~χ−n ¼ GL
~b1t~χ−n

PL þ GR
~b1t~χ−n

PR; ðD16Þ

with

GL
~b1t~χ�n

¼ YtcθbV
�
n2; ðD17Þ

GR
~b1t~χ�n

¼ −g2cθbUn1 þ YbsθbUn2: ðD18Þ

For the charged lepton components of the physical chargi-
nos, χ�2þi ¼ li, these G parameters are approximated as

GL
~b1tli

≈ Ytcθb
mli

vdμ
vLi

; ðD19Þ

GR
~b1tli

≈ Ybsθb
ϵ�i
μ
: ðD20Þ

In the sbottom sector, the bottom-neutrino and top-charged
lepton channels are both unsuppressed except in the case of
the mostly left-handed sbottom in which case the bottom-
neutrino channel dominates.
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